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For those looking to explore advanced concepts and access essential information, this 

second edition of "Handbook of Medical Imaging" is an invaluable resource.  
Including 35 updated chapters reflecting new technology and research, this edition 

also includes five new chapters on important topics incluling Nonlinear 3D Boundary 

Detection, Adaptive Algorithms for Cancer Cytological Diagnosis, Dynamic 

Mammogram Retrieval from Web-Based Image Libraries, Imaging and Communication 
in Health Informatics and Tumor Growth Modeling in Oncological Image Analysis.  

The first edition of the book was the most widely used reference in the field - its well-

deserved reputation second to none. This updated second edition continues this 
tradition of quality, featuring contributions from internationally renowned authors 

from leading institutions.  

* Includes contributions from internationally renowned authors from leading 

institutions 
* NEW! 35 of 56 chapters have been revised and updated. Additionally, five new 

chapters have been added on important topics incluling Nonlinear 3D Boundary 

Detection, Adaptive Algorithms for Cancer Cytological Diagnosis, Dynamic 
Mammogram Retrieval from Web-Based Image Libraries, Imaging and Communication 

in Health Informatics and Tumor Growth Modeling in Oncological Image Analysis.  

* Provides a complete collection of algorithms in computer processing of medical 
images  

* Contains over 60 pages of stunning, four-color images 
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Foreword

The development of medical imaging over the past four decades
has been truly revolutionary. For example, in cardiology spe-
cialized three-dimensional motion estimation algorithms allow
myocardial motion and strain measurements using tagged car-
diac magnetic resonance imaging. In mammography, shape and
texture analysis techniques are used to facilitate the diagnosis of
breast cancer and assess its risk. Three-dimensional volumetric
visualization of CT and MRI data of the spine, internal organs
and the brain has become the standard for routine patient
diagnostic care.

What is perhaps most remarkable about these advances in
medical imaging is the fact that the challenges have required sig-
nificant innovation in computational techniques for nearly all
aspects of image processing in various fields. The use of multi-
ple imaging modalities on a single patient, for example MRI and
PET, requires sophisticated algorithms for image registration
and pattern matching. Automated recognition and diagnosis
require image segmentation, quantification and enhancement
tools. Algorithms for image segmentation and visualization are

employed broadly through many applications using all of the
digital imaging modalities. And finally, the widespread availabil-
ity of medical images in digital format has spurred the search for
efficient and effective image compression and communication
methods.

Advancing the frontiers of medical imaging requires the
knowledge and application of the latest image manipulation
methods. In Handbook of Medical Image Processing and Analysis,
Dr. Bankman has assembled a comprehensive summary of
the state-of-the-art in image processing and analysis tools for
diagnostic and therapeutic applications of medical imaging.
Chapters cover a broad spectrum of topics presented by authors
who are highly expert in their respective fields. For all those
who are working in this exciting field, the Handbook should
become a standard reference text in medical imaging.

William R. Brody
President, Johns Hopkins

University
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Preface

The discoveries of seminal physical phenomena such as
X-rays, ultrasound, radioactivity, and magnetic resonance, and
the development of imaging instruments that harness them
have provided some of the most effective diagnostic tools in
medicine. The medical imaging community is now able to
probe into the structure, function, and pathology of the human
body with a diversity of imaging systems. These systems are also
used for planning treatment and surgery, as well as for imaging
in biology. Data sets in two, three, or more dimensions con-
vey increasingly vast and detailed information for clinical or
research applications. This information has to be interpreted in
a timely and accurate manner to benefit health care. The exam-
ination is qualitative in some cases, quantitative in others; some
images need to be registered with each other or with templates,
many must be compressed and archived. To assist visual inter-
pretation of medical images, the international imaging com-
munity has developed numerous automated techniques which
have their merits, limitations, and realm of application. This
Handbook presents concepts and digital techniques for process-
ing and analyzing medical images after they have been generated
or digitized. It is organized into six sections that correspond to
the fundamental classes of algorithms: enhancement, segmen-
tation, quantification, registration, visualization, and a section
that covers compression, storage, and communication.

I Enhancement

Enhancement algorithms are used to reduce image noise and
increase the contrast of structures of interest. In images where
the distinction between normal and abnormal tissue is sub-
tle, accurate interpretation may become difficult if noise levels
are relatively high. In many cases, enhancement improves the
quality of the image and facilitates diagnosis. Enhancement
techniques are generally used to provide a clearer image for
a human observer, but they can also form a preprocessing
step for subsequent automated analysis. The four chapters in
this section present diverse techniques for image enhance-
ment including linear, nonlinear, fixed, adaptive, pixel-based,
or multi-scale methods. In the second edition, three chapters
have been updated with new images, an application of enhance-
ment to MR angiography, and the use of Fourier descriptors in
mammogram image enhancement.

II Segmentation

Segmentation is the stage where a significant commitment
is made during automated analysis by delineating structures
of interest and discriminating them from background tissue.

This separation, which is generally effortless and swift for the
human visual system, can become a considerable challenge
in algorithm development. In many cases the segmentation
approach dictates the outcome of the entire analysis, since mea-
surements and other processing steps are based on segmented
regions. Segmentation algorithms operate on the intensity or
texture variations of the image using techniques that include
thresholding, region growing, deformable templates, and pat-
tern recognition techniques such as neural networks and fuzzy
clustering. Hybrid segmentation and volumetric segmentation
are also addressed in this section that includes ten chapters.
Eight chapters have been updated to reflect recent applications,
developments in global shape constraints and multigrid gradi-
ent vector flow in deformable templates, a general framework
for unsupervised classification, and boundary distance estima-
tion in volumetric segmentation. Chapter 14 in this section is
new to the second edition, and presents the use of higher order
moments of intensity distributions to segment tissue types that
the human visual system may not easily distinguish.

III Quantification

Quantification algorithms are applied to segmented struc-
tures to extract the essential diagnostic information such as
shape, size, texture, angle, and motion. Because the types of
measurement and tissue vary considerably, numerous tech-
niques that address specific applications have been developed.
The fourteen chapters in this section cover shape and tex-
ture quantification in two- and three-dimensional data, the
use of shape transformations to characterize structures, arterial
tree morphometry, image-based techniques for musculoskeletal
biomechanics, image analysis in mammography, and quan-
tification of cardiac function. In applications where different
kinds of tissue must be classified, the effectiveness of quantifi-
cation depends significantly on the selection of database and
image features, as discussed in this section. A comprehensive
chapter covers the choices and pitfalls of image interpolation,
a technique included in many automated systems and used
particularly in registration. Seven of these chapters have been
updated with additional topics including specialized filters for
texture quantification, application of three-dimensional tex-
ture analysis on schizophrenic brain images, developments in
feature extraction and validation, analysis of digital mammo-
grams, presentation of computer analysis results to radiologists,
advances in tracking and encoding tagged cardiac MRI images,
and a unified formulation for piecewise-polynomial synthesis
functions in image interpolation. Two new chapters have been
added: Chapter 18 presents a review of macroscopic models

xxi
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of tumor growth for oncological image analysis, Chapter 27
addresses quantification of the cell nucleus in fluorescently
labeled images in cytology.

IV Registration

Registration of two images of the same part of the body is essen-
tial for many applications where the correspondence between
the two images conveys the desired information. These two
images can be produced by different modalities, for example
CT and MRI, can be taken from the same patient with the same
instrument at different times, or can belong to two different
subjects. Comparison of acquired images with digital anatomic
atlas templates also requires registration algorithms. These algo-
rithms must account for the distortions between the two images,
which may be caused by differences between the imaging meth-
ods, their artifacts, soft tissue elasticity, and variability among
subjects. This section explains the physical and biological fac-
tors that introduce distortions, presents various linear and
nonlinear registration algorithms, describes the Talairach space
for brain registration, and addresses interpolation issues inher-
ent in registration. Chapters that describe clinical applications
and brain atlases illustrate the current and potential contri-
butions of registration techniques in medicine. This section
contains fifteen chapters seven of which have been updated with
new topics such as Maxwell term and eddy currents effects on
distortions in MRI, recent findings on the anatomic variability
of the brain, quaternions for representing rigid-body rotations,
methods for averaging linear transformations, developments in
estimating registration errors using landmark based fiducials,
the use of ridges as registration features, and developments in
resampling of registered images.

V Visualization

Visualization is a relatively new area that is contributing sig-
nificantly to medicine and biology. While automated systems
are good at making precise quantitative measurements, the
complete examination of medical images is accomplished by
the visual system and experience of the human observer. The
field of visualization includes graphics hardware and software
specifically designed to facilitate visual inspection of med-
ical and biological data. In some cases such as volumetric
data, visualization techniques are essential to enable effective
visual inspection. This section starts with the evolution of visu-
alization techniques and presents the fundamental concepts
and algorithms used for rendering, display, manipulation, and

modeling of multidimensional data, as well as related quantita-
tive evaluation tools. Fast surface extraction techniques, volume
visualization, and virtual endoscopy are discussed in detail,
and applications are illustrated in two and three dimensions.
All five chapters in this section have been updated with new
figures, considerably expanded material in volume rendering
and volume visualization, and additional topics on endoscopy,
including flight path planning, unfolding, registration, and
lesion detection. Many recent applications of visualization are
illustrated, including surgical separation of conjoined twins,
multi-channel and multi-modal data, and three-dimensional
virtual colonoscopy.

VI Compression, Storage, and
Communication

Compression, storage, and communication of medical images
are related functions for which demand has recently increased
significantly. Medical images need to be stored in an efficient
and convenient manner for subsequent retrieval. In many cases
images have to be shared among multiple sites, and commu-
nication of images requires compression, specialized formats,
and standards. Lossless image compression techniques ensure
that all the original information will remain in the image
after compression but they do not reduce the amount of data
considerably. Lossy compression techniques can produce sig-
nificant savings in storage but eliminate some information
from the image. This section covers fundamental concepts
in medical image compression, storage and communication,
and introduces related standards such as JPEG, DICOM, and
HL-7. Picture archiving and communication systems (PACS)
are described and techniques for preprocessing images before
storage are discussed. Three chapters address lossy compres-
sion issues and one introduces an efficient three-dimensional
image compression technique based on the wavelet transform.
Among the nine chapters in this section, the first three have
been updated and two are new chapters in the second edi-
tion. The updated chapters include new topics such as structure
reporting in PACS, compliance with the Health Insurance
Portability and Accountability Act, electronic health record,
PACS in telemedicine, and image background trend reduction.
Chapter 52, new to this edition, presents trends and issues in
imaging and communication in medical and public health set-
tings. Chapter 53, also new, addresses mobile agent systems for
retrieval of images from Digital Medical Image Libraries, and
discusses strategies for dynamic mammogram retrieval from
web-based libraries.



To my parents Renee and Henri Bankman, two excellent physicians who diagnosed
and treated thousands, and inspired the next generation.



Acknowledgments

This Handbook is the product of a relatively large international team which reflects
the diversity of the medical imaging community. It has been a great privilege and
pleasure for me to interact with the authors. I would like to express my most sincere
thanks to the section editors, Bernie Huang, Rangaraj Rangayyan, Richard Robb,
and Roger Woods, for their initiative, insight, coordination, and perseverance.
The journey of the Handbook was set on its course with the guidance of two
distinguished leaders who served on the advisory board of the Handbook: William
Brody, president of the Johns Hopkins University, and Elias Zerhouni, when he was
Chairman of the Radiology Department at the Johns Hopkins Medical Institutions.
I appreciate the vision and encouragement of Joel Claypool who initiated this
Handbook at Academic Press and allowed the journey to progress smoothly in all
its phases and for all involved. I also thank Julie Bolduc from Academic Press and
Marty Tenney from Textbook Writers Associates for coordinating the compilation
of the first edition of the Handbook so effectively, as well as Melinda Ritchie,
Melanie Benson, and Jonathan Simpson from Elsevier Inc., for all their help and
support with the second edition. My deepest gratitude goes to my wife, Lisa, and my
children, Judy and Danny, for enduring and encouraging the journey graciously.

Isaac N. Bankman
Johns Hopkins University

xxiv



I
Enhancement

Rangaraj M. Rangayyan
University of Calgary

Medical images are often deteriorated by noise due to various sources of interference and other phenomena that affect the
measurement processes in imaging and data acquisition systems. The nature of the physiological system under investigation and
the procedures used in imaging also diminish the contrast and the visibility of details. For example, planar projection nuclear
medicine images obtained using a gamma camera as well as single-photon emission computed tomography (SPECT) are severely
degraded by Poisson noise that is inherent in the photon emission and counting processes. Although mammograms (X-ray images
of the breast) are not much affected by noise, they have limited contrast because of the nature and superimposition of the soft
tissues of the breast, which is compressed during the imaging procedure. The small differences that may exist between normal and
abnormal tissues are confounded by noise and artifacts, often making direct analysis of the acquired images difficult.

In all of the cases just mentioned, some improvement in the appearance and visual quality of the images, even if only subjective,
may assist in their interpretation by a medical specialist.

Image enhancement techniques are mathematical techniques that are aimed at realizing improvement in the quality of a given
image. The result is another image that demonstrates certain features in a manner that is better in some sense as compared to
their appearance in the original image. One may also derive or compute multiple processed versions of the original image, each
presenting a selected feature in an enhanced appearance. Simple image enhancement techniques are developed and applied in an
ad hoc manner. Advanced techniques that are optimized with reference to certain specific requirements and objective criteria are
also available.

Although most enhancement techniques are applied with the aim of generating improved images for use by a human observer,
some techniques are used to derive images that are meant for use by a subsequent algorithm for computer processing. Examples
of the former category are techniques to remove noise, enhance contrast, and sharpen the details in a given image. The latter
category includes many techniques in the former, but has an expanded range of possibilities, including edge detection and object
segmentation.

If used inappropriately, enhancement techniques themselves may increase noise while improving contrast, they may eliminate
small details and edge sharpness while removing noise, and they may produce artifacts in general. Users need to be cautious to
avoid these pitfalls in the pursuit of the best possible enhanced image.

The first chapter, by Paranjape, provides an introduction to basic techniques, including histogram manipulation, mean and
median filtering, edge enhancement, and image averaging and subtraction, as well as the Butterworth filter. Applications illustrate
contrast enhancement, noise suppression, edge enhancement, and mappings for image display systems. Most of the methods
described in this chapter belong to the ad hoc category and provide good results when the enhancement need is not very
demanding. The histogram equalization technique is theoretically well founded with the criterion of maximal entropy, aiming
for a uniform histogram or gray-level probability density function. However, this technique may have limited success on many
medical images because they typically have details of a wide range of size and small gray-level differences between different tissue
types. The equalization procedure based on the global probability with a quantized output gray scale may obliterate small details
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and differences. One solution is the locally adaptive histogram equalization technique described in this chapter. The limitations
of the fundamental techniques motivated the development of adaptive and spatially variable processing techniques.

The second chapter by Westin et al. presents the design of the adaptive Wiener filter. The Wiener filter is an optimal filter derived
with respect to a certain objective criterion. Westin et al. describe how the Wiener filter may be designed to adapt to local and
spatially variable details in images. The filter is cast as a combination of low-pass and high-pass filters, with factors that control
their relative weights. Application of the techniques to CT, MR, MR angiography, and ultrasound images is illustrated.

The third chapter by Laine et al. focuses on nonlinear contrast enhancement techniques for radiographic images, in particular
mammographic images. A common problem in contrast or edge enhancement is the accompanying but undesired noise amplifi-
cation. A wavelet-based framework is described by Laine et al. to perform combined contrast enhancement and denoising, that
is, suppression of the noise present in the input image and/or control of noise amplification in the enhancement process. The
basic unsharp masking and subtracting Laplacian techniques are included as special cases of a more general system for contrast
enhancement.

The fourth and final chapter of the section, by Qian, describes a hybrid filter incorporating Fourier descriptors, an adaptive
multistage nonlinear filter and a multiresolution/multiorientation wavelet transform. The methods address image enhancement
with noise suppression, as well as decomposition and selective reconstruction of wavelet-based subimages. The enhancement of
this hybrid approach is illustrated on microcalcification clusters and masses in mammograms.

Together, the chapters in this section present an array of techniques for image enhancement: from linear to nonlinear, from fixed
to adaptive, and from pixel-based to multiscale methods. Each method serves a specific need and has its own realm of applications.
Given the diverse nature of medical images and their associated problems, it would be difficult to prescribe a single method that
can serve a range of problems. An investigator is well advised to study the images and their enhancement needs, and to explore a
range of techniques, each of which may individually satisfy a subset of the requirements. A collection of processed images may be
called for in order to meet all the requirements.
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1.1 Introduction

Image enhancement techniques are used to refine a given image
so that desired image features become easier to perceive for the
human visual system or more likely to be detected by automated
image analysis systems [1, 13]. Image enhancement allows the
observer to see details in images that may not be immediately
observable in the original image. This may be the case, for exam-
ple, when the dynamic range of the data and that of the display
are not commensurate, when the image has a high level of noise,
or when contrast is insufficient [4, 5, 8, 9].

Fundamentally, image enhancement is the transformation
or mapping of one image to another [10, 14]. This trans-
formation is not necessarily one-to-one, so two different
input images may transform into the same or similar out-
put images after enhancement. More commonly, one may
want to generate multiple enhanced versions of a given image.
This aspect also means that enhancement techniques may be
irreversible.

Often the enhancement of certain features in images is
accompanied by undesirable effects. Valuable image infor-
mation may be lost, or the enhanced image may be a poor
representation of the original. Furthermore, enhancement
algorithms cannot be expected to provide information that is

not present in the original image. If the image does not contain
the feature to be enhanced, noise or other unwanted image com-
ponents may be inadvertently enhanced without any benefit
to the user.

In this chapter we present established image enhancement
algorithms commonly used for medical images. Initial con-
cepts and definitions are presented in Section 1.2. Pixel-based
enhancement techniques described in Section 1.3 are trans-
formations applied to each pixel without utilizing specifically
the information in the neighborhood of the pixel. Section 1.4
presents enhancement with local operators that modify the
value of each pixel using the pixels in a local neighborhood.
Enhancement that can be achieved with multiple images of the
same scene is outlined in Section 1.5. Spectral domain filters
that can be used for enhancement are presented in Section 1.6.
The techniques described in this chapter are applicable to
dental and medical images.

1.2 Preliminaries and Definitions

We define a digital image as a two-dimensional array of numbers
that represent the real, continuous intensity distribution of a
spatial signal. The continuous spatial signal is sampled at regular
intervals, and the intensity is quantized to a finite number of

Copyright © 2008 by Elsevier, Inc.
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levels. Each element of the array is referred to as a picture element
or pixel. The digital image is defined as a spatially distributed
intensity signal f (m, n), where f is the intensity of the pixel,
and m and n define the position of the pixel along a pair of
orthogonal axes usually defined as horizontal and vertical. We
shall assume that the image has M rows and N columns and
that the digital image has P quantized levels of intensity (gray
levels) with values ranging from 0 to P − 1.

The histogram of an image, commonly used in image
enhancement and image characterization, is defined as a vector
that contains the count of the number of pixels in the image at
each gray level. The histogram, h(i), can be defined as

h(i) =
M−1∑
m=0

N−1∑
n=0

δ( f (m, n)− i), i = 0, 1, . . . , P − 1,

where

δ(w) =
{

1 w = 0,
0 otherwise.

A useful image enhancement operation is convolution using
local operators, also known as kernels. Considering a kernel
w(k, l) to be an array of (2K + 1× 2L + 1) coefficients where
the point (k, l) = (0, 0) is the center of the kernel, convolution
of the image with the kernel is defined by

g (m, n) = w(k, l)∗f (m, n) =
K∑

k=−K

L∑
l=−L

w(k, l) • f (m − k, n − l),

where g (m, n) is the outcome of the convolution or output
image. To convolve an image with a kernel, the kernel is centered
on an image pixel (m, n), the point-by-point products of the
kernel coefficients and corresponding image pixels are obtained,
and the subsequent summation of these products is used as the
pixel value of the output image at (m, n). The complete output
image g (m, n) is obtained by repeating the same operation on
all pixels of the original image [4, 5, 13]. A convolution kernel
can be applied to an image in order to effect a specific enhance-
ment operation or change in the image characteristics. This
typically results in desirable attributes being amplified and
undesirable attributes being suppressed. The specific values
of the kernel coefficients depend on the different types of
enhancement that may be desired.

Attention is needed at the boundaries of the image where
parts of the kernel extend beyond the input image. One
approach is to simply use the portion of the kernel that overlaps
the input image. This approach can, however, lead to artifacts
at the boundaries of the output image. In this chapter we have
chosen to simply not apply the filter in parts of the input image
where the kernel extends beyond the image. As a result, the out-
put images are typically smaller than the input image by the size
of the kernel.

The Fourier transform F(u, v) of an image f (m, n) is
defined as

F(u, v) = 1

MN

M−1∑
m=0

N−1∑
n=0

f (m, n)e
−2πj

( um
M + vn

N

)
,

u = 0, 1, 2, . . . , M − 1 v = 0, 1, 2, . . . , N − 1,

where u and v are the spatial frequency parameters. The Fourier
transform provides the spectral representation of an image,
which can be modified to enhance desired properties. A spatial-
domain image can be obtained from a spectral-domain image
with the inverse Fourier transform given by

f (m, n) =
M−1∑
u=0

N−1∑
n=0

F(u, v)e
2πj

( um
M + vn

N

)
,

m = 0, 1, 2, . . . , M − 1, n = 0, 1, 2, . . . , N − 1.

The forward or inverse Fourier transform of an N × N
image, computed directly with the preceding definitions,
requires a number of complex multiplications and additions
proportional to N 2. By decomposing the expressions and
eliminating redundancies, the fast Fourier transform (FFT)
algorithm reduces the number of operations to the order of
N log2 N [5]. The computational advantage of the FFT is sig-
nificant and increases with increasing N . When N = 64 the
number of operations is reduced by an order of magnitude,
and when N = 1024, by two orders of magnitude.

1.3 Pixel Operations

In this section we present methods of image enhancement that
depend only on the pixel gray level and do not take into account
the pixel neighborhood or whole-image characteristics.

1.3.1 Compensation for Nonlinear
Characteristics of Display or Print Media

Digital images are generally displayed on cathode ray tube
(CRT) type display systems or printed using some type of pho-
tographic emulsion. Most display mechanisms have nonlinear
intensity characteristics that result in a nonlinear intensity pro-
file of the image when it is observed on the display. This effect
can be described succinctly by the equation

e(m, n) = C( f (m, n)),

where f (m, n) is the acquired intensity image, e(m, n) rep-
resents the actual intensity output by the display system,
and C() is a nonlinear display system operator. In order to
correct for the nonlinear characteristics of the display, one
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(a) (b)

FIGURE 1.1 (a) Original image as seen on a poor-quality CRT-type display. This image has poor contrast, and details are difficult to perceive.
(b) The nonlinearity of the display is reversed by the transformation, and structural details become more visible (Courtesy of Ms. Bonnie
Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

must apply a transform that is the inverse of the display’s
nonlinearity [14, 16]:

g (m, n) = T (e(m, n)) ∼= C−1(C( f (m, n)))

g (m, n) ∼= f (m, n).

where T () is a nonlinear operator that is approximately equal to
C−1(), the inverse of the display system operator, and g (m, n)
is the output image.

Determination of the characteristics of the nonlinearity
could be difficult in practice. In general, if a linear intensity
wedge is imaged, one can obtain a test image that captures
the complete intensity scale of the image acquisition system.
However, an intensity measurement device that is linear is then
required to assess the output of the display system, in order to
determine its actual nonlinear characteristics.

A slightly exaggerated example of this type of a transform is
presented in Figure 1.1. Figure 1.1a presents a simulated CRT
display with a logarithmic characteristic. This characteristic
tends to suppress the dynamic range of the image decreasing the
contrast. Figure 1.1b presents the same image after an inverse
transformation to correct for the display nonlinearity. Although
these operations do in principle correct for the display, the pri-
mary mechanism for review and analysis of image information
is the human visual system, which is fundamentally a nonlinear
reception system and adapts locally to the intensities presented.

1.3.2 Intensity Scaling

Intensity scaling is a method of image enhancement that can
be used when the dynamic range of the acquired image data
significantly exceeds the characteristics of the display system,

or vice versa. It may also be the case that image information is
present in specific narrow intensity bands that may be of special
interest to the observer. Intensity scaling allows the observer to
focus on specific intensity bands in the image by modifying the
image such that the intensity band of interest spans the dynamic
range of the display [14, 16]. For example, if f1 and f2 are known
to define the intensity band of interest, a scaling transformation
may be defined as

e =
{

f f1 ≤ f ≤ f2

0 otherwise

g =
{

e − f1

f2 − f1

}
• ( fmax),

where e is an intermediate image, g is the output image, and
fmax is the maximum intensity of the display.

These operations may be seen through the images in
Figure 1.2. Figure 1.2a presents an image with detail in the
intensity band from 180 to 210. The image, however, is displayed
such that all gray levels in the range 0 to 255 are seen. Figure 1.2b
shows the histogram of the input image, and Figure 1.2c
presents the same image with the 180 to 210 intensity band
stretched across the output band of the display. Figure 1.2d
shows the histogram of the output image with the intensities
that were initially between 180 and 210 but are now stretched
over the range 0 to 255. The detail in the narrow band is
now easily perceived; however, details outside the band are
completely suppressed.

1.3.3 Histogram Equalization

Although intensity scaling can be very effective in enhancing
image information present in specific intensity bands, often
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FIGURE 1.2 (a) Input image where details of interest are in the 180–210 gray level band. This intensity band provides an example of a
feature that may be of clinical interest. (b) Histogram of the input image in (a). (c) This output image selectively shows the intensity band of
interest stretched over the entire dynamic range of the display. This specific enhancement may be potentially useful in highlighting features or
characteristics. (d) Histogram of the output image in (c). This histogram shows the gray level in the original image in the 180–210 intensity
band stretched over to 0 to 255 (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

information is not available a priori to identify the useful
intensity bands. In such cases, it may be more useful to maxi-
mize the information conveyed from the image to the user
by distributing the intensity information in the image as uni-
formly as possible over the available intensity band [3, 6, 7].
This approach is based on an approximate realization of an
information-theoretic approach in which the normalized his-
togram of the image is interpreted as the probability density
function of the intensity of the image. In histogram equaliza-
tion, the histogram of the input image is mapped to a new
maximally flat histogram.

As indicated in Section 1.2, the histogram is defined as h(i),
with 0 to P − 1 gray levels in the image. The total number of
pixels in the image, M ∗N , is also the sum of all the values in
h(i). Thus, in order to distribute most uniformly the intensity
profile of the image, each bin of the histogram should have a
pixel count of (M ∗N )/P .

It is, in general, possible to move the pixels with a given
intensity to another intensity, resulting in an increase in the
pixel count in the new intensity bin. On the other hand, there is
no acceptable way to reduce or divide the pixel count at a spe-
cific intensity in order to reduce the pixel count to the desired
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FIGURE 1.3 (Continued)

(M ∗N )/P . In order to achieve approximate uniformity, the aver-
age value of the pixel count over a number of pixel values can
be made close to the uniform level.

A simple and readily available procedure for redistribution of
the pixels in the image is based on the normalized cumulative
histogram, defined as

H ( j) = 1

M • N

j∑
i=0

h(i), j = 0, 1, . . . , P − 1.

The normalized cumulative histogram can be used as a mapping
between the original gray levels in the image and the new gray
levels required for enhancement. The enhanced image g (m, n)

will have a maximally uniform histogram if it is defined as

g (m, n) = (P − 1) • H ( f (m, n)).

Figure 1.3a presents an original CT image where the gray levels
are not uniformly distributed, while the associated histogram
and cumulative histogram are shown in Figures 1.3b and 1.3c,
respectively. The cumulative histogram is then used to map the
gray levels of the input images to the output image shown in
Figure 1.3d. Figure 1.3e presents the histogram of Figure 1.3d,
and Figure 1.3f shows the corresponding cumulative histogram.
Figure 1.3f should ideally be a straight line from (0, 0) to (P − 1,
P − 1), but in fact only approximates this line to the extent
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FIGURE 1.3 (Continued)

possible given the initial distribution of gray levels. Figure 1.3g
through 1.3l show the enhancement of a cardio CT image with
the same steps as above.

1.4 Local Operators

Local operators enhance the image by providing a new value for
each pixel in a manner that depends only on that pixel and oth-
ers in a neighborhood around it. Many local operators are linear
spatial filters implemented with a kernel convolution, some are

nonlinear operators, and others impart histogram equalization
within a neighborhood. In this section we present a set of estab-
lished standard filters commonly used for enhancement. They
can be easily extended to obtain slightly modified results by
increasing the size of the neighborhood while maintaining the
structure and function of the operator.

1.4.1 Noise Suppression by Mean Filtering

Mean filtering can be achieved by convolving the image with
a (2K + 1× 2L + 1) kernel where each coefficient has a value



1 Fundamental Enhancement Techniques 9

2

1.5

2.5
3105

C
ou

nt
 H

(i
)

0.5

0
0 50 100 150

Gray level “i ”
200 250 300

1

(i) (j)

8000

7000

6000

5000

4000

3000

2000

1000

0 50 100 150 200 250

0

(k)

3105

C
ou

nt
 H

(i
)

Gray level “i ”

2

1.5

0.5

2.5

0
50 100 150 200 2500 300

1

(l)

FIGURE 1.3 (a) Original image where gray levels are not uniformly distributed. Many image details are not well visualized in this image because
of the low contrast. (b) Histogram of the original image in (a). Note the nonuniformity of the histogram. (c) Cumulative histogram of the
original image in (a). (d) Histogram-equalized image. Contrast is enhanced so that subtle changes in intensity are more readily observable.
(e) Histogram of the enhanced image in (d). Note the distribution of intensity counts that are greater than the mean value have been distributed
over a larger gray-level range. ( f) Cumulative histogram of the enhanced image in (d). (g) Original cardio CT image. (h) through (l) same steps
as above for cardio image (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

equal to the reciprocal of the number of coefficients in the
kernel. For example, when L = K = 1, we obtain

w(k, l) =

⎧⎪⎨
⎪⎩

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

⎫⎪⎬
⎪⎭ ,

referred to as the 3× 3 averaging kernel or mask. Typically,
this type of smoothing reduces noise in the image, but at the
expense of the sharpness of edges [4, 5, 12, 13]. Examples of the
application of this kernel are seen in Figure 1.4(a–d). Note that
the size of the kernel is a critical factor in the successful appli-
cation of this type of enhancement. Image details that are small
relative to the size of the kernel are significantly suppressed,
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(a) (b)

(c) (d)

FIGURE 1.4 (a) Original CT image. (b) Original image in (a) corrupted by added Gaussian white noise with maximum amplitude of ±25 gray
levels. (c) Image in (b) convolved with the 3× 3 mean filter. The mean filter clearly removes some of the additive noise; however, significant
blurring also occurs. This image would not have significant clinical value. (d) Image in (b) convolved with the 9× 9 mean filter. This filter has
removed almost all the effects of the additive noise (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

while image details significantly larger than the kernel size are
affected moderately. The degree of noise suppression is related
to the size of the kernel, with greater suppression achieved by
larger kernels.

1.4.2 Noise Suppression by Median Filtering

Median filtering is a common nonlinear method for noise
suppression that has unique characteristics. It does not use
convolution to process the image with a kernel of coefficients.
Rather, in each position of the kernel frame, a pixel of the input
image contained in the frame is selected to become the out-
put pixel located at the coordinates of the kernel center. The
kernel frame is centered on each pixel (m, n) of the original
image, and the median value of pixels within the kernel frame
is computed. The pixel at the coordinates (m, n) of the out-
put image is set to this median value. In general, median filters
do not have the same smoothing characteristics as the mean
filter [4, 5, 8, 9, 15]. Features that are smaller than half the

size of the median filter kernel are completely removed by the
filter. Large discontinuities such as edges and large changes in
image intensity are not affected in terms of gray-level intensity
by the median filter, although their positions may be shifted
by a few pixels. This nonlinear operation of the median fil-
ter allows significant reduction of specific types of noise. For
example, “pepper-and-salt noise” may be removed completely
from an image without attenuation of significant edges or image
characteristics. Figure 1.5 presents typical results of median
filtering.

1.4.3 Edge Enhancement

Edge enhancement in images is of unique importance because
the human visual system uses edges as a key factor in the com-
prehension of the contents of an image [2, 4, 5, 10, 13, 14].
Edges in different orientations can be selectively identified and
enhanced. The edge-enhanced images may be combined with
the original image in order to preserve the context.
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(c)

(a) (b)

FIGURE 1.5 (a) Image in Figure 1.4b enhanced with a 3× 3 median filter. The median filter is not as effective in noise removal as
the mean filter of the same size; however, edges are not as severely degraded by the median filter. (b) Image in Figure 1.4a with added
“pepper-and-salt” noise. (c) Image in Figure 1.5b enhanced by a 3× 3 median filter. The median filter is able to significantly enhance
this image, allowing almost all noise to be eliminated (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General
Hospital).

Horizontal edges and lines are enhanced with

wH 1(k, l) =
⎧⎨
⎩

1 1 1
0 0 0
−1 −1 −1

⎫⎬
⎭ or wH 2(k, l) =

⎧⎨
⎩
−1 −1 −1

0 0 0
1 1 1

⎫⎬
⎭,

and vertical edges and lines are enhanced with

wV 1(k, l) =
⎧⎨
⎩

1 0 −1
1 0 −1
1 0 −1

⎫⎬
⎭ or wV 2(k, l) =

⎧⎨
⎩
−1 0 1
−1 0 1
−1 0 1

⎫⎬
⎭.

The omnidirectional kernel (unsharp mask) enhances edges in
all directions:

KHP(k, l) =

⎧⎪⎨
⎪⎩
−1/8 −1/8 −1/8

−1/8 1 −1/8

−1/8 −1/8 −1/8

⎫⎪⎬
⎪⎭.

Note that the application of these kernels to a positive-valued
image can result in an output image with both positive and neg-
ative values. An enhanced image with only positive pixels can
be obtained either by adding an offset or by taking the absolute
value of each pixel in the output image. If we are interested in
displaying edge-only information, this may be a good approach.
On the other hand, if we are interested in enhancing edges that
are consistent with the kernel and suppressing those that are
not, the output image may be added to the original input image.
This addition will most likely result in a nonnegative image.

Figure 1.6 illustrates enhancement after the application of
kernels wH 1, wV 1, and wHP to the images in Figure 1.4a and 1.3g.
Figures 1.6a,1.6b,and 1.6c show the absolute value of the output
images obtained with wH 1, wV 1, and wHP , respectively applied
to the CT image, while 1.6d, 1.6e, and 1.6f show the same for
the cardio image. In Figure 1.7, the outputs obtained with these
three kernels are added to the original images of Figure 1.4a
and 1.3g. In this manner the edge information is enhanced
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(a) (b)

(c) (d)

FIGURE 1.6 (Continued)

while retaining the context information of the original image.
This is accomplished in one step by convolving the original
image with the kernel after adding 1 to its central coefficient.
Edge enhancement appears to provide greater contrast than the
original imagery when diagnosing pathologies.

Edges can be enhanced with several edge operators other
than those just mentioned and illustrated. Some of these
are described in Chapter 5, “Overview and Fundamentals of
Medical Image Segmentation,” since they also form the basis
for edge-based segmentation.

1.4.4 Local-Area Histogram Equalization

A remarkably effective method of image enhancement is local-
area histogram equalization, obtained with a modification
of the pixel operation defined in Section 1.3.3. Local-area

histogram equalization applies the concepts of whole-image
histogram equalization to small, overlapping local areas of the
image [7, 11]. It is a nonlinear operation and can significantly
increase the observability of subtle features in the image. The
method formulated as shown next is applied at each pixel (m,
n) of the input image:

hLA(m, n)(i) =
K∑

k=−K

L∑
l=−L

δ( f (m + l , n + k)− i),

i = 0, 1, . . . , P − 1

HLA(m, n)( j) = 1

(2K + 1) • (2L + 1)

j∑
i=0

hLA(m, n)(i),

j = 0, 1, . . . , P − 1

g (m, n) = (P − l ) • HLA(m, n)( f (m, n))
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(e) (f)

FIGURE 1.6 (a) Absolute value of output image after convolution of wH 1 with the image in Figure 1.4a. (b) Absolute value of the output image
after convolution of wV 1 with the image in Figure 1.4a. (c) Absolute value of output image after convolution of wHP . (d through f) same as a, b,
and c using image in Figure 1.3g (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

(a)

(c)

(b)

(d)

FIGURE 1.7 (Continued)
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(e) (f)

FIGURE 1.7 (a) Sum of original image in Figure 1.4a and its convolution with wH 1, (b) with wV 1, and (c) with wHP . (d through f) same as a, b,
and c using image in Figure 1.3g (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

FIGURE 1.8 Output image obtained when local-area histogram
equalization was applied to the image in Figure 1.3a. Note that
the local-histogram equalization produces very high-contrast images,
emphasizing detail that may otherwise be imperceptible (Courtesy
of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General
Hospital).

where hLA(m, n)(i) is the local-area histogram, HLA(m, n)( j) is
the local-area cumulative histogram, and g (m, n) is the out-
put image. Figure 1.8 shows the output image obtained by
enhancing the image in Figure 1.3a with local-area histogram
equalization using K = L = 15 or a 31× 31 kernel size.

Local-area histogram equalization is a computationally
intensive enhancement technique. The computational com-
plexity of the algorithm goes up as the square of the size of
the kernel. It should be noted that since the transformation

that is applied to the image depends on the local neighborhood
only, each pixel is transformed in a unique way. This results in
higher visibility for hidden details spanning very few pixels in
relation to the size of the full image. A significant limitation of
this method is that the mapping between the input and out-
put images is nonlinear and highly nonmonotonic. This means
that it is inappropriate to make quantitative measurements of
pixel intensity on the output image because the same gray level
may be transformed one way in one part of the image and a
completely different way in another part.

1.5 Operations with Multiple Images

This section outlines two enhancement methods that require
more than one image of the same scene. In both methods, the
images have to be registered and their dynamic ranges have to
be comparable to provide a viable outcome.

1.5.1 Noise Suppression by Image Averaging

Noise suppression using image averaging relies on three basic
assumptions: (1) that a relatively large number of input images
is available, (2) that each input image has been corrupted
by the same type of additive noise, and (3) that the additive
noise is random with zero mean value and independent of the
image. When these assumptions hold, it may be advantageous
to acquire multiple images with the specific purpose of using
image averaging [1], since with this approach even severely
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corrupted images can be significantly enhanced. Each of the
noisy images ai(m, n) can be represented by

ai(m, n) = f (m, n)+ di(m, n),

where f (m, n) is the underlying noise-free image, and di(m, n)
is the additive noise in that image. If a total of Q images is
available, the averaged image is

g (m, n) = 1

Q

Q∑
i=1

ai(m, n)

such that

E{g (m, n)} = f (m, n)

and

σg = σd√
Q

,

where E {•} is the expected value operator, σg is the stan-
dard deviation of g (m, n), and σd is that of the noise. Noise
suppression is more effective for larger values of Q.

1.5.2 Change Enhancement by Image Subtraction

Image subtraction is generally performed between two images
that have significant similarities between them. The purpose of
image subtraction is to enhance the differences between two
images [1]. Images that are not captured under the same or
very similar conditions may need to be registered [17]. This
may be the case if the images have been acquired at different
times or under different settings. The output image may have
a very small dynamic range and may need to be rescaled to the
available display range. Given two images f1(m, n) and f2(m, n),
the rescaled output image g (m, n) is obtained with

b(m, n) = f1(m, n)− f2(m, n)

g (m, n) = fmax •

(
b(m, n)−min{b(m, n)}

max{b(m, n)} −min{b(m, n)}
)

where fmax is the maximum gray level value available, b(m, n)
is the unstretched difference image, and min{b(m, n)} and
max{b(m, n)} are the minimal and maximal values in b(m,n),
respectively.

1.6 Frequency Domain Techniques

Linear filters used for enhancement can also be implemented
in the frequency domain by modifying the Fourier transform
of the original image and taking the inverse Fourier transform.

When an image g (m, n) is obtained by convolving an original
image f (m, n) with a kernel w(m, n),

g (m, n) = w(m, n)∗f (m, n),

the convolution theorem states that G(u, v), the Fourier
transform of g (m, n), is given by

G(u, v) = W (u, v)F(u, v),

where W (u, v) and F(u, v) are the Fourier transforms of the
kernel and the image, respectively. Therefore, enhancement
can be achieved directly in the frequency domain by multi-
plying F(u, v), pixel by pixel, by an appropriate W (u, v) and
forming the enhanced image with the inverse Fourier trans-
form of the product. Noise suppression or image smoothing
can be obtained by eliminating the high-frequency compo-
nents of F(u, v), while edge enhancement can be achieved
by eliminating its low-frequency components. Since the spec-
tral filtering process depends on a selection of frequency
parameters as high or low, each pair (u, v) is quantified
with a measure of distance from the origin of the frequency
plane,

D(u, v) =
√

u2 + v2,

which can be compared to a threshold DT to determine if
(u, v) is high or low. The simplest approach to image smooth-
ing is the ideal low-pass filter WL(u, v), defined to be 1 when
D(u, v) ≤ DT and 0 otherwise. Similarly, the ideal high-pass
filter WH (u, v) can be defined to be 1 when D(u, v) ≥ DT

and 0 otherwise. However, these filters are not typically used
in practice, because images that they produce generally have
spurious structures that appear as intensity ripples, known
as ringing [5]. The inverse Fourier transform of the rect-
angular window WL(u, v) or WH (u, v) has oscillations, and
its convolution with the spatial-domain image produces the
ringing. Because ringing is associated with the abrupt 1 to
0 discontinuity of the ideal filters, a filter that imparts a
smooth transition between the desired frequencies and the
attenuated ones is used to avoid ringing. The commonly
used Butterworth low-pass and high-pass filters are defined
respectively as

BL(u, v) = 1

1+ c[D(u, v)/DT ]2n
,

and

BH (u, v) = 1

1+ c[DT/D(u, v)]2n
,

where c is a coefficient that adjusts the position of the transition
and n determines its steepness. If c = 1, these two functions take
the value 0.5 when D(u, v) = DT . Another common choice
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(a)

(c) (d)

(b)

FIGURE 1.9 (Continued)

for c is
√

2− 1, which yields 0.707 (−3 dB) at the cutoff DT .
The most common choice of n is 1; higher values yield steeper
transitions.

The threshold DT is generally set by considering the power
of the image that will be contained in the preserved frequencies.
The set S of frequency parameters (u, v) that belong to the
preserved region, i.e., D(u, v) ≤ DT for low-pass and D(u, v) ≥
DT for high-pass, determines the amount of retained image
power. The percentage of total power that the retained power
constitutes is given by

β =
∑

(u,v)∈S
|F(u, v)|2∑

∀(u,v)
|F(u, v)|2 × 100

and is used generally to guide the selection of the cutoff thresh-
old. In Figure 1.9a, circles with radii rβ that correspond to five
different β values are shown on the Fourier transform of an
original CT image in Figure 1.9e. The u = v = 0 point of the
transform is in the center of the image in Figure 1.9a. The
Butterworth low-pass filter obtained by setting DT equal to rβ
for β = 90% , with c = 1 and n = 1, is shown in Figure 1.9b
where bright points indicate high values of the function. The
corresponding filtered image in Figure 1.9f shows the effects of
smoothing. A high-pass Butterworth filter with DT set at the
95% level is shown in Figure 1.9d, and its output in Figure 1.9h
highlights the highest frequency components that form 5% of
the image power. Figure 1.9c shows a band-pass filter formed
by the conjunction of a low-pass filter at 90% and a high-pass
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(e) (f)

(g) (h)

FIGURE 1.9 Filtering with the Butterworth filter. (a) Fourier transform of CT image in (e); the five circles correspond to the β values 81, 90,
95, 99, and 99.5%. (b) Fourier transform of low-pass filter with β = 90% which provides the output image in ( f). (c) Band-pass filter with
band β = 81% to β = 90% whose output is in (g). (d) High-pass filter with β = 95%, which yields the image in (h) (Courtesy of Ms. Bonnie
Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

filter at 81%, while the output image of this band-pass filter is
in Figure 1.9g.

1.7 Concluding Remarks

This chapter focused on fundamental enhancement techniques
used on medical and dental images. These techniques have been
effective in many applications and are commonly used in prac-
tice. Typically, the techniques presented in this chapter form a
first line of algorithms in attempts to enhance image informa-
tion. After these algorithms have been applied and adjusted for

best outcome, additional image enhancement may be required
to improve image quality further. Computationally more inten-
sive algorithms may then be considered to take advantage
of context-based and object-based information in the image.
Examples and discussions of such techniques are presented in
subsequent chapters.
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2.1 Introduction

Adaptive filters are commonly used in image processing to
enhance or restore data by removing noise without significantly
blurring the structures in the image. The adaptive filtering lit-
erature is vast and cannot adequately be summarized in a short
chapter. However, a large part of the literature concerns one-
dimensional (1D) signals [1]. Such methods are not directly
applicable to image processing and there are no straightforward
ways to extend 1D techniques to higher dimensions primarily
because there is no unique ordering of data points in dimen-
sions higher than one. Since higher-dimensional medical image
data are not uncommon (2D images, 3D volumes, 4D time-
volumes), we have chosen to focus this chapter on adaptive
filtering techniques that can be generalized to multidimen-
sional signals. This chapter assumes that the reader is familiar
with the fundamentals of 1D signal processing [2]. Section 2.2
addresses spatial frequency and filtering. 2D spatial signals and
their Fourier transforms are shown to illuminate the similarities
to signals in 1D. Unsharp masking is described as an example
of simple image enhancement by spatial filtering. Section 2.3
covers random fields and is intended as a primer for the Wiener
filter, which is introduced in Section 2.3.2. The Wiener for-
mulation gives a low-pass filter with a frequency characteristic
adapted to the noise level in the image. The higher the noise

level, the more smoothing of the data. In Section 2.4, adap-
tive Wiener formulations are presented. By introducing local
adaptation of the filters, a solution more suitable for nonsta-
tionary signals such as images can be obtained. For example,
by using a “visibility function,” which is based on local edge
strength, the filters can be made locally adaptive to structures
in the image so that areas with edges are less blurred. Section
2.5 is about adaptive anisotropic filtering. By allowing filters
to change from circularly/spherically symmetric (isotropic) to
shapes that are closely related to the image structure, more
noise can be suppressed without severe blurring of lines and
edges. A computationally efficient way of implementing shift-
variant anisotropic filters based on a non-linear combination
of shift-invariant filter responses is described.

2.2 Multidimensional Spatial Frequencies
and Filtering

At a conceptual level, there is a great deal of similarity between
1D signal processing and signal processing in higher dimen-
sions. For example, the intuition and knowledge gained from
working with the 1D Fourier transform extends fairly straight-
forwardly to higher dimensions. For overviews of signal pro-
cessing techniques in 2D see Lim [3], or Granlund and Knutsson
for higher dimensional signal processing [4–7].

Copyright © 2008 by Elsevier, Inc.

All rights of reproduction in any form reserved. 19



20 Handbook of Medical Image Processing and Analysis

2.2.1 Spatial Frequency

The only difference between the classical notions of time fre-
quencies and spatial frequencies is the function variable used:
instead of time, the variable is spatial position in the latter case.
A multidimensional sinusoidal function can be written as

f = cos(xT ê), (2.1)

where x is the spatial position vector and ê is a normalized
vector defining the orientation of the wave (x, ê ∈ Rn). The
signal is constant on all hyperplanes normal to ê. For any 1D
function, g , the multidimensional function

f = g (xT ê) (2.2)

will have a Fourier transform in which all energy is concentrated
on a line through the origin with direction e. For example, for
a plane in 3D given by

f = δ(xT ê), (2.3)

where δ denotes the Dirac function, the Fourier transform will
be concentrated on a line with orientation normal to the plane,
and the function along this line will be constant.

Examples of 2D sinusoidal functions and their Fourier trans-
forms are shown in Figure 2.1. The top figures show a transform
pair of a sinusoid of fairly low frequency. The Fourier transform,
which contains two Dirac impulse functions, is shown to the left
and may be expressed as

F1 = δ(u − ω1)+ δ(u + ω1), (2.4)

where u denotes the 2D frequency variable, ω1 the spatial fre-
quency of the signal. The bottom figures show the transform
pair of a signal consisting of the same signal in F1 plus another
sinusoidal signal with frequency ω2.

F2 = F1 + δ(u − ω2)+ δ(u + ω2). (2.5)

2.2.2 Filtering

Linear filtering of a signal can be seen as a controlled scaling of
the signal components in the frequency domain. Reducing the
components in the center of the frequency domain (low fre-
quencies), gives the high-frequency components an increased
relative importance, and thus high-pass filtering is performed.
Filters can be made very selective. Any of the Fourier coefficients
can be changed independently of the others. For example, let
H be a constant function minus a pair of Dirac functions sym-
metrically centered in the Fourier domain with a distance |ω1|
from the center,

H = 1− δ(u − ω1)+ δ(u + ω1). (2.6)

This filter, known as a notch filter, will leave all frequency
components untouched, except the component that corre-
sponds to the sinusoid in Figure 2.1, which will be completely
removed. A weighting of the Dirac functions will control how
much of the component is removed. For example, the filter

H = 1− 0.9δ(u − ω1)+ δ(u + ω1), (2.7)

will reduce the signal component to 10% of its original
value. The result of the application of this filter to the sig-
nal F1 + F2 (Figure 2.1, bottom) is shown in Figure 2.2. The
lower-frequency component is almost invisible.

Filters for practical applications have to be more general than
“remove sinusoidal component cos(ωT x).” In image enhance-
ment, filters are designed to remove noise that is spread out all
over the frequency domain. It is a difficult task to design fil-
ters that remove as much noise as possible without removing
important parts of the signal.

2.2.3 Unsharp Masking

Unsharp masking, an old technique known to photographers,
is used to change the relative high-pass content in an image by
subtracting a blurred (low-pass filtered) version of the image
[8]. This can be done optically by first developing an unsharp
picture on a negative film and then using this film as a mask in
a second development step. Mathematically, unsharp masking
can be expressed as

f̂ = αf − βflp (2.8)

where α and β are positive constants, α ≥ β. When processing
digital image data, it is desirable to keep the local mean of the
image unchanged. If the coefficients in the low-pass filter flp are
normalized, i.e., their sum equals one, the following formula-
tion of unsharp masking ensures unchanged local mean in the
image:

f̂ = 1

α− β(αf − βflp). (2.9)

By expanding the expression in the parentheses (αf − βflp) =
αflp + α( f − flp)− βflp , we can write Equation 2.9 as

f̂ = flp + α

α− β(f − flp), (2.10)

which provides a more intuitive way of writing unsharp
masking. Further rewriting yields

f̂ = flp + γ(f − flp) (2.11)

= flp + γ fhp , (2.12)

where γ can be seen as a gain factor of the high frequencies.
For γ = 1, the filter is the identity map, flp + fhp = flp +
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FIGURE 2.1 Top: Sinusoidal signal with low spatial frequency. Bottom: Sum of the top signal and a sinusoidal with a higher spatial frequency.

(f − flp) = f , and the output image equals the input image. For
γ > 1 the relative high-pass content in the image is increased,
resulting in higher contrast; forγ < 1 the relative high-pass con-
tent is decreased and the image gets blurred. This process can
be visualized by looking at the corresponding filters involved.
In the Fourier domain, the low-pass image flp can be written as

the product of a low-pass filter Hlp and the Fourier transform
of the original image,

Flp = HlpF . (2.13)

Figure 2.3 (top left) shows Hlp and the high-pass filter that
can be constructed thereof, 1−Hlp (top right). Figure 2.3
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FIGURE 2.2 Notch filtering of the of the signal f1 + f2, a sum of the sinusoids. The application of the filter h in Equation 2.7 reduces the
low-frequency component to one-tenth of its original value.

(bottom left) shows the identity filter from adding the two top
filters, and (bottom right) a filter where the high-pass compo-
nent has been amplified by a factor of 2. Figure 2.4 shows a slice
of a CT data set through a skull (left), and the result of unsharp
masking with γ = 2, i.e., a doubling of the high-pass part of
the image (right). The low-pass filter used (flp in Equation
2.11) was a Gaussian filter with a standard deviation of 4,
implemented on a 21× 21 grid.

A natural question arises: how should the parameters for
the low-pass filter be chosen? It would be advantageous if the
filter could adapt to the image automatically either through
an a priori model of the data or by some estimation process.
There are two main categories of such adaptive filters: filters
for image enhancement and filters for image restoration. The
two categories mainly differ in the view of the data that is to
be filtered. The method of unsharp masking belongs to the first
category, image enhancement. The image is made crisper by
increasing the image contrast. The input image was not con-
sidered to be degraded in any way, and the purpose of the
algorithm was just to improve the appearance of the image.
In image restoration, as the name implies, the image data are
modeled as being degraded by a (normally unknown) pro-
cess, and the task at hand is to “undo” this degradation and
restore the image. The models of image degradation com-
monly involve random noise processes. Before we introduce

the well-known Wiener filter, a short description of stochas-
tic processes in multiple dimensions is given. In multiple
dimensions stochastic processes are customarily referred to as
random fields.

2.3 Random Fields and Wiener Filtering

A central problem in the application of random fields is the
estimation of various statistical parameters from real data. The
Wiener filter that will be discussed later requires knowledge of
the spectral content of the image signal and the background
noise. In practice these are, in general, not known and have to
be estimated from the image.

2.3.1 Autocorrelation and Power Spectrum

A collection of an infinite number of random variables defined
on an n-dimensional space (x ∈ R

n) is called a random field.
The autocorrelation function of a random field f (x) is defined
as the expected value of the product of two samples of the
random field,

Rff (x, x′) = E{f (x)f (x′)}, (2.14)

where E denotes the statistical expectation operator. A random
field is said to be stationary if the expectation value and the
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FIGURE 2.3 Visualization of the filters involved in unsharp masking.

autocorrelation function are shift-invariant, i.e., the expectation
value is independent of the spatial position vector x, and the
autocorrelation is a function only of τ = x − x′:

Rff (τ) = E{f (x + τ)f (x)}. (2.15)

The power spectrum of a stationary random process is
defined by the Fourier transform of the autocorrelation

function:

Sff = F(Rff ). (2.16)

Since the autocorrelation function is always symmetric, the
power spectrum is always a real function.

A random process n(x) is called a white noise process if

Rnn(τ) = σ2
nδ(τ). (2.17)
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Filtered CT dataOriginal CT data

FIGURE 2.4 Filtering CT data using unsharp masking. The high-pass information of the original image (left) is twice as high in the result
image (right). Note how details have been amplified. This technique works well due to the lack of noise in the image.

From Equation 2.16, the power spectrum of a white process is
a constant:

Snn = σ2
n . (2.18)

The Wiener-Khinchin theorem [9] states that

E{f 2(x)} = R(0) = 1

(2π)n

∫
S(u)du, (2.19)

where n is the dimension of the signal (the theorem follows
directly from Equation 2.16, by taking the inverse Fourier trans-
form of S(u) for τ = 0). This means that the integral of the
power spectrum of any process is positive. It can also be shown
that the power spectrum is always nonnegative [9].

The cross-correlation function of two random processes is
defined as

Rfg (x, x′) = E{ f (x)g (x′)}. (2.20)

2.3.2 The Wiener Filter

The restoration problem is essentially one of optimal filtering
with respect to some error criterion. The mean-squared error

(MSE) criterion has formed the basis for most published work
in this area [10–12].

In the case of linear stationary estimation we wish to estimate
the process f with a linear combination of values of the data g .
This can be expressed by a convolution operation

f̂ = h ∗ g , (2.21)

where h is a linear filter. A very general statement of the estima-

tion problem is: given a set of data g , find the estimate f̂ of an

image f that minimizes some distance ‖f − f̂ ‖.
By using the mean-squared error, it is possible to derive the

estimate with the principle of orthogonality [9]:

E{(f − f̂ )g } = 0. (2.22)

Inserting the convolution expression in Equation 2.21 thus gives

E{(f − h ∗ g )g } = 0. (2.23)

When the filter operates in its optimal condition, the estima-

tion error (f − f̂ ) is orthogonal to the data g . In terms of
the correlation functions Rfg and Rgg , Equation 2.23 can be
expressed as [2]
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Rfg = h ∗ Rgg . (2.24)

By Fourier transforming both sides of the equation, we get
Sfg = HSgg , resulting in the familiar Wiener filter

H = Sfg

Sgg
. (2.25)

When the data are the sum of the image and stationary white
noise of zero mean and variance σ2

n ,

g = f + n (2.26)

Rnn = σ2
nδ(τ), (2.27)

then

Rfg = Rff (2.28)

Rgg = Rff + Rnn , (2.29)

and the stationary Wiener filter is given by

H = Sff

Sff + σ2
n

. (2.30)

This means that for a Gaussian signal, the Wiener filter is the
optimal linear estimator (among all estimators). The Wiener
filter optimizes the trade-off between smoothing the signal
discontinuities and removal of the noise.

2.4 Adaptive Wiener Filters

The standard formulation of the Wiener filter has met limited
success in image processing because of its low-pass characteris-
tics, which give rise to unacceptable blurring of lines and edges.
If the signal is a realization of a non-Gaussian process such as in
natural images, the Wiener filter is outperformed by nonlinear
estimators. One reason why the Wiener filter blurs the image
significantly is that a fixed filter is used throughout the entire
image: the filter is space invariant.

A number of attempts to overcome this problem have
adopted a nonstationary approach where the characteristics of
the signal and the noise are allowed to change spatially [13–26].

2.4.1 Local Adaptation

The Wiener filter in Equation 2.30 defines a shift-invariant filter,
and thus the same filter is used throughout the image. One way
to make the filter spatially variant is by using a local spatially
varying model of the noise parameter σn . Such a filter can be
written as

H = Sff

Sff + σ2
n(x)

. (2.31)

This filter formulation is computationally quite expensive since
the filter changes from pixel to pixel in the image.

Lee derived an efficient implementation of a noise-adaptive
Wiener filter by modeling the signal locally as a stationary
process [3, 17] that results in the filter

f̂ (x) = mf (x)+
σ2

f (x)

σ2
f (x)+ σ2

n

(g (x)−mf (x)) (2.32)

where mf is the local mean of the signal g , and σ2
f is the local

signal variance. A local mean operator can be implemented by
a normalized low-pass filter where the support region of the
filter defines the locality of the mean operator. It is interesting
to note that this formulation gives an expression very similar to
the expression of unsharp masking in Equation 2.11, although
the latter is not locally adaptive. Figure 2.5 shows the result of
Lee’s filter on MR data through the pelvis.

2.4.2 Nonlinear Extension by a Visibility
Function

The Wiener filter that results from a minimization based on the
MSE criterion can only relate to second-order statistics of the
input data and no higher [1]. The use of a Wiener filter or a
linear adaptive filter to extract signals of interest will therefore
yield suboptimal solutions. By introducing nonlinearities in the
structure, some limitations can be taken care of.

Abramatic and Silverman [15] modified the stationary white
noise Wiener solution (Equation 2.30) by introducing a visi-
bility function α, 0 ≤ α ≤ 1, which depends on the magnitude
of the image gradient vector, where α is 0 for “large” gradients
and 1 in areas of no gradient. They showed that the generalized
Backus-Gilbert criterion yields the solution

Hα = Sff

Sff + ασ2
(2.33)

for an optimal filter. The Backus-Gilbert method [27, 28] is a
regularization method that differs from others in that it seeks
to maximize stability of the solution rather than, in the first
instance, its smoothness. The Backus-Gilbert method seeks to
make the mapping from f̂ and f as close to the identity as pos-
sible in the limit of error-free data. Although the Backus-Gilbert
philosophy is rather different from standard linear regulariza-
tion methods, in practice the differences between the methods
are small. A stable solution is almost inevitably smooth.

Equation 2.33 shows a very explicit trade-off between res-
olution and stability. α = 0 gives a filter that is the identity
mapping (maximum resolution) and α = 1 gives the smoother
Wiener solution. By choosing α to be spatially variant, i.e., a
function of the position in the image, α = α(x), a simple adap-
tive filter is obtained. For large gradients, the alpha function
cancels the noise term and the function H becomes the iden-
tity map. This approach has the undesired feature that the filter
changes from point to point in a way that is generally computat-
ionally burdensome. Abramatic and Silverman [15] proposed
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Original MR data Filtered MR data

FIGURE 2.5 Filtering MR data through the pelvis using Lee’s method. Note how the background noise in the original image (left) has effectively
been suppressed in result image (right). Note how the motion related artifacts are reduced, but blurring is introduced.

a “signal equivalent” approach giving a filter that is a linear
combination of the stationary Wiener filter and the identity
map:

Hα = α Sff

Sff + σ2
+ (1− α). (2.34)

Note that Hα equals the Wiener solution (Equation 2.30) for
α = 1, and for α = 0 the filter becomes the identity map. It is
interesting to note that Equation 2.34 can be rewritten as

Hα = Sff

Sff + σ2
+ (1− α) σ2

Sff + σ2
. (2.35)

Equation 2.35 shows that Abramatic and Silverman’s model
can be seen as a linear combination of a stationary low-pass
component and a nonstationary high-pass component [19].
Inserting H for the stationary Wiener solution we can write the
filter in Equation 2.35 as

Hα = H + (1− α)(1−H ). (2.36)

2.5 Anisotropic Adaptive Filtering

2.5.1 Anisotropic Adaptive Filtering
in Two Dimensions

On the basis of the characteristics of the human visual system,
Knutsson et al. [19] argued that local anisotropy is an important
property in images and introduced an anisotropic component
in Abramatic and Silverman’s model (Equation 2.36)

Hα,γ = H + (1− α)(γ + (1− γ) cos2(ϕ − θ))(1−H ),
(2.37)

where the parameter γ controls the level of anisotropy,ϕ defines
the angular direction of the filter coordinates, and θ is the ori-
entation of the local image structure. The specific choice of
weighting function cos2(ϕ − θ) was imposed by its ideal inter-
polation properties; the directed anisotropy function could be
implemented as a steerable filter from three fixed filters [19]

cos2(ϕ), cos2(ϕ − π/3), and cos2(ϕ − 2π/3)

(these filters span the same space as the three filters 1, cos 2(ϕ),
sin 2(ϕ), which also can be used). Freeman and Adelson later
applied this concept to several problems in computer
vision [29].

Knutsson et al. estimated the local orientation and the degree
of anisotropy with three oriented Hilbert transform pairs,
so-called quadrature filters, with the same angular profiles as the
three basis functions describing the steerable weighting func-
tion. Figure 2.6 shows one of these Hilbert transform pairs. In
areas of the image lacking a dominant orientation, γ is set to
1, and Equation 2.37 reverts to the isotropic Abramatic and
Silverman solution. The more dominant the local orientation,
the smaller the γ value and the more anisotropic the filter.

2.5.2 Multidimensional Anisotropic Adaptive
Filtering

The cos2(•) term in Equation 2.37 can be viewed as a squared
inner product of a vector defining the main directionality of
the signal (θ) and the frequency coordinate vectors. This main
direction is denoted ê1, and with an orthogonal direction ê2,
Equation 2.37 can be rewritten as

Hγ = H + (1−H )[γ1(ê
T
1 û)2 + γ2(ê

T
2 û)2], (2.38)
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FIGURE 2.6 Visualization of a quadrature filter (Hilbert transform pair) used in the estimation of local anisotropy. Top: The plots
show the filter in the spatial domain: the real part (left) and the imaginary part (right). It can be appreciated that the real part can be
viewed as a line filter and the imaginary part an edge filter. Bottom: The left plot shows the magnitude of the filter with the phase of
the filter. The right plot shows the quadrature filter in the Fourier domain. Here the filter is real and zero on one half of the Fourier
domain. (See also color insert).
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where u is the 2D frequency variable, and the parameters γ1

and γ2 define the anisotropy of the filter. For γ1 = γ2 = 1− α,
the filter becomes isotropic (γ = 1 in Equation 2.37), and for
γ1 = 1− α andγ2 = 0 the filter becomes maximally anisotropic
(γ = 0 in Equation 2.37) and mainly favors signals oriented as
ê1.

The inner product notation in Equation 2.38 allows for a
direct extension to multiple dimensions:

Hγ = H + (1−H )
N∑

k=1

γk(ê
T
k û)2, (2.39)

where N is the dimension of the signal (N = 2 for images and
N = 3 for volumes). However, two important elements remain
to be defined: how to define the orthogonal directions êk and the
coefficients γk so that the equation describes a useful adaptive
filter.

By expressing the squared inner product (êT
k û)2 as the inner

product of two outer products < êk êT
k , ûûT >

Hγ = H + (1−H )
N∑

k=1

<γk êk êT
k , ûûT > (2.40)

= H + (1−H )<C, U>, (2.41)

we can define a term C as a “control” tensor,

C =
N∑

k=1

γk êk êT
k . (2.42)

The tensor C controls the filter adaptation by weighting the
components in the outer product description of the Fourier
domain U according to its “shape.” For a 3D signal this shape
can be thought of as an ellipsoid with principal axes êk . Similar
to the 2D case in Equation 2.37, where θ describes the main
orientation of the local spectrum, the tensor C should describe
the major axes of the local spectrum in the Fourier domain. The
consequence of the inner product in Equation 2.41 is a reduc-
tion of the high-frequency components in directions where the
local spectrum is weak. In those directions the adaptive filter
will mainly act as the stationary Wiener component H, which
has low-pass characteristics.

2.5.3 Adaptation Process

Before we describe the adaptation process, we will introduce a
set of fixed filters

Hk(u) = (1−H )(n̂T
k û)2, (2.43)

where n̂k define the directions of the filters and û = u
|u| .

It turns out that the adaptive filter in Equation 2.39 can
be written as linear combination of these fixed filters and the

stationary Wiener solution where the weights are defined by
inner products of a control tensor C and the filter associated
dual tensors Mk :

Hc = H +
N (N+1)/2∑

k=1

<Mk , C>Hk , (2.44)

where the tensors Mk define the so-called dual tensor basis to
the one defined by the outer product of the filter directions.
The dual tensors Mk are defined by

<Mk , Nl > = δkl ,

where Nk = n̂k n̂T
k are the outer products of the filter directions.

The number of fixed filters needed, N (N + 1)/2, is the number
of independent coefficients in the tensor C, which is described
by a symmetric N × N matrix for a signal of dimension N .
This gives that 3 filters are required in 2D, and 6 filters in 3D.

The rest of this section is somewhat technical and may be
omitted on a first reading.

Equation 2.44 can be validated be inserting the expressions
for the control tensor C and the fixed filter functions in
Equation 2.44,

Hc = H + (1−H )
N (N+1)/2∑

k=1

<Mk ,
N∑

i=1

γi êi ê
T
i >(n̂

T
k û)2.

(2.45)

By expressing the squared inner product (êT
k û)2 as the inner

product of two outer products < n̂k n̂T
k , ûûT >, switching the

order of the terms in the first inner product

Hc = H + (1−H )

N (N+1)/2∑
k=1

<

N∑
i=1

γi êi ê
T
i , Mk >< n̂k n̂T

k , ûûT >, (2.46)

and reordering the summation

Hc = H + (1−H )

<

N∑
i=1

γi êi ê
T
i ,

N (N+1)/2∑
k=1

Mk ><Nk︸ ︷︷ ︸
=1

, ûûT > (2.47)

= H + (1−H )<
N∑

i=1

γi êi ê
T
i , ûûT > (2.48)

= H + (1−H )
N∑

i=1

γi(ê
T
i ûi)

2, (2.49)

which is equal to the adaptive filter we wanted to construct
(Equation 2.39). The under-braced terms sum to 1 because of
the dual basis relation between the two bases Mk and Nk .
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2.5.4 Estimation of Multidimensional Local
Anisotropy Bias

Knutsson [30, 31] has described how to combine quadrature
filter responses into a description of local image structure using
tensors. His use of tensors was primarily driven by the urge
to find a continuous representation of local orientation. The
underlying issue here is that orientation is a feature that maps
back to itself modulo π under rotation, and direction is a fea-
ture that maps back to itself modulo 2π. That is why vector
representations work well in the latter case (e.g., representing
velocity) but not in the former case.

Knutsson used spherically separable quadrature filters [32],

Q(u) = R(ρ)Dk(û), (2.50)

where u is the vector valued frequency variable, ρ = |u|, û =
u
|u| , and R(ρ) and Dk(û) are the radial and the directional

functions, respectively,{
Dk(û) = (ûT n̂k)

2 if ûT n̂k > 0

Dk(û) = 0 otherwise,
(2.51)

where n̂k is the filter direction, i.e., D(û) varies as cos2(ϕ), where
ϕ is the angle between u and the filter direction, and

R(ρ) = e
− 4

B2 ln 2
ln2(ρ/ρ0) (2.52)

is the radial frequency function. Such functions are Gaussian
functions on a logarithmic scale and are therefore termed log-
normal functions. B is the relative bandwidth in octaves and ρ0

is the center frequency of the filter. R(ρ) defines the frequency
characteristics of the quadrature filters.

A tensor T describing local structure is obtained by a lin-
ear summation of quadrature filter magnitude responses, |qk |,
weighted by predefined tensors Mk , associated with each filter
(defined as the dual tensors in Equation 2.44):

T =
N (N+1)/2∑

k=1

Mk |qk |. (2.53)

where |qk | is the output magnitude from the quadrature filter k.
The tensor in Equation 2.53 is real and symmetric and can

thus can be written as a weighted sum of outer products of its
orthogonal eigenvectors:

T =
N∑

k=1

λk êk êT
k , (2.54)

where the vectors êk describe the principal axes of the local
signal spectrum (the locality is defined by the radial frequency
functions of the quadrature filters).

The distribution of the eigenvalues, λ1 ≤ λ2 ≤ . . . ≤ λN ,
describes the anisotropy of the local spectrum. If the ten-
sor is close to rank 1, i.e., there is only one large eigenvalue
(λ1 >> λk , k ∈ {2, . . . , N }), the spectrum is concentrated to
the line in the Fourier domain defined by ê1. Further, if the ten-
sor is close to rank 2 the spectrum is concentrated to the plane
in the Fourier domain spanned by the two eigenvectors having
non-zero eigenvalues (ê1 and ê2).

2.5.5 Tensor Mapping

The control tensor C used in the adaptive scheme is a based on
a normalization of the tensor descibed in the previous section
(Equation 2.54):

C =
N∑

k=1

γk êk êT
k (2.55)

= λ1

λ2
1 + α2

T. (2.56)

where α is a term defining the trade-off between resolution and
stability similar to Equation 2.33. However, here the resolution
trade-off is adaptive in the same way as the stationary Wiener
filter. α = 0 gives maximum resolution, and the larger the α, the
more of the smoother Wiener solution. Maximum resolution
is given when λ1 is large compared to α, and the smaller the λ1

the smoother the solution. If the “resolution parameter”α = 0,
the control tensor will be

C = 1

λ1
T (2.57)

= ê1êT
1 +

λ2

λ1
ê2êT

2 + · · · +
λN

λ1
êN êT

N . (2.58)

With this normalization, the largest eigenvalue of C is γ1 = 1,
and the resulting adaptive filter Hc becomes an allpass filter
along signal direction ê1,

Hc = H + (1−H )γ1 = 1. (2.59)

If it is desired to increase the image contrast, this can be done
by increasing the high-frequency content in dim parts of the
image data adaptively. Assuming a normalization of the tensors
T so that the largest eigenvalue is 1 globally, max(λ1) = 1, this
can be achieved by increasing the exponent of the λ1 in the
denominator.

C = λ1

λ2.5
1 + α2

T. (2.60)

This will increase the relative weights for low and medium-
low signal components compared to the largest (λ1 = 1). More
elaborate functions for remapping of the eigenvalues can be
found in [4, 5, 33].
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2.5.6 Examples of Anisotropic Filtering
in 2D and 3D

The filters used in the examples below have in the 2D examples
size 15× 15, and 15× 15× 15 in the 3D. The center frequen-
cies of the quadrature filters differ in the examples, but the
relative bandwidth is the same, B= 2. We have for simplicity

approximated the stationary Wiener filter with the following
low-pass filter:

⎧⎨
⎩

H (ρ) = cos2(
πρ

2ρlp
) if 0≤ ρ<ρlp

H (ρ) = 0 otherwise
(2.61)

FIGURE 2.7 2D adaptive filtering of data from MR breast imaging. Left: Original image. Right: Adaptively filtered image. The
adaptive filtering reduces the unstructured component of the motion related artifacts.

FIGURE 2.8 3D adaptive filtering of a coronal MR data set of the head with dynamic compression of the signal. Left: Original
image. Right: Adaptively filtered image. Note the improved contrast between brain and cerebrospinal fluid (CSF).
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FIGURE 2.9 Maximum Intensity Projections (MIPs) of Time of Flight (TOF) MRA data before (left) and after (right) adaptive
filtering. Note the improved contrast between the vasculature and the background in the enhanced image (right).

FIGURE 2.10 Spatio-temporal adaptive filtering of ultrasound data of the heart. Top: The images for the original image sequence.
Bottom: Result after 3D adaptive filtering. Note the reduction of the specular noise when comparing between filtered and unfiltered
image sets.
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Here ρ is the radial frequency variable, and ρlp is the cutoff
frequency. The higher the noise level in the image, the lower the
cutoff frequency ρlp should be used.

Figure 2.7 shows the result of 2D adaptive filtering of MR
data from breast imaging. The original image is shown to the
left. To the right, the result from anisotropic adaptive filtering
is shown. The quadrature filters used for estimating the local
structure had center frequency ω0 = π/3 and the low-pass fil-
ter H had a cutoff frequency ρlp = π/4. The control tensor C
was defined by Equation 2.56 with α = 1% of the largest λ1

globally.
Figure 2.8 shows the result of 3D adaptive filtering of MR

data through the skull. The original image is shown to the left.
The result from adaptive filtering is shown to the right. The
quadrature filters used had center frequency ω0 = π/2 and the
low-pass filter H had a cutoff frequency ρlp = π/3. The control
tensor C was defined by Equation 2.60 with α = 1% of the
largest λ1 globally. Note that details with low contrast in the
original image have higher contrast in the enhanced image.

Figure 2.9 shows the result of 3D adaptive filtering of
Time of Flight (TOF) MR angiography data. This example is
from [6]. For this TOF image data, the following scan param-
eters were used: TR = 45 msec, TE = 4.9 msec, flip angle =
60 deg, FOV = 200 mm, slice thickness = 1.5 mm. The results
show that the noise levels within both vessels and background
are markedly reduced. Note that the intensity along the vessels
is slightly increased, while at the same time low-pass filtering
reduces the noise level in other areas.

Figure 2.10 shows the result of 3D (2D + time) adaptive
filtering of ultrasound data of a beating heart. The top row
shows images from the original time sequence. The bottom
row shows the result after 3D filtering. The quadrature filters
used had center frequency ω0 = π/6 and the cutoff frequency
of the low-pass filter H was ρlp = π/4. The control tensor C is
defined by Equation 2.60 withα = 5% of the largest λ1 globally.

More information on implementing filters for anisotropic
adaptive filtering can be found in [4] where the estimation
of local structure using quadrature filters is also described in
detail. An important issue that we have not discussed in this
chapter is that in medical imaging we often face data with a
center-to-center spacing between slices that is larger than the
in-plane pixel size. Westin et al. [5] introduced an affine model
of the frequency characteristic of the filters to compensate for
the data sampling anisotropy. In addition to changing the fre-
quency distribution of the filters, they also show how this affine
model can provide subvoxel shifted filters that can be used for
interpolation of medical data.
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1.1 Introduction

Image enhancement techniques are used to refine a given image
so that desired image features become easier to perceive for the
human visual system or more likely to be detected by automated
image analysis systems [1, 13]. Image enhancement allows the
observer to see details in images that may not be immediately
observable in the original image. This may be the case, for exam-
ple, when the dynamic range of the data and that of the display
are not commensurate, when the image has a high level of noise,
or when contrast is insufficient [4, 5, 8, 9].

Fundamentally, image enhancement is the transformation
or mapping of one image to another [10, 14]. This trans-
formation is not necessarily one-to-one, so two different
input images may transform into the same or similar out-
put images after enhancement. More commonly, one may
want to generate multiple enhanced versions of a given image.
This aspect also means that enhancement techniques may be
irreversible.

Often the enhancement of certain features in images is
accompanied by undesirable effects. Valuable image infor-
mation may be lost, or the enhanced image may be a poor
representation of the original. Furthermore, enhancement
algorithms cannot be expected to provide information that is

not present in the original image. If the image does not contain
the feature to be enhanced, noise or other unwanted image com-
ponents may be inadvertently enhanced without any benefit
to the user.

In this chapter we present established image enhancement
algorithms commonly used for medical images. Initial con-
cepts and definitions are presented in Section 1.2. Pixel-based
enhancement techniques described in Section 1.3 are trans-
formations applied to each pixel without utilizing specifically
the information in the neighborhood of the pixel. Section 1.4
presents enhancement with local operators that modify the
value of each pixel using the pixels in a local neighborhood.
Enhancement that can be achieved with multiple images of the
same scene is outlined in Section 1.5. Spectral domain filters
that can be used for enhancement are presented in Section 1.6.
The techniques described in this chapter are applicable to
dental and medical images.

1.2 Preliminaries and Definitions

We define a digital image as a two-dimensional array of numbers
that represent the real, continuous intensity distribution of a
spatial signal. The continuous spatial signal is sampled at regular
intervals, and the intensity is quantized to a finite number of

Copyright © 2008 by Elsevier, Inc.
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levels. Each element of the array is referred to as a picture element
or pixel. The digital image is defined as a spatially distributed
intensity signal f (m, n), where f is the intensity of the pixel,
and m and n define the position of the pixel along a pair of
orthogonal axes usually defined as horizontal and vertical. We
shall assume that the image has M rows and N columns and
that the digital image has P quantized levels of intensity (gray
levels) with values ranging from 0 to P − 1.

The histogram of an image, commonly used in image
enhancement and image characterization, is defined as a vector
that contains the count of the number of pixels in the image at
each gray level. The histogram, h(i), can be defined as

h(i) =
M−1∑
m=0

N−1∑
n=0

δ( f (m, n)− i), i = 0, 1, . . . , P − 1,

where

δ(w) =
{

1 w = 0,
0 otherwise.

A useful image enhancement operation is convolution using
local operators, also known as kernels. Considering a kernel
w(k, l) to be an array of (2K + 1× 2L + 1) coefficients where
the point (k, l) = (0, 0) is the center of the kernel, convolution
of the image with the kernel is defined by

g (m, n) = w(k, l)∗f (m, n) =
K∑

k=−K

L∑
l=−L

w(k, l) • f (m − k, n − l),

where g (m, n) is the outcome of the convolution or output
image. To convolve an image with a kernel, the kernel is centered
on an image pixel (m, n), the point-by-point products of the
kernel coefficients and corresponding image pixels are obtained,
and the subsequent summation of these products is used as the
pixel value of the output image at (m, n). The complete output
image g (m, n) is obtained by repeating the same operation on
all pixels of the original image [4, 5, 13]. A convolution kernel
can be applied to an image in order to effect a specific enhance-
ment operation or change in the image characteristics. This
typically results in desirable attributes being amplified and
undesirable attributes being suppressed. The specific values
of the kernel coefficients depend on the different types of
enhancement that may be desired.

Attention is needed at the boundaries of the image where
parts of the kernel extend beyond the input image. One
approach is to simply use the portion of the kernel that overlaps
the input image. This approach can, however, lead to artifacts
at the boundaries of the output image. In this chapter we have
chosen to simply not apply the filter in parts of the input image
where the kernel extends beyond the image. As a result, the out-
put images are typically smaller than the input image by the size
of the kernel.

The Fourier transform F(u, v) of an image f (m, n) is
defined as

F(u, v) = 1

MN

M−1∑
m=0

N−1∑
n=0

f (m, n)e
−2πj

( um
M + vn

N

)
,

u = 0, 1, 2, . . . , M − 1 v = 0, 1, 2, . . . , N − 1,

where u and v are the spatial frequency parameters. The Fourier
transform provides the spectral representation of an image,
which can be modified to enhance desired properties. A spatial-
domain image can be obtained from a spectral-domain image
with the inverse Fourier transform given by

f (m, n) =
M−1∑
u=0

N−1∑
n=0

F(u, v)e
2πj

( um
M + vn

N

)
,

m = 0, 1, 2, . . . , M − 1, n = 0, 1, 2, . . . , N − 1.

The forward or inverse Fourier transform of an N × N
image, computed directly with the preceding definitions,
requires a number of complex multiplications and additions
proportional to N 2. By decomposing the expressions and
eliminating redundancies, the fast Fourier transform (FFT)
algorithm reduces the number of operations to the order of
N log2 N [5]. The computational advantage of the FFT is sig-
nificant and increases with increasing N . When N = 64 the
number of operations is reduced by an order of magnitude,
and when N = 1024, by two orders of magnitude.

1.3 Pixel Operations

In this section we present methods of image enhancement that
depend only on the pixel gray level and do not take into account
the pixel neighborhood or whole-image characteristics.

1.3.1 Compensation for Nonlinear
Characteristics of Display or Print Media

Digital images are generally displayed on cathode ray tube
(CRT) type display systems or printed using some type of pho-
tographic emulsion. Most display mechanisms have nonlinear
intensity characteristics that result in a nonlinear intensity pro-
file of the image when it is observed on the display. This effect
can be described succinctly by the equation

e(m, n) = C( f (m, n)),

where f (m, n) is the acquired intensity image, e(m, n) rep-
resents the actual intensity output by the display system,
and C() is a nonlinear display system operator. In order to
correct for the nonlinear characteristics of the display, one
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(a) (b)

FIGURE 1.1 (a) Original image as seen on a poor-quality CRT-type display. This image has poor contrast, and details are difficult to perceive.
(b) The nonlinearity of the display is reversed by the transformation, and structural details become more visible (Courtesy of Ms. Bonnie
Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

must apply a transform that is the inverse of the display’s
nonlinearity [14, 16]:

g (m, n) = T (e(m, n)) ∼= C−1(C( f (m, n)))

g (m, n) ∼= f (m, n).

where T () is a nonlinear operator that is approximately equal to
C−1(), the inverse of the display system operator, and g (m, n)
is the output image.

Determination of the characteristics of the nonlinearity
could be difficult in practice. In general, if a linear intensity
wedge is imaged, one can obtain a test image that captures
the complete intensity scale of the image acquisition system.
However, an intensity measurement device that is linear is then
required to assess the output of the display system, in order to
determine its actual nonlinear characteristics.

A slightly exaggerated example of this type of a transform is
presented in Figure 1.1. Figure 1.1a presents a simulated CRT
display with a logarithmic characteristic. This characteristic
tends to suppress the dynamic range of the image decreasing the
contrast. Figure 1.1b presents the same image after an inverse
transformation to correct for the display nonlinearity. Although
these operations do in principle correct for the display, the pri-
mary mechanism for review and analysis of image information
is the human visual system, which is fundamentally a nonlinear
reception system and adapts locally to the intensities presented.

1.3.2 Intensity Scaling

Intensity scaling is a method of image enhancement that can
be used when the dynamic range of the acquired image data
significantly exceeds the characteristics of the display system,

or vice versa. It may also be the case that image information is
present in specific narrow intensity bands that may be of special
interest to the observer. Intensity scaling allows the observer to
focus on specific intensity bands in the image by modifying the
image such that the intensity band of interest spans the dynamic
range of the display [14, 16]. For example, if f1 and f2 are known
to define the intensity band of interest, a scaling transformation
may be defined as

e =
{

f f1 ≤ f ≤ f2

0 otherwise

g =
{

e − f1

f2 − f1

}
• ( fmax),

where e is an intermediate image, g is the output image, and
fmax is the maximum intensity of the display.

These operations may be seen through the images in
Figure 1.2. Figure 1.2a presents an image with detail in the
intensity band from 180 to 210. The image, however, is displayed
such that all gray levels in the range 0 to 255 are seen. Figure 1.2b
shows the histogram of the input image, and Figure 1.2c
presents the same image with the 180 to 210 intensity band
stretched across the output band of the display. Figure 1.2d
shows the histogram of the output image with the intensities
that were initially between 180 and 210 but are now stretched
over the range 0 to 255. The detail in the narrow band is
now easily perceived; however, details outside the band are
completely suppressed.

1.3.3 Histogram Equalization

Although intensity scaling can be very effective in enhancing
image information present in specific intensity bands, often
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FIGURE 1.2 (a) Input image where details of interest are in the 180–210 gray level band. This intensity band provides an example of a
feature that may be of clinical interest. (b) Histogram of the input image in (a). (c) This output image selectively shows the intensity band of
interest stretched over the entire dynamic range of the display. This specific enhancement may be potentially useful in highlighting features or
characteristics. (d) Histogram of the output image in (c). This histogram shows the gray level in the original image in the 180–210 intensity
band stretched over to 0 to 255 (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

information is not available a priori to identify the useful
intensity bands. In such cases, it may be more useful to maxi-
mize the information conveyed from the image to the user
by distributing the intensity information in the image as uni-
formly as possible over the available intensity band [3, 6, 7].
This approach is based on an approximate realization of an
information-theoretic approach in which the normalized his-
togram of the image is interpreted as the probability density
function of the intensity of the image. In histogram equaliza-
tion, the histogram of the input image is mapped to a new
maximally flat histogram.

As indicated in Section 1.2, the histogram is defined as h(i),
with 0 to P − 1 gray levels in the image. The total number of
pixels in the image, M ∗N , is also the sum of all the values in
h(i). Thus, in order to distribute most uniformly the intensity
profile of the image, each bin of the histogram should have a
pixel count of (M ∗N )/P .

It is, in general, possible to move the pixels with a given
intensity to another intensity, resulting in an increase in the
pixel count in the new intensity bin. On the other hand, there is
no acceptable way to reduce or divide the pixel count at a spe-
cific intensity in order to reduce the pixel count to the desired
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FIGURE 1.3 (Continued)

(M ∗N )/P . In order to achieve approximate uniformity, the aver-
age value of the pixel count over a number of pixel values can
be made close to the uniform level.

A simple and readily available procedure for redistribution of
the pixels in the image is based on the normalized cumulative
histogram, defined as

H ( j) = 1

M • N

j∑
i=0

h(i), j = 0, 1, . . . , P − 1.

The normalized cumulative histogram can be used as a mapping
between the original gray levels in the image and the new gray
levels required for enhancement. The enhanced image g (m, n)

will have a maximally uniform histogram if it is defined as

g (m, n) = (P − 1) • H ( f (m, n)).

Figure 1.3a presents an original CT image where the gray levels
are not uniformly distributed, while the associated histogram
and cumulative histogram are shown in Figures 1.3b and 1.3c,
respectively. The cumulative histogram is then used to map the
gray levels of the input images to the output image shown in
Figure 1.3d. Figure 1.3e presents the histogram of Figure 1.3d,
and Figure 1.3f shows the corresponding cumulative histogram.
Figure 1.3f should ideally be a straight line from (0, 0) to (P − 1,
P − 1), but in fact only approximates this line to the extent
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possible given the initial distribution of gray levels. Figure 1.3g
through 1.3l show the enhancement of a cardio CT image with
the same steps as above.

1.4 Local Operators

Local operators enhance the image by providing a new value for
each pixel in a manner that depends only on that pixel and oth-
ers in a neighborhood around it. Many local operators are linear
spatial filters implemented with a kernel convolution, some are

nonlinear operators, and others impart histogram equalization
within a neighborhood. In this section we present a set of estab-
lished standard filters commonly used for enhancement. They
can be easily extended to obtain slightly modified results by
increasing the size of the neighborhood while maintaining the
structure and function of the operator.

1.4.1 Noise Suppression by Mean Filtering

Mean filtering can be achieved by convolving the image with
a (2K + 1× 2L + 1) kernel where each coefficient has a value
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FIGURE 1.3 (a) Original image where gray levels are not uniformly distributed. Many image details are not well visualized in this image because
of the low contrast. (b) Histogram of the original image in (a). Note the nonuniformity of the histogram. (c) Cumulative histogram of the
original image in (a). (d) Histogram-equalized image. Contrast is enhanced so that subtle changes in intensity are more readily observable.
(e) Histogram of the enhanced image in (d). Note the distribution of intensity counts that are greater than the mean value have been distributed
over a larger gray-level range. ( f) Cumulative histogram of the enhanced image in (d). (g) Original cardio CT image. (h) through (l) same steps
as above for cardio image (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

equal to the reciprocal of the number of coefficients in the
kernel. For example, when L = K = 1, we obtain

w(k, l) =

⎧⎪⎨
⎪⎩

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

⎫⎪⎬
⎪⎭ ,

referred to as the 3× 3 averaging kernel or mask. Typically,
this type of smoothing reduces noise in the image, but at the
expense of the sharpness of edges [4, 5, 12, 13]. Examples of the
application of this kernel are seen in Figure 1.4(a–d). Note that
the size of the kernel is a critical factor in the successful appli-
cation of this type of enhancement. Image details that are small
relative to the size of the kernel are significantly suppressed,



10 Handbook of Medical Image Processing and Analysis

(a) (b)

(c) (d)

FIGURE 1.4 (a) Original CT image. (b) Original image in (a) corrupted by added Gaussian white noise with maximum amplitude of ±25 gray
levels. (c) Image in (b) convolved with the 3× 3 mean filter. The mean filter clearly removes some of the additive noise; however, significant
blurring also occurs. This image would not have significant clinical value. (d) Image in (b) convolved with the 9× 9 mean filter. This filter has
removed almost all the effects of the additive noise (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

while image details significantly larger than the kernel size are
affected moderately. The degree of noise suppression is related
to the size of the kernel, with greater suppression achieved by
larger kernels.

1.4.2 Noise Suppression by Median Filtering

Median filtering is a common nonlinear method for noise
suppression that has unique characteristics. It does not use
convolution to process the image with a kernel of coefficients.
Rather, in each position of the kernel frame, a pixel of the input
image contained in the frame is selected to become the out-
put pixel located at the coordinates of the kernel center. The
kernel frame is centered on each pixel (m, n) of the original
image, and the median value of pixels within the kernel frame
is computed. The pixel at the coordinates (m, n) of the out-
put image is set to this median value. In general, median filters
do not have the same smoothing characteristics as the mean
filter [4, 5, 8, 9, 15]. Features that are smaller than half the

size of the median filter kernel are completely removed by the
filter. Large discontinuities such as edges and large changes in
image intensity are not affected in terms of gray-level intensity
by the median filter, although their positions may be shifted
by a few pixels. This nonlinear operation of the median fil-
ter allows significant reduction of specific types of noise. For
example, “pepper-and-salt noise” may be removed completely
from an image without attenuation of significant edges or image
characteristics. Figure 1.5 presents typical results of median
filtering.

1.4.3 Edge Enhancement

Edge enhancement in images is of unique importance because
the human visual system uses edges as a key factor in the com-
prehension of the contents of an image [2, 4, 5, 10, 13, 14].
Edges in different orientations can be selectively identified and
enhanced. The edge-enhanced images may be combined with
the original image in order to preserve the context.
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(c)

(a) (b)

FIGURE 1.5 (a) Image in Figure 1.4b enhanced with a 3× 3 median filter. The median filter is not as effective in noise removal as
the mean filter of the same size; however, edges are not as severely degraded by the median filter. (b) Image in Figure 1.4a with added
“pepper-and-salt” noise. (c) Image in Figure 1.5b enhanced by a 3× 3 median filter. The median filter is able to significantly enhance
this image, allowing almost all noise to be eliminated (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General
Hospital).

Horizontal edges and lines are enhanced with

wH 1(k, l) =
⎧⎨
⎩

1 1 1
0 0 0
−1 −1 −1

⎫⎬
⎭ or wH 2(k, l) =

⎧⎨
⎩
−1 −1 −1

0 0 0
1 1 1

⎫⎬
⎭,

and vertical edges and lines are enhanced with

wV 1(k, l) =
⎧⎨
⎩

1 0 −1
1 0 −1
1 0 −1

⎫⎬
⎭ or wV 2(k, l) =

⎧⎨
⎩
−1 0 1
−1 0 1
−1 0 1

⎫⎬
⎭.

The omnidirectional kernel (unsharp mask) enhances edges in
all directions:

KHP(k, l) =

⎧⎪⎨
⎪⎩
−1/8 −1/8 −1/8

−1/8 1 −1/8

−1/8 −1/8 −1/8

⎫⎪⎬
⎪⎭.

Note that the application of these kernels to a positive-valued
image can result in an output image with both positive and neg-
ative values. An enhanced image with only positive pixels can
be obtained either by adding an offset or by taking the absolute
value of each pixel in the output image. If we are interested in
displaying edge-only information, this may be a good approach.
On the other hand, if we are interested in enhancing edges that
are consistent with the kernel and suppressing those that are
not, the output image may be added to the original input image.
This addition will most likely result in a nonnegative image.

Figure 1.6 illustrates enhancement after the application of
kernels wH 1, wV 1, and wHP to the images in Figure 1.4a and 1.3g.
Figures 1.6a,1.6b,and 1.6c show the absolute value of the output
images obtained with wH 1, wV 1, and wHP , respectively applied
to the CT image, while 1.6d, 1.6e, and 1.6f show the same for
the cardio image. In Figure 1.7, the outputs obtained with these
three kernels are added to the original images of Figure 1.4a
and 1.3g. In this manner the edge information is enhanced
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(a) (b)

(c) (d)

FIGURE 1.6 (Continued)

while retaining the context information of the original image.
This is accomplished in one step by convolving the original
image with the kernel after adding 1 to its central coefficient.
Edge enhancement appears to provide greater contrast than the
original imagery when diagnosing pathologies.

Edges can be enhanced with several edge operators other
than those just mentioned and illustrated. Some of these
are described in Chapter 5, “Overview and Fundamentals of
Medical Image Segmentation,” since they also form the basis
for edge-based segmentation.

1.4.4 Local-Area Histogram Equalization

A remarkably effective method of image enhancement is local-
area histogram equalization, obtained with a modification
of the pixel operation defined in Section 1.3.3. Local-area

histogram equalization applies the concepts of whole-image
histogram equalization to small, overlapping local areas of the
image [7, 11]. It is a nonlinear operation and can significantly
increase the observability of subtle features in the image. The
method formulated as shown next is applied at each pixel (m,
n) of the input image:

hLA(m, n)(i) =
K∑

k=−K

L∑
l=−L

δ( f (m + l , n + k)− i),

i = 0, 1, . . . , P − 1

HLA(m, n)( j) = 1

(2K + 1) • (2L + 1)

j∑
i=0

hLA(m, n)(i),

j = 0, 1, . . . , P − 1

g (m, n) = (P − l ) • HLA(m, n)( f (m, n))



1 Fundamental Enhancement Techniques 13

(e) (f)

FIGURE 1.6 (a) Absolute value of output image after convolution of wH 1 with the image in Figure 1.4a. (b) Absolute value of the output image
after convolution of wV 1 with the image in Figure 1.4a. (c) Absolute value of output image after convolution of wHP . (d through f) same as a, b,
and c using image in Figure 1.3g (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

(a)

(c)

(b)

(d)

FIGURE 1.7 (Continued)
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(e) (f)

FIGURE 1.7 (a) Sum of original image in Figure 1.4a and its convolution with wH 1, (b) with wV 1, and (c) with wHP . (d through f) same as a, b,
and c using image in Figure 1.3g (Courtesy of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

FIGURE 1.8 Output image obtained when local-area histogram
equalization was applied to the image in Figure 1.3a. Note that
the local-histogram equalization produces very high-contrast images,
emphasizing detail that may otherwise be imperceptible (Courtesy
of Ms. Bonnie Cameron, MRT & Dr. Paul Schulte, Regina General
Hospital).

where hLA(m, n)(i) is the local-area histogram, HLA(m, n)( j) is
the local-area cumulative histogram, and g (m, n) is the out-
put image. Figure 1.8 shows the output image obtained by
enhancing the image in Figure 1.3a with local-area histogram
equalization using K = L = 15 or a 31× 31 kernel size.

Local-area histogram equalization is a computationally
intensive enhancement technique. The computational com-
plexity of the algorithm goes up as the square of the size of
the kernel. It should be noted that since the transformation

that is applied to the image depends on the local neighborhood
only, each pixel is transformed in a unique way. This results in
higher visibility for hidden details spanning very few pixels in
relation to the size of the full image. A significant limitation of
this method is that the mapping between the input and out-
put images is nonlinear and highly nonmonotonic. This means
that it is inappropriate to make quantitative measurements of
pixel intensity on the output image because the same gray level
may be transformed one way in one part of the image and a
completely different way in another part.

1.5 Operations with Multiple Images

This section outlines two enhancement methods that require
more than one image of the same scene. In both methods, the
images have to be registered and their dynamic ranges have to
be comparable to provide a viable outcome.

1.5.1 Noise Suppression by Image Averaging

Noise suppression using image averaging relies on three basic
assumptions: (1) that a relatively large number of input images
is available, (2) that each input image has been corrupted
by the same type of additive noise, and (3) that the additive
noise is random with zero mean value and independent of the
image. When these assumptions hold, it may be advantageous
to acquire multiple images with the specific purpose of using
image averaging [1], since with this approach even severely
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corrupted images can be significantly enhanced. Each of the
noisy images ai(m, n) can be represented by

ai(m, n) = f (m, n)+ di(m, n),

where f (m, n) is the underlying noise-free image, and di(m, n)
is the additive noise in that image. If a total of Q images is
available, the averaged image is

g (m, n) = 1

Q

Q∑
i=1

ai(m, n)

such that

E{g (m, n)} = f (m, n)

and

σg = σd√
Q

,

where E {•} is the expected value operator, σg is the stan-
dard deviation of g (m, n), and σd is that of the noise. Noise
suppression is more effective for larger values of Q.

1.5.2 Change Enhancement by Image Subtraction

Image subtraction is generally performed between two images
that have significant similarities between them. The purpose of
image subtraction is to enhance the differences between two
images [1]. Images that are not captured under the same or
very similar conditions may need to be registered [17]. This
may be the case if the images have been acquired at different
times or under different settings. The output image may have
a very small dynamic range and may need to be rescaled to the
available display range. Given two images f1(m, n) and f2(m, n),
the rescaled output image g (m, n) is obtained with

b(m, n) = f1(m, n)− f2(m, n)

g (m, n) = fmax •

(
b(m, n)−min{b(m, n)}

max{b(m, n)} −min{b(m, n)}
)

where fmax is the maximum gray level value available, b(m, n)
is the unstretched difference image, and min{b(m, n)} and
max{b(m, n)} are the minimal and maximal values in b(m,n),
respectively.

1.6 Frequency Domain Techniques

Linear filters used for enhancement can also be implemented
in the frequency domain by modifying the Fourier transform
of the original image and taking the inverse Fourier transform.

When an image g (m, n) is obtained by convolving an original
image f (m, n) with a kernel w(m, n),

g (m, n) = w(m, n)∗f (m, n),

the convolution theorem states that G(u, v), the Fourier
transform of g (m, n), is given by

G(u, v) = W (u, v)F(u, v),

where W (u, v) and F(u, v) are the Fourier transforms of the
kernel and the image, respectively. Therefore, enhancement
can be achieved directly in the frequency domain by multi-
plying F(u, v), pixel by pixel, by an appropriate W (u, v) and
forming the enhanced image with the inverse Fourier trans-
form of the product. Noise suppression or image smoothing
can be obtained by eliminating the high-frequency compo-
nents of F(u, v), while edge enhancement can be achieved
by eliminating its low-frequency components. Since the spec-
tral filtering process depends on a selection of frequency
parameters as high or low, each pair (u, v) is quantified
with a measure of distance from the origin of the frequency
plane,

D(u, v) =
√

u2 + v2,

which can be compared to a threshold DT to determine if
(u, v) is high or low. The simplest approach to image smooth-
ing is the ideal low-pass filter WL(u, v), defined to be 1 when
D(u, v) ≤ DT and 0 otherwise. Similarly, the ideal high-pass
filter WH (u, v) can be defined to be 1 when D(u, v) ≥ DT

and 0 otherwise. However, these filters are not typically used
in practice, because images that they produce generally have
spurious structures that appear as intensity ripples, known
as ringing [5]. The inverse Fourier transform of the rect-
angular window WL(u, v) or WH (u, v) has oscillations, and
its convolution with the spatial-domain image produces the
ringing. Because ringing is associated with the abrupt 1 to
0 discontinuity of the ideal filters, a filter that imparts a
smooth transition between the desired frequencies and the
attenuated ones is used to avoid ringing. The commonly
used Butterworth low-pass and high-pass filters are defined
respectively as

BL(u, v) = 1

1+ c[D(u, v)/DT ]2n
,

and

BH (u, v) = 1

1+ c[DT/D(u, v)]2n
,

where c is a coefficient that adjusts the position of the transition
and n determines its steepness. If c = 1, these two functions take
the value 0.5 when D(u, v) = DT . Another common choice
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(a)

(c) (d)

(b)

FIGURE 1.9 (Continued)

for c is
√

2− 1, which yields 0.707 (−3 dB) at the cutoff DT .
The most common choice of n is 1; higher values yield steeper
transitions.

The threshold DT is generally set by considering the power
of the image that will be contained in the preserved frequencies.
The set S of frequency parameters (u, v) that belong to the
preserved region, i.e., D(u, v) ≤ DT for low-pass and D(u, v) ≥
DT for high-pass, determines the amount of retained image
power. The percentage of total power that the retained power
constitutes is given by

β =
∑

(u,v)∈S
|F(u, v)|2∑

∀(u,v)
|F(u, v)|2 × 100

and is used generally to guide the selection of the cutoff thresh-
old. In Figure 1.9a, circles with radii rβ that correspond to five
different β values are shown on the Fourier transform of an
original CT image in Figure 1.9e. The u = v = 0 point of the
transform is in the center of the image in Figure 1.9a. The
Butterworth low-pass filter obtained by setting DT equal to rβ
for β = 90% , with c = 1 and n = 1, is shown in Figure 1.9b
where bright points indicate high values of the function. The
corresponding filtered image in Figure 1.9f shows the effects of
smoothing. A high-pass Butterworth filter with DT set at the
95% level is shown in Figure 1.9d, and its output in Figure 1.9h
highlights the highest frequency components that form 5% of
the image power. Figure 1.9c shows a band-pass filter formed
by the conjunction of a low-pass filter at 90% and a high-pass
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(e) (f)

(g) (h)

FIGURE 1.9 Filtering with the Butterworth filter. (a) Fourier transform of CT image in (e); the five circles correspond to the β values 81, 90,
95, 99, and 99.5%. (b) Fourier transform of low-pass filter with β = 90% which provides the output image in ( f). (c) Band-pass filter with
band β = 81% to β = 90% whose output is in (g). (d) High-pass filter with β = 95%, which yields the image in (h) (Courtesy of Ms. Bonnie
Cameron, MRT & Dr. Paul Schulte, Regina General Hospital).

filter at 81%, while the output image of this band-pass filter is
in Figure 1.9g.

1.7 Concluding Remarks

This chapter focused on fundamental enhancement techniques
used on medical and dental images. These techniques have been
effective in many applications and are commonly used in prac-
tice. Typically, the techniques presented in this chapter form a
first line of algorithms in attempts to enhance image informa-
tion. After these algorithms have been applied and adjusted for

best outcome, additional image enhancement may be required
to improve image quality further. Computationally more inten-
sive algorithms may then be considered to take advantage
of context-based and object-based information in the image.
Examples and discussions of such techniques are presented in
subsequent chapters.
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4.1 Introduction

Medical image enhancement addresses the problem of improv-
ing the visibility of significant features in a medical image to
facilitate the diagnosis process. Poor visualization of medical
images may be due to limited pixel resolution, limited image
dimension, and the inevitable effect of noise components. The
major challenge in medical image enhancement is to develop an
appropriate mathematical model to distinguish signals (image
features) from noise. Ideally, we would like to enhance only the
image features to reduce the probability of missed detection,

but simultaneously we need to avoid amplifying noise due to its
risk of producing false positive (FP) detections.

For 2D signals such as a medical image, important fea-
tures usually correspond to the structural singularities such
as edges, lines, and corners. Various methods have been pro-
posed to model the singularities in the spatial or transform
domain. Early works on medical image enhancement include
several approaches in the spatial domain such as edge preserv-
ing smooth filtering [4], local/global contrast enhancement by
unsharp masking [5,6], and adaptive neighborhood-based pro-
cessing [4–8]. These techniques are based mostly on heuristic

Copyright © 2008 by Elsevier, Inc.
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understanding of edges and provide limited effectiveness.
Wavelet-based image processing techniques [4,8] have received
considerable attention and shown promising results. Wavelet-
based image enhancement is usually achieved by stretching the
magnitude of wavelet coefficients in a multiscale representation
of the image [4,8].

This chapter presents a hybrid filter architecture using
the combination of (1) Fourier descriptors (FDs) for shape
similarity-invariant enhancement and rotation-invariant
enhancement to accommodate the arbitrary orientation of tex-
tures and contours, (2) an Adaptive Multistage Nonlinear Filter
(AMNF), and (3) a Multiresolution/Multiorientation Wavelet
Transform (MMWT) that are specifically designed for image
enhancement in medical imaging. We will consider three visual
attributes of the delineated mass and microcalcification clusters
(MCCs) in mammograms—namely, shape, texture, and area.

The specific clinical application used as an example is the
enhancement of masses and MCCs in digitized mammograms.
The hybrid enhancement technique is used to improve both
visualization and detection using computer-aided diagnostic
(CAD) methods. The enhancement of MCCs and masses is par-
ticularly valuable, since they vary in size, shape, signal intensity,
and contrast; and they may be located in areas of very dense
parenchymal tissue, making their detection difficult [9–20].
The classification of MCCs and masses as benign or malig-
nant requires their morphology and detail to be preserved as
accurately as possible.

The implementation of direct digital X-ray sensors, as
opposed to conventional X-ray screen film methods,will require
the use of specialized high-luminance computer monitors for
reading mammograms. Image enhancement of MCCs and
masses in digitized mammograms should potentially improve
visual diagnosis on a computer monitor, and could also be used
as a preprocessing algorithm for CAD methods proposed as a
“second opinion” in reading strategies [19, 20]. Similarly, the
improved response characteristics of either X-ray film digitiz-
ers or direct digital sensors of recent design, such as their spatial
resolution and image contrast, place greater constraints on the
design of image enhancement algorithms because image detail,
such as small microcalcifications, must be preserved. Finally,
the varying noise characteristics of these new sensors and the
possible generation of image artifacts, particularly at high res-
olution, should be accounted for in order to reduce the FP rate
in the detection of MCCs or masses.

First, FDs are introduced for shape similarity-invariant
enhancement and rotation-invariant enhancement for the
arbitrary orientation of textures and contours. Second, an
AMNF is used for both noise suppression and image enhance-
ment by smoothing background structures surrounding MCCs
and masses. Third, MMWT is employed for further selec-
tive enhancement of MCCs and masses. The hybrid filter
takes advantage of the image decomposition and reconstruc-
tion processes of the MMWT where reconstruction of specific
subimages is used to selectively enhance MCCs and masses

and separate the background structures. Finally, the hybrid fil-
ter selectively combines the filtered and reconstructed images
containing MCCs, masses, and background to provide further
enhancement of the microcalcifications, masses, and selective
removal of parenchymal tissue structures.

The rest of the chapter is organized as follows. Section 4.2
describes the motivation for the design of the hybrid filter; the
description of the filter architecture; the theoretical basis of the
FDs, AMNF, and the MMWT methods; and the optimization of
the filter parameters. Section 4.3 describes the evaluation of the
visual interpretation of the enhanced images and the results for
detection. Section 4.4 presents the discussion and conclusion.

4.2 Design of the Hybrid Filter

The hybrid filter evolved with earlier work for image noise sup-
pression and the use of a wavelet transform (WT), specifically
for segmentation of MCCs and mass in digitized mammo-
grams [19]. A multistage tree structured filter (TSF), with fixed
parameters, that demonstrated improved performance for noise
suppression in digital mammograms compared with traditional
single stage filters was initially developed in [11, 16]. Similarly,
a two-channel multiresolution WT was successfully used for
both decomposition and reconstruction, with selective recon-
struction of different subimages successfully used to segment
the MCCs [13,17,18]. The cascaded implementation of the TSF
and WT resulted in significant reduction in the FP rate for MCC
detection in the analysis of both simulated images with varying
noise content and the digital mammograms with biopsy-proven
MCCs. However, the image details of the segmented MCCs and
masses were not fully preserved although the results were better
than those using single-scale methods [18]. FDs and the AMNF
described in this chapter provide better performance in noise
suppression, and allow a criterion for selective enhancement
of MCCs and mass while smoothing background parenchymal
structures.

4.2.1 Filter Architecture

A block diagram of the hybrid filter architecture is shown in
Figure 4.1. The input mammogram image g (i, j) is first pro-
cessed by the Fourier descriptors and the Adaptive Multistage
Nonlinear Filter (FDs-AMNF), for enhancing desired features
while suppressing image noise and smoothing the details of
background parenchymal tissue structures. The output image,
expressed as gFDsAMNF (i, j), is processed in two different ways:
(a) a weight coefficient α1 is applied to the output image
producing α1 gFDsAMNF (i, j) and (b) the same output image is
processed by the wavelet transform. The MMWT, as shown in
Figure 4.1, decomposes the output image, gFDsAMNF (i, j), into
a set of independent, spatially oriented frequency bands or
lower resolution subimages. These subimages are then clas-
sified into two categories: one category primarily contains
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FIGURE 4.1 Block diagram of the hybrid filter architecture used for image enhancement that includes the Fourier
Descriptors and Adaptive Multistage Nonlinear Filter (AMNF), and Multiresolution/Multiorientation Wavelet
Transform (MMWT).

structures of interests, and another category mainly contains
background structures. The subimages are then reconstructed
by the MMWT into two images, gW 1(i, j) and gW 2(i, j), that con-
tain the desired features and background features, respectively.
Finally, the outputs of the reconstructed subimages weighted by
coefficients α2 and α3 and the original weighted output image
α1 gFDsAMNF (i, j) are combined as indicated in Figure 4.1 to yield
the output image g0 that further improves the enhancement of
MCCs/masses as follows:

g0 = α1gFDsAMNF (i, j)+ α2gW 1(i, j)− α3gW 2(i, j) (4.1)

A linear gray scaling is then used to scale the enhanced images.

4.2.2 Shape Similarity-Invariant and
Rotation-Invariant Descriptors

An effective approach for the analysis and enhancement of the
shape of the delineated masses and MCCs in digital mammo-
grams is based on Fourier descriptors, which are made invariant
to changes in location, orientation, and scale; that is, they can
be designed to be similarity invariant. We follow the approach
of Kuhl and Giardina [1,2] and expand the functions x(s) and
y(s) separately to obtain the elliptic Fourier descriptors (EFDs).
The EFDs corresponding to the nth harmonic of a contour
composed of K points are given by ψ
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2nπsi

S
− cos

2nπsi−1

S

]

bn = S

2n2π2

K∑
i=1

�xi

�si

[
sin

2nπsi

S
− sin

2nπsi−1

S

]
(4.2)
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where

si =
i∑

j=1

�sj , S =
K∑

i=1

�si

�si =
√
(�xi)2 + (�yi)2

�xi = (xi − xi−1), �yi = (yi − yi−1),

and�xiψ and�yiψ represent the changes in the x and yψ pro-
jections of the chain code as the contour point is traversed. By
contrast to the use of the cumulative angular function where
the truncation of the Fourier series can yield open curves,
the curve reconstructed from the EFDs is always closed [3].
The EFDs have a straightforward geometric interpretation, the
closed contour being represented as a composition in proper
phase relationship of ellipses, called harmonic loci. The larger the
number of ellipses involved, the more accurate the representa-
tion becomes. Rotation invariance is obtained by compensating
for the arbitrary position of the starting point on the contour
and for the arbitrary orientation of the contour. Hence, two
rotations are necessary to achieve the invariance. When the first
harmonic locus is an ellipse, the rotations are defined relative
to the semi-major axis of the locus and produce two related
representations of the curve:[

a(1)n b(1)n

c (1)n d(1)n

]
=

[
cosψ1 sinψ1

sinψ1 cosψ1

] [
an bn

cn dn

]

×
[

cos nθ1 − sin nθ1

sin nθ1 cos nθ1

]
(4.3)

and

[
a(2)n b(2)n

c (2)n d(2)n

]
= (−1)n+1

[
a(1)n b(1)n

c (1)n d(1)n

]
. (4.4)

Expressions for the axial rotation ψp and starting point dis-
placement θp relative to the first semi-major axis are derived
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in [1]. If the first harmonic locus is circular, the rotations are
made with respect to the line defined by the centroid of the
contour and the point on the contour most distant from the
centroid. Since the most distant point can be nonunique, kψ
related representations could result, corresponding to k sets of
Fourier coefficients:[

a
(p)
n b

(p)
n

c
(p)
n d

(p)
n

]
=

[
cosψp sinψp

sinψp cosψp

] [
an bn

cn dn

]

×
[

cos nθp − sin nθp

sin nθp cos nθp

]
, (4.5)

with pψ = 1, . . . , k, where the axial rotation �pψ and starting
point displacement θp are defined relative to the pth most distant
point. Enhancement in the shape of the object is obtained by
reconstructing the object contour with a limited number of
FD harmonics such as n = 1, 2, . . . , 5. Shape features extracted
from the enhanced contour provide a better representation of
the object.

4.2.3 Adaptive Multistage Nonlinear Filtering
(AMNF)

4.2.3.1 Basic Filter Structure

An image g (i, j) can be considered to consist of two parts: a low-
frequency part gL(i, j) and a high-frequency part gH (i, j) can
be expressed as g (i, j) = gL(i, j)+ gH (i, j). The low-frequency
part may be dominant in homogeneous regions, whereas
the high-frequency part may be dominant in edge regions.
The two-component image model allows different treatment
of the components, and it can be used for adaptive image fil-
tering and enhancement [19]. The high-frequency part may be
weighted with a signal-dependent weighting factor to achieve
enhancement. A two-component model is suitable not only for
noise suppression, but also for many other enhancement opera-
tions such as statistical differencing and contrast enhancement.
The first stage of the AMNF includes multiple linear and non-
linear filters that are judged to be appropriate for the particular
application. In this stage the input image is filtered with each
of these filters, and in the second stage, for each pixel, the out-
put of only one filter is selected using an adaptive criterion.
There is a wide choice of filters that can serve as the building
blocks of the AMNF. Here we illustrate a first stage based on
five different filters: a linear smoothing filter, three nonlinear
α-trimmed mean filters [19] with different window sizes, and
a tree-structured filter. The α-trimmed mean filter is a good
compromise between the median and moving average filter [9].
For example, in a 3× 3 window, it excludes the highest and
lowest pixel values and computes the mean of the remaining
7 pixels. In this manner outliers are trimmed and averaging
also is implemented.

The TSF is based on the central weighted median filter
(CWMF), which provides a selectable compromise between

noise removal and edge preservation in the operation of the
conventional median filter. Consider an M × N window W
with M and N odd, centered around a pixel x(i, j) in the input
image. The output y(i, j) of the CWMF is obtained by com-
puting the median of pixels in the window augmented by 2K
repetitions of x(i, j) [16],

y(i, j) = median{x(i −m, j − n), 2K copies of x(i, j)};
m, n ∈ W ,

where 2K is an even positive integer such that 0< 2K
< MN − 1. If K = 0, the CWMF is reduced to the standard
median filter, and if 2K ≥ MN − 1, then the CWMF becomes
the identity filter. Larger values of K preserve more image detail
to the expense of noise smoothing, compared to smaller values.
In order to introduce directional sensitivity to the CWMF, we
can use a string of pixels, linear or curved, to serve as a window
instead of the usual square window. The TSF is a multistage
nonlinear filter that consists of multiple CWMFs organized
in a tree structure. The TSF in this study was made of eight
CWMFs using linear and curved windows, its second stage had
two CWMFs without windows processing the outputs of the
first stage and the input x(i, j), and the third stage was a single
CWMF that acted on three inputs and produced the output of
the TSF.

The structure of the AMNF is shown in Figure 4.2, and its
output is

gAMNF (i, j) = gAF (i, j)+ b(i, j)[g (i, j)− gAF (i, j)], (4.6)

where b(i, j) is a signal-dependent weighting factor that is a
measure of the local signal activity, and gAF (i, j) is the output
from the second stage of the filter in Figure 4.2. The value of
b(i, j) is obtained from local statistics around processed pixel
as b(i, j) = σ2

f (i, j)/[σ2
f (i, j)+ σ2

n(i, j)], where σ2
f is the signal

variance and σ2
n is the noise variance. In the flat regions of the

input image, the signal-to-noise ratio is small, so b(i, j) becomes
small and gAMNF (i, j) approaches gAF (i, j). On the other hand,
the signal-to-noise ratio is large around the edges in the image,
so b(i, j) gets close to 1, and gAMNF (i, j) approaches g (i, j). The
operation of the filter therefore should preserve the edges in
the image. The estimation of the parameters σf and σn will be
described in Section 4.2.4.

4.2.3.2 Adaptive Operation

In order to achieve better adaptive properties, five different
filters with different window sizes are selected according to the
value of b(i, j). With respect to an appropriate window size W ,
two effects are taken into account. Noise suppression increases,
while spatial resolution decreases with increasing window size.
Linear filters smooth the edges, average the details with noise,
and decrease greatly the spatial resolution. As a consequence, the
nonlinear filter with a small window (e.g., 3× 3) is used in the
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FIGURE 4.2 Block diagram of the Adaptive Multistage Nonlinear Filter (AMNF) used for
noise suppression and enhancement of MCCs and masses.

suspicious areas containing microcalcifications, while a linear
filter with a large window (e.g., 7× 7 or 9× 9) is used in the
areas without suspicious microcalcifications to achieve noise
removal and background smoothing. During the enhancement
process, the filter is automatically selected by the weighting fac-
tor b(i, j). The outputs of the five filters in the first stage of
Figure 4.2 are subject to a binary weighting that selects one fil-
ter out of the five. Representing the outputs of the five filters
as the vector gj , this adaptive process can be written with the
vector notation:

gl = cT gj , 1 ≤ j ≤ m, ∀j ∈ Z L , (4.7)

where gl is the vector whose nonzero element is the output
gAF (i, j), and the elements of c are set adaptively according to
the weighting factor b(i, j) as follows:

[c1, c2, c3, c4, c5]T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[1, 0, 0, 0, 0]T b(i, j) ≤ τ1

[0, 1, 0, 0, 0]T τ1 < b(i, j) ≤ τ2

[0, 0, 1, 0, 0]T τ2 < b(i, j) ≤ τ3

[0, 0, 0, 1, 0]T τ3 < b(i, j) ≤ τ4

[0, 0, 0, 0, 1]T b(i, j) > τ4

. (4.8)

The thresholds τ1 to τ4 have to be set by the user according to
the application.

4.2.3.3 Parameter Computation for the AMNF

The local mean ḡ (i, j) and local variance σ2
g (i, j) of g (i, j)

needed for Equations 4.1, 4.6, 4.7, and 4.8 can be calculated over
a uniform moving average window of size (2r + 1) × (2s + 1)
with

ḡ (i, j) = 1

(2r + 1)(2s + 1)

i+r∑
p=i−r

j+s∑
q=j−s

g (p, q) (4.9)

σ2
g (i, j) = 1

(2r + 1)(2s + 1)

i+r∑
p=i−r

j+s∑
q=j−s

(g (p, q)− ḡ (i, j))2.

(4.10)

Considering the image to be formed by a noise-free ideal
image f (i, j) and a noise process n(i, j) such that g (i, j) =
f (i, j)+ n(i, j), it is straightforward to show that the local
variance of f (i, j) is given by

σ2
f (i, j) = σ2

g (i, j)− σ2
n(i, j), (4.11)

where σ2
n(i, j) is the nonstationary noise variance assuming

that f (i, j) and n(i, j) are independent. The variance σ2
n(i, j)

is assumed to be known from an a priori measurement on the
imaging system. An example of local statistics computation of
an imaging system is the typical degradation model of Poisson
noise in mammographic screening systems:

g ∗(i, j) = Poissonλ{f (i, j)}, (4.12)

where Poissonλ{·} is a Poisson random number generator, and
λ is a proportionality factor. The probabilistic description of a
Poisson process is given by

The conditional ensemble mean and variance of g ∗(i, j) given
f (i, j) are

P{g (i, j)|f (i, j)} = (λf (i, j)g (i,j))e−λf (i,j)

g (i, j)! (4.13)
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E[g ∗(i, j)|f (i, j)] = λf (i, j) (4.14)

Var[g ∗(i, j)|f (i, j)] = λf (i, j). (4.15)

The normalized observation is defined as

g (i, j) = g ∗(i, j)

λ
= Poissonλ{f (i, j)}

λ
. (4.16)

Therefore, the noise part has the form

n(i, j) = g (i, j)− f (i, j) = Poissonλ{f (i, j)}
λ

− f (i, j) (4.17)

and its variance can be shown to be

σ2
n(i, j) = E[f (i, j)]/λ. (4.18)

From these equations, the ensemble variance of f (i, j) can be
obtained as

σ2
f (i, j) = σ2

g (i, j)− f̄ (i, j)

λ
= σ2

g (i, j)− ḡ (i, j)

λ
. (4.19)

4.2.4 Multiresolution/Multiorientation Wavelet
Transform (MMWT)

4.2.4.1 Multiresolution Wavelet Transform

Two-, three-, and four-channel wavelet transforms were initially
used in preliminary studies of medical image enhancement and
segmentation [13, 17, 18, 20]. An M-channel WT decomposes
the input image into M2 subimages, and the four-channel WT
used in this work has 16 decomposed subimages. It is important
to select the subimages with significant diagnostic features for
reconstruction.

The WT utilizes two functions: the mother wavelet ψm,n(x)
that spans the subspace Wi and the scaling function �m,n(x)
that spans the subspace Vi . The function ψ is subjected to the
functional operations of shifts and dyadic dilation, and the
WT may be implemented by using filter banks that have
good reconstruction properties and high computational effi-
ciency. The dilations and translations of the scaling function
induce a multiresolution analysis of L2(R), in a nested chain of
closed subspaces of L2(R) ( . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . .)

such that V−∞ = {0}, and V∞ = L2(R). Vi and Wi are related
by Vi ⊕Wi = Vi+1 where ⊕ expresses the sum of subspaces
that are perpendicular to each other. This can extend to
Vi ⊕Wi ⊕Wi+1 = Vi+2 where W4 is the subspace spanned by
mother wavelet function ψm,n(x).

In order to apply wavelet decompositions to images, two-
dimensional extensions of wavelets are required. An effi-
cient way to construct them is to use “separable wavelets”
obtained from products of one-dimensional wavelets and
scaling functions. The two dimensional functions can be con-
structed as �(x , y) = �(x)�(y) with �(x , y) given by either
�(x , y) = �(x)�(y) or�(x , y) = �(x)�(y). The functions of
Equation 4.17 correspond to the separable two-dimensional fil-
ter banks. The basis functions for a four-channel WT, where
�(x , y) ∈ V4 and Wj(j = 4, 3, 2, 1), can be ordered by

�3(x)�3(y), �3(x)ψ3(y), �3(x)ψ2(y), �3(x)ψ1(y)
ψ3(x)�3(y), ψ3(x)ψ3(y), ψ3(x)ψ2(y), ψ3(x)ψ1(y)
ψ2(x)�3(y), ψ2(x)ψ3(y), ψ2(x)ψ2(y), ψ2(x)ψ1(y)
ψ1(x)�3(y), ψ1(x)ψ3(y), ψ1(x)ψ2(y), ψ1(x)ψ1(y).

(4.20)

In terms of two-dimensional basis functions, the set in
Equation 4.20 can also be represented by the following block
matrix:

A3x�(x , y)A3y�(x , y), A3x�(x , y)B3y�(x , y),

A3x�(x , y)B2y�(x , y), A3x�(x , y)B1y�(x , y)

B3x�(x , y)A3y�(x , y), B3x�(x , y)B3y�(x , y),

B3x�(x , y)B2y�(x , y), B3x�(x , y)B1y�(x , y)

B2x�(x , y)A3y�(x , y), B2x�(x , y)B3y�(x , y),

B2x�(x , y)B2y�(x , y), B2x�(x , y)B1y�(x , y)

B1x�(x , y)A3y�(x , y), B1x�(x , y)B3y�(x , y),

B1x�(x , y)B2y�(x , y), B1x�(x , y)B1y�(x , y)
(4.21)

where A and B represent linear operators. The wavelet rep-
resentation of the operator described earlier has interes-
ting interpretations. First, the representation means that the
2D image is decomposed into 16 subimages, which allows
the multichannel image processing techniques to be used.
Second, in the foregoing wavelet-based image decomposi-
tion, A3x�(x , y)A3y�(x , y) is the “low-frequency” portion of
the operator, whereas other blocks in Equation 4.21 are “high-
frequency” components of the operator. This motivates a
general and consistent scheme for “scaling down” from a fine to
a coarse grid. Compared to two-channel WT, the four-channel
multiresolution WT provides more accurate representation,
selective reconstruction of the higher order M2 subimages
allows better preservation of the enhanced structures, and bet-
ter detection sensitivity can be obtained on enhanced images.
Adaptive linear scaling should be used to adjust image grayscale
intensity and allow operator-independent evaluation of the
enhanced image.
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4.2.4.2 Multiorientation Wavelet Transform

The directional wavelet transform (DWT) is a wavelet trans-
form for multiorientation signal decomposition using polar
coordinates implemented on a pixel-by-pixel basis [25]. This
approach allows enhancement of structures that have a spe-
cific orientation in the image. The selection of the wavelet basis
functions is important to obtain high orientation selectivity. It
is achieved by introducing a directional sensitivity constraint
on the wavelet function [24]. The directionality is achieved by
selecting specific angular orientation bands in the transform
domain, as shown in Figure 4.3. The input image is decomposed
by the DWT, yielding two output images. One is a direc-
tional texture image, used for directional feature enhancement.
The second is a smoothed version of the original image, with
directional information removed,and later used for image back-
ground correction. This module plays two important roles in
mammography analysis: (1) isolation of the central mass from
surrounding parenchymal tissue in the case of stellate tumors
as required later for enhancement and segmentation, and (2)
direct detection and analysis of spiculations and their differ-
entiation from other directional features in the mammogram
using a ray tracing algorithm.

Directional sensitivity can be obtained by retaining only
the components that lie in the desired orientation in the WT
domain. Selection of the orientation can be achieved with a fan
having a desired angular width and oriented in the desired ori-
entation in the WT domain. All orientations can be analyzed
by considering multiple such fans, positioned adjacently. For
example, four fans with 45◦ angular widths can cover all orien-
tations. By taking the inverse WT of only those components in
a given fan, we can produce an image where structures in the
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FIGURE 4.3 The scheme of Multiorientation Wavelet Transform
implemented by the adaptive directional filter bank.

selected orientation have been emphasized. The four fans with
45◦ width give rise to four images, and the dominant orienta-
tion corresponds to the image with highest gradient. Since the
dominant orientation can change across the image, it is wise
to make this decision individually for each pixel. Therefore, for
each pixel, we can compute the local gradient magnitude G
on each of the four images and determine the highest. The
pixel value in the image with the highest local gradient is
taken as the orientation selective value of that pixel for the
45◦ fan.

The appropriate fan width can also change from image to
image, and narrower fan widths may be better in many images.
Therefore, the DWT is implemented by using multiorienta-
tion filter banks with nine fan widths: 45◦ (4 orientations),
30◦ (6 orientations), 22.5◦ (8 orientations), 15◦ (12 orien-
tations), 11.25◦ (16 orientations), 9◦ (20 orientations), 7.2◦
(25 orientations), 6◦ (30 orientations), and 5.63◦ (32 orien-
tations). In each orientation, the maximal gradient magnitude
is defined as Gn , (i = 1, 2, 3, . . . , 9). The technique of the adap-
tive directional filter bank (ADFB) is shown in Figure 4.3
where the output depends on the maximal gradient among all
orientations, defined as

Gmax = max{α1|G1|,α2|G2|,α3|G3|, . . . ,α9|G9|}, (4.22)

where αi(i = 1, 2, . . . , 9) are normalizing factors to make all
αiGi have the value given by a unit arc area and βi(i =
1, 2, 3, . . . , 9) are adaptive control parameters. If Gmax = αiGi ,
then βi = 1 and βj = 0 for j �= i. For example, when Gmax =
α9G9, the output of the 32-channel directional filter is used as
the orientation of the striation in the window. In this man-
ner each pixel is filtered according to an adaptive orientation
with an adaptive width allowing more orientation details and
more complex orientations to be enhanced. The result is that
the filters appear to be “tuned” to the orientation and size of
structures to enable better enhancement. The filters are applied
globally to the entire image to obtain a set of high-frequency
features in different directions. The gradient operators are com-
monly used in directional feature detection and edge detection,
such as isotropic operation, compass operation, and Laplace
operator and stochastic gradient operation [25, 28, 29]. The
stochastic gradient operation was used in this work due to its
good property in reducing noise effects [25]. The filters of adap-
tive angular widths with angular overlap 50% were applied to
the windows. Subjectively, it appears that the filters “tuned” to
the size and spacing of lines to enable better detection. The fil-
ters were applied globally to the entire image to obtain a set
of high-frequency features in different directions. The applica-
tion examples of the multiorientation wavelet transform were
shown in [24,25].
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4.3 Experimental Results

4.3.1 Image Database

Two databases were used to evaluate the performance of the
developed hybrid filter. The test database (a) contained 100 sin-
gle view mammograms at a resolution of 105 microns and 12
bits per pixel (4096 gray level). It included 50 cases of normal
mammograms and 50 cases of biopsy-proven malignant MCCs.
The location and geometry of the MCCs were identified on the
digitized images and film by expert radiologists. Database (b)
contained 100 single-view mammograms at a resolution of 180
microns and 12 bits per pixel that included 50 normal and 50
abnormal mammograms with masses. These contained 20 stel-
late, 14 circumscribed, and 19 irregular masses, and they were
all biopsy-proven cancers. The following case selection criteria
were followed in the configuration of databases: (1) a balanced
distribution of biopsy-proven benign and malignant lesions,
(2) normal cases with at least two years’ clinical follow-up with-
out cancer, not containing any benign findings or artifacts,
(3) a balanced distribution of mass size for the training and
testing databases. Both normal and abnormal mammograms
manifested typical variations in parenchymal density and struc-
ture, ranging from very dense to fat breasts. A reference image or
electronic truth file was formed for all images in databases where
the tumor was labeled by an expert mammographer based on
visual criteria and biopsy results. Histograms of the effective
size and contrast of the masses in this database are shown in
[15, 25].

The visual evaluation was conducted with a dual monitor
workstation used for image enhancement, receiver operating
characteristic (ROC) analysis and free response ROC (FROC)

analysis. FROC/ROC curves were computed and generated
using developed computer software. A customized interface
has been developed to review left and right breast mammo-
grams using the dual monitor display and to allow real-time
pan/zoom for each view. Raw and processed images are dis-
played in a similar manner. The computational time for the
full CAD analysis should not exceed two minutes per case,
but images are batch-processed prior to the evaluation analysis
since the algorithms are fully automatic to facilitate efficient
analysis.

4.3.2 Visual Evaluation of Enhanced Images

Figure 4.4 provides representative mammographic images with
a single biopsy-proven mass showing (a) the original digi-
tized image, (b) the enhanced image using the hybrid filter
(Figure 4.1) with a two-channel multiresolution WT, and (c)
the enhanced image using the hybrid filter with a four-channel
multiresolution WT. Figure 4.5 shows representative mammo-
graphic images with a single biopsy-proven MCC showing (a)
a 512 × 512 pixel original digitized image, (b) the enhanced
image using the hybrid filter (Figure 4.1), (c) the enhanced
image using the hybrid filter without the AMNF stage, (d) the
enhanced image using the TSF for noise suppression, (e) neu-
ral networks detection results for the original image as input,
and (f) neural networks detection results using the enhanced
image as input. Several false negative (FN) detections were
observed in the results (e) obtained with the original image as
the input. Figure 4.6 provides representative mammographic
images with single biopsy-proven MCCs, and presents the
original digitized image, the image enhanced with the hybrid

(a) (b) (c)

FIGURE 4.4 Representative mammographic images with a single biopsy-proven mass showing: (a) the original digitized
image, (b) enhanced image using the hybrid filter (Figure 4.1) with a two-channel multiresolution WT, and (c) enhanced
image using the hybrid filter (Figure 4.1) with a four-channel multiresolution WT.
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(a)

(c)

(e) (f)

(b)

(d)

FIGURE 4.5 Representative mammographic images with a single
biopsy-proven MCC showing: (a) a 512× 512 pixel original digi-
tized image, (b) enhanced image using the hybrid filter (Figure 4.1),
(c) enhanced image using the hybrid filter without the AMNF stage,
(d) the enhanced image using the TSF for noise suppression, (e) NN
detection results for the original image as input, and (f) NN detec-
tion results using the enhanced image as input. Several FN detections
were observed in the results (e) obtained with the original image as
the input.

filter (Figure 4.1) using two different sets of parameters, and
threshold segmentation results.

4.3.3 MCC and Mass Detection

A novel multistage artificial neural network (ANN) was used
to detect MCCs in both raw and enhanced images. The ANN
involves the use of a back propagation algorithm with Kalman
Filtering to obtain a high convergence rate as required for analy-
sis of large image matrices generated in digital mammography,
i.e., bringing the processing time closer to real-time analysis
[12]. Inputs to the ANN were extracted features that represented

(a)

(c) (d)

(b)

FIGURE 4.6 Representative mammographic images with single
biopsy-proven MCCs showing (a) the original digitized image,
(b) enhanced image using the hybrid filter (Figure 4.1) with a set of
parameters, (c) enhanced image using the hybrid filter with a differ-
ent set of parameters, and (d) thresholding segmentation result based
on (c).

the local gray-level distribution, object shape, and MCC clus-
ter properties. The training of this ANN was performed using
30 cancer cases from the dataset where two types of regions of
interest (ROIs) were extracted from both the unprocessed and
enhanced versions of the images. One ROI type contained a
representative MCC, and another ROI type contained normal
parenchymal tissue. The training data from the selected ROIs
were normalized. Testing was performed on all 100 single-view
mammograms in database (a), using first the original versions
and then the enhanced outputs. Representative results for the
ANN detection of MCCs are shown in Figures 4.5e and 4.5f.
Significant improvement in the network’s performance was
observed when the enhanced images were used as inputs. For
example, in Figure 4.5f, the ANN detected most of the micro-
calcifications within the cluster using the enhanced image, but
only some of them were detected using the raw image as shown
in Figure 4.5e. Because these FN detections were observed
in the raw image, the extent of the MCC was not properly
delineated.
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Analysis of the 100 full images further demonstrated the
importance of the enhancement step, and 95% sensitivity
was observed in the detection of MCCs with less than 1.25
FP MCCs/image using enhanced images. With the original
images as inputs, however, a lower sensitivity of 71% was
observed for approximately the same FP detection rate (1.47 FP
MCCs/image). The performance of the enhancement method
described in this chapter was also evaluated using the database
(b) containing masses in mammograms. The sensitivities of
mass detection were 88% and 62% in the enhanced and original
unprocessed images, respectively, and the average FP detection
rates were 1.51 and 2.75 masses/image, respectively.

4.4 Discussion and Conclusion

This chapter described the potential contribution of the
FDs, AMNF, and MMWT using hybrid filter architecture
for enhancement of medical images. Fourier descriptors for
shape similarity-invariant enhancement and rotation-invariant
enhancement combined with AMNF prior to the use of the
MMWT contribute significantly to the enhancement of MCC
or mass image details while suppressing background structures
in digital mammography.

The presented hybrid filter provides better detail preserva-
tion of the MCCs and mass than other tested enhancement
methods. A good enhancement method could partially com-
pensate for monitor limitations and perhaps allow diagnosis
to be performed directly from a monitor as required for film-
less radiology departments or remote diagnosis. The use of the
enhanced image allows specific features of the microcalcifica-
tions and mass to be more objectively identified for training an
ANN. For example, if raw images are analyzed, the features used
to train the ANN are difficult to objectively determine because
of the presence of structured noise, which may increase the
FP detection rate to unacceptable levels or decrease the sensiti-
vity of detection. In an ROC study on softcopy reading versus
film with this enhancement method, the variability among four
radiologists participating in the study was reduced when the
enhanced images were used to assist the interpretation of the
original softcopy images on the monitors [23].

Several methods can be used to improve the hybrid filter.
First, the use of more than four channels WT would provide
a greater number of decomposed subimages. More selective
reconstruction of subimages may allow better preservation of
image details for MCCs/mass and possibly better removal of
structured image noise. Second, the hybrid filter could include
the use of adaptive wavelet methods, similar to those pro-
posed for image compression [27]. In the adaptive method, a
group of orthogonal bases are iteratively computed to minimize
the object function for a specific task such as image enhance-
ment. Universal wavelet algorithms can be developed for image
enhancement, segmentation, detection, and compression in
medical image processing.
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Segmentation, separation of structures of interest from the background and from each other, is an essential analysis function for
which numerous algorithms have been developed in the field of image processing. In medical imaging, automated delineation
of different image components is used for analyzing anatomical structure and tissue types, spatial distribution of function and
activity, and pathological regions. Segmentation can also be used as an initial step for visualization and compression. Typically,
segmentation of an object is achieved either by identifying all pixels or voxels that belong to the object or by locating those that
form its boundary. The former is based primarily on the intensity of pixels, but other attributes, such as texture, that can be
associated with each pixel, can also be used for segmentation. Techniques that locate boundary pixels use the image gradient,
which has high values at the edges of objects. Chapter 5 presents the fundamental concepts and techniques used for region-based
and edge-based segmentation, including global and adaptive thresholding, watershed segmentation, gradient operators, region
growing, and segmentation using multiple images. In the second edition, references have been updated to reflect recent application
examples.

Since segmentation requires classification of pixels, it is often treated as a pattern recognition problem and addressed with related
techniques. Especially in medical imaging, where variability in the data may be high, pattern recognition techniques that provide
flexibility and convenient automation are of special interest. One approach is fuzzy clustering, a technique based on fuzzy models
and membership functions. Chapter 6 introduces the concept of fuzzy sets, establishes the distinction between membership and
probability, and describes image segmentation with fuzzy clustering. Both supervised and unsupervised methods are presented and
illustrated with several applications. Recent developments and new medical applications have been added in the second edition.
Another approach is neural networks, where the classification is based on distributed nonlinear parallel processing. Numerous
neural network structures and training algorithms are available and can be applied to medical image segmentation. Chapter 7
focuses on a particularly effective class of neural networks, the generalized radial basis functions, and presents an approach that
combines unsupervised and supervised techniques. The author has expanded this chapter with a new section containing brief
descriptions of many new applications that utilize the segmentation methods presented here.

A relatively new segmentation approach based on deformable models provides a mechanism that is considerably different from
fundamental techniques and pattern recognition methods. In this approach a flexible boundary model is placed in the vicinity
of the structure to be segmented, and the model is iteratively adjusted to fit the contour of the structure. Deformable models
are particularly suited for segmentation of images that have artifacts, noise, and weak boundaries between structures. Chapter 8
presents a comprehensive review of deformable models and their use for medical image segmentation. Since the formulation
of deformable models lends itself well to shape representation, matching, and motion tracking, these three applications are also
addressed in Chapter 8. An important aspect of segmentation with deformable models is the possibility of incorporating prior
information on the shape of the object. In addition to many new references, this chapter has been expanded to include the
description of a recent paradigm, deformable organism, which combines deformable models and artificial life modeling, and a
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new section that compares Lagrangian with Eulerian deformable models. Chapter 9 describes shape constraints that facilitate
segmentation with deformable templates. Specific shape information can be used when the shapes of structures of interest are
consistent. In cases where shapes are likely to vary significantly, generic shape constraints are needed. Chapter 9 presents integrated
techniques that use a maximum a posteriori formulation and related distributions for specific shape constraints, while the generic
shape constraints are addressed with the level set method and a thickness constraint. The application of specific and generic shape
constraints for deformable models is illustrated on heart and brain images in Chapter 9. In the second edition, authors have
expanded the description of global shape constraints with new sections that present a point distribution model, an independence
model, the combined model, and a Bayesian objective function. Now, this chapter also includes many new figures and references.
Segmentation with deformable models has been successful in many images that cannot be segmented well with other techniques;
however, two main limitations of deformable templates must be noted. Deformable models can converge to a wrong boundary if
the initial position is not close enough to the desired boundary, and they also can refuse to converge into concave regions of the
desired boundary. Chapter 10 describes gradient vector flow fields that can provide a solution for both problems. This technique
allows the initial model to be placed inside, outside, or even across the boundary, and it converges well if other structures do not
interfere with the progress of the model. Two new sections in this edition present the multigrid gradient vector flow and recent
developments in this area.

In some medical image analysis applications, the presence of various structures with different properties suggests the use of a
specifically designed sequence of multiple segmentation techniques. For example, initial steps can use fundamental techniques to
reduce the data, and subsequent steps can apply more elaborate techniques that are robust but more time consuming. The best
choice of techniques and their order depends typically on the problem as well as computational resources. Chapter 11 presents
a hybrid approach designed for fully automated segmentation of brain MRI images. The algorithm includes histogram analysis,
thresholding, nonlinear anisotropic diffusion, and deformable templates. The paradigm of this chapter can guide the design of
other hybrid methods for use on different image data.

Advances in the speed and resolution of medical imaging instruments provide valuable volumetric data for numerous clinical
applications. Practically all segmentation techniques described in this chapter were first developed for 2D image analysis but
can also be extended to 3D images. Chapter 12 presents a comparative study of three different unsupervised segmentation
techniques that can be used for volumetric segmentation as well as 2D applications. Authors have revised this chapter which now
focuses on a general framework for unsupervised classification, followed by algorithms based on K -means clustering, expectation-
maximization, and fuzzy clustering. The evaluation is based on identification of white matter, gray matter, and cerebrospinal fluid
in brain MRI images. Many segmentation algorithms may have difficulties at the boundary of different tissue types in volumetric
data. This can be due to the fact that a voxel can contain a mixture of materials. Segmentation with fuzzy clustering provides one
solution based on its membership functions. Another possibility is obtained by modeling each voxel as a region and computing the
proportion of materials in each voxel. Chapter 13 presents this approach, which is based on a probabilistic Bayesian approach, to
determine the most likely mixture within each voxel. The discrete 3D sampled data are used to produce a continuous measurement
function, and the distribution of this function within each voxel leads to the mixture information. The technique is illustrated on
volumetric data of brain, hand, and tooth. This chapter has been expanded to address boundary distance estimation that follows
naturally the tissue classification technique of this chapter.

In some applications, tissue types differ only in the higher order moments of their intensity distributions, in a way that the
human visual system may not be able to distinguish the different tissues. Chapter 13, a new chapter in this edition, presents an
algorithm designed to reveal different tissues in such cases, and illustrates it on 3D MRI data, for the segmentation of glioblastomas
in schizophrenic and normal patients.
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3.1 Introduction

Image enhancement techniques have been widely used in the
field of radiology, where the subjective quality of images is
important for human interpretation and diagnosis. Contrast
is an important factor in subjective evaluation of image quality.
Many algorithms for accomplishing contrast enhancement have
been developed and applied to problems in medical imaging.
A comprehensive survey of several methods has been published
by Wang et al. [1]. Among the various techniques published,
histogram modification and edge enhancement techniques have
been most commonly used along with traditional methods of
image processing.

Histogram modification techniques [2, 3], explained in
Chapter 1, are attractive because of their simplicity and speed
and have achieved acceptable results for some applications.
The transformation function used is derived from a desired
histogram and the histogram of an input image. In general,
the transformation function is nonlinear. For continuous func-
tions, a lossless transformation may be achieved. However, for
digital images with a finite number of gray levels, such a trans-
formation results in information loss due to quantization. For
example, a subtle edge may be merged with its neighboring

pixels and disappear. Attempts to incorporate local context
into the transformation process have achieved limited success.
For example, simple adaptive histogram equalization [4] sup-
ported by fixed contextual regions cannot adapt to features of
different size.

Most edge enhancement algorithms share a common stra-
tegy implicitly: detection followed by local “edge sharpening.”
The technique of unsharp masking, discussed in Chapter 2,
is significant in that it has become a popular enhancement
algorithm to assist the radiologist in diagnosis [5, 6]. Unsharp
masking sharpens edges by subtracting a portion of a filtered
component from an original image. Theoretically, this tech-
nique was justified as an approximation of a deblurring process
by Rosenfeld and Kak [7]. Loo et al. [8] studied an exten-
sion of this technique in the context of digital radiographs.
Another refinement based on Laplacian filtering was proposed
by Neycenssac [9]. However, techniques of unsharp masking
remain limited by their linear and single-scale properties and
are less effective for images containing a wide range of salient
features, as typically found in digital mammography. In an
attempt to overcome these limitations, a local contrast mea-
sure and nonlinear transform functions were introduced by
Gordon and Rangayyan [10], and later refined by Beghdadi and
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Negrate [11]. Limitations remained in these nonlinear meth-
ods, since no explicit noise suppression stage was included
(in fact, noise could be amplified), and ad-hoc nonlinear
transform functions were introduced without an analytical
basis for their enhancement mechanisms or their potential for
artifacts.

Recent advancement of wavelet theory has sparked the
interest of researchers in the application of image contrast
enhancement [12, 18]. In this chapter, we give a detailed mathe-
matical analysis of a dyadic wavelet transform and reveal its
connection to the traditional method of unsharp masking. In
addition, we discuss a simple nonlinear enhancement function
and analyze the problem of introducing artifacts as a result of
nonlinear processing of wavelet coefficients. We also describe a
denoising strategy that preserves edges using wavelet shrinkage
[23] and adaptive thresholding.

Selected enhancement techniques are discussed in the
following sections of this chapter: Section 3.2 presents a
one-dimensional (1D) dyadic wavelet transform. Section 3.3
analyzes linear enhancement and its mathematical connec-
tion to traditional unsharp masking. Section 3.4 analyzes
simple nonlinear enhancement by pointwise functional map-
ping. Section 3.5 introduces denoising with wavelet shrinkage
along with an adaptive approach for finding threshold val-
ues. Section 3.6 presents a two-dimensional (2D) extension
for digital mammography and special procedures developed
for denoising and enhancement that avoid orientation distor-
tions. Section 3.7 presents some sample experimental results
and comparisons with existing techniques. Finally, Section 3.8
concludes our discussion and suggests possible future directions
of research.

3.2 One-Dimensional Discrete Dyadic
Wavelet Transform

3.2.1 General Structure and Channel
Characteristics

A fast algorithm [19, 20] for computing a 1D redundant dis-
crete dyadic wavelet transform (RDWT) is shown in Figure 3.1.
The left side shows its decomposition structure, and the right,
reconstruction. For an N -channel structure, there are N − 1
high-pass or band-pass channels and a low-pass channel. Thus,
the decomposition of a signal produces N − 1 sets of wavelet
coefficients and a coarse signal.

Since there is no down-sampling and up-sampling shown
in Figure 3.1, this redundant discrete dyadic wavelet transform
does not correspond to an orthogonal wavelet basis.

For simplicity of analysis, an equivalent multichannel struc-
ture is shown in Figure 3.2. This computational structure
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FIGURE 3.1 Computational structure for a one-dimensional discrete
dyadic wavelet transform (three levels shown).

also makes obvious the potential for high-speed execution by
parallel processing.

We shall refer to filters f̂m(ω) and îm(ω) in Figure 3.2 as for-
ward filters and inverse filters, respectively. Their relationship to

the filters ĝ (ω), k̂(ω), and ĥ(ω) shown in Figure 3.1 is explicitly
given by
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FIGURE 3.2 An equivalent multichannel structure for a three-level
RDWT.
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and

î0(ω) = k̂(ω), îN (ω) =
N−1∏
l=0

ĥ
(
2lω

)
,

îm(ω) =
N−1∏
l=0

ĥ
(
2lω

)
k̂
(
2mω

)
, 1 ≤ m ≤ N − 1.

Since filters ĥ(ω), ĝ (ω), and k̂(ω) satisfy the condition

∣∣∣ĥ(ω)∣∣∣2 + ĝ (ω)k̂(ω) = 1, (3.1)

filters f̂m(ω) and îm(ω) completely cover the frequency domain:

∑
l

f̂l(ω)îl(ω) = 1.

Channel frequency responses ĉm(ω) can be written as

1−
∣∣∣ĥ (ω)∣∣∣2

, m = 0

ĉm (ω) = f̂m (ω) îm (ω)

=
m−1∏
l=0

∣∣∣ĥ (
2lω

)∣∣∣2
[

1−
∣∣∣ĥ (

2mω
)∣∣∣2

]
, 1 ≤ m ≤ N − 1

=
m−1∏
l=0

∣∣∣ĥ (
2lω

)∣∣∣2
, m = N .

As an example, let us consider an extension of the class of filters
proposed by Mallat and Zhong [20] and precisely show how
these filters can cover the space-frequency plane to provide a
complete analysis:

ĥ (ω) = eip ω2 cos
(ω

2

)2n+p
, (3.2)

where p = 0 or 1. Let

θ̂m, q (ω) =
[

m−1∏
l=0

cos
(
2l−1ω

)]q

.

Then we can show that

θ̂m,q (ω) =
[

sin
(
2m−1ω

)
2m sin

(
ω
2

)
]q

, (3.3)

and therefore

ĉm(ω) =
{
θ̂m,4n+2p (ω)− θ̂m+1,4n+2p (ω), 0 ≤ m ≤ (N − 1)

θ̂N ,4n+2p (ω), m = N .
(3.4)

Note that θ̂0,n(ω) = 1, and for 0<m<N ,

ĉm(ω) = θ̂m,4n+2p(ω)− θ̂m+1,4n+2p(ω)

= sin2
(ω

2

)
4m θ̂ m,4n+2p+2 (ω)

2n+p−1∑
l = 0

[
cos

(
2m−1ω

)]2l
,

(3.5)

and sin2
(
ω
2

)
is the frequency response of the discrete Laplacian

operator of impulse response {1,−2, 1}.
θ̂m,q(ω) with even exponential q is an approximate Gaussian

function, while the frequency responses of the channels
0<m<N are approximately Laplacian of Gaussian. Figure 3.3
shows the frequency response of each distinct channel while
Figure 3.4 compares θ̂2,4(ω) and θ̂2,6(ω) with related Gaussians.

3.2.2 Two Possible Filters

In this framework, the possible choices of filters are constrained
by Equation 3.1. For the class of filters defined by Equation 3.2,
we can derive

ĝ (ω) k̂(ω) = sin2
(ω

2

) 2n+p−1∑
l=0

[
cos

(ω
2

)]2l
.

Under the constraint that both ĝ (ω) and k̂(ω) are finite
impulse response (FIR) filters, there are two possible design
choices which are distinguished by the order of zeros in their
frequency responses.

1. Laplacian filter. In this case, ĝ (ω) = −4 sin2
(
ω
2

)
or

g (l) = {1,−2, 1}, which defines a discrete Laplacian
operator, such that (g ∗ s)(l)=s(l + 1)− 2s(l)+
s(l − 1). Accordingly, we can chose both filters ĝ (ω) and

ĥ(ω) to be symmetric:

ĥ (ω) =
[

cos
(ω

2

)]2n

and

k̂(ω) =
1−

∣∣∣ĥ(ω)∣∣∣2

g (ω)
= −1

4

2n−1∑
l=0

[
cos

(ω
2

)]2l
.

Both forward and inverse filters, 0 ≤ m ≤ N − 1, can be
derived by

f̂m(ω) = −4
[
sin

(
2m−1ω

)]2
θ̂m,2n (ω)

= sin2
(ω

2

)
4m θ̂m,2n+2 (ω) = ĝ (ω) λ̂m (ω) (3.6)
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FIGURE 3.3 Channel frequency responses for N = 6, n = 1, and (a) p = 0 and (b) p = 1.

and

îm (ω) = −θ̂m,2n (ω)
1

4

2n−1∑
l=0

[
cos

(
2m−1ω

)]2l = γ̂m (ω).

Note that the forward filters f̂m(ω), 0 ≤ m ≤ N − 1, can
be interpreted as two cascaded operations, a Gaussian
averaging of −θ̂m, 2n+2(ω) and the Laplacian−4 sin2

(
ω
2

)
,

while the set of inverse filters îm(ω) are low-pass
filters. For an input signal s(l), the wavelet coefficients
at the points “E” (as shown in Figures 3.1 and 3.2) may be

written as

wm (ω) = �(s ∗ λm) (l) ,

where � is the discrete Laplacian operator, and λm(l)
is approximately a Gaussian filter. This means that each
wavelet coefficient wm(l) is dependent on the local
contrast of the original signal at each position l .

2. Gradient filter. In this case, ĝ (ω) = 2ie−i ω2 sin(ω2 ), or
g (0) = 1, and g (1) = −1, such that (g∗s)(l) = s(l)−
s(l − 1). Thus, we select the filters

ĥ(ω) = ei
ω
2

[
cos

(ω
2

)]2n+1
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.
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and

k̂(ω) = −eiω ĝ (ω)
1

4

2n∑
l=0

[
cos

(ω
2

)]2l
.

We then derive the forward filters

f̂m(ω) = ĝ (ω)2m θ̂m,2n+2(ω) = ĝ (ω) λ̂m(ω)

and inverse filters

îm(ω) = −eiω ĝ (ω) γ̂m(ω),

where

γ̂m(ω) = 2m θ̂m,2n+2 (ω)
1

4

2n∑
l=0

[
cos

(
2m−1ω

)]2l

is a low-pass filter.
In this case, the associated wavelet coefficients may be

written as

wm(l) = ∇(s ∗ λm)(l)

where ∇ is a discrete gradient operator characterized by
s(l) = s(l)− s(l − 1).

3.3 Linear Enhancement and Unsharp
Masking

3.3.1 Unsharp Masking

In general, unsharp masking can be seen as a generalized sub-
tracting Laplacian operator. In this context, an early prototype
of unsharp masking [7] was defined as

su(x , y) = s(x , y)− k�s(x , y), (3.7)

where

� = ∂2

∂x2
+ ∂2

∂y2

is the Laplacian operator. However, this original formula
worked only at the level of finest resolution. More versatile
formulas were later developed in two distinct ways.

One way to extend this original formula was based on exploit-
ing the averaging concept behind the Laplacian operator. The
discrete form of the Laplacian operator may be written as

�s(i, j) = [
s(i + 1, j)− 2s(i, j)+ s(i − 1, j)

]
+ [

s(i, j + 1)− 2s(i, j)+ s(i, j − 1)
]

= −5

{
s(i, j)− 1

5

[
s(i + 1, j)+ s(i − 1, j)+ s(i, j)

+s(i, j + 1)+ s(i, j − 1)
]}

.

This formula shows that the discrete Laplacian operator can be
implemented by substracting from the value of a central point
its average neighborhood. Thus, an extended formula [8] can
be written as

su(i, j) = s(i, j)+ k
[
s(i, j)− (s ∗ h) (i, j)

]
, (3.8)

where h(i, j) is a discrete averaging filter, and ∗ denotes convolu-
tion. Loo, Doi, and Metz [8] used an equal-weighted averaging
mask:

h(x , y) =
{

1
N 2 , |x| < N

2 ,
∣∣y∣∣ < N

2

0, otherwise.

Another way to extend the prototype formula [9] came from
the idea of a Laplacian-of-Gaussian filter, which expands
Equation 3.7 into

su(x , y)= s(x , y)− k�(s ∗ g )(x , y)= s(x , y)− k(s ∗�g )(x , y)
(3.9)

where g (x , y) is a Gaussian function, and �g (x , y) is a
Laplacian-of-Gaussian filter.

We mention for future reference that both extensions shown
in Equations 3.8 and 3.9 are limited to a single scale.

3.3.2 Inclusion of Unsharp Masking Within the
RDWT Framework

We now show that unsharp masking with a Gaussian low-pass
filter is included in a dyadic wavelet framework for enhance-
ment by considering two special cases of linear enhancement.

In the first case, the transform coefficients of channels
0 ≤ m ≤ N − 1 are enhanced (multiplied) by the same gain
G0 > 1, or Gm = G0 > 1, 0 ≤ m ≤ N − 1. The system fre-
quency response is thus

v̂(ω) =
N−1∑
m=0

Gm ĉm(ω)+ ĉN (ω) = G0

N−1∑
m=0

ĉm(ω)

− (G0 − 1)ĉN (ω)

= G0 − (G0 − 1) ĉN (ω) = 1+ (G0 − 1) (1− ĉN (ω)).

This makes the input-output relationship of the system simply

se(l) = s(l)+ (G0 − 1) [s(l)− (s ∗ cN ) (l)] . (3.10)

Since ĉN (ω) is approximately a Gaussian low-pass filter,
Equation 3.10 may be seen as the 1D counterpart of
Equation 3.8.

In the second case, the transform coefficients of a single
channel p, 0 ≤ p < N , are enhanced by a gain Gp > 1; thus,

v̂(ω) =
∑
m �=P

ĉm(ω)+ Gpĉp(ω) =
N∑

m=0

ĉm(ω)+ (Gp − 1)ĉp(ω)

= 1+ (
Gp − 1

)
ĉp (ω) . (3.11)
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Recall the channel frequency response ĉm(ω) derived previously
in Equation 3.5. The input–output relationship of the system
in Equation 3.11 can be written as

se(l) = s(l)− (
Gp − 1

)
�(s ∗ η) (l). (3.12)

where η(l) is the impulse response of an approximately
Gaussian filter. Similarly, Equation 3.12 may be seen as the 1D
counterpart of Equation 3.9. The inclusion of these two forms
of unsharp masking demonstrates the flexibility and versatility
of the dyadic wavelet framework.

3.4 Nonlinear Enhancement by Functional
Mapping

Linear enhancement can be seen as a mapping of wavelet
coefficients by a linear function Em(x) = Gmx . A direct exten-
sion of this is a nonlinear mapping function Em(x). The
main challenges here are how to design a nonlinear function
and how to best utilize multichannel information extracted
from a dyadic wavelet framework to accomplish contrast
enhancement.

3.4.1 Minimum Constraint for an Enhancement
Function

A major concern in enhancement is to introduce no arti-
facts during processing (analysis) and reconstruction (synthe-
sis). For the dyadic wavelet framework this means that we
should not create new extrema in any of the channel out-
puts. This defines a minimum constraint on any enhancement
function: A function must be continuous and monotonically
increasing.

3.4.2 Filter Selection

For linear enhancement, the selection of filters ĝm(ω) (and

thus k̂m(ω)) makes little difference. However, this is not true
for the nonlinear case. For the nonlinear approach described
later, we show that a Laplacian filter should be favored. By
selecting a Laplacian filter, we can be assured that positions
of extrema will be unchanged and that no new extrema will be
created within each channel. This is possible for the following
reasons:

1. Laplacian filters are zero-phase. No spatial shifting in
the transform space will occur as a result of frequency
response.

2. A monotonically increasing function E(x) will not pro-
duce new extrema. (At some point E[f (x0)] is an
extremum if and only if f (x0) was an extreme singularity.)

3. The reconstruction filters are simply zero-phase smooth-
ing filters that will not create additional extrema.

The major difficulty in using a gradient filter is that recon-
struction includes another gradient operator. As a result, a
monotonically increasing function E(x) alone (as shown in
Figure 3.5a) will no longer guarantee that new extrema will
not be introduced in each output channel. Moreover, it is not
difficult to show that any nonlinear mapping will change the
positions of original extrema. Therefore, we will assume the
choice of Laplacian filters in the remainder of this chapter.

3.4.3 A Nonlinear Enhancement Function

Designing a nonlinear enhancement scheme is difficult for two
reasons: (1) the problem of defining a criterion of optimality
for contrast enhancement, and (2) the complexity of analyz-
ing nonlinear systems. We adopted the following guidelines in
designing nonlinear enhancement functions:

1. An area of low contrast should be enhanced more than
an area of high contrast. This is equivalent to saying that
small values of wavelet coefficients w at some level m,
denoted by wm , should have larger gains.

2. A sharp edge should not be blurred.

Experimentally, we found the following simple function to
be advantageous:

x − (K − 1)T , if x < −T

E(x) = Kx , if |x| ≤ T ≤ x + δ(x)
x + (K − 1)T , if x > T

(3.13)

where K > 1. This expression for enhancement may also be
reformulated as a simple change in value (Equation 3.13 right)
where

−(K − 1)T , if x < −T

δ(x) = (K − 1)x , if |x| ≤ T .

(K − 1)T , if x > T

At each level m, the enhancement operator δm has two
free parameters: threshold Tm and gain Km . In our experi-
mental studies, Km = K0, 0 ≤ m ≤ N − 1, and Tm = t ↔
max{wm[n]}, where 0 < T ≤ 1 was user specified. For t = 1.0,
the wavelet coefficients at levels 0 ≤ m ≤ N − 1 were multi-
plied by a gain of K0, shown previously to be mathematically
equivalent to unsharp masking. Thus this nonlinear algorithm
includes unsharp masking as a subset. Figure 3.6 shows a
numerical example, comparing linear and nonlinear enhance-
ment. Note the lack of enhancement for the leftmost edge in
the case of the linear operator.
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FIGURE 3.5 (a) E(x) and (b) δ(x), both with T = 0.5 and K = 20.

Specifically, an enhanced signal se(l) can be written as

se (l) =
N−1∑
m= 0

(
Em

[(
s ∗ fm

)] ∗ im

)
(l)+ (

s ∗ fN ∗ iN

)
(l)

=
N∑

m= 0

(
s ∗ fm ∗ im

)
(l)+

N−1∑
m= 0

(δm [�(s ∗ λm)] ∗ im)(l)

or

se (l) = s (l)−
N−1∑
m=0

(δm [�(s ∗ λm)] ∗ γm)(l) . (3.14)

For completeness, we mention that the formula of Equ-
ation 3.14 can be seen as a multiscale and nonlinear exten-
sion of the original unsharp masking operator defined by
Equation 3.9. We argue that multiscale unsharp masking as
defined by Equation 3.14 makes a marked improvement over
traditional techniques in two respects:

1. The fast multiscale (or multimask) decomposition proce-
dure efficiently identifies features existing within distinct
levels of scale, eliminating the need for search.

2. The nonlinear algorithm enhances small features within
each scale without blurring the edges of larger fea-
tures, making possible the simultaneous enhancement of
features of all sizes.

3.4.4 Enhancement Techniques

To accomplish multiscale contrast enhancement, nonlinear
techniques for image enhancement were applied to levels of a

multiresolution representation. For each basis, there were four
components in the transform space: horizontal, vertical, diag-
onal, and a DC component, represented by di

1, di
2, di

3 and si ,
respectively; i is the level of a transform. Let s be the origi-
nal image, g be the function designed to emphasize features
of importance within a selected level i, and L be the num-
ber of levels in a transform. Then, an enhanced image may be
constructed by

s =
L∑

i=1

W−1
(
g
(
di

1

)
, g

(
di

2

)
, g

(
di

3

)
, si

)
. (3.15)

In general, by defining a function g, we can denote specific
enhancement schemes for modifying the coefficients within
distinct selected levels of scale-space.

3.4.4.1 Local Enhancement Techniques

Image enhancement should emphasize important features
while reducing the enhancement of noise. Enhancement tech-
niques for digital mammography based on multi-scale edges
have been developed [12, 15]. In this chapter, we will consider
the enhancement to be specified by

di
1 (m, n) =

{
di

1 (m, n) , if: ei(m, n) ≤ T i

g idi
1 (m, n) , if: ei (m, n) >T i ,

where m and n denote coordinates in the spatial domain, ei is
the edge set corresponding to the transform space component
di

1, g i is a local gain, and T i is a threshold at level i; g i and T i

are selected adaptively. The edge set ei of di
1 contains the local

maxima of di
1 along the horizontal direction. For di

2 and di
3, the

direction is along the vertical and diagonal orientations (45◦),
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FIGURE 3.6 ID contrast enhancement of a synthetic signal (a) by four-level dyadic wavelet analysis with (b) a linear operator with K0 = 2.3,
and (c) a nonlinear operator with t = 0.1 and K0 = 7.

respectively. Specifically,

ei(m, n) =

⎧⎪⎨
⎪⎩
|di

1(m, n)|, if |di
1(m, n)| > |di

1(m + 1, n)|
and |di

1(m, n)| > |di
1(m − 1, n)|

0, otherwise.

The processing of di
2 and di

3 is similar. By simply replacing di
1,

di
2, and di

3 with corresponding modified components di
1, di

2, and
di

3, we obtain an enhanced image s.

3.4.4.2 Multiscale Histogram Equalization

Histogram equalization of transform-space images provides a
global method to accomplish multiresolution enhancement.

Traditional histogram equalization was applied to each sub-
band of coefficients in the transform space (excluding the DC
component) to obtain a globally enhanced mammogram.

3.4.4.3 Multiscale Adaptive Gain

In this approach, we suppress pixel values of very small ampli-
tude, and enhance only those pixels larger than a certain
threshold T within each level of the transform space. We
design the following function to accomplish this nonlinear
operation [17]:

f (y) = a[sigm(c(y − b))− sigm(−c(y + b))], (3.16)
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where

a = 1

sigm(c (1− b))− sigm(−c (1+ b))
,

sigm
(
y
)

is defined by

sigm
(
y
) = 1

1+ e−y
,

and b and c control the threshold and rate of enhancement,
respectively. It can be easily shown that f (y) is continuous and
monotonically increasing within the interval [−1, 1] (similar
to histogram equalization). Furthermore, a derivative of f (y)
of any order exists and is continuous. Therefore, enhancement
using f (y)will not introduce new discontinuities (artifacts) into
the reconstructed image.

3.5 A Method for Combined Denoising
and Enhancement

Some nonlinear enhancement methods [11] do not take into
account the presence of noise. In general, noise exists in
both digitized and digital images, due to the detector device
and quantization. As a result of nonlinear processing, noise
may be amplified and may diminish the benefits of enhan-
cement.

Denoising an image is a difficult problem for two reasons.
Fundamentally, there is no absolute boundary to distinguish
a feature from noise. Even if there are known characteristics
of a certain type of noise, it may be theoretically impossi-
ble to completely separate the noise from features of interest.
Therefore, most denoising methods may be seen as ways to sup-
press very high-frequency and incoherent components of an
input signal.

A naive method of denoising that is equivalent to low-
pass filtering is naturally included in any dyadic wavelet
framework. That is, simply discard channels at the highest
resolution, and enhance coefficients confined to lower space-
frequency channels. The problem associated with this linear
denoising approach is that edges are blurred significantly.
This flaw makes linear denoising mostly unsuitable for con-
trast enhancement in medical images. In order to achieve
edge-preserved denoising, more sophisticated methods based
on wavelet analysis were proposed in the literature. Mallat
and Hwang [22] connected noise behavior to singularities.
Their algorithm relied on a multiscale edge representation.
The algorithm traced modulus wavelet maxima to evalu-
ate local Lipschitz exponents and deleted maxima points
with negative Lipschitz exponents. Donoho [23] proposed
nonlinear wavelet shrinkage. This algorithm reduced wavelet
coefficients toward zero based on a level-dependent threshold.

3.5.1 Incorporating Wavelet Shrinkage into
Contrast Enhancement

The method of denoising by wavelet shrinkage can be incor-
porated trivially into a nonlinear enhancement framework by
simply adding an extra segment to the enhancement function
E(x), defined earlier in Equation 3.13:

x − (K − 1)Te + KTn , if x ≤ −Te

K (x + Tn) , if −Te ≤ x ≤ −Tn

E(x) = 0, if |x| ≤ Tn ,
K (x − Tn) , if Tn ≤ x ≤ Te

x + (K − 1)Te − KTn , if x ≥ Te .

However, there are two arguments that favor shrinking gradient
coefficients instead of Laplacian coefficients.

First, gradient coefficients exhibit a higher signal-to-noise
ratio (SNR). For any shrinkage scheme to be effective, it is essen-
tial that the magnitude of the signal’s components be larger than
that of existing noise. It is thus sensible to define the SNR as the
maximum magnitude of a signal over the maximum magnitude
of noise. For example, consider a soft edge model

f (x) = A(
1+ e−2βχ

) , A > 0.

The first and second derivatives of f (n) are

f ′(x) = Aβ[
2 cosh2 (βx)

] and f ′′ (x) = −Aβ2 sinh (βx)

cosh3 (βx)
,

with the magnitude of local extrema |f ′ (x0) | = A|β|/3 and
|f ′(x0)| = 2Aβ2/3

√
3, respectively. In this simple model, we can

assume that noise is characterized by a relatively small A value
and large β value. Clearly, gradient coefficients have a higher
SNR than those of Laplacian coefficients since β contributes
less to the magnitude of the function’s output. Figures 3.7b
and 3.7c show first and second derivatives, respectively, for an
input signal (a) with two distinct edges.

In addition, boundary contrast is not affected by shrink-
ing gradient coefficients. As shown in Figure 3.7, coefficients
aligned to the boundary of an edge are local extrema in the
case of a first derivative (gradient), and zero crossings in the
case of a second derivative (Laplacian). For a simple pointwise
shrinking operator, there is no way to distinguish the points
marked“B”from the points marked“A”(Figure 3.7c). As a result,
regions around each “A” and “B” point are diminished, while the
discontinuity in “B” (Figure 3.7d) sacrifices boundary contrast.

In the previous section, we argued that nonlinear enhance-
ment is best performed on Laplacian coefficients. Therefore,
in order to incorporate denoising into our enhancement algo-
rithm, we split the Laplacian operator into two cascaded
gradient operators. Note that
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FIGURE 3.7 (a) Signal with two edges, (b) First derivative (gradient), (c) Second derivative (Laplacian), (d) Shrunken Second derivative.

ĝm(ω) = −4
[
sin

(
2m−1ω

)]2 = ĝm,1(ω)ĝm,2(ω),

where

ĝm,1(ω) = e−i
ω
2 2i sin

(
ω
2

)
, ĝm,2(ω) = ei

ω
2 2i sin

(
ω
2

)
, if m = 0,

ĝm,1(ω) = ĝm,2(ω) = 2i sin
(
2m−1ω

)
, otherwise.

Denoising by wavelet shrinkage [23] can then be incorporated
into this computational structure as illustrated in Figure 3.8,
where the shrinking operator can be written as

C (x) = sgn (x)

{
|x| − Tn , if |x| > Tn,

0, otherwise.

Note that the shrinking operator is a piecewise linear and
monotonically nondecreasing function. Thus, in practice, the
shrinking operator will not introduce artifacts.

3.5.2 Threshold Estimation for Denoising

The threshold Tn is a critical parameter in the shrinking
operation. For a white noise model and orthogonal wavelet,
Donoho [23] suggested the formula Tn =

√
2 log(N )σ/

√
N ,

where N is the length of an input signal and σ is the stan-
dard deviation of the wavelet coefficients. However, the dyadic
wavelet we used is not an orthogonal wavelet. Moreover, in our
2D applications, a shrinking operation is applied to the magni-
tudes of the gradient coefficients instead of the actual wavelet
coefficients. Therefore, the method of threshold estimation pro-
posed by Voorhees and Poggio [24] for edge detection may be
more suitable.

In our “shrinking” operation, only the magnitudes of the
gradient of a Gaussian low-passed signal are modified. As
pointed out by Voorhees et al. [24], for white Gaussian noise, the
probability distribution function of the magnitudes of gradient
is characterized by the Rayleigh distribution:
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FIGURE 3.8 (a) Noisy input signal (contaminated by white Gaussian noise), (b) Nonlinear enhancement without denoising, Gm = 10,
N = 4, t = 0.1, (c) Nonlinear enhancement of levels 2−3, Gm = 10, t = 0.1; levels 0−1 set to zero, (d) Nonlinear enhancement with adaptive
wavelet shrinkage denoising, Gm = 10, N = 4, t = 0.1.

Pr||�f ||(m) = m

η2
e−

(m/η)2

2 , m ≥ 0

0, m < 0.

To estimate η, a histogram (probability) of ||�f || was com-
puted, and then iterative curve fitting was applied. Under this
model, the probability p of noise removal for a particular
threshold τ can be calculated by

p =
∫ τ

0 Pr||�f ||(m)dm∫ x
0 Pr||�f ||(m)dm

,

and thus τ = √−2 ln(1− p)η. For p = 0.999, τ = 3.7η.

Figure 3.8 compares the performance of different appro-
aches. In (b), we observed that enhancement without any
denoising results in distracting background noise. In (c), edges
are smeared and broadened by low-pass enhancement. Only
in (d), with wavelet shrinkage enabled, we are able to achieve
the remarkable result of denoising and contrast enhancement
simultaneously.

To demonstrate the denoising process, Figures 3.9a and 3.9b
show both nonlinear enhancement of wavelet coefficients with-
out and with denoising, respectively, for the original input
signal shown in Figure 3.9a. Figure 3.9c shows the associated
curve-fitting for threshold estimation.
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FIGURE 3.9 Column (a), Sample of magnitude of enhanced wavelet coefficients without denoising, Column (b), Enhanced wavelet coef-
ficients with adaptive thresholding Tn = 4.5, Column (c), The magnitude distribution and curve-fitting. (Rows 1 through 4 correspond to
levels 1 to 4).
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3.6 Two-Dimensional Extension

For image processing applications, the 1D structures dis-
cussed previously are simply extended to two dimensions. We
first adopt the method proposed by Mallat and Zhong [20],

shown in Figure 3.10, where filter l̂(ω) = 1+ |ĥ(ω)|22, and

ĥ(ω), k̂(ω), and ĝ (ω) are the same filters as constructed for
the 1D case. The left side of Figure 3.10 corresponds to analysis
(decomposition) while the right side is synthesis (reconstruc-
tion). The bar above some of the analytic forms of the synthesis
filters refers to the complex conjugate.

If we simply modify the two oriented wavelet coefficients
independently, orientation distortions are introduced. One way
to avoid this severe artifact is first to apply denoising to the mag-
nitude of the gradient coefficients, and then carry out nonlinear
enhancement on the sum of the Laplacian coefficients, as shown
in Figure 3.11. For the two oriented gradient coefficients gx and
gy , the magnitude M and phase P are computed as

M =
√

g 2
x + g 2

y and P = arctan

(
gx

gy

)
,

respectively. The denoising operation is then applied to M ,
obtaining M ′. The denoised coefficients are then simply
restored as g ′x = M ′ ∗ cos(P) and g ′y = M ′ ∗ sin(P), respec-
tively. For the enhancement operation, notice that the sum of
two Laplacian components is isotropic. Therefore, we may com-
pute the sum of the two Laplacian components L = lx + ly and
F = lx/ly . A nonlinear enhancement operator is then applied
to only L, producing L′. Thus, the restored components are
l ′x = L′ ∗ F and l ′y = L′∗(1− F).

3.7 Experimental Results and Comparison

In this section, we present samples of experimental results
and compare the dyadic wavelet analysis with other methods.
Figure 3.12a shows a synthetic image with three circular
“bumps” and added white noise. The enhancement results
shown in (b) and (c) demonstrate amplification of unwanted
noise. Moreover, note that histogram equalization processing
alters the object’s boundary. However, the result shown in (d)
accomplished by dyadic wavelet analysis provides a clearer
image without orientation distortion. Note also the “halo”
effect surrounding the smaller simulated masses in (d). Indeed,
radiologists are trained to be sensitive to this visual feature in
detecting subtle masses in screening mammography.

Figure 3.13a shows an original dense mammogram image
with an obvious mass. The boundary of the mass in the
enhanced image is more clearly defined and the penetration
of spicules into the mass is well delineated.

To test the performance of enhancement algorithms in cir-
cumstances similar to clinical ones, we can use images with
known structures where the objects of interest are deliber-
ately obscured by normal breast tissues. Mathematical models
of phantoms have been used to validate multiscale enhance-
ment techniques against false positives arising from possible
artifacts and evaluate the contrast improvement. Our mod-
els included features of regular and irregular shapes and sizes
of interest in mammographic imaging, such as microcalci-
fications, cylindrical and spicular objects, and conventional
masses. Techniques for “blending” a normal mammogram
with the images of mathematical models were developed. The
“imaging” justification for “blending” is readily apparent; a
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FIGURE 3.10 Two-dimensional dyadic wavelet transform (two levels shown).
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FIGURE 3.11 Denoising and enhancement for the 2D case (level one shown).

(a) (b)

(c) (d)

FIGURE 3.12 (a) Noisy image (white Gaussian noise contaminated), (b) Histogram equalized, (c) Nonlinear
enhancement by Beghdadi and Negrate’s algorithm [11], (d) Nonlinear enhancement with adaptive wavelet
shrinkage denoising, Gm = 20, N = 4, t = 0.1.
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(a) (b)

FIGURE 3.13 (a) Original mammogram image M73, (b) Nonlinear enhancement with adaptive wavelet
shrinkage denoising, Gm = 20, N = 5, t = 0.1.

(a) (b)

FIGURE 3.14 (a) Five phantom features to be blended into M48, (b) Five phantom features to be blended
into M56.

cancer is visible in a mammogram because of its (slightly)
higher X-ray attenuation, which causes a lower radiation expo-
sure on the film in the appropriate region of a projected
image.

The efficacy of the dyadic wavelet analysis technique was
tested using mathematical phantom features blended into
clinically proven, cancer-free mammograms. Figures 3.14a
and 3.14b show mathematical phantom features that were
blended into two images, resulting in the images shown in

Figure 3.15a and Figure 3.16a. Figure 3.15a shows a dense mam-
mogram with blended phantom features, while Figure 3.15b
shows the image processed by the nonlinear enhancement
method. The enhanced image makes more visible the bound-
ary (uncompressed areas) of the breast and its structure.
In addition, the phantom features are also well enhanced.
Figure 3.16a shows a dense mammogram with blended phan-
tom features, and Figure 3.16b shows the corresponding
enhanced image.
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(a) (b)

FIGURE 3.15 (a) Mammogram image M48 with blended phantom features. (b) Nonlinear enhancement
with adaptive wavelet shrinkage denoising, Gm = 20, N = 5, t = 0.1.

(a) (b)

FIGURE 3.16 (a) Mammogram image M56 with blended phantom features. (b) Nonlinear enhancement
with adaptive wavelet shrinkage denoising, Gm = 20, N = 5, t = 0.1.

Other results have shown that the multiscale processing tech-
niques just described can make unseen or barely seen features
of a mammogram more obvious. The analyzing functions pre-
sented improve the visualization of features of importance to
mammography and assist the radiologist in the early detection
of breast cancer.

Figure 3.18b shows an example of a mammogram whereby
the mathematical phantom shown in Figure 3.18a has been
blended into a clinically proven, cancer-free mammogram.
These images shown were constructed by adding the amplitude

of the mathematical phantom image to a cancer-free mammo-
gram followed by local smoothing of the combined image.

Before applying these techniques, a computer-simulated
phantom was developed to both characterize and optimize each
enhancement algorithm [45]. Parameters included the levels of
analysis, the threshold (T ) and gain (c) parameter value. The
phantom study enables us to compute an enhancement factor
(EF) which was used to quantitatively measure the performance
of each algorithm. EF was defined as the ratio of output to input
contrast noise ratio (CNR). The study found that computed EF
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FIGURE 3.17 (a) Refinement relation for Deslauries–Dubuc interpolation (DD). (b) Interval wavelet plot, D = 3.

values correlated well with the feature detection performance
of radiologists [45]. In addition, clinical use confirms that pro-
cessing the blended mammogram with our local enhancement
techniques introduced no significant artifacts and preserved
the shapes of the known mammographic features (calcifica-
tions, dominant masses, and spicular lesions) contained in the
original mathematical phantom.

Enhancement by multiscale edges provides a significant
improvement in local contrast for each feature included in
the blended mammograms. A quantitative measure of contrast
improvement can be defined by a Contrast Improvement Index
(CII ), CII = CProcessed/COriginal, where CProcessed and COriginal are
the contrast values of a region of interest in the processed and
original images, respectively.

In this chapter we adopt a version of the optical definition
of contrast introduced by Morrow et al. [41]. The contrast C
of an object was defined by C = (f − b)/(f + b), where f is
the mean gray-level value of a particular object in the image
called the foreground, and b is the mean gray-level value of a
surrounding region called the background. This definition of
contrast has the advantage of being independent of the actual
range of gray levels in the image. We computed local masks to
separate the foreground and background regions of each feature
included in the blended mammogram.

Figure 3.18c shows the result after processing the blended
mammogram with adaptive histogram equalization (AHE).

Figure 3.18d was obtained after reconstructing the blended
mammogram from interval wavelet transform coefficients
modified by multiscale adaptive gain processing (GAIN).
Figure 3.18e shows the result after processing the blended
mammogram with unsharp masking (UNS). Figure 3.18 shows
the result obtained after reconstructing the blended mammo-
gram from interval wavelet transform coefficients modified by
multiscale edges (EDGE). Figure 3.19 shows enlarged areas con-
taining each feature in the processed mammogram for each

method of contrast enhancement. The images in each row of
Figure 3.19 were rescaled by the same linear transformation.
Table 3.1 summarizes the comparison quantitatively by listing
CII values computed for each case and feature.

Table 3.1 shows the CII values for the original and enhanced
mammographic features shown in Figure 3.18. From the
table we observed that the enhancement by GAIN and EDGE
performed significantly better than UNS and AHE.

Figure 3.20 shows the improvement of local contrast accom-
plished by EDGE for a sample scan line profile taken from
cross-sections of each feature. Note that in all cases contrast
was improved while preserving the overall shape of each feature
profile.

Given the large matrix size of digital mammograms, com-
putational costs for processing can be large. However, by
constructing wavelets which exist only on an interval [35, 36]
as shown in Figure 3.21, it is possible to enhance an arbitrary
region of interest (ROI) within a mammogram. Figure 3.22
shows the enhancement of an arbitrarily shaped ROI using
adaptive gain processing of interval wavelet interpolation [36].
Figure 3.22 shows the enhancement of an arbitrary ROI using
multiscale edges. By constraining the enhancement to only an
interest region, computation is greatly reduced (Table 3.2). This
makes possible interactive processing of suspicious areas on a
softcopy display system.

3.8 Conclusion

In this chapter we have reviewed established connections
between dyadic wavelet enhancement algorithms and tradi-
tional unsharp masking. We proved that two cases of linear
enhancement were mathematically equivalent to traditional
unsharp masking with Gaussian low-pass filtering. We designed
a methodology for accomplishing contrast enhancement with
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(a) (b) (c)

(d) (e)(f)

FIGURE 3.18 (a) Mathematical phantom, (b) Mammogram M56 blended with phantom image, (c) Enhancement by adaptive histogram
equalization, (d) Enhancement by adaptive gain processing of DD interpolation coefficients, (e) Enhancement by traditional unsharp masking,
(f) Enhancement by multiscale edges of DD interpolation coefficients.

TABLE 3.1 CII for enhancement by unsharp masking (UNS), adaptive histogram equalization
(AHE), local enhancement of multiscale edges obtained from Deslauriers–Dubuc interpolation
(EDGE), and adaptive gain processing of Deslauriers–Dubuc interpolation (GAIN)

Feature CII UNS CII AHE CII GAIN CII EDGE

Minute microcalcification cluster 1.3294 0.8442 7.7949 12.7298
Microcalcification cluster 3.6958 4.9759 10.9217 11.0783
Spicular lesion 2.0174 3.5714 12.5714 13.7596
Circular (arterial) calcification 2.1888 4.4601 8.0160 10.6914
Well-circumscribed mass 1.4857 31.1714 9.8286 11.3429

TABLE 3.2 Comparison of computation timea in seconds: whole mammogram vs ROI

Matrix size(number of pixels) TEntire TROI TEntire / TROI

512× 512 748 135 5.54
1024× 1024 5760 135 42.67

a TEntire represents the time to process a complete mammogram, while TROI represents the time to process only a selected
ROI. The number of pixels within the ROI was 76,267 and it was executed on Sun Sparc Station Model 10/30.
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(a) (b) (c) (d) (e)

FIGURE 3.19 Contrast enhancement of features in blended mammogram. Phantom mammographic features from top to bottom:
minute microcalcification cluster, microcalcification cluster, spicular lesion, circular (arterial) calcification, and a well-circumscribed
mass. (a) Original image. (b) Enhancement by unsharp masking. (c) Enhancement by adaptive histogram equalization. (d) Enhancement
by adaptive gain processing of DD wavelet coefficients. (e) Local enhancement by multiscale edges of DD wavelet coefficients.
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TABLE 3.3 Contrast values COriginal for features in the original blended mammogram M56, CUNS for enhance-
ment by unsharp masking, CAHE for enhancement by adaptive histogram equalization, CEDGE for enhancement
by multiscale edges obtained from Deslauriers–Dubuc interpolation (EDGE), and CGAIN for enhancement by
adaptive gain processing of Deslauriers–Dubuc interpolation (GAIN).

Feature Coriginal cuns cahe cgain cedge

Minute microcalcification cluster 0.0507 0.0674 0.0128 0.3952 0.6454
Microcalcification cluster 0.0332 0.1227 0.1652 0.3626 0.3678
Spicular lesion 0.0287 0.0579 0.1025 0.3608 0.3949
Circular (arterial) calcification 0.0376 0.0823 0.1677 0.3014 0.4021
Well-circumscribed mass 0.0035 0.0052 0.1091 0.0344 0.0397
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FIGURE 3.20 Sample scan lines displaying enhancement by the method of multiscale edges of DD wavelet coefficients: (a) minute microcalci-
fication cluster, (b) microcalcification cluster, (c) spicular lesion, (d) circular (arterial) calcification, and (e) well-circumscribed mass. Solid line
indicates original mammogram; dotted line indicates local enhancement by multiscale edges.

a simple multiscale nonlinear operator that exploits the wide
dynamic range available in medical images. By judicious selec-
tion of wavelet filters and enhancement functions, we showed
that artifacts could be minimized. An additional advantage of
this simple enhancement function was that its mathematical
formulation included a generalization of traditional unsharp
masking as a subset.

We then showed how an edge-preserving denoising stage
(wavelet shrinkage) could be incorporated into the contrast
enhancement framework, and introduced a method for adap-
tive threshold estimation. We then showed how denoising

and enhancement operations should be carried out for two-
dimensional images to avoid distortions due to filter orien-
tation.

Contrast enhancement was also applied to features of spe-
cific interest to mammography, including masses, spicules, and
microcalcifications. Multiresolution representations provide an
adaptive mechanism for the local emphasis of such features
blended into digitized mammograms. In general, improve-
ments in image contrast based on multiscale processing were
superior to those obtained using competitive algorithms of
unsharp masking and adaptive histogram equalization.
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Selected a ROI
row

column

FIGURE 3.21 (a) Selected ROI within a mammogram, (b) ROI is processed based on tensor product: Each row is processed first,
followed by the processing of each column.

(a) (b) (c)

FIGURE 3.22 Blended mammogram: (a) Original mammogram blended with mathematical phantom, (b) ROI enhancement by adaptive gain
processing of DD wavelet coefficients, (c) ROI enhancement by multiscale edges of DD interpolation.

Deslauriers–Dubuc interpolation (see Figure 3.17) represen-
tations [34] on an interval enabled us to enhance arbitrary
regions of interest. As shown in Figure 3.21 and Figure 3.22, this
can provide radiologists an interactive capability for enhancing
only suspicious regions of a mammogram. It also reduced the
computational cost compared to processing an entire mammo-
gram. These results suggest that wavelet-based image processing
algorithms could play an important role in improving the imag-
ing performance of digital mammography, as well as other
clinical applications.
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5.1 Introduction

The principal goal of the segmentation process is to partition an
image into regions (also called classes or subsets) that are homo-
geneous with respect to one or more characteristics or features
[13, 22, 27, 40, 46, 80, 93, 121, 132, 134]. Segmentation is an
important tool in medical image processing, and it has been
useful in many applications. The applications include detec-
tion of the coronary border in angiograms, multiple sclerosis
lesion quantification, surgery simulations, surgical planning,
measurement of tumor volume and its response to therapy,
functional mapping, automated classification of blood cells,
study of brain development, detection of microcalcifications on
mammograms, image registration, atlas-matching, heart image
extraction from cardiac cineangiograms, detection of tumors,
etc. [10, 18, 19, 45, 48, 54, 74, 87, 108, 134, 142, 168, 169].

In medical imaging, segmentation is important for feature
extraction, image measurements, and image display. In some
applications it may be useful to classify image pixels into
anatomical regions, such as bones, muscles, and blood vessels,
while in others into pathological regions, such as cancer, tis-
sue deformities, and multiple sclerosis lesions. In some studies
the goal is to divide the entire image into subregions such as
the white matter, gray matter, and cerebrospinal fluid spaces of

the brain [81], whereas in others one specific structure has to be
extracted, for example, breast tumors from magnetic resonance
images [87].

A wide variety of segmentation techniques have been pro-
posed (see surveys in [13, 27, 40, 53, 93, 99, 101, 103, 136, 159]).
However, there is no one standard segmentation technique that
can produce satisfactory results for all imaging applications. The
definition of the goal of segmentation varies according to the
goal of the study and the type of image data. Different assump-
tions about the nature of the analyzed images lead to the use of
different algorithms.

Segmentation techniques can be divided into classes in many
ways, depending on classification scheme:

• Manual, semiautomatic, and automatic [126].
• Pixel-based (local methods) and region-based (global

methods) [6].
• Manual delineation, low-level segmentation (threshold-

ing, region growing, etc.), and model-based segmenta-
tion (multispectral or feature map techniques, dynamic
programming, contour following, etc.) [134].

• Classical (thresholding, edge-based, and region-based
techniques), statistical, fuzzy, and neural network tech-
niques [107].

Copyright © 2008 by Elsevier, Inc.
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The most commonly used segmentation techniques can
be classified into two broad categories: (1) region segmenta-
tion techniques that look for the regions satisfying a given
homogeneity criterion, and (2) edge-based segmentation tech-
niques that look for edges between regions with different
characteristics [22, 46, 93, 121, 132].

Thresholding is a common region segmentation method
[32, 101, 123, 132, 147, 159]. In this technique a threshold is
selected, and an image is divided into groups of pixels having
values less than the threshold and groups of pixels with values
greater or equal to the threshold. There are several threshol-
ding methods: global methods based on gray-level histograms,
global methods based on local properties, local threshold selec-
tion, and dynamic thresholding. Clustering algorithms achieve
region segmentation [17, 35, 47, 67] by partitioning the image
into sets or clusters of pixels that have strong similarity in the
feature space. The basic operation is to examine each pixel and
assign it to the cluster that best represents the value of its charac-
teristic vector of features of interest. Region growing is another
class of region segmentation algorithms that assign adjacent
pixels or regions to the same segment if their image values
are close enough, according to some preselected criterion of
closeness [93, 104].

The strategy of edge-based segmentation algorithms is to
find object boundaries and segment regions enclosed by the
boundaries [22, 46, 53, 88, 119, 121]. These algorithms usually
operate on edge magnitude and/or phase images produced by
an edge operator suited to the expected characteristics of the
image. For example, most gradient operators such as Prewitt,
Kirsch, or Roberts operators are based on the existence of an
ideal step edge. Other edge-based segmentation techniques are
graph searching and contour following [8, 18, 131].

Traditionally, most image segmentation techniques use one
type of image (MR, CT, PET, SPECT, ultrasound, etc.). How-
ever, the performance of these techniques can be improved by
combining images from several sources (multispectral segmen-
tation [38, 109, 145]) or integrating images over time (dynamic
or temporal segmentation [87, 115, 133]).

The following sections will present some of the segmenta-
tion techniques that are commonly used in medical imaging.
In Section 5.2 we will discuss several thresholding techniques.
Section 5.3 will describe region growing techniques. The water-
shed algorithm will be reviewed in Section 5.4. Section 5.5
will present edge-based segmentation techniques. A discus-
sion of multispectral segmentation methods will be given in
Section 5.6.

5.2 Thresholding

Several thresholding techniques have been developed [22, 32,
46, 53, 64, 121–123, 132, 159]. Some of them are based on
the image histogram; others are based on local properties,
such as local mean value and standard deviation, or the local

gradient. The most intuitive approach is global thresholding.
When only one threshold is selected for the entire image, based
on the image histogram, thresholding is called global. If the
threshold depends on local properties of some image regions,
for example, local average gray value, thresholding is called
local. If the local thresholds are selected independently for each
pixel (or groups of pixels), thresholding is called dynamic or
adaptive.

5.2.1 Global Thresholding

Global thresholding is based on the assumption that the image
has a bimodal histogram and, therefore, the object can be
extracted from the background by a simple operation that com-
pares image values with a threshold value T [32, 132]. Suppose
that we have an image f (x , y) with the histogram shown on
Figure 5.1.

The object and background pixels have gray levels grouped
into two dominant modes. One obvious way to extract the
object from the background is to select a threshold T that
separates these modes.

The thresholded image g (x , y) is defined as

g (x , y) =
{

1 if (x , y) > T

0 if (x , y) ≤ T
. (5.1)

The result of thresholding is a binary image, where pixels with
intensity value of 1 correspond to objects, whereas pixels with
value 0 correspond to the background.

Figure 5.2 shows the result of segmentation by threshold-
ing. The original image Figure 5.2a contains white cells on a
black background. Pixel intensities vary between 0 and 255.
The threshold T = 127 was selected as the minimum between
two modes on a histogram Figure 5.2b, and the result of seg-
mentation is shown in Figure 5.2c, where pixels with intensity
values higher than 127 are shown in white. In the last step
Figure 5.2d the edges of the cells were obtained by a 3× 3
Laplacian (second-order derivative [46]; also see description in

No. of pixels

Image intensity

Background

Object

T

FIGURE 5.1 An example of a bimodal histogram with selected
threshold T .
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FIGURE 5.2 An example of global thresholding. (a) Original image,
(b) histogram of image (a), (c) result of thresholding with T = 127,
(d) outlines of the white cells after applying a 3× 3 Laplacian to the
image shown in (c).

Section 5.5), which was applied to the thresholded image on
Figure 5.2c.

There are many other ways to select a global threshold. One
of them is based on a classification model that minimizes the
probability of error [93]. For example, if we have an image
with a bimodal histogram (e.g., object and background), we
can calculate the error as the total number of background
pixels misclassified as object and object pixels misclassified as
background. A semiautomated version of this technique was
applied by Johnson et al. [69] to measure ventricular volumes
from 3D magnetic resonance (MR) images. In their method
an operator selects two pixels—one inside an object and one
in the background. When the distribution of pixel intensi-
ties in the circular regions around selected pixels is compared,
the threshold is calculated automatically, and it corresponds
to the least number of misclassified pixels between two distri-
butions. The result of the thresholding operation is displayed
as a contour map and superimposed on the original image.
If needed, the operator can manually modify any part of the
border. The same technique was also applied to extract lymph
nodes from CT images and was found to be very sensitive to
user positioning of interior and exterior points [117]. Some
of the threshold selection techniques are discussed in Refs.
[32, 121, 159].

(a) (b)

T 3 1 DT

T 2 1 DT

T 11 DT
T 1

T 2

T 3

A or P

T

FIGURE 5.3 An example of the sensitivity of the threshold level selec-
tion. (a) Cross-sectional intensity profile of a light object on a dark
background with three thresholding levels T 1, T 2, and T 3, and three
other levels generated by adding a small value �T ; (b) a hypothetical
plot of the area (A) or perimeter (P) versus thresholding level T .

In many applications appropriate segmentation is obtained
when the area or perimeter of the objects is minimally sensitive
to small variations of the selected threshold level. Figure 5.3a
shows the intensity profile of an object that is brighter than
background, and three threshold levels for segmentation: T 1,
T 2, and T 3. A small variation�T in the lowest threshold level
will cause a significant change in the area or perimeter of the
segmented object. The same is true for the highest threshold
level. However, a change of �T in the middle level will have
minimal effect on the area or perimeter of the object. The
object area A(T ) and perimeter P(T ) are functions of the
threshold T that often exhibit the trend shown in Figure 5.3b.
Therefore, the threshold level that minimizes either dA(T )/dT
or dP(T )/dT is often a good choice, especially in the absence
of operator guidance and when prior information on object
locations is not available.

A related technique that evaluates multiple thresholds is
based on an estimate of the gradient magnitude around the
segmented object edge [22]. The average gradient magnitude is
given by

Ḡ = lim
�T→0

�T × P(T )

�A
= P(T )

H (T )
, (5.2)

where H (T ) is the histogram function. The threshold that
maximizes the average boundary gradient is selected.

If an image contains more than two types of regions, it may
still be possible to segment it by applying several individual
thresholds [121], or by using a multithresholding technique
[105]. With the increasing number of regions, the histogram
modes are more difficult to distinguish, and threshold selection
becomes more difficult.

Global thresholding is computationally simple and fast. It
works well on images that contain objects with uniform inten-
sity values on a contrasting background. However, it fails if there
is a low contrast between the object and the background, if the
image is noisy, or if the background intensity varies significantly
across the image.
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5.2.2 Local (Adaptive) Thresholding

In many applications, a global threshold cannot be found from a
histogram, or a single threshold cannot give good segmentation
results over an entire image. For example, when the background
is not constant and the contrast of objects varies across the
image, thresholding may work well in one part of the image but
may produce unsatisfactory results in other areas. If the back-
ground variations can be described by some known function of
position in the image, one could attempt to correct it by using
gray-level correction techniques, after which a single threshold
should work for the entire image. Another solution is to apply
local (adaptive) thresholding [8, 11, 25, 32, 53, 76, 97, 159].

Local thresholds can be determined by (1) splitting an image
into subimages and calculating thresholds for each subimage,
or by (2) examining the image intensities in the neighbor-
hood of each pixel. In the former method [25], an image is
first divided into rectangular overlapping subimages and the
histograms are calculated for each subimage. The subimages
used should be large enough to include both object and back-
ground pixels. If a subimage has a bimodal histogram, then
the minimum between the histogram peaks should determine
a local threshold. If a histogram is unimodal, the threshold
can be assigned by interpolation from the local thresholds
found for nearby subimages. In the final step, a second inter-
polation is necessary to find the correct thresholds at each
pixel.

In the latter method, a threshold can be selected using
the mean value of the local intensity distribution. Sometimes
other statistics can be used, such as mean plus standard devi-
ation, mean of the maximum and minimum values [22, 32],
or statistics based on local intensity gradient magnitude
[32, 75].

Modifications of the preceding two methods can be found
in Refs. [40, 53, 97, 121, 147]. In general, local thresholding
is computationally more expensive than global thresholding.
It is very useful for segmenting objects from a varying back-
ground, and also for extraction of regions that are very small
and sparse.

5.2.3 Image Preprocessing and Thresholding

Many medical images may contain low-contrast, fuzzy con-
tours. The histogram modes corresponding to the different
types of regions in an image may often overlap and, there-
fore, segmentation by thresholding becomes difficult. Image
preprocessing techniques can sometimes help to improve the
shape of the image histogram, for example, by making it more
strongly bimodal. One of the techniques is image smoothing by
using the mean (average) or median filter discussed in Chapter
1 [66, 78, 120, 124]. The mean filter replaces the value of each
pixel by the average of all pixel values in a local neighborhood
(usually an N by N window, where N = 3, 5, 7, etc.). In the
median filter, the value of each pixel is replaced by the median
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FIGURE 5.4 Median filtering as a preprocessing step for thresholding;
(a) original autoradiography image, (b) result of a 7× 7 median filter,
(c) result of a 9× 9 median filter. Corresponding image histograms
are shown on the right.

value calculated in a local neighborhood. Median smoothing,
unlike the mean filter, does not blur the edges of regions larger
than the window used while smoothing out small textural vari-
ations. Figure 5.4 illustrates results of preprocessing on an
autoradiography image using a median filter with 7 × 7 and
9× 9 windows. Figure 5.4a shows the original image and its
histogram, which is unimodal and, therefore, precludes selec-
tion of an appropriate threshold. Median filtering sharpens the
peaks on the image histogram (Figures 5.4b and 5.4c) and allows
selection of thresholds for image segmentation.

A common smoothing filter is the Gaussian filter, where for
each pixel [i, j], the convolution mask coefficients g [i, j] are
based on a Gaussian function:

g
[
i, j

] = exp

[
−(

i2 + j2
)

2σ2

]
, (5.3)

where σ is the spread parameter (standard deviation) that
defines the degree of Gaussian smoothing: Larger σ implies
a wider Gaussian filter and a greater amount of smoothing. The
Gaussian filter can be approximated in digital images by an N
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by N convolution mask. A 7× 7 Gaussian mask with σ2 = 2
[52] is obtained with the coefficients of the following matrix:

1 4 7 10 7 4 1
4 12 26 33 26 12 4
7 26 55 71 55 26 7

10 33 71 91 71 33 10
7 26 55 71 55 26 7
4 12 26 33 26 12 4
1 4 7 10 7 4 1

When each coefficient with the sum of all (1115) is normal-
ized, a filter that preserves the scale of the image is obtained.

Goshtasby and Turner [48] reported that smoothing with a
Gaussian filter reduced noise and helped in thresholding of the
endocardial surfaces on cardiac MR images.

Preprocessing with extremum sharpening combined with
median filtering has proven to be useful in segmenting micro-
scopic images of blood cells [18, 78]. In this method, a
minimum and maximum are calculated within an N by N
window around each pixel (x , y). The value of the extremum
operator is simply whichever of the two extrema is the closest
to the value at pixel (x , y). When the pixel (x , y) has a value
exactly midway between minimum and maximum, the opera-
tor takes the value of the pixel. The appropriate window size
for the extremum sharpening has to be commensurate with the
width of the image edges.

The extremum sharpening is usually followed by median fil-
tering, which smoothes out the slightly ragged contours left by
the sharpening operation. The standard procedure suggested
in [78] for segmenting cells was as follows: 9× 9 median filter
(noise removal), 3× 3 extremum sharpening, and finally 5× 5
median filter, followed by thresholding based on a threshold
determined from the histogram.

The median and Gaussian smoothing, as well as extremum
sharpening, “improve” image histograms by producing images
with strongly bimodal histograms. Additional techniques for
making histogram valleys deeper are discussed in Weszka et al.
[159].

A more elaborate approach used for specific types of images is
provided by adaptive filtering techniques where the parameters
of the algorithm are modified locally based on the pixel’s neigh-
borhood [64, 82, 120]. If, for example, the neighborhood has
relatively constant intensity, we can assume that we are within
an object with constant features and we can apply an isotropic
smoothing operation to this pixel to reduce the noise level. If
an edge has been detected in the neighborhood, we could still
apply some smoothing, but only along the edge. Adaptive fil-
tering combines an efficient noise reduction and an ability to
preserve and even enhance the edges of image structures. Westin
used adaptive filtering successfully for the thresholding of bones
on CT images [158]. Bockenbach et al. used adaptive filtering
in real-time digital X-ray applications [14]. Adaptive filtering is
discussed in detail in Chapter 2.

5.3 Region Growing

Whereas thresholding focuses on the difference of pixel intensi-
ties, the region growing method looks for groups of pixels with
similar intensities. Region growing, also called region merg-
ing, starts with a pixel or a group of pixels (called seeds)
that belong to the structure of interest. Seeds can be cho-
sen by an operator or provided by an automatic seed finding
procedure. In the next step neighboring pixels are examined
one at a time and added to the growing region, if they are
sufficiently similar based on a uniformity test (also called a
homogeneity criterion). The procedure continues until no more
pixels can be added. The object is then represented by all
pixels that have been accepted during the growing procedure
[2, 8, 46, 93, 104, 121, 127, 129, 132, 139, 144, 163].

One example of the uniformity test is comparing the diffe-
rence between the pixel intensity value and the mean intensity
value over a region. If the difference is less than a predefined
value, for example, two standard deviations of the intensity
across the region, the pixel is included in the region; otherwise,
it is defined as an edge pixel. The results of region growing
depend strongly on the selection of the homogeneity criterion.
If it is not properly chosen, the regions leak out into adjoining
areas or merge with regions that do not belong to the object
of interest. Another problem of region growing is that different
starting points may not grow into identical regions.

The advantage of region growing is that it is capable of cor-
rectly segmenting regions that have the same properties and
are spatially separated. Another advantage is that it generates
connected regions.

Instead of region merging, it is possible to start with some
initial segmentation and subdivide the regions that do not
satisfy a given uniformity test. This technique is called splitting
[53, 121, 132]. A combination of splitting and merging adds
together the advantages of both approaches [8, 102, 171].

Various approaches to region growing segmentation have
been described by Zucker [171]. Excellent reviews of region
growing techniques were done by Fu and Mui [40], Haralick
and Shapiro [53], and Rosenfeld and Kak [121].

An interesting modification of region growing technique
called hill climbing was proposed by Bankman et al. for detect-
ing microcalcifications in mammograms [10]. The technique is
based on the fact that in a given image f (x , y), the edge of a
microcalcification to be segmented is a closed contour around
a known pixel (x0, y0), the local intensity maximum. For each
pixel, a slope value s(x , y) is defined as

s(x , y) = f(x0, y0)− f(x , y)

d(x0, y0, x , y)
, (5.4)

where d(x0, y0, x , y) is the Euclidean distance between the local
maximum pixel and pixel (x , y).

In the first step, the object’s edge points are identified by
radial line search emanating from the local maximum. The
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(a)

(c) (d)

(b)

FIGURE 5.5 Steps of segmentation with the hill climbing algorithm;
(a) a 0.5× 0.5 mm image showing a subtle microcalcification, (b) 16
edge points determined by the algorithm, (c) result of region grow-
ing, (d) edges of region enclosing the segmented microcalcification.
Reprinted with permission from I. N. Bankman, T. Nizialek, I. Simon,
et al., Segmentation algorithms for detecting microcalcifications in
mammograms, IEEE Trans. Inform. Techn. Biomed, 1(2, pp. 141–149,
1997) © 1997 IEEE.

line search is applied in 16 equally spaced directions originat-
ing from the pixel (x0, y0), and for each direction, a pixel is
considered to be on the edge if it provides the maximal slope
value. Next, the edge points are used as seeds for region grow-
ing with a spatial constraint (growing the region inward, toward
local maximum), and an intensity constraint (including pixels
with intensity values increasing monotonically toward the local
maximum). Figure 5.5 shows the steps of segmentation using
the hill-climbing algorithm. The technique was successfully
applied to segment low-contrast microcalcification clusters
on mammography images. The advantages of this algorithm
are that it does not need selection of a threshold and that,
because it grows the region from the edges toward the center, it
circumvents excessive growth of a region.

Region growing has found many other medical applications,
such as segmentation of ventricles on cardiac images [129],
extraction of blood vessels on angiography data [61], kidney
segmentation [83], or extraction of brain surface [28].

5.4 Watershed Algorithm

Watershed segmentation is a region-based technique that uti-
lizes image morphology [22, 132]. It requires selection of at least
one marker (“seed” point) interior to each object of the image,

including the background as a separate object. The markers are
chosen by an operator or are provided by an automatic proce-
dure that takes into account the application-specific knowledge
of the objects. Once the objects are marked, they can be grown
using a morphological watershed transformation [12]. A very
intuitive description of watersheds can be found in Ref. [22].
To understand the watershed, one can think of an image as a
surface where the bright pixels represent mountaintops and the
dark pixels valleys. The surface is punctured in some of the val-
leys, and then slowly submerged into a water bath. The water
will pour in each puncture and start to fill the valleys. However,
the water from different punctures is not allowed to mix, and
therefore the dams need to be built at the points of first contact.
These dams are the boundaries of the water basins and also the
boundaries of image objects.

An application of watershed segmentation to extract lymph
nodes on CT images is shown in Figure 5.6 [117]. In this imple-
mentation a 3× 3 Sobel edge operator [46, 121] is used in
place of the morphological gradient to extract edge strength.
The original lymph node image is shown in Figure 5.6a. In the
first step, the operator positions a cursor inside the node in
Figure 5.6b. All pixels within a radius of two pixels of the mark
are used as seed points for the lymph node. To mark the exte-
rior of the lymph node, the operator drags the cursor outside

(a)

(d) (e) (f)

(b) (c)

FIGURE 5.6 Image segmentation using Sobel/watershed algorithm.
(a) Original image of a lymph node; (b) operator’s marks: a point
inside the node and a circle enclosing the area well outside the node;
(c) binary image generated from (b); (d) result of a 3× 3 Sobel edge
detection operation performed on the original image (a); (e) result of
the watershed algorithm performed on image (d) using markers from
image (c); (f) edges of the lymph node [interior region from image
(e)] superimposed on the original image. Reprinted with permission
from J. Rogowska, K. Batchelder, G. S. Gazelle, et al. Quantitative
CT lymphography: Evaluation of selected two-dimensional techniques
for computed tomography quantitation of lymph nodes. Investigative
Radiology, 31(3, pp. 138–145, 1999).
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the node to define a circular region, which completely encloses
the node in Figure 5.6c. All pixels outside this circle mark the
background.

In the next step, an edge image is created using the Sobel
edge operator Figure 5.6d. The edge image has high values for
the pixels with strong edges. With the seed point marking the
node interior, the circle marking the background Figure 5.6c,
and the edge image generated by the Sobel operator Figure 5.6d,
the segmentation proceeds directly with the watershed opera-
tion Figure 5.6e. The watershed operation operates on an edge
image to separate the lymph node from the surrounding tis-
sue. By using a technique called simulated immersion [148], the
watershed considers whether a drop of water at each point in the
edge image would flow to the interior seed point or the exterior
marker. Points that drain into the interior belong to the lymph
node, whereas points that drain to the exterior belong to the
surrounding tissue. More formal discussions of morphological
segmentation can be found in Refs. [91, 148, 149].

Watershed analysis has proven to be a powerful tool for
many 2D image-segmentation applications [51, 79, 91, 120].
An example of segmentation of microscopic image of human
retina is included in Ref. [132]. Higgins and Ojard [56] applied a
3D extension of the watershed algorithm to cardiac volumetric
images. Grau et al. combined the watershed transform and atlas
registration through the use of markers and applied the tech-
nique to segment knee cartilage and gray matter/white matter
in MR images [49]. The marker-controlled watershed segmen-
tation was also successfully applied to detect lymph nodes on
CT images [164]. Gulsrud et al. used the watershed technique
for segmentation of detected masses in digital mammograms
[51].

5.5 Edge-Based Segmentation Techniques

An edge or boundary on an image is defined by the local
pixel intensity gradient. A gradient is an approximation of the
first-order derivative of the image function. For a given image
f (x , y), we can calculate the magnitude of the gradient as

|G| =
√[

G2
x + G2

y

]
=

√√√√[(
∂f

∂x

)2

+
(
∂f

∂y

)2
]

(5.5)

and the direction of the gradient as

D = tan−1

(
Gy

Gx

)
, (5.6)

where Gx and Gy are gradients in directions x and y , respectively.
Since the discrete nature of digital images does not allow the
direct application of continuous differentiation, calculation of
the gradient is done by differencing [46].

Both magnitude and direction of the gradient can be dis-
played as images. The magnitude image will have gray levels
that are proportional to the magnitude of the local intensity
changes, while the direction image will have gray levels repre-
senting the direction of maximum local gradient in the original
image.

Most gradient operators in digital images involve calculation
of convolutions, e.g., weighted summations of the pixel inten-
sities in local neighborhoods. The weights can be listed as a
numerical array in a form corresponding to the local image
neighborhood (also known as a mask, window, or kernel). For
example, in the case of a 3× 3 Sobel edge operator, there are
two 3× 3 masks:

−1 −2 −1
0 0 0
1 2 1

−1 0 1
−2 0 2
−1 0 1

The first mask is used to compute Gx , while the second is used
to compute Gy . The gradient magnitude image is generated by
combining Gx and Gy using Equation 5.5. Figure 5.7b shows an
edge magnitude image obtained with the 3× 3 Sobel operator
applied to the magnetic resonance angiography (MRA) image
of Figure 5.7a.

The results of edge detection depend on the gradient
mask. Some of the other edge operators are Roberts, Prewitt,
Robinson, Kirsch, and Frei-Chen [46, 53, 66, 121, 122].

Many edge detection methods use a gradient operator,
followed by a threshold operation on the gradient, in order

(a)

(c)

(b)

(d)

FIGURE 5.7 Edge detection using Sobel operator. (a) Original
angiography image showing blood vessels, (b) edge magnitude image
obtained with a 3× 3 Sobel mask, (c) edge image thresholded with
a low threshold (T = 300), (d) edge image thresholded with a high
threshold (T = 600).
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to decide whether an edge has been found [15, 22, 32, 33,
53, 88, 118, 121, 122, 132, 139]. As a result, the output is
a binary image indicating where the edges are. Figures 5.7c
and 5.7d show the results of thresholding at two different
levels. Please note that the selection of the appropriate thresh-
old is a difficult task. Edges displayed in Figure 5.7c include
some background pixels around the major blood vessels, while
edges in Figure 5.7d do not enclose blood vessels completely.
A combination of vertical gradient and Sobel edge detection
with adaptive filtering was used by Rogowska et al. to detect
the cartilage edges on optical coherence tomography images
[118, 120].

Edge-based techniques are computationally fast and do not
require a priori information about image content. The common
problem of edge-based segmentation is that often the edges do
not enclose the object completely. To form closed boundaries
surrounding regions, a postprocessing step of linking or group-
ing edges that correspond to a single boundary is required. The
simplest approach to edge linking involves examining pixels
in a small neighborhood of the edge pixel (3× 3, 5× 5, etc.)
and linking pixels with similar edge magnitude and/or edge
direction. In general, edge linking is computationally expensive
and not very reliable. One solution is to make the edge linking
semiautomatic and allow a user to draw the edge when the auto-
matic tracing becomes ambiguous. For example, Wang et al.
developed a hybrid algorithm (for MR cardiac cineangiogra-
phy) in which a human operator interacts with the edge tracing
operation by using anatomic knowledge to correct errors [150].
A technique of graph searching for border detection has been
used in many medical applications [8, 18, 77, 98, 119, 130, 131,
138]. In this technique each image pixel corresponds to a graph
node, and each path in a graph corresponds to a possible edge in
an image. Each node has a cost associated with it, which is usu-
ally calculated using the local edge magnitude, edge direction,
and a priori knowledge about the boundary shape or location.
The cost of a path through the graph is the sum of costs of
all nodes that are included in the path. By finding the optimal
low-cost path in the graph, one can define the optimal border.
The graph searching technique is very powerful, but it strongly
depends on an application-specific cost function. For example,
in the semi-automatic image processing method for detecting
the cartilage boundaries in optical coherence tomography, the
cost function was based on the magnitude of the Sobel gra-
dients [119]. A review of graph searching algorithms and cost
function selection can be found in Ref. [132].

Since the peaks in the first-order derivative correspond to
zeros in the second-order derivative, the Laplacian operator
(which approximates the second-order derivative) can also be
used to detect edges [22, 46, 121].

The Laplace operator ∇2 of a function f (x , y) is defined as

∇2f(x , y) = ∂2f(x , y)

∂x2
+ ∂2f(x , y)

∂y2
. (5.7)

The Laplacian is approximated in digital images by an N by N
convolution mask [121, 132]. Here are three examples of 3× 3
Laplacian masks that represent different approximations of the
Laplacian operator:

0 −1 0
−1 4 −1

0 −1 0

−1 −1 −1
−1 8 −1
−1 −1 −1

1 −2 1
−2 4 −2

1 −2 1

The image edges can be found by locating pixels where the
Laplacian makes a transition through zero (zero crossings).
Figure 5.8a shows a result of a 3× 3 Laplacian applied to the
image in Figure 5.7a. The zero crossings of the Laplacian are
shown in Figure 5.8c.

All edge detection methods that are based on a gradient or
Laplacian are very sensitive to noise. In some applications, noise
effects can be reduced by smoothing the image before applying
an edge operation. Marr and Hildreth [88] proposed smooth-
ing the image with a Gaussian filter before application of the
Laplacian (this operation is called Laplacian of Gaussian, LoG).
Figure 5.8b shows the result of a 7× 7 Gaussian followed by a
7× 7 Laplacian applied to the original image in Figure 5.7a. The
zero crossings of the LoG operator are shown on Figure 5.8d.
The advantage of a LoG operator compared to a Laplacian is
that the edges of the blood vessels are smoother and better out-
lined. However, in both Figures 5.8c and 5.8d, the nonsignificant
edges are detected in regions of almost constant gray level. To
solve this problem, one can combine the information about the

(a)

(c) (d)

(b)

FIGURE 5.8 Results of Laplacian and Laplacian of Gaussian (LoG)
applied to the original image shown in Figure 5.7a. (a) 3× 3 Laplacian
image, (b) result of a 7× 7 Gaussian smoothing followed by a 7×
7 Laplacian, (c) zero-crossings of the Laplacian image (a), (d) zero-
crossings of the LoG image (b).
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edges obtained using first and second derivatives [132]. This
approach was used by Goshtasby and Turner [48] to extract
the ventricular chambers in flow-enhanced MR cardiac images.
They used a combination of zero crossings of the LoG operator
and local maximum of the gradient magnitude image, followed
by the curve-fitting algorithm.

The Marr–Hildreth operator was used by Bomans et al. [15]
to segment the MR images of the head. In a study of coronary
arteriograms,Sun et al. [135] used a directional low-pass filter to
average image intensities in the direction parallel to the vessel
border. Other edge-finding algorithms can be found in Refs.
[31, 40, 46, 121].

5.6 Multispectral Techniques

Most traditional segmentation techniques use images that rep-
resent only one type of data, for example, MR or CT. If different
images of the same object are acquired using several imag-
ing modalities, such as CT, MR, PET, ultrasound, or collecting
images over time, they can provide different features of the
objects, and this spectrum of features can be used for seg-
mentation. The segmentation techniques based on integration
of information from several images are called multispectral or
multimodal [4, 27, 29, 37, 38, 112, 128, 146].

5.6.1 Segmentation Using Multiple Images
Acquired by Different Imaging Techniques

In the case of a single image, pixel classification is based
on a single feature (gray level), and segmentation is done in
one-dimensional (single-channel) feature space. In multispec-
tral images, each pixel is characterized by a set of features
and the segmentation can be performed in multidimensional
(multichannel) feature space using clustering algorithms. For
example, if the MR images were collected using T 1, T 2, and
a proton-density imaging protocol, the relative multispec-
tral dataset for each tissue class results in the formation of
tissue clusters in three-dimensional feature space. The sim-
plest approach is to construct a 3D scatterplot, where the three
axes represent pixel intensities for T 1, T 2, and proton density
images. The clusters on such a scatterplot can be analyzed and
the segmentation rules for different tissues can be determined
using automatic or semiautomatic methods [17, 26].

There are many segmentation techniques used in multi-
modality images. Some of them are k-nearest neighbors (kNN)
[19, 55, 76], k-means [137, 146], fuzzy c-means [15, 52], artifi-
cial networks algorithms [26, 109], expectation/maximization
[41, 71, 157], and adaptive template moderated spatially vary-
ing statistical classification techniques [151]. All multispectral
techniques require images to be properly registered. In order
to reduce noise and increase the performance of the segmenta-
tion techniques, one can smooth images. Excellent results have

been obtained with adaptive filtering [27], such as Bayesian pro-
cessing, nonlinear anisotropic diffusion filtering, and filtering
with wavelet transforms [42, 62, 63, 128, 155, 166].

To illustrate the advantages of using multispectral segmenta-
tion, we show in Figure 5.9 the results of adaptive segmentation
by Wells et al. [157] applied to dual-echo (T 2–weighted and
proton-density weighted) images of the brain. The adaptive
segmentation technique is based on the expectation/maxi-
mization algorithm (EM) [34] and uses knowledge of tissue
properties and intensity inhomogeneities to correct and seg-
ment MR images. The technique has been very effective in
segmenting brain tissue in a study including more than 1000
brain scans [157]. Figures 5.9a and 5.9b present the original
T 2 and proton-density images, respectively. Both images were
obtained from a healthy volunteer on a 1.5–T MR scanner.
Figure 5.9c shows a result of conventional statistical classi-
fication, using nonparametric intensity models derived from
images of the same type from a different individual. The seg-
mentation is too heavy on white matter and shows asymmetry
in the gray matter thickness due to intrascan inhomogeneities.
Considerable improvement is evident in Figure 5.9d, which

(a)

(c) (d)

(b)

FIGURE 5.9 The results of adaptive segmentation applied to dual-
echo images of the brain. (a) Original T 2–weighted image, (b) original
proton-density weighted image, (c) result of conventional statisti-
cal classification, (d) result of EM segmentation. The tissue classes
are represented by colors: blue, CSF; green, white matter; gray, gray
matter; pink, fat; black, background. (Courtesy of Dr. W. M. Wells
III, Surgical Planning Lab, Department of Radiology, Brigham and
Women’s Hospital, Boston). (See also color insert).
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shows the result of EM segmentation after convergence at 19
iterations.

Adaptive segmentation [157] is a generalization of standard
intensity-based classification that, in addition to the usual tis-
sue class conditional intensity models, incorporates models of
the intra- and interscan intensity inhomogeneities that usually
occur in MR images. The EM algorithm is an iterative algorithm
that alternates between conventional statistical tissue classifica-
tion (the “E” step) and the reestimation of a correction for the
unknown intensity inhomogeneity (the “M” step).

The EM approach may be motivated by the following obser-
vations. If an improved intensity correction is available, it is
a simple matter to apply it to the intensity data and obtain
an improved classification. Similarly, if an improved classifica-
tion is available, it can be used to derive an improved intensity
correction, for example, by predicting image intensities based
on tissue class, comparing the predicted intensities with the
observed intensities, and smoothing. Eventually, the process
converges, typically in less than 20 iterations, and yields a
classification and an intensity correction.

The EM algorithm has been extended in a number of
directions. A spline-based modeling of the intensity artifacts
associated with surface coils has been described by Gilles
et al. [44]. The addition of an “unknown” tissue class and other
refinements have been described by Guillemaud and Brady [50].
Also, Markov models of tissue homogeneity have been added to
the formalism in order to reduce the thermal noise that is usu-
ally apparent in MR imagery. Held et al. [55] used the method
of iterated conditional modes to solve the resulting combi-
natorial optimization problem, while Kapur et al. [72] used
mean field methods to solve a related continuous optimization
problem.

5.6.2 Segmentation Using Multiple Images
Acquired over Time

Multispectral images can also be acquired as a sequence of
images, in which intensities of certain objects change with time,
but the anatomical structures remain stationary. One example
of such a sequence is a CT image series generated after intra-
venous injection of a contrast medium that is carried to an
organ of interest. Such an image sequence has constant mor-
phology of the imaged structure, but regional intensity values
may change from one image to the next, depending on the local
pharmacokinetics of the contrast agent.

The most popular segmentation technique that employs
both intensity and temporal information contained in image
sequences is the parametric analysis technique [57, 58, 96, 111].
In this technique, for each pixel or region of interest, the inten-
sity is plotted versus time. Next, the plots are analyzed, with the
assumption that the curves have similar time characteristics.
Certain parameters are chosen, such as maximum or a mini-
mum intensity, distance between maximum and minimum, or

time of occurrence of maximum or minimum. The appropri-
ate set of parameters depends on the functional characteristics
of the object being studied. Then, an image is calculated for
each of the chosen parameters. In such images the value of each
pixel is made equal to the value of the parameter at that point.
Therefore, the method is called parametric imaging. The disad-
vantage of the method of parametric analysis is that it assumes
that all pixel intensity sequence plots have the same general pat-
tern across the image. In fact, however, many images have pixels
or regions of pixels that do not share the same characteristics
in the time domain and, therefore, will have dissimilar dynamic
intensity plots.

An interesting application of the parametric mapping tech-
nique to the 3D segmentation of multiple sclerosis lesions on
series of MR images was proposed by Gerig et al. [43]. Temporal
images were acquired in intervals of 1, 2, or 4 weeks dur-
ing a period of 1 year. The parameters chosen for parametric
maps were based on lesion characteristics, such as lesion inten-
sity variance, time of appearance, and time of disappearance.
The 3D maps displayed patterns of lesions that show similar
temporal dynamics.

Another technique for temporal segmentation was intro-
duced by Rogowska [113]. The correlation mapping (also called
similarity mapping ) technique identifies regions (or objects)
according to their temporal similarity or dissimilarity with
respect to a reference time-intensity curve obtained from a
reference region of interest (ROI). Assume that we have a
sequence of N spatially registered temporal images of station-
ary structures. The similarity map NCORij based on normalized
correlation is defined for each pixel (i, j) as

NCORij =

N∑
n=1

(
Aij [n]− μA

)
(R[n]− μR)√

N∑
n=1

(
Aij [n]− μA

)2
N∑

n=1
(R[n]− μR)

2
; (5.8)

where Aij [n] is the time sequence of image intensity values
for the consecutive N images: Aij [1], Aij [2], . . . , Aij [N ], (i =
1, 2, . . . , I , j = 1, 2, . . . , J , n = 1, 2, . . . , N ; I is the number of
image rows, J is the number of image columns), R[n] is the
reference sequence of mean intensity values from a selected
reference ROI, μA is the mean value of the time sequence
for pixel (i, j), and μR is the mean value of the reference
sequence.

Pixels in the resulting similarity map, whose temporal
sequence is similar to the reference, have high correlation val-
ues and are bright, while those with low correlation values
are dark. Therefore, similarity mapping segments structures in
an image sequence based on their temporal responses rather
than spatial properties. In addition, similarity maps can be dis-
played in pseudocolor or color-coded and superimposed on one
image. Figure 5.10 shows an application of correlation mapping
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FIGURE 5.10 Image segmentation using correlation mapping. (a)
First image in a sequence of 60 temporal images with 3× 3 pixel ROIs
drawn in tumor and normal area; (b) plot of the average intensity of
the reference ROI (tumor) and the normal ROI for 60 images in a
sequence; (c) correlation map of the tumor. (See also color insert).

technique to the temporal sequence of images acquired from
a patient with a brain tumor after a bolus injection of con-
trast agent (Gd-DTPA) on a 1T MR scanner. The first image
in a sequence of 60 MR images with the reference region of
interest in the tumor area, and a normal ROI is shown in
Figure 5.10a. Figure 5.10b plots the average intensities of the
reference and normal ROIs. The correlation map is displayed
with a pseudocolor lookup table in Figure 5.10c.

The technique of correlation mapping has found numerous
applications. Some of them are included in Refs. [114, 115].
Other investigators have adopted this technique in brain activa-
tion studies [9], segmentation of breast tumors [87], and renal
pathologies [133].

A modification of correlation mapping technique, called
delay mapping, is also used to segment temporal sequences of
images. It segments an image into regions with different time
lags, which are calculated with respect to the reference [116].

Parametric maps, similarity maps, and delay maps—all are
segmentation and visualization tools for temporal sequences of
images. They are particularly useful for evaluation of disease
processes, drug treatments, or radiotherapy results.

5.7 Other Techniques

Combined (hybrid) strategies have also been used in many
applications. Here are some examples: Kapur et al. [71]
present a method for segmentation of brain tissue from mag-
netic resonance images that combines the strengths of three
techniques: single-channel expectation/maximization segmen-
tation, binary mathematical morphology, and active contours
models. Masutani et al. [89] segment cerebral blood vessels on
MRA images using a model-based region growing,controlled by
morphological information of local shape. A hybrid strategy [5]
that employs image processing techniques based on anisotropic
filters, thresholding, active contours, and a priori knowledge of
the segmentation of the brain is discussed in Chapter 11.

Many segmentation techniques developed originally for two-
dimensional images can be extended to three dimensions—for
example, region growing, edge detection, or multispectral
segmentation [15, 26, 28, 112, 157]. Three-dimensional segmen-
tation combined with 3D rendering allows for more compre-
hensive and detailed analysis of image structures than is possible
in a spatially limited single-image study. A number of 3D seg-
mentation techniques can be found in the literature, such as
a 3D connectivity algorithm with morphological interpolation
[70], 3D matching of deformable models [39, 86], 3D edge
detection [94], coupled surfaces propagation using level set
methods [167], and a hybrid algorithm based on thresholding,
morphological operators, and connected component labeling
[59, 125]. Several volumetric segmentation algorithms are dis-
cussed in Chapter 12, where their accuracy is compared using
digital MR phantoms. Partial volume segmentation with voxel
histograms is presented in Chapter 13.

There has been great interest in building digital volumetric
models (3D atlases) that can be used as templates, mostly for
the MR segmentation of the human brain [30, 48, 60]. A model-
based segmentation is achieved by using atlas information to
guide segmentation algorithms. In the first step, a linear regis-
tration is determined for global alignment of the atlas with the
image data. The linear registration establishes corresponding
regions and accounts for translation, rotation, and scale differ-
ences. Next, a nonlinear transform (such as elastic warping, [7])
is applied to maximize the similarity of these regions.

Warfield et al. [151, 152] developed a new, adaptive, template-
moderated, spatially varying, statistical classification algorithm.
The algorithm iterates between a classification step to identify
tissues and an elastic matching step to align a template of nor-
mal anatomy with the classified tissues. Statistical classification
based on image intensities has often been used to segment major
tissue types. Elastic registration can generate a segmentation
by matching an anatomical atlas to a patient scan. These two
segmentation approaches are often complementary. Adaptive,
template-moderated, spatially varying, statistical classification
integrates these approaches, avoiding many of the disadvan-
tages of each technique alone, while exploiting the combination.
The algorithm was applied to several segmentation problems,
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FIGURE 5.11 Rendering of 3D anatomical models and 2D MRI cross-
sections of a patient with a meningioma. The models of the skin
surface, the brain, and the tumor (green) are based on automatically
segmented 3D MRI data. The precentral gyrus (yellow) and the corti-
cospinal tract (blue) are based on a previously aligned digital brain
atlas [74]. (Courtesy of Drs. Ron Kikinis, Michael Kaus, and Simon
Warfield, Surgical Planning Lab, Department of Radiology, Brigham
and Women’s Hospital, Boston). (See also color insert).

such as quantification of normal anatomy (MR images of brain
and knee cartilage) and pathology of various types (multi-
ple sclerosis, brain tumors, and damaged knee cartilage). In
each case, the new algorithm provided a better segmentation
than statistical classification or elastic matching alone. Recent
advances have aimed at further exploiting prior informa-
tion by combining tissue classification, statistical atlasing and
watershed approaches [49, 162], utilizing shape information
[141], and information available in collections of segmenta-
tions [153, 156].

Figure 5.11 shows an example of 3D segmentation of normal
and pathological brain tissues. The tumor segmentation was
carried out with the algorithm of Kaus et al. [73]. This visual-
ization was used to support preoperative surgical planning for
tumor resection.

In some medical images, regions that have similar average
intensities are visually distinguishable because they have differ-
ent textures. In such cases, the local texture can be quantified
using techniques described in Chapters 15 and 16. Each pixel
can be assigned a texture value, and the image can be segmented
using texture instead of intensity [1, 8, 85, 95, 110, 161].

Fuzzy clustering, which provides another approach for seg-
mentation of two-dimensional or multispectral images [16, 24],
is discussed in Chapter 6. Segmentation has also been addressed
with neural networks in several applications [3, 36, 47, 52, 84,
100,106,126,169]. The use of neural networks for segmentation
is illustrated in Chapter 7. The family of active contour (snakes,

deformable templates) algorithms that have been widely used
for medical image segmentation [20, 90, 117, 160, 165, 168]
is presented in Chapter 8, shape constraints for deformable
models are discussed in Chapter 9, and gradient vector flow
deformable models are explained in Chapter 10.

5.8 Concluding Remarks

Segmentation is an important step in many medical applica-
tions involving measurements, 3D visualization, registration,
and computer-aided diagnosis. This chapter provided a brief
introduction to the fundamental concepts of segmentation and
methods that are commonly used.

Selection of the “correct” technique for a given application is
a difficult task. Careful definition of the goals of segmentation
is a must. In many cases, a combination of several techniques
may be necessary to obtain the segmentation goal. Very often
integration of information from many images (acquired from
different modalities or over time) helps to segment structures
that otherwise could not be detected on single images.

As new and more sophisticated techniques are being deve-
loped, there is a need for objective evaluation and quantitative
testing procedures [21, 23, 27, 33, 143, 154, 170]. Evaluation
of segmentation algorithms using standardized protocols will
be useful for selection of methods for a particular clinical
application.

Clinical acceptance of segmentation techniques depends also
on ease of computation and limited user supervision. With
the continued increases in computer power, the automated
real-time segmentation of multispectral and multidimensional
images will become a common tool in clinical applications.
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6.1 Introduction

This chapter is about segmenting medical images with fuzzy
models. Probably 80% of the methods described are based on
some form of clustering or classifier design, so Section 6.2 con-
tains a brief introduction to the basic ideas underlying fuzzy
pattern recognition. If nothing else, I hope this piques your
interest in fuzzy models, which were an amusing and contro-
versial, but usually disregarded novelty in science as little as
20 years ago. Today, fuzzy models are an important tool in
many scientific studies and fielded engineering applications.
The impetus for using fuzzy models came from control theory.
Many important applications based on fuzzy controllers have
made their way into the marketplace in recent years [1, 2]. This
chapter is an all too short account of the impact of fuzzy models
in medical image segmentation, but will summarize historical
contributions and significant points of progress in recent years
[3, 4, 38].

Section 6.3 contains a few case studies of applications of
algorithms that are mentioned in Section 6.2 in medical image
segmentation. Current research efforts involving unsupervised
and supervised segmentation of medical images with two spa-
tial dimensions (2D images) in applications such as brain
tissue analysis (e.g., to detect pathology) and mammogra-
phy (to detect tumors) are presented. This section also covers
fuzzy models for problems that—at least in principle—involve

images with three spatial dimensions (3D images). Most of these
models are aimed toward just two 3D applications: visualization
and (segmentation for) volume estimation, both of which can
be used for surgical planning and therapy. Finally, some con-
clusions and possible topics for future research are discussed in
Section 6.4.

6.2 The Quantitative Basis of Fuzzy Image
Segmentation

6.2.1 Fuzzy Models: What Are They, and Why?

This section is based on material first published in [5, 54]. Fuzzy
sets are a generalization of conventional set theory that were
introduced by Zadeh in 1965 as a mathematical way to repre-
sent vagueness in everyday life [6]. The basic idea of fuzzy sets is
easy and natural. Suppose, as you approach a red light, you must
advise a driving student when to apply the brakes. Would you
say, “Begin braking 74 feet from the crosswalk”? Or would your
advice be more like,“Apply the brakes pretty soon”? The latter, of
course; the former instruction is too precise to be implemented.
This illustrates that crisp precision may be quite useless, while
vague directions can be interpreted and acted upon. Moreover,
this particular type of vagueness does not exhibit an element
of chance—i.e., it is not probabilistic. Many other situations, of

Copyright © 2008 by Elsevier, Inc.
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FIGURE 6.1 Membership functions for hard and fuzzy subsets of �.

course—coin flip is a nice example—clearly involve an element
of randomness, or chance. Accordingly, computational mod-
els of real systems should also be able to recognize, represent,
manipulate, interpret, and use (act on) both fuzzy and statistical
uncertainties.

Fuzzy interpretations of data structures are a very natural
and intuitively plausible way to formulate and solve various
problems. Conventional (crisp) sets contain objects that sat-
isfy precise properties required for membership. The set of
numbers H from 6 to 8 is crisp and is designated as H =
{r ∈ �|6 ≤ r ≤ 8}. Equivalently, H is described by its member-
ship (or characteristic, or indicator) function, mH : � → {0, 1}
defined as

mH (r) =
{

1; 6 ≤ r ≤ 8
0; otherwise

}
.

The crisp set H and the graph of mH are shown in the left half
of Figure 6.1. Every real number (r) either is in H , or is not.
Since mH maps all real numbers r ∈ � onto the two points
{0, 1}, crisp sets correspond to two-valued logic—is or isn’t, on
or off, black or white, 1 or 0.

Consider next the set F of real numbers that are close to seven.
Since the property “close to 7” is fuzzy, there is not a unique
membership function for F . Rather, the modeler must decide,
based on the potential application and properties desired for
F , what mF should be. Properties that might seem plausible
for this F include the following: (i) Normality (mF (7) = 1);
(ii) Monotonicity (the closer r is to 7, the closer mF (r) is to 1,
and conversely); and (iii) Symmetry (numbers equally far left
and right of 7 should have equal memberships). Given these
intuitive constraints, either of the functions shown in the right
half of Figure 6.1 might be a useful representation of F . mF1 is
discrete (the staircase graph), while mF2 is continuous but not
smooth (the triangle graph). You can easily construct a mem-
bership function for F so that every number has some positive

membership in F , but you wouldn’t expect numbers “far from
7”—20,000,987, for example—to have much! One of the biggest
differences between crisp and fuzzy sets is that the former always
have unique membership functions, whereas every fuzzy set has
an infinite number of membership functions that may represent
it. This is at once both a weakness and a strength; uniqueness is
sacrificed, but this gives a concomitant gain in terms of flexibil-
ity, enabling fuzzy models to be “adjusted” for maximum utility
in a given situation.

In conventional set theory, sets of real objects such as the
numbers in H are equivalent to, and isomorphically described
by, a unique membership function such as mH . However, there
is no set-theoretic equivalent of “real objects” corresponding to
mF . Fuzzy sets are always (and only) functions, from a “universe
of objects,”say X , into [0,1]. This is depicted in Figure 6.2, which
illustrates that the fuzzy set is the function m that carries X into
[0,1]. The value of m at x , m(x), is an estimate of the similarity
of x to objects that closely match the properties represented by
the semantics of m.

One of the first questions asked about fuzzy models, and the
one that is still asked most often, concerns the relationship of
fuzziness to probability. Are fuzzy sets just a clever disguise for
statistical models? Well, in a word, NO. Perhaps an example will

x
m

m(x)0 1

Domain 5 X Range 5 m[X]

FIGURE 6.2 Fuzzy sets are membership functions.
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FIGURE 6.3 Bottles for the weary traveler—disguised and unmasked!.

help—this one is reprinted from the inaugural issue of the IEEE
Transactions on Fuzzy Systems [5].

Let the set of all liquids be the universe of objects, and let fuzzy
subset L = {all potable (=“suitable for drinking”) liquids}.
Suppose you had been in the desert for a week without a
drink and came upon two bottles A and B, marked as in
the left half of Figure 6.3 (memb = “membership”, and
prob = “probability”).

Confronted with this pair of bottles, which would you choose
to drink from first? Most readers familiar with the basic ideas of
fuzzy sets, when presented with this experiment, immediately
see that while A could contain, say, swamp water, it would not
(discounting the possibility of a Machiavellian fuzzy modeler)
contain liquids such as hydrochloric acid. That is, membership
of 0.91 in L means that the contents of A are “fairly similar”
to perfectly potable liquids (pure water, perhaps). On the other
hand, the probability that B is potable = 0.91 means that over
a long run of experiments, the contents of B are expected to be
potable in about 91% of the trials. And the other 9%? In these
cases the contents will be unsavory (indeed, possibly deadly).
Thus, your odds for selecting a nonpotable liquid are about 1
chance in 10. Thus, most subjects will opt for a chance to drink
swamp water, and will choose bottle A. Suppose that you exam-
ine the contents of A and B, and discover them to be as shown
in the right half of Figure 6.3—that is, A contains beer, while B
contains hydrochloric acid. After observation, then, the mem-
bership value for A will be unchanged, while the probability
value for B clearly drops from 0.91 to 0.0.

Finally, what would be the effect of changing the numeri-
cal information in this example? Suppose that the membership
and probability values were both 0.5—would this influence your
choice? Almost certainly it would. In this case many observers
would switch to bottle B, since it offers a 50% chance of
being drinkable, whereas a membership value this low would

presumably indicate a liquid unsuitable for drinking (this
depends, of course, entirely on the membership function of
the fuzzy set L).

This shows that these two types of models possess philo-
sophically different kinds of information: fuzzy memberships,
which represent similarities of objects to imprecisely defined
properties; and probabilities, which convey information about
relative frequencies. Moreover, interpretations about and deci-
sions based on these values also depend on the actual numerical
magnitudes assigned to particular objects and events. See [7]
for an amusing contrary view, [8] for a statistician’s objection
to the bottles example, and [9] for a reply to [8]. The point
is, fuzzy models aren’t really that different from more familiar
ones. Sometimes they work better, and sometimes not. This is
really the only criterion that should be used to judge any model,
and there is much evidence nowadays that fuzzy approaches
to real problems are often a good alternative to more familiar
schemes. References [1–4] give you a start on accessing the maze
of literature on this topic, and the entire issue in which [8, 9]
appear is devoted to the topic of “fuzziness vs probability.” It’s a
silly argument that will probably (1) never disappear; the proof
is in the pudding, and (2), as you will see in this chapter, fuzzy
sets can, and often do, deliver.

6.2.2 Numerical Pattern Recognition

There are two types of pattern recognition models—numerical
and syntactic—and three basic approaches for each type—
deterministic, statistical, and fuzzy. Rather than take you into
this maze, this chapter will steer directly to the parts of this
topic that help us segment images with fuzzy clustering. Object
data are represented as X = {x1, . . . , xn} ⊂ �p , a set of n fea-
ture vectors in feature space �p . The jth object is a physical
entity such as a fish, guitar, motorcycle, or cigar. Column vec-
tor xj is the numerical representation of object j and xkj is
the kth feature or attribute value associated with it. Boldface
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means vector, plainface means scalar. Features can be either
continuously or discretely valued, or can be a mixture of both.
X = {(1, 1)T , (0, 3.1)T , (1,−1.2)T } is a set of n = 3 feature
vectors in p = two-dimensional (2D) feature space.

One of the most basic structures in pattern recognition is
the label vector. There are four types of class labels—crisp,
fuzzy, probabilistic, and possibilistic. Letting integer c denote
the number of classes, 1 ≤ c ≤ n, define three sets of label
vectors in �c :

Npc = {y ∈ �c : yi ∈ [0, 1]∀i, yi > 0 ∃i} = [0, 1]c − {0} (6.1)

Nfc =
{

y ∈ Npc :
c∑

i=1

yi = 1

}
(6.2)

Nhc = {y ∈ Nfc : yi ∈ {0, 1}∀i} = {e1, e2, . . . , ec }. (6.3)

In Equation 6.1 0 is the zero vector in �c . Nhc is the
canonical (unit vector) basis of Euclidean c-space, so ei =
(0, . . . , 1︸︷︷︸

i

, . . . , 0)T , the ith vertex of Nhc , is the crisp label

for class i, 1 ≤ i ≤ c . Nfc contains the fuzzy (and probabilistic)
label vectors; Npc contains possibilistic label vectors. Note that
Nhc ⊂ Nfc ⊂ Npc . The three kinds of noncrisp labels are collec-
tively called soft labels. Figure 6.4 is a sketch of the structure
embodied by Equations 6.1–6.3 for c = 3.

A c-partition of X is a c × n matrix U = [uik]. There are
three sets of nondegenerate c-partitions, whose columns {U k}
correspond to the three types of label vectors:

Mpcn =
{

U ∈�cn : Uk ∈ Npc∀k; 0 <
n∑

k=1

uik∀i

}
(6.4)

Mfcn = {U ∈Mpcn : Uk ∈ Nfc∀k} (6.5)

Mhcn = {U ∈Mfcn : Uk ∈ Nhc∀k}. (6.6)
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FIGURE 6.4 Label vectors for c = 3 classes.

Equations 6.4, 6.5, and 6.6 define, respectively, the possibi-
listic, fuzzy (or probabilistic, if in a statistical context), and crisp
c-partitions of X, with Mhcn ⊂Mfcn ⊂Mpcn . Crisp partitions
have an equivalent set-theoretic characterization: {Xi , . . . , Xc}
partitions X when Xi ∩ Xj = ∀i 
= j and X = ∪Xi . Soft parti-
tions are noncrisp ones. Since definite class assignments (tissue
types in medical images) for each pixel or window are the usual
goal in image segmentation, soft labels y are often transformed
into crisp labels H(y) using the hardening function

H(y) = ei ⇔ ‖y − ei‖ ≤ ‖y − ej‖ ⇔ yi ≥ yj ; j 
= i. (6.7)

In Equation 6.7 ‖ ∗ ‖ is the Euclidean norm,

‖y − ei‖ =
√(

y − ei

)T (
y − ei

)
,

on �c , and ties are broken arbitrarily. H finds the crisp label
vector ei closest to y by finding the maximum coordinate of y,
and assigning the corresponding crisp label to the object z that
y labels. When z is a noncrisp label, H(y) is called hardening of
y by the maximum membership principle. For example, for the
fuzzy label y = (0.37, 0.44, 0.10, 0.09)T , H(y) = (0, 1, 0, 0)T . If
the four tissue classes represented by the crisp labels are 1 =
bone, 2 = fat, 3 = gray matter, and 4 = white matter, the vec-
tor y indicates that whatever it labels (here, an image pixel) is
slightly more similar to fat than the other three tissues, and if
you had to have a definite tissue assigned to this pixel, it would
be fat. However, this is an example of a very “fuzzy” label; you
would have much more confidence that the correct tissue was
chosen with a label vector such as y = (0.03, 0.84, 0.05, 0.08)T .
The function in Equation 6.7 is not the only way to harden soft
labels. This is an important operation when images are seg-
mented with soft models, because clinicians want to see “this
region is white matter,” not “here is a fuzzy distribution of labels
over the region.” Table 6.1 contains a crisp, fuzzy, and possibi-
listic partition of n = 3 objects into c = 2 classes. The nectarine,
x3, is labeled by the last column of each partition, and in the
crisp case, it must be (erroneously) given full membership in
one of the two crisp subsets partitioning this data. In U1, x3 is
labeled “plum.”

Noncrisp partitions enable models to (sometimes!) avoid
such mistakes. The last column of U2 allocates most (0.6) of the
membership of x3 to the plums class, but also assigns a lesser
membership (0.4) to x3 as a peach. U3 illustrates possibilistic
label assignments for the objects in each class.

To see the relevance of this example to medical images,
imagine the classes to be peaches → “people with disease A”
and plums → “people with disease B,” that x1, x2, and x3 are
(images of) patients, and the columns beneath them represent
the extent to which each patient is similar to people with dis-
eases A and B. From U1–U3 you infer that patient 1 definitely has
disease A. On the other hand, only U1 asserts that patients 2 and
3 do not; their labels in the second and third partitions leave
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TABLE 6.1 Typical 2-partitions of X = {x1 = peach, x2 = plum, x3 = nectarine}
U1 ∈ Mh23 U2 ∈ Mf 23 U3 ∈ Mp23

Object x1 x2 x3 x1 x2 x3 x1 x2 x3

A= Peaches 1.0 0.0 0.0 1.0 0.2 0.4 1.0 0.2 0.5
B= Plums 0.0 1.0 1.0 0.0 0.8 0.6 0.0 0.8 0.6

room for doubt—in other words, more tests are needed. All
clinicians know about shadow symptoms—e.g., Lyme disease
shares symptoms with many other very different afflictions.
This is the great advantage of fuzzy partitioning algorithms—it
may be (notice these are algorithmic outputs, and algorithms
are often wrong) precisely the noncrisply labeled patients that
need the most attention (most extensive testing). Hardening
each column of U2 and U3 with Equation 6.7 in this example
makes them identical to U1, and everything you worked so hard
to learn by passing to a soft model is lost! Crisp partitions of
data do not possess the information content needed to suggest
fine details of infrastructure such as hybridization or mixing
that are available in U2 and U3. Consequently, extract infor-
mation of this kind before you harden U! In medical image
segmentation, as soon as the partition of the image is hardened,
some of the advantage that accrues by using a soft model is
lost. The hope is that carrying soft uncertainty throughout the
calculations up to just this point will realize a gain in overall
accuracy.

So, how do you get soft partitions of data? Perhaps 80–90%
of all soft partitioning algorithms used in medical image seg-
mentation are based on, or derived from, the fuzzy c-means
(FCM) model and algorithmic family [1]. The c-means families
are the best-known and most well-developed families of batch
clustering models because they are least squares models. The
optimization problem that defines the hard (H), fuzzy (F), and
possibilistic (P) c-means (HCM, FCM, and PCM, respectively)
models is

min︸︷︷︸
(U ,V )

{
Jm (U , V ; w) =

c∑
i=1

n∑
k=1

um
ik D2

ik +
c∑

i=1

wi

n∑
k=1

(1− uik)
m

}
,

(6.8a)

where

U ∈ Mhcn , Mfcn or Mpcn for HCM, FCM, or PCM (6.8b)

respectively;

V = (v1, v2, . . . , vc) ∈ �cp ; vi ∈ �p (6.8c)

is the ith point prototype;

w = (w1, w2, . . . , wc)
T ; wi ∈ �+ (6.8d)

is the ith penalty term (PCM);

m ≥ 1 is the degree of fuzzification; (6.8e)

D2
ik = δ2

A(xk , vi) = ‖xk − vi‖2
A

= (xk − vi)
T A(xk − vi) (6.8f)

is the A-induced inner product distance between xk and vi .
Weight vector w in 6.8d is a fixed, user-specified vector of posi-
tive weights; it is not part of the variable set in the minimization
problem 6.8a. The HCM, FCM, and PCM clustering models are
summarized in Table 6.2. Problem 6.8a is well defined for any
distance function on �p . The method chosen to approximate
solutions of 6.8a depends primarily on Dik . If Dik is differen-
tiable in V (e.g., whenever Dik is an inner product norm), the
most popular technique for solving 6.8a is grouped coordinate
descent (or alternating optimization (AO)).

Column 3 of Table 6.2 shows the first-order necessary condi-
tions for U and V at local extrema of Jm required by each model.
The second form, vi for vi in 9b, emphasizes that optimal HCM-
AO prototypes are simply the mean vectors or centroids of the
points in crisp cluster i, ni = |U (i)|, where U (i) is the ith row
of U. Table 6.3 is a pseudocode listing that lets you implement
all three of the c-means families in a single framework. A lot of
details are left out here about singularity, initialization, rules of
thumb for the parameters, and especially, about how to pick c ,
the number of clusters to look for. This is crucial when FCM
is used for image segmentation. With additional space, there
would be a little numerical example here so you could see how
these three algorithms work. For brevity, this has been skipped,
but note that the three partitions U1, U2, and U3 in Table 6.1
are exactly the kinds of U s produced by HCM, FCM, and PCM
as listed in Table 6.3. You will see images segmented with these
algorithms later.

So, clustering algorithms deliver c-partitions U of X and
can often, as with the c-means families, estimate other parame-
ters such as the vectors denoted by V = {v1v2, . . . , vc } ⊂ �p in
Equation 6.8c. The vector vi is interpreted as a point prototype
(centroid, cluster center, signature, exemplar, template, code-
vector, etc.) for the points associated with cluster i. At the end
of clustering, the vectors comprising V will have algorithmically
assigned labels, and these may or may not correspond to mean-
ingful physical classes. For example, an MR image segmented
by clustering ends up with regions and perhaps prototypes that
are artificially colored as, say, “red,” “green,” etc., whereas the
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TABLE 6.2 Optimizing Jm(U, V, w) when Dik = |xk − vi |A
Minimize First-order necessary conditions for (U , V ) when Dik = |xk − vi |A > 0∀ i, k

J1(U , V; w) over (U , V ) in Mhcn ×�cp u1k =
{

1; Dik ≤ Dij , j 
= i
0; otherwise

}
∀ i, k; (9a)

HCM wi = 0∀i vi =

n∑
k=1

uik xk

n∑
k=1

uik

=
∑

xk∈Xi

Xk

ni

= V̄ i∀i. (9b)

Jm(U , V; w) over (U , V ) in Mfcn ×�cp uik =
[

c∑
j=1

(
Dik

Dij

) 2
m−1

]−1

∀i, k; (10a)
FCM m > 1

wi = 0∀i vi =
(

n∑
k=1

um
ik xk/

n∑
k=1

um
ik

)
∀i. (10b)

Jm(U , V; w) over (U , V ) in Mpcn ×�cp uik =
[

1+
(

D2
ik

wi

) 1
m−1

]−1

∀i, k; (11a)
PCM m > 1

wi > 0∀i

vi =
(

n∑
k 
=1

um
ik X k/

n∑
k=1

um
ik

)
∀i. (11b)

TABLE 6.3 The HCM/FCM/PCM-AO algorithms

Store Unlabeled Object Data X ⊂ �p

• number of clusters: 1 < c < n

•maximum number of iteration: T

• weighting exponent: 1 ≤ m <∞ (m = 1 for HCM-AO)

Pick • inner product norm for Jm : ‖x‖2
A = xT Ax

• termination measure: Et = ‖V t − V t−1‖ = big value

• termination threshold: 0 < ε = small value

• weights wi > 0 ∀i (w = 0 for FCM-AO/HCM-AO)

Guess • initial prototypes: V 0 = (v1,0 . . . , vc ,0) ∈ �cp (12)

t ← 0
REPEAT

t ← t + 1

Iterate Ut = FC (V t−1) where FC (V t−1) = (9a,10a or 11a)
V t = GC (Ut ) where GC (Ut ) = (9b,10b or 11b)

UNTIL (t = T or Et ≤ ε)
(U , V )← (Ut , V t )

clinician needs for them to be called “bone,” “gray matter,” etc.
This seemingly unimportant fact provides a convenient and
important way to classify segmentation methods.

An important problem associated with unsupervised image
segmentation is cluster validity. To understand this problem,
let P = {Ui : 1 ≤ i ≤ N } denote N different partitions (crisp
or soft) of a fixed unlabeled dataset X that may arise as a
result of

(i) clustering X with one algorithm C at various values
of c ; or

(ii) clustering X over other algorithmic parameters of C ; or

(iii) applying several Cs to X , each with various para-
meters; or

(iv) all of the above.

Cluster validity is the study (selection or rejection) of
which Ui ∈ P “best represents the data” in some well-
defined sense, or for some well-defined purpose. One popular
strategy—mathematical validation—uses a validity functional
V : Dv → � to rank Ui → P. There are hundreds of cluster
validity functionals in the literature [3]. You will meet an appli-
cation of validity functions later, so to fix this idea, here is one
of the simplest: the partition coefficient VPC , which is well
defined for any fuzzy partition U of X [3]:

VPC (U , c) = 1

n

(
n∑

k=1

c∑
i=1

u2
ik

)
= ‖U‖2

n
= tr

(
UU T

)
n

. (6.9)

Let’s compute the partition coefficient of crisp U1 and fuzzy U2

in Table 6.1:

VPC (U1, 2) = 1

3

(
3∑

k=1

2∑
i=1

u2
ik

)
= 12 + 12 + 12

3
= 1 (6.10a)

VPC (U2, 2) = 1

3

(
3∑

k=1

2∑
i=1

u2
ik

)

= 12 + 0.22 + 0.42 + 0.82 + 0.62

3
= 2.20

3

∼= 0.73. (6.10b)
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For crisp or fuzzy partitions, VPC is known to lie between 1/c
and 1; it will take the value 1 if and only if U is crisp; and it
will take the fuzziest value 1/c if and only if U has the entry
1/c in all cn elements. Thus, the smaller VPC is, the fuzzier U
is. Some authors use these mathematical facts to justify defin-
ing the best Ui in P as the one that maximizes VPC over the
available choices, on the theory that the crispest partition is the
best candidate in P. Unfortunately, this use of VPC has some
well-known deficiencies [3], but this shows you how validity
functions work. You could compute VPC (U3, 2) ∼= 0.76 for the
possibilistic partition U3 in Table 6.1, but since the column
sums are not constant, all you know about this validity func-
tion for this case is that it lies between 0 and c , and it takes the
value 1 at crisp partitions of X . So VPC does not have a clear
interpretation for possibilistic partitions. However, the PCM
clustering algorithm is sometimes used to segment images, so
there are other validity functions that can be used for this
case [3].

What’s wrong with using validity functions? Well, the “true”
parameters of a model that represents substructure in any
dataset are unknown. Consequently, validity functionals have
little chance of being generally useful for identifying a “best”
segmentation of an image obtained by clustering. More typi-
cally, V is used instead to eliminate badly misleading solutions.
Thus, validity functionals are usually used prior to validation
by humans or rule bases.

A classifier is any function D : �p → Npc . The value y =
D(z) is the label vector for z in �p . D is a crisp classifier if
D[�p] = Nhc ; otherwise, the classifier is fuzzy, possibilistic, or
probabilistic, which for convenience, can be lumped together as
soft classifiers. When part or all of X is used to “train” D (find
its parameters), the training and test data are denoted by Xtr

and Xte . Many classifiers also produce point prototypes, and in
this instance the prototypes will usually acquire physical class
labels during training.

The test (or generalization) error rate of D is denoted when
trained on Xtr and tested with crisply labeled Xte as ED(Xte |Xtr)

= (number of mistakes committed by D/|Xte |). If the same
data, X = Xtr = Xte , are used for training and testing, ED(X |X)
is called the resubstitution error rate. A classifier for which
ED(X |X) = 0 is said to be consistent. ED(X |X) is usually opti-
mistically biased and so is generally regarded as a “ballpark”
estimation of ED(Xte |Xtr), the number you really want to know.
There are lots of papers about the topic of this paragraph—how
to set up proper experiments, how to use the samples you have
most efficiently, how to estimate parameters, how many times,
etc. [1].

Once point prototypes are found, they can be used to define
a crisp nearest prototype (1–np) classifier DV , E, δ. Let V be a
set of c crisply labeled point prototypes, one per class, ordered
so that ei is the crisp label for vi , 1 ≤ i ≤ c ; let δ be any dis-
tance measure on�p , and let E = {ei : i = 1, . . . , c} = Nhc . The
crisp nearest prototype (1–np) classifier DV , E, δ is defined, for

z ∈ �p , as

Decide z ∈ i ⇔ DV , E, δ(z) = ei ⇔ δ(z , vi) (6.11)

≤ δ(z, vj) ∀j 
= i; ties arbitrarily resolved.

For example, suppose the prototypical patient with disease A
has heart rate of 90 beats per minute (bpm) and temperature
of 101◦F, while a patient with the “textbook case” of disease
B has heart rate 75 bpm and temperature 95◦F. These proto-
types can be represented with the vectors vA = (90, 101)T , and
vB = (75, 95)T . Okay, your patient z has heart rate 82 bpm
and temperature 98◦F. If you use 6.11 to classify z = (82, 98)T

and choose the Euclidean distance δ2 for your implementation,
you have

δ2 (z, vA) ∼=
√
(90− 82)2 + (101− 98)2 = √73 ≡ 8.54

as the distance (from your patient) to disease A, and

δ2 (z, vB) ∼=
√
(75− 82)2 + (95− 98)2 = √58 ≡ 7.61

as the distance to disease B. Taking the smaller value (nearest
prototype) yields the diagnosis “z has B.” Would you do this
in your practice (if you are a clinician)? Of course not. But
now you know how prototype classifiers work, and moreover,
you do make diagnoses this way—it’s just that your brain uses
“non-Euclidean” calculations about z ’s relationship to (what
you know about) A and B to help you, the trained clinician,
render a diagnosis. This is what pattern recognition is all about.

One last note: Don’t confuse the 1–np rule with the 1–nearest
neighbor (1–nn) rule. Prototypes are new points built from the
data, while neighbors are points in the labeled data. Neighbors
are a special case of prototypes, but this distinction is very
important. More generally, you may have heard of the k-nn
rule. This classifier simply finds the k nearest neighbors (k nn’s)
to any unlabeled point z , counts the number of “votes” for
each class in z’s neighborhood, and then assigns the major-
ity label to z . The k-nn rule is a very good classifier that has
been used quite successfully in many papers on medical image
segmentation: see [3] for both the crisp and soft designs.

6.2.3 Feature Extraction

This section considers the “front end” of medical image pro-
cessing systems, where features are chosen and extracted from
the raw image. Images are usually discussed with two spatial
dimensions, but most of what can be said generalizes to images
with N spatial dimensions, and to nonspatial dimensions such
as time. Let IJ = {(i, j) : i = 1, . . . , m; j = 1, . . . , n} ⊂ �2 be a
rectangular array or lattice of integers that specify (mn) spatial
locations (pixel addresses). In what follows, ij may be used as a
short form for (i, j). Next let Q = {q : q = 0, l , . . . , G − 1} ⊂ �
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be the integers from 0 to G − 1. G is the set of quantization (or
gray) levels of some picture function pix: �2 → �N . N is called
the spectral dimension of pix. It is commonly assumed that pix is
continuously differentiable at least once. Confinement of pix to
the lattice IJ (which is done automatically by a digitizing scan-
ner that realizes samples of pix) creates an m × n digital image
denoted by PIJ . For example, color photographs and magnetic
resonance (MR) images usually have spectral dimension N = 3,
whereas unispectral images (such as digitized X-ray mammo-
grams) have N = 1. An “8–bit” image has 28 = 256 gray levels,
whereas a “16–bit” image has 65,536 gray levels.

Image data are usually converted into sets of feature vectors
X = {xi , . . . , xn} ⊂ �p , where p is the number of nonspatial
features associated with each spatial location in the image. Don’t
confuse p, the dimension of the extracted feature space, with N ,
the spectral dimension of the image itself. N = p whenever the
vectors in X are simply the quantized intensities (the raw digi-
tized image). As soon as you extract new features from the raw
intensities, it is possible that N 
= p. Thus, you may have 7D
feature vectors built from three intensities attached to two spa-
tial dimensions (pixels); or 2D feature vectors for images with
N = 3 intensities at each of three dimensional spatial locations
(voxels), etc. If the 2D spatial location of a feature vector is
important, xij is written for the feature vector associated with
pixel address (i, j). Feature vector xij may or may not include
the coordinate values (i, j) among elements. Thus, e.g., if loca-
tion (2, 4) in an image has intensity value 37, this is written as
x24 = 37 and p = 1.

Medical imaging systems use various sensors to collect spatial
distributions of measurements which represent the underly-
ing tissue characteristics. Figure 6.5 depicts several schemes for
extracting features from an input image. These raw data support
pixel-, edge-, and region-based segmentation (the distinction
being what numerical features extracted from the image are
used as the basis for processing). This is illustrated at the top
of Figure 6.5, which shows N = 3 spectral dimensions, and the
extraction of a feature vector xij from just the intensities at the
ijth pixel locations on the left-hand side, and from a region
(window) surrounding the ijth pixel on the right-hand side.
The left side thus illustrates pixel-based features, while the right
side illustrates either edge- or region-based features.

Extract feature vectors X 5 {xij} , Rp

xij

FIGURE 6.5 Extraction of features for image processing.

As an example, MRIs are composed of N = 3 spectral
dimensions: two relaxation times as well as proton density
at each 2D spatial location. Let T 1ij , T 2ij , and rij denote the
spin lattice relaxation, transverse relaxation, and proton den-
sity of pixel (i, j) in an MR slice of overall dimensions (m × n).
These three measurements can be aggregated into pixel vector
xij = (T 1ij , T 2ij , rij) in�3; and the pixel vectors so constructed
constitute a dataset X that supports pixel-based methods.

On the other hand, if the horizontal and vertical gradients, say
gh,ij and gv ,ij of the intensity function at pixel (i, j), are estimated
from intensities in some neighborhood of (i, j) in each of the
three MR slices, there would be either three sets of features in�2

or one set of features in�6 to support edge-based segmentation
of X . (Some writers call gradients texture features.) Finally, you
might instead extract and order the nine intensities from a 3× 3
window centered at pixel (i, j) in each of the three slices. This
would result in either three sets of features in �9 or one set of
features in �27 to support region-based segmentation of X .

It is both possible and sometimes profitable to combine pixel-
and window-based features to make up each vector in X . For
example, the spatial coordinates of the pixels can be used either
as part of the feature vector, or in the extraction of the features
selected for use. As an example, Chuang et al. [65] propose
a segmentation method for FCM clustering in their work on
cranial MRI images that incorporates spatial information and
adjusts the membership weighting of each cluster after the
cluster distribution in the neighborhood is considered. With
this approach, they found a reduction in noise effects leading
to more homogeneous clustering. This work is preliminary in
nature, however, with a dataset encompassing just one patient
augmented with limited synthetic data.

In the final analysis, the choice of features is very important,
but the “quality” of features is extremely domain dependent.
In this sense, it is difficult to quantitatively describe a “gener-
ally useful” feature space. This is especially true in the medical
domain, where clinicians must be relied upon to supply insight
and recommendations about the features they use when visually
processing a medical image.

6.2.4 2D Image Segmentation

Many studies of nonfuzzy segmentation methods have been
published. For example, Morrison and Attikiouzel [17] describe
segmentation by statistical and neural network models; other
multispectral methods are discussed by Just and Thelen [18],
Hyman et al. [19], Vannier et al. [20], and Raman et al. [21].
Jain and Flynn [22] provide a wonderful survey of image seg-
mentation by crisp cluster analysis. Fuzzy clustering and early
work in fuzzy image processing are discussed in many papers
reprinted in [4].

The objective of image segmentation is to divide an image
into (meaningful) regions. Errors made in this stage will affect
all higher level activities. Therefore, methods that incorporate



6 Image Segmentation by Fuzzy Clustering: Methods and Issues 99

the uncertainty of object and region definitions and the faith-
fulness of the features to represent various objects (regions) are
desirable. Some writers regard edge detection as image segmen-
tation, but in this chapter, these two schemes for decomposing
the elements of an input image will be kept separate.

In an ideally segmented image, each region should be homo-
genous with respect to some predicate such as gray level or
texture, and adjacent regions should have significantly differ-
ent characteristics or features [14, 47]. More formally, segmen-
tation is the process of partitioning the entire image in its X
representation into c crisp and maximally connected subre-
gions {Xi} such that each Xi is homogeneous with respect to
some predicate P, i.e.,

∪c
i=1 Xi = X (6.12a)

Xi ∩ Xj = ∅ ∀i, j i 
= j (6.12b)

Xi , 1, . . . , c are connected (6.12c)

p(Xi) = TRUE ∀i (6.12d)

p(Xi ∪ Xj) = FALSE if i 
= j and Xi is adjacent to Xj .
(6.12e)

Conditions 6.12a and 6.12b together are just the set-theoretic
representation of a crisp c-partition of X . The crisp member-
ship function mxi. : IJ → {0, 1} of region Xi is

mxi

(
i, j

) = {
1;

(
i, j

) ∈ Xi

0;
(
i, j

)
/∈ Xi

}
, i = 1, . . . , c ; (6.13)

and if the values of the c membership functions in 6.13 are
arrayed as a matrix U , it is a crisp c-partition U ∈ Mhc of X .
Notice that even though the spatial locations of the pixels in
the image are not directly involved in the partition in 6.12, the
image plane is implicitly partitioned by U , because each xij in
X is associated with the ijth column of U .

In many situations it is not easy to determine whether or not
a pixel should belong to a region. The reason is that the features
used to determine homogeneity may not have sharp transitions
at region boundaries. This is especially true when features are
computed using, say, a local 3× 3 or 5× 5 window. To alleviate
this situation, you can insert fuzzy sets concepts into the seg-
mentation process. The first reference to fuzzy segmentation
was made by Prewitt [24], who suggested that the results of
image segmentation should be fuzzy subsets rather than crisp
subsets of the image plane. In a fuzzy segmentation, each pixel
is assigned a membership value in each of the c regions. If the
memberships are taken into account while computing prop-
erties of regions, you often obtain more accurate estimates of
region properties.

The result of a fuzzy segmentation of X is a fuzzy partition
U of X into c fuzzy subsets {mxi : IJ → [0, 1] : i = 1, . . . , c},

which replaces the c membership functions in 6.13. For (i, j) ∈
Pij , mRi(i, j) represents the degree to which (i, j) belongs to mxi .
This is how fuzzy clustering algorithms enter the picture—they
produce the matrix U that partitions the image. Unfortunately,
this does not preserve the connectivity among regions at 6.12c
that is presumably enforced by construction of the predicate P
in 6.12d and 6.12e. This is one of the most important prob-
lems that needs to be solved if segmented medical images are
to be clinically useful, because without this property, clustering
algorithms (crisp or soft) will “tear up tissue classes” into medi-
cally incorrect regions. This point will be noted again in the last
section.

6.2.5 Segmentation in Medical Applications

There are many ways to classify segmentation methods, none of
which leads to a crisp partition of them. For example, Figure 92
in Dellepiane [23] shows a classification based on a tree rooted
at image segmentation that subdivides algorithms based on the
parameters that guide them to their goal. Dellepiane identifies
three main groups based on density, topology, and geometry.

An interest in the role and importance of human experts
in medical image processing leads to a somewhat different
way to classify segmentation algorithms. In this chapter, the
focus is primarily on how and where knowledge beyond that
possessed by the sensor data and computationally obtained low-
level information are injected into the system. Based on this
criterion, traditional pattern recognition methods for segmen-
tation can be (roughly) classified into two groups, supervised
(Su) and unsupervised (US) methods, depending on whether
the vectors in X are labeled or unlabeled. Figure 6.6 illustrates

Unsupervised (US) supervised (Su)

Cluster X into
c subregions

Human selects and
labels XL: tissue pixels
for training or seeds for

region growing

XL used to
parametrize
classifier D

D labels
pixels in X-XL

(or other images)

Validate clusters (and
possibly) revise c

Color each cluster
 (Crisp or Fuzzy)

Human views image:
(i) rejects output...or

(ii) assigns labels

Evaluation, acceptance and use by practicing clinicians

Rules revise
c : assign

tissue labels

USA USB Su

FIGURE 6.6 A classification of segmentation methods based on
human intervention.
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the distinction made here between the two groups of segmenta-
tion methods that seem popular in the fuzzy modeling domain,
and further subdivides unsupervised methods into two sub-
groups based on whether a human (USA) or a rule base (USB)
is used to assign labels (tissue classes) to the unlabeled clusters
(or regions) in the image. In the sequel, the three vertical paths
(left to right) in Figure 6.6 are referred to as tracks USA, USB,
and Su, respectively.

Note carefully that it is the labels of the data (and their
use during training) that divide the methods illustrated in
Figure 6.6 into supervised and unsupervised approaches. The
fact that humans or rules are used to assign physical labels to
tissue clusters in the two US tracks is, of course, supervision
in some broader (and in medicine, crucially more important)
sense, but here the term supervised is used in the usual context
of classifier design—that is, when training data Xtr are used
prior to segmentation of test images. There are also segmen-
tation algorithms that use human knowledge about the image
domain as a basis for nontraditional classifier designs (Herndon
et al. [25]; Hata et al. [26, 27]). These models, and others that
appear in the section on 3D problems, don’t fit in the framework
of Figure 6.6 very well.

The bottom portion of Figure 6.6 reemphasizes the need
for final evaluation of processed images by medically trained
experts. Researchers rarely carry a system to this stage, and
as part of the algorithm itself (cf. Dellepiane, [23]). Prior
to computer-aided medical diagnosis, problem domains were
focused in areas where system designers were the experts (for
example, finding chairs, cigars, fish, or guitars). Medical image
analysis, however, presents a vastly more complicated prob-
lem when visual evaluation is relied upon to assess the quality
and utility of algorithmic outputs. Usually, clinicians are pro-
vided with a set of images and asked to evaluate one or more
“properties” of the enhancement process, such as judging the
faithfulness of the replication of the film or sensor informa-
tion, the utility of the enhancement (edges, regions, etc.), or the
implication of region of interest (ROI) prompts (Hume et al.
[11]). These points can be illustrated with an example from
digital mammography [10].

As shown in Figure 6.7, radiologists (more generally, clini-
cians with expertise in the appropriate medical domain) can
be involved in performance evaluation of image segmenta-
tion in three ways. For example, radiologists can compare the
following:

(C1) Sensor outputs (e.g., films) to unenhanced digitizations
(digital images)
(C2) Unenhanced digital images to enhanced digital images
(C3) Original sensor outputs to enhanced digital images

When radiologists examine mammogram films in a light box,
the entire mammogram suite can be viewed. However, when a
digital version of the film is viewed on a computer monitor,
only a fraction of the digitized film can be viewed at one time,

Sensor output Digitized image Processed image

enhancement qualityfidelity of digitization

sensor output versus enhanced images

C2

C3

C1

FIGURE 6.7 Clinician involvement in algorithm evaluation.

often with just 256 shades of gray (assuming an 8–bit display).
When printed, these digitized images must be further cropped
or compressed to fit the paper constraints of the printer. In this
case, an average 600 dpi (dots per inch) laser printer can resolve
only 122 gray levels [12]. Research indicates that humans them-
selves can resolve only 32 gray levels [13], and yet many of these
issues are ignored in the current literature on mammogram
enhancement systems.

Since radiologists are most comfortable with films, while
nonclinicians such as computer scientists and engineers are
most comfortable with computer monitors and printouts of
digitized images, some compromise is involved when develop-
ing and evaluating the performance of these systems. Access
to all three data types (original films, digitized images, and
processed images) maximizes flexibility when defining per-
formance assessment instruments, while still ensuring the
development of a sound and repeatable evaluation method-
ology.

As an example, the involvement of clinicians who are actively
participating in breast cancer screening programs is critical for
the successful emergence of mainstream digital mammogra-
phy. When such clinicians have contributed to the creation of a
database, true, medically registered correlations between radi-
ologist and ground truth can be made. Clinicians can be asked
to independently judge the enhancement quality of the breast
skin line and breast substructure, the sufficiency of the detail
level within and outside these areas, and the level of differenti-
ation between normal and abnormal tissues. Instruments used
by Bensaid et al. [15] to elicit feedback from radiologists view-
ing brain tumor segmentations are a good example of how this
can be done.

In addition to clinician involvement in performance evalu-
ation, mammographic image databases often contain ground
truth information that may include, e.g., ratings for character-
izations of breast tissues, or the size and locations of lesions.
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Ground truth information is derived by one or more domain
experts in one of two ways:

GT1 (primary). Visually guided hand labeling of clinical
features on sensor outputs

GT2 (secondary). Algorithmically determined locations of
ROIs that are visually assessed and accepted by clinical
experts

When ground truth of either type is available, performance
analysis can be based on various pattern recognition met-
hods [16]:

PR1. Using labeled test data to estimate error rate ED(Xte |X tr)

PR2. Correlation between computed and ground truth
labels

PR3. Analyzing receiver operating characteristic curves

There are several ways to use these measures. For example,
algorithm A can be used with training data Xtr to parameterize
a classifier D, and then the labels the classifier assigns to test
data Xte can be used to estimate the generalization potential of
D. If ground truth information is available, estimated regions
of interest can be compared to the ground truth to assess the
quality of the algorithm. Standard measures of agreement or
goodness of fit such as correlation coefficients can be used to
compare the relative quality of several algorithms A, B, …, Z on
common datasets that possess ground truth.

The scoring method used to determine a “hit” versus a
“miss” when using ground truth information deserves care-
ful consideration. For example, comparisons can be based
on matching centroids of observed versus expected regions,
intersections of bounding boxes for detected and benchmark
regions, etc. Standardization of the technique employed for a
given dataset is critical to making unbiased assessments of an
algorithm’s performance. The general situation for assessment
by pattern recognition techniques is summarized in Figure 6.8
(for the mammographic image domain: “micro” stands for
microcalcifications). As shown in Figure 6.8, Xte may contain
images (here micros) with abnormalities not represented in the
training data Xtr .

Evaluation without clinician involvement such as that illus-
trated in Figure 6.8 can provide insight into the success or
utility of a proposed technique. However, clinician involvement
is vital to developing a generalizable, non-database-specific,
repeatable methodology that will be accepted by health care
personnel.

Visual examination (e.g., shown as track USA in Figure 6.6) of
an algorithmically suggested,artificially colored image is termed
human validation. In this case, a clinically knowledgeable oper-
ator inspects, say, an unsupervised segmentation of a medical
image, and either rejects it or accepts it and assigns a physical
label to each region (cluster). This approach can be successful
in terms of labeling the segmented image correctly, only if the

labeled medical images

Training

lesion

lesion

mass

mass

normal

Testing

micro

model training classifier error rate

FIGURE 6.8 Evaluation of supervised approaches.

operator can imagine tissue structure as it must be in the data.
Since X is not labeled, the “true” substructure in the data is
unknown. Thus, human validation is subjective and to some
extent nonrepeatable. Nonetheless, this method is extremely
important and still much in evidence, as clinicians historically
trust human judgment more than computational evidence.

A third possibility (besides mathematical validation, which
has already been discussed) is to instead use rule-based vali-
dation (e.g., as shown in track USB in Figure 6.6), in which
clinical knowledge is encapsulated in the form of a rule-based
system. This circumvents the need for a human online either
before or after the segmentation, and probably represents the
best hope at present to realize a truly unsupervised medical
assistant [28].

After clustering to find a partition U of unlabeled X of either
US track, a crisp color is usually assigned to each tissue class. If
U is already crisp, this is straightforward. Otherwise, the sim-
plest way to do this is to harden each column of U with H as
in Equation 6.7. Another possibility is to assign “fuzzy” colors
to each pixel by mixing c basic colors in proportion to their
memberships. Lighter shades are usually assigned to the pix-
els with high membership values and darker shades are used
for lower membership values. This has the effect of outlining
borders where classes are intermixed and has been preferred
by physicians (Bezdek et al. [29]). The choice of which color
to use for which region, and how to shade regions in images,
is a seemingly trivial part of segmentation. However, visual
displays often have preestablished expectations in the medical
community. The selected coloring scheme significantly affects
the utility of computed outputs, so this issue deserves careful
attention.

Several fuzzy approaches to the tracks USA and Su in
Figure 6.6 are reviewed in [29]. Several fuzzy models for track
USB were surveyed by Clark et al. [30]. For readers interested in
image processing based on the fuzzy reasoning paradigm that
has emerged from fuzzy control (not specifically for applica-
tions in the medical domain), the survey by Keller et al. [31] is
highly recommended as a companion to this chapter.
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6.3 Qualitative Discussion of a Few Fuzzy
Image Segmentation Methods

This section contains a few examples of segmentation based on
fuzzy models in each of the three tracks shown in Figure 6.6.
Some of this material is a subset of Bezdek and Sutton [38],
which has more extensive discussions of many other papers and
methods that will not fit into the space allotted for this chapter.
Another source for fuzzy imaging models and their applications
(though not much on medicine) is [3].

6.3.1 Unsupervised Segmentation: Track USA

Much recent work in track USA has been done at many insti-
tutions. A good starting point for this area includes several
case studies from research conducted at the University of South
Florida (USF). Bensaid et al. [32] introduced a technique called
validity-guided (re) clustering (VGC) and illustrated its use on
MR images of patients with and without pathology. The VGC
index is a generalization of the Xie-Beni cluster validity index
[33]. The aim of this method is to enhance the quality of unsu-
pervised fuzzy partitions of X by examining each FCM-derived
cluster individually. When FCM terminates at U for a fixed c ,
the general procedure begins by selecting a particular cluster in
X (say U (i) = row i of U ) for splitting. After this row is hard-
ened with H at Equation 6.7, FCM with c = 2 is applied to the
points corresponding to H(U (i)). To preserve the chosen value
of c , two other clusters in U are merged at the same step.

The overall effect of VGC is to join tightly coupled clusters,
split loosely coupled ones, and preserve the chosen value for c .
Hence, VGC is not a cluster validation scheme in the same sense
as defined previously, since it is not applied to different parti-
tions of X and is not used to choose a best value for c . However,
it is driven by a validity functional that assesses the ith cluster,
and then sums the VGC measure over i, providing an over-
all validity function for U . VGC continues reclustering until
improvement becomes small.

Bensaid et al. [32] used 30 MR images to illustrate that
VGC really improves outputs of FCM segmentation. For each
image, an optimized supervised segmentation was constructed
by an iterative process whereby the training set was repeat-
edly reselected in order to optimize the segmentation quality,
as determined by two clinically knowledgeable investigators.
Segmentation as in track Su of Figure 6.6 was done with the
crisp 7–nn rule using the Euclidean norm. The 7–nn rule was
chosen as a way to construct GT2 type ground truth because this
classifier is reportedly superior to various neural-like networks
and probabilistic designs (Vaidyanathan et al. [34]).

The optimized 7–nn, FCM, and VGC segmentations were
subsequently evaluated by three expert radiologists in a blind
study discussed in Bezdek et al. [35]. Each radiologist was pro-
vided with three (T1, T2, ρ) views of each unenhanced raw
image and the three segmentations, and was asked to fill out a

TABLE 6.4 Comparison of three MR segmentation

Item Description 7-nn rule FCM FCM+VGC

1 WM vs GM 7.8 7.4 7.5
2 Normal vs pathology 8.3 7.5 7.8
3 Tumor vs edema 8.6 6.7 8.3
4 CSF quality 8.5 7.3 7.8
5 % True positive tumor 90.61 80.56 86.78
6 % False positive tumor 12.44 17.61 5.17

survey form (method C2). Individual panelists were asked to
rate the quality of the first four performance indicators shown
in Table 6.4 on a scale from 0 to 10, where 0 = very bad and
10 = excellent. Each radiologist was also asked to rate the last
two items (5 and 6 in Table 6.4) on a percentage basis—that is,
to estimate the percentage of true positive tumor (correctly clas-
sified tumor pixels) and the percentage of false positive tumor
(pixels incorrectly classified as tumor). Acronyms used in this
table and later are white matter (WM), gray matter (GM), and
cerebrospinal fluid (CSF).

For each of the first four items in Table 6.4, the scores
corresponding to each algorithm are averages over all 30 seg-
mentations and three radiologists. The percentages of true and
false positives reported for items 5 and 6 are simply averaged
for each algorithm. Table 6.4 shows that, for the data used in
this study, VGC does enhance segmentations made by FCM.
For example, with 99% confidence, VGC better differentiates
between WM and GM (row 1); between normal and patholog-
ical tissues (row 2); and between tumor and edema (row 3);
VGC is also superior to FCM for identifying CSF (row 4).

VGC segmentations are not quite as good as those obtained
with the optimized, supervised 7–nn rule. This is as expected,
since supervision by labeled data usually improves (or at least
should improve) algorithmic outputs. VGC shows significant
promise for differentiating between tumor and other tissues
compared to FCM, and moreover, the ratio between its per-
centages of true positive and false positive tumor pixels is
higher than the corresponding ratio for the supervised 7–nn
rule. With 99% confidence, VGC produces significantly less
false positive tumor than 7–nn. On the other hand, even with
confidence as low as 90%, 7–nn’s true positive tumor percentage
is not significantly better than VGC’s rate. So, this model
seems to be a positive step on the way to truly unsupervised
designs.

Velthuizen et al. [36] discuss the use of a modification of the
mountain clustering method (MCM, Yager and Filev, [37]) they
call M3 for segmentation of MR images. The mountain method
produces c point prototypes V = {v1, . . . , vc }, vi ∈ �p ∀i
from unlabeled data. MCM begins at c = 1 and continues to
add prototypes to V until an objective function threshold is
exceeded. Thus, c is neither fixed nor explicitly chosen, but is
implicitly specified by the termination threshold used to stop
the algorithm.
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It is a misnomer to call MCM (or M3) a clustering method
because no partition U of X is produced by either of these algo-
rithms, which are more properly viewed as prototype generator
methods. However, after the terminal prototypes V MCM or V M3

are found, they can be used to generate a crisp c-partition of X
by applying either the HCM necessary condition 9a (Table 6.2)
or, equivalently, the 1–np classifier at Equation 6.11 based on
them to each point in the (unlabeled) image. Velthuizen et
al. [36] use various sets of MR pixel intensities as features.
Segmentation by M3 proceeds as follows:

M3.1 Run M3 on X to find V M3.
M3.2 Construct U , a crisp partition of X with Equation 6.9a

or Equation 6.11: the label assigned to xij is the label (index)
of the closest prototype.

M3.3 Physically label each cluster in U as a tissue class by
matching the pixels in an algorithmic cluster to each of the
ground truth tissue clusters. Assign the algorithmic cluster
to the tissue class that enjoys maximum pixel matching.

M3.4 Artificially color the labeled image.

Segmentation by FCM was done with two initializations: a
“standard” initialization V 0 (cf. (6.9) in Velthuizen et al.); and
with V M3. FCM(V) is used to indicate FCM initialized with V .
FCM generates a terminal fuzzy c-partition UFCM of X that is
hardened column by column using Equation 6.7, and finally,
steps [M3.3] and [M3.4] are performed on the resultant crisp
partition. Velthuizen et al. evaluated segmentations of 13 MR
images using both types of ground truth (methods GT1 and
GT2). Segmentations were produced by four methods: a super-
vised k-nn rule (used to construct the type GT2 ground truth),
unsupervised M3, unsupervised FCM(V 0), and unsupervised
FCM(VM3). Comparisons were made visually (method C3) and
quantitatively (method PR2).

Figure 6.9 shows T1 (weighted) input data for a patient who
has a brain tumor. Figure 6.9b is the color key: CSF = cere-
brospinal fluid ; WM = white matter, GM = gray matter, GM-2
= (falsely labeled) gray matter. A supervised k-nn segmentation
is shown in Figure 6.9c. This image results from an operator
choosing labeled subsets of pixels from each tissue class, and
then using the standard k-nn rule to label the remaining pix-
els. This is repeated until a panel of radiologists agree that the
k-nn segmentation is good enough to be used as type GT2
ground truth. Ten of the 13 images discussed in this study used
this method (GT2) as a basis for comparing the results of the
three algorithms (unsupervised M3, unsupervised FCM(V 0),
and unsupervised FCM(VM3)). The other three images had
manual ground truth (GT1).

Figure 6.9d shows a segmentation achieved by FCM(V 0). The
tumor is not detected. Instead, FCM(V 0) finds two gray mat-
ter regions that do not correspond to anatomical tissues. The
M3 segmentation in Figure 6.9e is much better—it finds many
of the tumor pixels and does not have a GM-2 tissue region.
Finally, Figure 6.9f exhibits the segmentation resulting from the
initialization of FCM with the output of M3. This view should

(a) T1 Weighted MR image (b) Color legend
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FIGURE 6.9 MR segmentation [37].

TABLE 6.5 Average true and false positive pixel counts (in %) for
pathological tissues

False Positives True Positives

FCM(V o) M3 FCM(V M3) FCM(V o) M3 FCM(V M3)

Tumor 10.3 5.6 5.2 59.4 66.1 75.3
Edema 5.9 5.9 8.7 75.9 77.9 81.2

be compared to Figure 6.9c. It’s hard to see on a printed copy, but
there is excellent correspondence between the tumor regions in
these two views. Table 6.5, adapted from Velthuizen et al., shows
the average performance on pathological tissues for segmenta-
tions of 13 images made by unsupervised M3, unsupervised
FCM(V 0), and unsupervised FCM(VM3).
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When FCM is initialized with V 0, segmentation is not as
good as M3; it has nearly 5% more false positives and about 7%
fewer true positives in tumor. In edema, the recognition rates
are about the same. When FCM is initialized with V M3, there is
substantial improvement in the true positive rate for both tissue
classes and a slight decrease in edema false positives.

To appreciate the importance of the validity issue when
segmenting images by clustering, see Figure 6.10, providing
segmentations of a digital mammogram of a patient with a
breast tumor (image MDB001 in the MIAS database [53]).
Figures 6.10b through 6.10f are segmentations of the origi-
nal image in Figure 6.10a made by the FCM algorithm given
in Table 6.2. Parameters of these runs are p = 1, m = 2, both
norms Euclidean, and termination threshold ε = 1.0.

All five segmentations are shown in shades of gray, assigned
to each pixel by hardening the columns of the terminal partition

(a) Original X-Ray

(c) FCM at c 5 6

(e) FCM at c 5 10

(b) FCM at c 5 4

(d) FCM at c 5 8

(f) FCM at c 5 12

FIGURE 6.10 Illustration of the validity problem when segmenting
with clustering. (See also color insert).

with H in Equation 6.7. The variable in these five views is c , the
number of tissue classes to seek. View b depicts the tumor as
one of four tissue classes, and this is probably a fairly accurate
representation of the tissue structure in this image. However,
FCM reliably delivers a partition of the input data at any spec-
ified value of c , and as you can see, if c = 12 tissue classes are
requested, as in Figure 6.10f, FCM happily complies. Medically,
of course, this is not a good result. Moreover, computing a valid-
ity functional such as the partition coefficient in Equation 6.9
will not tell an uninformed user that c = 4 or c = 6 is probably
the preferred algorithmic interpretation of this image. The best
approach to this problem likely lies with a rule-based approach
to validity.

Clark et al. [28] have reported results from a completely
automated system that extracts glioblastoma multiforme
tumors from sequences of transaxial MR images (for the pur-
pose of tumor volume tracking during treatment). FCM is
used during preprocessing to remove extracranial areas (air,
bone, skin, fat, muscles, etc.), which helps to limit process-
ing in subsequent steps. A rule-based expert system then
extracts the intracranial region and initiates the process of
iteratively refining the segmentation. Multispectral histogram
analysis of the intracranial region followed by region anal-
ysis provides the final tumor labeling. Results are provided
for 13 unseen volume datasets, with comparisons to super-
vised, radiologist-labeled “ground truth” tumor volumes, and
supervised k-nearest neighbor tumor segmentations.

There are many, many studies that perform segmentation
with fuzzy models along track USA . Without ground truth
images that can be used for quantitative assessment as in
Table 6.5, none of these studies will carry much weight in terms
of establishing the clinical efficacy (or lack of it) of a particular
model. Human expertise is needed, and it is more efficiently
used in the other two tracks shown in Figure 6.6. Nonetheless,
investigations in track USA are numerous and popular, possi-
bly because it is the easiest track to work in without the aid of
medically knowledgeable clinicians.

6.3.2 Unsupervised Segmentation: Track USB

One of the earliest (nonfuzzy) articles discussing the use of
rules in the context of MR segmentation was by Menhardt
and Schmidt [39]. The use of fuzzy rule-based guidance for
the segmentation of medical images, track USB of Figure 6.6,
apparently began with Li et al. [40]. These authors used FCM
as the first step in a knowledge-based (KB) system that auto-
matically segments and labels glioblastoma multiforme tumors
in successive MR slices of the human brain and subsequently
estimates total tumor volume. The approach discussed in [40]
is referred to next as the USF-KB system.

Initial clustering of image sections in the USF-KB approach is
performed by FCM with overclustering; i.e., the image is delib-
erately segmented into more clusters than are known to exist.
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When FCM uses for c the number of clusters determined by an
operator during manual labeling, FCM often separates tissue
types incorrectly. Overclustering is based on the premise that
multiple clusters containing the same tissue type are easier to
merge than the separation of tissue regions in undersegmented
clusters. This is in some sense the reverse of the VGC approach:
clusters are merged using mid-level rules rather than low-level
pixel-based processing.

After initial FCM segmentation, the overclustered partition
and the cluster center for each region are provided to a (crisp)
rule-based expert system that contains knowledge gathered
from a variety of sources such as radiologist expertise and
empirical observations. The USF-KB system includes heuris-
tics concerning tissue characteristics in feature space (T1, T2,
ρ) and anatomical information about the internal structure of
the brain.

Using knowledge-based and model-based recognition tech-
niques, the system iteratively locates tissues of interest. These
focus-of-attention tissues are analyzed by matching measured
to expected characteristics. For tumor segmentation, focus-of-
attention is used with additional stages of fuzzy clustering to
separate normal brain tissue from pathology, then to separate
tumor from nontumor pathology. This cycle is important, as it
allows the results of applying FCM to the raw images to guide
knowledge application, which in turn guides further clustering,
making it possible to break down the more complex problem of
tumor segmentation into smaller, more easily attainable goals.

Table 6.6 [35] shows results from USF-KB processed slices of a
single patient with diagnosed glioblastoma multiforme scanned
over five repeat sessions. Acronyms are false positive (FP), true
positive (TP), false negative (FN), tumor size (TS), and corre-
spondence ratio (CR). The slices were used to refine the rules in
the knowledge-based system. Ground truth for these slices in
the form of tumor pixel counts were made by a human operator.
False positives are nontumor pixels that are mislabeled.

The correspondence ratio shown in Table 6.6 is com-
puted with the formula CR = (TP− (1/2∗(FP+ FN)))/TS.
The true positives and false negatives sum to the tumor size,
TP+ FN=TS. This is one way to assess the overall quality of
the segmentation. The value of CR maximizes when there are

TABLE 6.6 Pixel counts for a glioblastoma-multiforme patient
using the USF-KB system

Patient ID FP TP FN TS CR

p32s19 4 667 36 703 0.920
p32s20 33 1007 54 1061 0.908
p45s17 28 420 16 436 0.913
p50s21 131 1197 41 1238 0.897
p50s22 101 960 46 1006 0.881
p52s18 17 491 37 528 0.878
p52s19 82 1010 26 1036 0.922
p56s19 112 984 47 1031 0.877
p56s20 82 892 47 939 0.881

no FPs or FNs. On the other hand, FPs that are not in the tumor
can cause this number to be negative. Thus, values close to
1 indicate segmentations that closely match human estimates.
Table 6.6 shows that the processed slices for this patient were
relatively accurate.

Hillman et al. [41] and Chang et al. [42, 43] report success at
Texas A & M University with a track USB scheme that is in some
sense diametrically opposite to the USF-KB model. This group
introduces fuzzy rules as a preprocessing stage followed by FCM
clustering to segment the remaining pixels in rat and human
brain MR images. Fuzzy rules endow the system with somewhat
greater reliability than crisp rules at a significant savings in
CPU time and storage. Approximately 80% of the pixels are
labeled by intensity thresholding with the fuzzy rule-base before
clustering. The mean vector of each set of labeled pixels (after
a hardening alpha-cut) provides FCM with initial prototypes.
After FCM segmentation of the unlabeled pixels, the final rat
brain segmentation obtained was reportedly satisfactory.

This technique has also been used to study HIV-positive
lesions in human MR images. In agreement with the USF-KB
system, this group reports that using FCM alone is not suf-
ficient to produce satisfactory segmentations of MR images.
They noted again that the computational complexity of FCM
was a problem and that FCM had difficulty in directly utilizing
spatial (nonfeature) information derived from the MR image.
Furthermore, they reported that FCM sometimes mislabeled
“easy” pixels of classes that did not have concave hulls in feature
space.

6.3.3 Supervised Segmentation: Track Su

Our discussion of fuzzy methods for supervised medical image
segmentation begins with the semisupervised FCM (ssFCM)
method. Techniques of this kind in the context of c-means
clustering were first discussed by Pedrycz [44]. Algorithms in
this category are (i) clustering algorithms that (ii) use a finite
design set XL ⊂ �P of labeled data to (iii) help clustering algo-
rithms partition a finite unlabeled dataset XT ⊂ �P , and then
(iv) terminate without the capability to label other points in
�P . The prefix “semi” is used because these schemes are not
supervised in the sense that labeled training data are used to
find the parameters of a classifier D that is subsequently used
to complete segmentation of XT as shown in the Su track of
Figure 6.6.

The semisupervised approach is applicable in domains such
as image segmentation, where users may have a small set of
manually derived labeled data, and can use it to supervise clas-
sification of the remaining pixels in a single image. Initially,
partitions of X for semisupervised clustering algorithms have
the form

Uc×n = [Utr︸︷︷︸
c×ntr

| Ute]︸︷︷︸
c×nte

, (6.14a)
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where

X = Xtr ∪ Xte . (6.14b)

When ni = Xtr ,i , the ni need not be equal, nor is it necessary that
the columns of Utr be crisp. The basic idea is to use (Xtr , Utr) and
Xte to find Ute . Roughly speaking, semisupervision exchanges
the generalization capability of a classifier trained with (Xtr , Utr)

for access to the structural information possessed by the points
in both Xtr and Xte while searching for clusters Ute of Xte .

The development and use of ssFCM for MRI segmentation is
discussed by Bensaid et al. [45]. In this model a modified version
of FCM (i.e., ssFCM) is applied to Xte . The training dataset Xtr

guides ssFCM toward improved clustering of the unlabeled pix-
els by splitting the FCM update conditions at Equation 6.10a for
U and V into labeled and unlabeled components. The labeled
components of U are fixed as in Equation 6.14a and can be
weighted by class so that ssFCM effectively uses many copies
of the relatively few training data in Xtr . This model is exem-
plified in a later section, where ssFCM is used to make volume
estimates of tumors.

Segmentation in the USF-KB model has been augmented by
the addition of fuzzy rules. Namasivayam and Hall [46] have
shown that over a large set of MR images from different patients,
fuzzy rules perform most reliably when they are based on rel-
ative differences in pixel intensities for different tissue types.
Relative fuzzy rules and ssFCM applied to the unlabeled pixels
in Xte yield more accurate and much faster (compared to FCM
alone) segmentations of normal MR images. ssFCM has also
been used in the reclustering stage of the USF-KB system. In
this application, crisply labeled training pixels are chosen by
a set of rules that identify tissue types with a high degree of
confidence.

6.3.4 Three-Dimensional Applications

The last topic in our chapter considers research that attempts to
extend 2D techniques such as segmentation into three dimen-
sions. Typical applications include volume estimation and
visualization, both of which are needed in pre- and postop-
erative surgical analysis. Nonfuzzy work in this area includes
that of Xiaoping et al. [48]. Visualization methods include a
lung micronodule detection system designed by Brown et al.
[64]. This system used a fuzzy-logic based three-dimensional
segmentation algorithm to assist radiologists in the early detec-
tion of lung cancer. Tested on a set of 15 thin-section CT images,
the results indicated improved sensitivities for both nodules and
micronodules. Vial et al. [58] investigated computational meth-
ods for fuzziness volume determination using 12 slices of MRI
images of cerebral metastasis and similarly obtained promising
improved accuracy results.

An interesting semi-automatic method based on fuzzy set
theory for registering a computerized brain atlas to MRI images
of the human cerebral cortex is described in Berks et al. [61]. As

a contrary example, Kobashi et al. [59] used fuzzy rules on MRI
images of pancreatic ducts from healthy and diseased patients
to identify the representative line of the pancreatic duct and
demonstrate the utility of this less computational approach
over segmentation. More recently, an unsupervised approach
used to segment the human airway tree from volumetric com-
puted tomography images of normal and diseased lungs can be
found in Tschirren et al. [57]. Results from this work are pro-
vided for images derived from 22 patients with ground truth
defined using the international standards for anatomical label-
ing of airways. The fuzzy connectivity algorithm employed was
found to consistently identify more airway segments in a single
unsupervised run compared to traditional region-growing-
based techniques requiring several runs and hand-tuning of
parameters.

Wang et al. [62] examine an alternate scale-based fuzzy con-
nectedness algorithm for airway segmentation from 3He MR
images and also obtained results with high accuracy and pre-
cision using scene datasets acquired for the tracheobronchial
trees of five rats. A recent example utilizing fuzzy set theory
in the domain of magnetic resonance angiography (MRA) for
semi-automatic vascular segmentation of data from 10 patients
can be found in Vermandel et al. [66]. Although more testing
is needed, this research is notable in that the speed of the pro-
posed algorithm was suitable for everyday practice.Yoshida et al.
[67] similarly consider the time-effectiveness of their computer-
aided diagnosis scheme for automated detection of colonic
polyps using hysteresis thresholding and fuzzy clustering.

The USF-KB system noted in the previous section has also
been used to estimate tumor volume [35]. Interslice variabil-
ity makes direct volumetric clustering of pooled sets of MR
slices problematic. From a knowledge perspective, developing a
model of the entire structure of the brain, even qualitatively, is
extremely complex (if possible at all; but see Hata et al. [26, 27]).
The USF-KB system exploits the fact that clustering performs
well on individual slices. A 3D segmentation can be constructed
by combining labeled tumor areas from each processed slice (as
long as there are no gaps) into a single volume.

Qualitative models called templates in the USF-KB system
model specific regions (in the axial plane) of the brain. These
models attempt to capture expected changes in the brain’s
anatomical structure at different points in the volume. Also,
slices are processed in contiguous order to allow knowledge
gleaned from processing one slice to be propagated axially, to
assist in classification and labeling decisions in spatially adja-
cent slices. This is roughly equivalent to imposing an extra layer
of supervision onto multiple copies of track USB of Figure 6.6.

Figure 6.11, from [35], compares the total tumor volume
estimated by the USF-KB system with the tumor volume based
on hand labeling by radiological experts at five observation
times (weeks 0, 7, 13, 16, and 20) during the course of treat-
ment of a brain tumor patient. The patient had diagnosed
glioblastoma multiforme and was undergoing both chemo
and radiation therapy during the 20–week period. There were
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FIGURE 6.11 Knowledge-based vs manual volume estimates [35].

TABLE 6.7 Variability in % of tumor volumes

ssFCM ISG k-nn

Intra-observer 6 6 9
Inter-observer 4 17 5

approximately 9 slices per volume in the axial plane (each 5 mm
thick with no gaps between slices) at each of the five sampling
periods. The graph shows that the unsupervised knowledge-
based system very closely models physician-generated ground
truth.

Results from a series of experiments at USF to measure
tumor volume from MR brain images using ssFCM, the k-nn
rule, and a seed-growing approach called ISG are reported in
Vaidyanathan et al. [34]. The objective was to determine how
sensitive these three methods were to training data chosen by
observers (technicians with some medical physics training). It is
difficult to choose training data from the raw images so that the
measured tumor volume is consistent over multiple trials. Four
patient cases were used in the study, with repeat scans available
for 2 patients (3 for patient 1 and 5 for patient 2).

Experiments reported byVaidyanathan et al. [34] are summa-
rized in Table 6.7, where tumor volume variability (in percent)
resulting from the choice of the training data for each trial
is reported. The differences in volume estimates for multiple
training sets chosen by one or more observers are given in terms
of averages over the 10 tumor volumes obtained from the four
patient cases. The tumors involved were either meningioma or
glioblastoma multiforme. All patients were undergoing therapy
during the course of repeat scans. This experiment indicates
that, for the cases studied, ssFCM and ISG are less sensitive to
the choice of training data by a single observer than the k-nn
rule. When more than one observer extracts training data, ISG
becomes very unstable; but ssFCM and k-nn are less sensitive
to changes of this kind.

Udupa and Samarasekera et al. [49] advocate the use of fuzzy
connectivity for image segmentation. The examples presented
by these authors all use 3D data. The basic methodology, like
that of Dellepiane et al. [23], is applicable to 2D segmentation.
This technique is initiated by a user-chosen seed for each tis-
sue class, so it follows the basic requirements for belonging to
our Su track. Image segmentation and object classification are
achieved by thresholding a fuzzy relation in the given image.
Udupa and Samarasekera begin with a formal representation of
fuzzy digital spaces composed of space elements (spels) in digital
p-space, special cases being pixels (p = 2) and voxels (p = 3).
Spel intensities are used to compute fuzzy spel affinities, which
in turn enable the authors to define and study the concepts
of fuzzy connected components, fuzzy object extraction, and
fuzzy spel labeling in images. Two region growing dynamic
programming algorithms for fuzzy object extraction and label-
ing are proposed and analyzed. Both algorithms are initiated at
a user-defined (seed) spel and are in this sense quite similar to
Dellepiane et al. [50]. However, Udupa and Samarasekera aim
for a much more general framework and present a much more
detailed mathematical analysis than Dellepiane et al. This is a
pretty technical approach, but one that may be worth following.

For more recent work addressing the paucity of reports on
tumor-volume measurement methods for head and neck neo-
plasms, see [68]. In this work segmentation was performed
using seed growing and knowledge-based fuzzy clustering
methods on a dataset derived from MR images of 69 patients.
The results indicated that the proposed method helped reduce
interoperator variance and obtain higher interobserver reliabil-
ity compared to manual tracing.

6.4 Conclusions and Discussion

6.4.1 Track USA

The better unsupervised techniques are still much too slow.
Improving speed via parallelization and optimization will
improve their competitiveness with, e.g., neural networks.
Development of dynamic cluster validity analysis also shows
promise. Unsupervised methods need better ways to specify and
adjust c , the number of tissue classes sought by the algorithm.
A study of 23 validity indices of all three types—crisp, fuzzy,
and probabilistic—concluded that mathematical validation for
mixtures of normal distributions was generally unreliable [51].
The VGC method seems useful for a limited objective, but in
general, the main problem persists: if c is unknown, is there
an automatic way to deduce that your algorithm has found
an interpretation of the image that humans will find agree-
able? Many experimental studies of countless validity indices
with various datasets offer little cause for optimism. More
research needs to be conducted before reliance can be placed on
mathematical validation. Human evaluation and labeling will
probably continue to be the most popular and certainly the most



108 Handbook of Medical Image Processing and Analysis

reliable method for systems using the track USA approach, but
this is subjective, time-consuming (and therefore expensive),
and susceptible to errors introduced by human factors such as
fatigue.

Initialization of unsupervised iterative methods such as FCM
is a third important area of research. Much effort has been
invested in ways to initialize unsupervised methods at points
in the solution space that don’t lead to local trap states (the
FCM(V M3) method, for instance). This is a pervasive problem
for all gradient-based techniques and can be very serious in the
application domain discussed here. The error functions that
are being optimized have very large numbers of unknowns, so
there will be a concomitant increase in the number of local solu-
tions that make an algorithm happy but offer little to medical
practitioners.

Another problem that is actually caused by using clustering
algorithm C for segmentation is the lack of enforcement of the
region properties in Equation 6.12. This problem is related to
cluster validity, but is not caused entirely by not running C at the
“correct” number of tissue classes. More work is needed on this
problem. A paper by Tolias and Panas [52] addresses this prob-
lem as follows: after running FCM to termination on an image,
they apply a Takagi–Sugeno type fuzzy rule base to the image.
This last pass is noniterative and uses the rules to merge regions,
smooth boundary transitions, and eliminate noise. Variants of
this approach will continue to be important and positive steps
toward improving the unsupervised approach to medical image
segmentation.

6.4.2 Track USB

The most desirable situation is that the evolution of some form
of track USB will eventually lead to a library of prelabeled pro-
totypical images that can be used to train a generic classifier,
thereby eliminating intervention by humans to supply tissue
labels for clusters formed by algorithms in this track. However,
variations in real images from location to location in the same
patient, from patient to patient, and from sensor to sensor make
this possibility rather remote at present.

Image understanding groups have long since recognized the
need for fusion of low- and mid-level data and information.
One of the hallmarks of track USB is the use of hybrid mod-
els that fuse low-level, pixel-based processing with mid-level
rules, facts, heuristics, and rules of thumb in knowledge-based
systems. This is the trend in both medical and nonmedical
image understanding efforts. The work reviewed here sup-
ports this trend and suggests that track USB will ultimately
yield a truly unsupervised design for (limited objective) medi-
cal image analysis. At the input end, knowledge-based labeling
with well-established rules can dramatically reduce the num-
ber of unlabeled pixels (windows, cases, etc.) that need to be
classified. And at the output end, rules can be used to “clean
up” unsupervised outputs and then label the final tissue classes.

It is expected that as research in this area grows, so will the
achievement of dynamic cluster validity using cluster merging
and splitting rules. These rules will be both mathematically and
teleologically based. Aggregation of evidence using Sugeno-type
fuzzy integrals should be of great help in this area.

6.4.3 Track Su

Experience and careful documentation of many case studies in
a particular area (such as segmentation of MR imagery) are
needed to make any real progress in this area. The instability of
supervised techniques to training sets across different sensors,
patients, and even within MR slices for the same patient might
be improved by the generation of more globally representa-
tive training sets. The growth industry in track Su is probably
in neural networks and their fuzzy relatives, a topic purposely
eschewed in this chapter. However, without expert rules, it is
expected that supervised learning for segmentation of medical
images—with or without the new network approaches that are
nowadays so fashionable—has little chance to become the back-
bone of computational image analysis in fielded systems that are
reliable enough to be accepted by the health care industry.

6.4.4 Final Comments

The general accuracy of computational techniques that per-
form well needs to be further investigated across different
imaging devices, types of patient problems, and medical com-
munities. Perhaps the largest single impediment to real success
in this domain is the lack of very large (e.g., 100,000 sets
of labeled patient slices for MR studies per pathology), well-
documented databases. The Digital Database for Screening
Mammography (DDSM [10]) contains 2,620 cases encompass-
ing 10,480 images, and offers a minimally acceptable basis for
mammography research, but still falls far short of what most
believe to be an adequate number of cases for training and test-
ing. There are many other important areas in medicine that
share imaging sensors as a common thread (e.g., cancer of the
cervix, prostate cancer, bone cancer, heart disease, and lung
disorders). The construction of such databases, which can be
shared worldwide, is difficult and expensive. On the other hand,
the reward—delivery to the health care industry of an economi-
cal means of vastly improved diagnosis, treatment, and recovery
procedures—is well worth the cost.

The classification of suspicious areas in a medical image
should, when possible, be compared quantitatively to ground
truth patient information, in terms of the number of false pos-
itives and false negatives. Furthermore, error rates tell only part
of the story. They should always be benchmarked against visual
assessment by practicing clinicians. The development of use-
ful instruments for solicitation from and interaction between
medical personnel and computer scientists is an area for careful
research that is often ignored. For example, in mammography,
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useful judgmental functions for radiologists include assess-
ment of the enhancement quality of the breast skin line and
breast substructure, the sufficiency of the detail level within
and outside these areas, and the level of differentiation between
normal and abnormal tissues. However, providing outputs for
these assessments and user-friendly communication channels
to convey them are nontrivial issues, and this aspect of medi-
cal image analysis is usually given scant attention by computer
professionals. More work needs to be done to involve qualified
human factors personnel throughout the system develop-
ment process in the design of instruments that provide such
feedback.

Finally, fusion of outputs (multiple classifiers) remains fash-
ionable, and rightfully so. Information of different types cer-
tainly resides in different sensors and processing streams. This
falls in the realm of the overworked buzzwords “sensor fusion”;
the buzzwords are overworked, but the idea is solid—can infor-
mation from different outputs be combined so that the fused
image is more informative to clinicians than either of the com-
ponent images? This works in other application areas (see [3]
for an example in land-mine detection). Ayala et al. [56] have
explored this idea in the context of retinal vessel segmentation
to provide a more accurate representation of possible alter-
ations in the vascular tree for early disease detection. Their
work includes a proposal of two new fuzzy set averages and test-
ing across three well-known segmentation procedures. Results
based on a public database of 20 fundus images demonstrated
that the segmentations often improved (i.e., smaller connected
vessel parts became visible) without any human intervention.

Multiple fuzzy models can be integrated to essentially cast a
weighted vote for “significant” areas within an image, and fuzzy
models will be useful for this purpose. The use of soft deci-
sion templates [3], for example, to combine confidences about
pixels and pixel windows, has enjoyed success in other appli-
cation domains, and thus seems appropriate here as a useful
means for fusion of multiple output streams. The soft deci-
sion template model (and many neural network models that
were not covered in this chapter) does not explicitly concern
medical imagery, but methodologies of this kind will likely be
useful in the domain of computational medicine. On a related
note, Masulli [55] has recently examined models for transition-
ing between fuzzy membership schemes, to increase flexibility
in the interpretation of results. This work was most recently
applied to MRI images as an interactive visualization tool for
image segmentation of cranial images.

Another important area to mention is data acquisition
and the understanding of how engineering principles that
govern imaging technology affect the presentation of med-
ical images with different media. While this chapter has
focused primarily on applications in segmentation, fuzzy logic
techniques are increasingly being used simply for contrast
enhancement in a variety of images. (For an example in micro-
calcification enhancement in digital mammograms, see [63].)
However, there remains a need to systematically assess how

the medium upon which, say, a mammogram is presented
influences the interpretation task and other clinically related
issues. Examining the impact of the human–computer inter-
face in medical imaging is an interesting, exciting, important,
and very difficult undertaking, as it involves human factors,
engineering, computer science, and medical expertise. Studies
of this aspect of medical imaging, conducted in a coordinated
and integrated manner, are needed to provide a solid ground-
work for biomedical computer scientists and engineers. This
is particularly relevant given that fuzzy logic techniques are
now making their way into new domains, such as quantitative
proteome analysis [60].
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7.1 Introduction

The use of medical imaging methods as biomarkers is becom-
ing an increasingly important field of research. Specifically,
for quantitative monitoring of disease progression, individu-
alized therapy planning, and the analysis of drug response, the
computer-assisted analysis of biomedical image data has moved
into the focus of interest as an issue of high-priority research
efforts in the United States and worldwide. In particular, quan-
titative biomedical imaging can be used for streamlining the
development of new therapeutic agents, as recently discussed
at a special focus forum organized by the National Institute of
Standards and Technology; see [1].

Here, different stakeholders, such as the pharmaceutical and
medical device industries, contract research organizations, as
well as governmental institutions are developing strategies to
interact in a target-oriented manner in order to provide quality

assurance for clinical drug or therapy trials based on quantita-
tive imaging. For example, the Food and Drug Administration
(FDA), the National Cancer Institute (NCI), and the Centers
for Medicare and Medicaid Services (CMS) have agreed to col-
laborate on improving the development of cancer therapies
and outcomes for cancer patients through biomarker devel-
opment and evaluation [2]. A similar effort across the National
Institutes of Health’s (NIH’s) Institutes and Centers is being
planned [1].

To put this kind of quantitative biomedical imaging into
reality, advanced methods of intelligent pattern recognition
play a key role. Here, the identification of “meaningful” image
components, i.e., structural and functional segmentation, is a
key issue providing the basis for any kind of further high-
level image analysis. In biomedical image processing, a wide
range of applications is based on segmentation: One may
think of the volumetric analysis with respect to normal or

Copyright © 2008 by Elsevier, Inc.
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pathological organ development, temporal monitoring of size
and growth in pathological processes, or as a basis for the appli-
cability of automatic image fusion algorithms when combining
the complementary information obtained by different image
acquisition modalities.

Still, the simplest way to obtain good segmentation results
is segmentation by man. This yields excellent results, which is
due to the fact that human operators do not only apply the
presented image data information, but also make use of addi-
tional model-based knowledge such as anatomical skills as well
as complex psychological cognitive abilities, e.g., with respect to
orientation in space. However, the segmentation of hundreds
of magnetic resonance imaging (MRI) or computed tomog-
raphy (CT) slices by manual contour tracing is a very time-
consuming task that requires a considerable amount of human
intervention.

Therefore, it is desirable to perform segmentation by
machines. However, this is difficult to achieve, as the com-
plex cognitive abilities just mentioned can hardly be transferred
to computer programs. An efficient strategy to cope with this
problem is to present additional image data information as an
input to automatic image segmentation systems, thus compen-
sating for the lack of high-level image analysis capabilities in
machines. A possible realization of this principle is the acqui-
sition and processing of “multispectral” image datasets, which
forms the basis of the segmentation approach presented in this
chapter.

A huge variety of automatic medical image segmentation
procedures has been described in the literature. A good sur-
vey is provided by the list of citations published in [3] that may
serve as a good starting point for further reference. Examples for
different segmentation methods range from simple histogram-
based thresholding or region growing algorithms, to more
sophisticated techniques such as active contours or watershed
transformation.

In this chapter, we concentrate on segmentation by the analy-
sis of “multispectral” images. Here the image object is examined
by n > 1 different image acquisition techniques, e.g., differ-
ent MRI sequence protocols. Appropriate preprocessing steps
comprise the anatomically correct registration of the datasets
and masking a region of interest in which the segmentation
should be performed. Finally, each voxel can be characterized
as a vector in an n-dimensional feature space composed of the
gray levels obtained for the different image acquisition tech-
niques. Segmentation then becomes the problem of classifying
these multidimensional feature vectors as belonging to a specific
element among a given set of alternative “meaningful” image
components.

The segmentation algorithms described in this chapter are
not based on presumptive heuristic rules derived from anatomi-
cal meta-knowledge of how such a classification decision should
be made. In contrast, purely data-driven self-organization of the
classifier is employed according to the principle of “learning by

example” rather than analyzing the data according to a fixed set
of given rules.

In this context, data analysis may be performed by two dif-
ferent strategies. The first one tries to identify characteristic
properties of the multidimensional data distribution of unla-
beled feature vectors, i.e., without a given interpretation of the
data with respect to the segmentation classes. We refer to this
approach as unsupervised clustering (UC). The second strategy
involves labeled data, i.e., the learning algorithm requires both
the feature vector itself and a target function defining its inter-
pretation with regard to segmentation class membership. This
approach resembles learning with a teacher. We call it supervised
classification (SC).

Neural network computation offers a wide range of different
algorithms for both UC and SC. Some of them have been used
for multispectral image segmentation in the past. However, UC
and SC are usually treated as completely different issues. In
this chapter, we present an algorithmic approach that aims to
combine UC and SC, where the information obtained during
UC is not discarded, but is used as an initial step toward sub-
sequent SC. Thus, the power of both image analysis strategies
can be combined in an integrative computational procedure.
This is achieved by applying so-called generalized radial basis
functions (GRBF) neural networks.

In the remainder of this chapter, we (i) explain the theory
of GRBF networks in the context of UC and SC, (ii) dis-
cuss their application to medical image segmentation, and (iii)
present our own segmentation results for multispectral 3D MRI
datasets of the human brain with respect to the tissue classes
“gray matter,” “white matter,” and “cerebrospinal fluid.” Finally
(iv), we sketch a wide range of recent applications in biomed-
ical image processing where the multispectral segmentation
approach introduced in this chapter has proven to be useful
for using quantitative imaging as a biomarker for analyzing
disease progression in multiple sclerosis (MS), as well as a mul-
tipurpose tool that can be applied to many fields of biomedicine
ranging from biomedical basic research to clinical assessment
of patient data. In particular, this approach has proven to
be useful in applications to functional MRI data analysis for
human brain mapping, dynamic contrast-enhanced perfusion
MRI for the diagnosis of cerebrovascular disease, for mag-
netic resonance mammography in the analysis of suspicious
lesions in patients with breast cancer, and for nuclear medicine
in dynamic renal scintigraphy for the differential diagnosis
between functional and obstructive urinary excretion deficits in
children.

7.2 Structure and Function of the GRBF
Network

Our neural network approach to segmentation explained in this
chapter is based on GRBF networks. The general architecture of
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a GRBF network is shown in Figure 7.1. It consists of three layers
of neurons: input layer, hidden layer, and output layer. If we
start from n input neurons with activations xi , i ∈ {1, . . . , n},
the activation pattern of the input layer is represented by
an n-dimensional vector x in the so-called feature space IRn .
This activation is propagated to the N neurons of the hidden
layer by directed connections with “synaptic weights” wji . The
synaptic weights wj ∈ IRn , j ∈ {1, . . . , N }, are computed as a set
of prototypical vectors that represent the dataset in the feature
space. The activation aj of the hidden layer neuron j is chosen
as a function of the distance d = ||x – wj || of the data vector
x with respect to the virtual position wj of the hidden layer
neuron j. d hereby defines an arbitrary metric in the feature
space, e.g., the Euclidean metric. The term “virtual position”
is based on the idea that the activation aj of the hidden layer
neuron should take its maximum value xmax �wj , which can be
looked at as a “specialization” of the neuron j with respect to the
position xmax ·

It is obviously reasonable to choose aj as a monotonically
declining function of d , i.e., the activation aj of the hidden
layer neuron should decline with increasing distance between
x and the virtual position wj . A simple choice is an isotropi-
cally decreasing function aj , i.e., the declining behavior does not
depend on the direction of the difference vector (x − wj). From
this results a symmetry with respect to rotation, i.e., a radial
decline of aj (x) in the neighborhood of wj : Therefore, we refer
to the activation function aj (x) as a radial basis function (RBF).
With respect to favorable properties regarding function approx-
imation, Girosi and Poggio [4] propose the use of Gaussian
activation functions ãj (x):

ãj(x) = g (‖x − w ‖, pj) = exp

(
−‖x − wj ‖2

2p2
j

)
. (7.1)

Moody and Darken [5] propose a global normalization of the
hidden layer activation by

Input layer
xi           i 5 1... n

Output layer
Fi           i 5 1... m

wj

Hidden layer
aj (x )       j 51... N

sj

FIGURE 7.1 Structure of the GRBF network.

A(x) =
N∑

i=1

ã(x) =
N∑

i=1

g (‖x − wi ‖, pi), (7.2)

which results in a hidden layer activation of

aj(x) = ãj(x)

A(x)

= g (‖x − wj ‖, ρj)∑N
i=1 g (‖x − wi ‖, ρi)

=
exp

(
−‖x−wj‖2

2ρ2
j

)
∑N

i=1 exp
(
−‖x−wi‖2

2ρ2
i

) . (7.3)

Thus, a competition between the hidden layer neurons is intro-
duced that enables a probabilistic interpretation of classification
results. The radial symmetry of the activation function ãj(x)
in Equation 7.1 is obviously lost by the normalization in
Equation 7.3. In the following, we refer to this issue by using the
term “generalized radial basis functions” (GRBF). In [4] such a
system is called “Hyper-BF Network.”

In a final step, a linear signal propagation of the hidden layer
activation is performed to the m neurons of an output layer by
weighted summation,

y(x) =
N∑

j=1

sj aj(x), (7.4)

or in terms of single components,

yi(x) =
N∑

j=1

sij aj(x), i ∈ {1, . . . , m} . (7.5)

In neural network computing, this mapping corresponds to a
structure called the perceptron (Rosenblatt [6]).

7.3 Training Procedure

The memorized “knowledge” of the network is represented by
the free parameter P = {(wj , sj , ρj)}, i.e., the weights wj and sj

as well as the range ρj of the Gaussians in the hidden layer. It
serves as the basis for the approximation of a function

F : IRn → IRm , x �→ y = F(x), (7.6)

which should be provided by using a training dataset T = {(xv ,
yv)|v ∈ {1, . . . , p}}, where p denotes the number of sample
patterns. Here, two aspects should be considered: on one
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hand, the network should reproduce the given training data
as well as possible; on the other hand, it should be able to pro-
vide some reasonable generalization with respect to unknown
test data.

An obvious training strategy is the minimization of the
error

E(P) =
p∑

v=1

‖ yv − F(xv) ‖2. (7.7)

An attempt at simultaneous optimization of all the free
parameters by gradient descent on the cost function (7.7)
implies two problems: on one hand, the procedure can be
trapped in local minima, thus providing suboptimal solutions.
One may cope with this difficulty by randomization employ-
ing noise (so-called simulated annealing ) that enables escape
from local minima. A second problem is involved by the slow
convergence of such a global optimization. In this context, the
method proposed by Poggio [7] does not provide any advantage
compared to the classical optimization strategy of error back-
propagation for the multilayer perception (see, e.g., [8]). Such a
global, i.e., simultaneous, optimization of all the parameters
also does not correspond with the idea of biological infor-
mation processing by local self-organization. This can serve
as a motivation for a proposal by Moody and Darken [5]
to split up the parameter space P = {(wj , sj , pj)} into three
smaller partitions {wj}, {sj}, and {ρj} that may be optimized
separately. The resulting dimensionality reduction involves an
increased convergence rate for the optimization process within
the different partitions. On the other hand, this strategy may
sometimes lead to suboptimal minimization results for (7.7),
for there is no longer a systematic search on the total parameter
space P .

This concept of separate optimization within each of the
three partitions of P is the basis of the GRBF architecture
applied in this chapter. It works in three steps:

1. Initially, the virtual positions wj of the hidden layer
neurons are calculated in a procedure called vector quan-
tization (VQ). This is based on an unsupervised clustering
algorithm; i.e., the target information yv of the training
dataset T = {(xv , yv)|v ∈ {1, . . . , ρ}} is not used within
the training procedure.

2. Once the virtual positions wj are known, the width of
the “receptive fields” ρj of the hidden layer neurons is
determined by some appropriate heuristic rule or by
optimization with respect to the quality of the function
approximation result.

3. Finally, the output weights sj are computed. For this pur-
pose, one can choose between a global gradient descent
method and a local training procedure based on Hebbian
correlation learning.

These training steps are explained in the following paragraphs.

7.3.1 Optimization of the wj: Vector Quantization

Let n denote the dimension of the feature space, e.g., the
number of gray levels obtained for each voxel. Let K denote the
number of feature vectors xv ∈ IRn . Clustering by VQ identifies
groups j ∈ {1, . . . , N } of vectors sharing similar features. These
groups are represented by prototypical vectors called codebook
vectors (CVs) wj located at the center of the corresponding
clusters.

VQ procedures determine these cluster centers by an iterative
adaptive update according to

wj(t + 1) = wj(t )+ ε(t )aj(x(t ), W (t ), k)(x(t )− wj(t )),
(7.8)

where ε(t ) denotes a learning parameter, aj a so-called coop-
erativity function that, in general, depends on the codebook
W (t ), a cooperativity parameter k, and a presented, in general,
randomly chosen feature vector x ∈ {xv |v ∈ {1, . . . , K }}.

VQ algorithms can be classified according to the coopera-
tivity function aj . One can distinguish between so-called hard
clustering methods that assign each feature vector x to exactly
one cluster represented by the CV wj and soft clustering methods
implying the concept of fuzzy membership of feature vectors in
several clusters.

For example, a simple method for hard clustering is the algo-
rithm proposed by Linde, Buzo, and Gray (LBG) [9]. Here, aj is
calculated by the “winner takes all” learning rule

aj(x(t ), W (t )) := δi(x)j , (7.9)

where i(x) is determined according to the minimal distance
criterion

||x − w|| = min
j
||x − wj ||.

If we change aj in such a way that more than one CV can take
part in the update at the same time t , Equation 7.8 changes into
a“winner takes most”learning rule. The resulting soft clustering
methods can be classified according to the metric on which the
cooperativity function aj is based.

If we do not use the metric of the feature space itself, but
define a mapping

r : IN → Y ⊂ IRk , J �→ r( j), (7.10)

of the CVs onto a target space, we obtain a scenario that may
be interpreted with respect to a neural network model of sen-
sory maps (e.g., [10]). Usually k is chosen k � N and k � n.
The r( j)’s can be thought of as representing the physical loca-
tion of neurons in a cortex model. A common choice would
be the ordering of the r j ’s on a regular low-dimensional grid
(k ∈ {2, 3}). However, this is not mandatory (see, e.g., [11]).
By choosing the metric of the cooperativity function aj accord-
ing to the neuron positions r j in the target space, we obtain
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Kohonen’s self-organizing map (SOM) algorithm [12, 13].
aj is then chosen as a monotonically declining function of the
distance to the “winner neuron” r ′(x(t )), e.g., a Gaussian

a(r( j), r ′(x(t )), σ(t )) := exp

(
− (r − r ′(x(t )))2

2σ(t )2

)
, (7.11)

or a characteristic function on a k-dimensional hypersphere
around r ′(x(t )),

aj(r( j), r ′(x(t )), σ(t )) := χ‖r−r ′(x(t ))‖≤σ(t )

:=
{

1 : ‖r − r ′(x(t ))‖≤ σ(t )
0 : ‖r − r ′(x(t ))‖> σ(t ).

(7.12)

The update rule Equation 7.8 then becomes

wj(t + 1) = wj(t )+ ε(t )aj(r( j), r ′(x(t )), σ(t ))(x(t )− wj(t )).
(7.13)

σ(t ) denotes a concrete choice of the cooperativity parameter κ
in Equation 7.8. It is a measure for the“range”of the cooperativ-
ity function aj(r(j), r ′(x(t )), σ(t )) on the cortex model. As well
as the learning parameter ε(t ), it is usually updated according
to some heuristic annealing scheme. A common strategy is an
exponential decay, i.e.,

σ(t ) = σ(0)
(
σ(tmax)

σ(0))

) t
tmax

, t ∈ [0, tmax], (7.14)

and

ε(t ) = ε(0)
(
ε(tmax)

ε(0))

) t
tmax

, t ∈ [0, tmax]. (7.15)

In contrast to algorithms in which the cooperativity function is
based on the metric of the feature space, such as k-means type
clustering or minimal free energy VQ, the SOM algorithm has
the interesting property of topology preservation; i.e., neighbor-
ing points of the feature space are mapped onto neighboring
neurons of the cortex model. In various data analysis prob-
lems, this allows for the construction of graphically appealing
2D maps that represent the CVs in some topological order.
However, this order may be misleading because of folding of
the feature map (see, e.g., [14]) in cases where the data are
located on manifolds with a dimension> k.

If we avoid the mapping like Equation 7.10 of the CVs onto a
cortex model but apply a metric of the feature space aj directly
according to

aj(x(t ), W (t ), k ≡ ρ(t )) = exp(−Ej(x(t ))/2ρ2)

L
, (7.16)

we obtain the cooperativity function for the soft clustering
scheme proposed by Rose, Gurewitz, and Fox [15].

Here, the “error” Ej(x(t ))= ||x(t )−wj(t )||2 measures the
distance between the codebook vector wj and the data vector x.
L denotes a partition function given by

L =
∑

j

exp(−Ej(x)/2ρ2), (7.17)

and ρ is the cooperativity parameter of the model. This so-
called fuzzy range ρ(t ) defines a length scale in the feature
space, not in a cortex model such as σ(t ) in Equations 7.11
or 7.12. According to the analogy to statistical mechanics (see
later discussion), p can be interpreted as the temperature T in
a multiparticle system employing T = 2ρ2. It is annealed to
repeatedly smaller values in the VQ procedure, e.g., according
to an annealing scheme such as Equation 7.14.

The learning rule (Equation 7.8), with aj given by
Equation 7.16 describes a stochastic gradient descent on the
error function

Fp(W ) = − 1

2ρ2

∫
f (x) ln Ldnx , (7.18)

which, using the terminology of statistical mechanics, is a free
energy in a mean-field approximation [15, 16]. Here, f (x)
denotes the probability density of feature vectors x . The values
of the cooperativity function aj are normalized

N∑
j=1

aj(x , W , ρ) = 1 (7.19)

and can be interpreted as the assignment probabilities of a given
feature vector x to each of the CVs j ∈ {1, . . . , N } [15].

The CVs wj mark local centers of the multidimensional
probability distribution f (x). Thus, for the application to multi-
spectral image segmentation, the CV wj is the weighted average
of all the gray-level feature vectors xv belonging to cluster j with
respect to a fuzzy tesselation of the feature space according to
Equation 7.16.

In contrast to SOMs, minimal free energy VQ

1. can be described as a stochastic gradient descent on an
explicitly given energy function (see Equation 7.18) [15],

2. preserves the probability density without distortion
as discretization density, i.e., the number of CVs,
grows toward infinity [17, 18], and, most important for
practical applications,

3. allows for hierarchical data analysis on different scales of
resolution [19].

Furthermore, the procedure can be monitored by vari-
ous control parameters such as the free energy, entropy, and
reconstruction error, which enable an easy detection of clus-
ter splitting. Properties of resulting optimal codebooks have
been thoroughly investigated [17] and allow for a self-control
process of the VQ procedure with respect to theoretically proven
conservation laws [19].



118 Handbook of Medical Image Processing and Analysis

(a) (b)

(c) (d)

(e) (f)

FIGURE 7.2 Two-dimensional toy example for minimal free energy
VQ (from [32]). Decreasing ρ leads to repetitive cluster splitting, thus
enabling data analysis on different scales of resolution.

Figure 7.2 illustrates the application of hierarchical mini-
mal free energy VQ clustering to a simple two-dimensional toy
example.

As the “fuzzy range”ρ declines in the course of the annealing
scenario, the VQ procedure passes several stages:

1. In the beginning of the VQ process (ρ→∞), all the
assignment probabilities for any given feature vector x
are equal, i.e., aj(x) = 1/N . This state is characterized by
a single minimum of the free energy (see Equation 7.18).
All the CVs are located in the same position of the feature
space, i.e., there is maximal “degeneracy” of the codebook

with only one cluster representing the center of mass of
the whole dataset.

2. As the deterministic annealing procedure continues with
decreasing ρ > 0, phase transitions occur and large clus-
ters split up into smaller ones representing increasingly
smaller regions of the feature space. Correspondingly, the
number m(ρ) of clusters increases (1 ≤ m(ρ) ≤ N ) until
cluster degeneracy is removed completely.

3. For ρ→ 0, each feature vector x is solely attributed to
the closest CV, and aj is given by the hard clustering
cooperativity (Equation 7.9).

Minimal free energy VQ forms the basis for the unsupervised
segmentation approach presented in this chapter. However, in
contrast to the learning rule (Equation 7.8), the CVs are com-
puted employing a “batch algorithm” that is explained in the
following:

Let ( f )X denote the expectation value of a random variable
f , i.e.,

〈 f 〉X :=
∫
X

f (x)p(x)dx (7.20)

with probability density p(x), and let

〈 f 〉j :=
∫
X

f (x)p(x
∣∣j )dx (7.21)

denote the class-specific expectation values. Then (f )j can be
computed according to Bayes’ rule

p(x|j) = p(x)p( j|x)
p( j)

(7.22)

as

〈 f 〉j :=
∫
X

f (x)
p(x)p( j|x)

p( j)
dx = 〈aj(x)f 〉x

〈aj(x)〉x , (7.23)

if we interpret the activations aj(x) as the a posteriori proba-
bilities p(j|x) (see Equation 7.19) for the assignment of feature
vector x to the hidden layer neuron j, thus leading to

p( j) =
∫
X

p( j ∩ x) dx =
∫
X

p(x) p( j|x)dx = 〈aj(x)〉X (7.24)

as the average activation (so-called load) of neuron j. The
stationarity condition

〈aj(x)(x − wj)〉X != 0 (7.25)

of the learning rule (Equation 7.8) yields

wj = 〈aj(x)x〉X
〈aj(x)〉X , (7.26)
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i.e., the iteration of Equation 7.8 until stationarity results in a
fuzzy tesselation of a feature space∫

X

p(x)dx =
∑

j

∫
X

p(x)p( j|x)dx, (7.27)

where the CVs wj represent the class-specific averages 〈xj〉 of
the data distribution according to Equation 7.23.

Equation 7.26 represents a batch version of minimal free
energy VQ. The right side of Equation 7.26 is influenced via
the activations aj(x) by the CV positions wj . The procedure
is iterated until convergence is achieved for the wj . The batch
version is well suited for implementation on parallel computers
(see [20]).

7.3.2 Optimization of the ρj

Once the virtual positions wj have been computed, one has
to determine the widths ρj of the receptive fields. With regard
to various heuristic approaches to compute and optimize the
ρj , we refer to the literature, e.g., [21]. One can either define
an individual ρj for every CV wj or a global ρj for all CVs.
A simple global method proposed by [5] is to choose the aver-
age nearest-neighbor distance of the CVs. In this chapter, we
choose a global width ρ = ρj , j ∈ {1, . . . , N } for all CVs that is
determined by optimizing the classification results of the GRBF
network.

7.3.3 Optimization of the sj: Supervised
Learning

The output weights sj (see Figure 7.1) are collected in the matrix

S := (sij) ∈ IR(m
′N ). They can be determined in two different

ways:

• A first approach is a global training procedure. Given the
training dataset T = {(xv , yv)|v ∈ {1, . . . , p}}, the error
function

E = 1

2p

p∑
v=1

∥∥yv − Sa(xv)
∥∥2

(7.28)

can be minimized by a gradient descent method. Thus,
the weight change �sij in a training step with a learning
rate e results in

� sij = −ε∇sij E , (7.29)

i.e.,

�sij = ε

p

p∑
v=1

[
yv

i −
N∑

k=1

sikak(x
v)

]
aj(x

v). (7.30)

Assuming convergence of the procedure, i.e.,�sij = 0,
this yields

p∑
v=1

yv
i aj(x

v) =
p∑

v=1

N∑
k=1

sikak(x
v)aj(x

v). (7.31)

Class label information is then introduced as follows: If
yv belongs to class λ ∈ {1, . . . , m},

yv
i = δi,λ(x

v), i ∈ {1, . . . , m}, (7.32)

holds; i.e., the component yv
λ of yv is set to 1, whereas all

the other components are set to 0.
By computing the sum over the activations belonging to

all the feature vectors of a specific class λ, Equation 7.31
transforms into a system of m linear equations for the
weights sλk :

〈aj(x)〉xλ =
N∑

k=1

Sλk〈ak(x)aj(x)〉x , λ ∈ {1, . . . , m}.
(7.33)

• An alternative approach is a local training procedure based
on a Hebbian learning rule:

�sij = ε(yi − sij)aj(x). (7.34)

According to the hypothesis of Donald Hebb [22], it
rewards correlated pre- and postsynaptic activation by a
growth term�sij � yiaj(x). The decay term�sij ∼ sij aj(x)
acts as a simple means to avoid explosive weight growth.
In contrast to Equation 7.31 the local update rule
(Equation 7.34) only requires information of neurons that
are directly coupled to each other by the corresponding
synaptic weight. Thus, Equation 7.34 is inspired by the
idea of localized biological information processing.

If we again assume the convergence of the procedure,
i.e.,�sij = 0, summation over all x ∈ X yields

p∑
v=1

yv
i aj(x

v) =
p∑

v=1

sij aj(x). (7.35)

If we introduce the class label information by yv
i = δi,λ(xv )

,
the final weights can be calculated by

sλj = 〈aj(x)〉Xλ
〈aj(x)〉Xλ

. (7.36)

Besides the local structure of the training procedure,
weight computation according to Equation 7.36 provides
the advantage of weight normalization:

m∑
λ=1

sλj = 1. (7.37)
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Together with the normalization of the hidden layer acti-
vations according to Equation 7.19, this also results in a
normalization of the output activations yλ(x),

m∑
λ=1

yλ(x)
m∑
λ=1

N∑
j=1

sλj aj(x) = 1 (7.38)

and thus (also because of aj(x) ≥ 0 and sλj ≥ 0) enables a
probabilistic interpretation of the classification properties
of the GRBF network. This can be explained as follows:
according to Equation 7.19, we can interpret the hidden
layer activations aj(x) as conditioned assignment prob-
abilities p( j|x) of the feature vector x to the codebook
vector j, and, with regard to Equation 7.37, the sλj as the
conditioned assignment probability p(λ|j) of class λ to
the codebook vector j . Linear signal propagation

yλ(x) =
N∑

j=1

sλj aj(x) (7.39)

then yields the a posteriori probability of class λ at a given
feature vector x ∈ X :

p(λ|x) =
N∑

j=1

p(λ|j)p(j|x). (7.40)

Thus, the GRBF perceptron with the local learning rule
(Equation 7.34) for the output weights represents a Bayes
classifier that does not require the computation of the
corresponding a posteriori probabilities from known a
priori probabilities by Bayes’ rule (Equation 7.22).

Unfortunately, the local training procedure (Equation 7.34) is
inferior to the global training procedure (Equation 7.31) with
respect to the classification performance of the total network
(see, e.g., [20]). For this reason, the global training proce-
dure is recommended. Its application to tissue classification
is presented in Section 7.8.2.

7.4 Application to Medical Image
Segmentation

In the preceding section, we explained the underlying theory
and general properties of the GRBF neural networks used in this
chapter. This provides the basis for their application to auto-
matic segmentation of magnetic resonance imaging datasets of
the human brain.

The general concept of multispectral voxel-based brain seg-
mentation can be explained as follows: n different 3D datasets
for each brain are obtained employing different MRI acqui-
sition parameters. In this chapter, we used n = 4 MRI acqui-
sition sequences (T 1 weighted, T 2 weighted, proton density

weighted, and inversion recovery sequences; see Section 7.5).
Segmentation aims at classifying each voxel of the multispec-
tral dataset as belonging to a specific tissue type, thus obtaining
information about structure and volume of the tissue classes.

A classical problem with numerous clinical applications is
the segmentation of brain imaging data with respect to the
tissue classes gray matter, white matter, and cerebrospinal fluid
(CSF). Several other structures such as meninges or venous
blood may be introduced as additional segmentation classes.
However, these additional classes comprise only a small part
of the total brain volume. Furthermore, for most of the clin-
ical applications, the focus of interest is reduced to gray- and
white-matter structures. Therefore, we assigned these minor
additional classes to CSF.

Although such a threefold classification of brain tissue may
be sufficient for numerous clinical applications, it should be
emphasized that the concept presented in this chapter can be
extended to an arbitrary number of tissue classes. Especially
one may think of introducing additional classes for the identi-
fication of pathological tissue, e.g., multiple sclerosis plaques or
malignant brain tumor structures.

Before segmentation and classification, several preprocessing
steps have to be performed on the imaging data. These steps will
be explained in the following section.

7.5 Image Data

The image datasets were obtained on a 1.5 T whole body MRI
scanner (Siemens, MagnetomVision). Four healthy male volun-
teers (aged 24–32 years) were examined in a prospective study
employing a standardized MRI sequence protocol: T 1 weighted
MP-RAGE, T2 weighted and proton density (PD) weighted
spin echo, and Inversion-Recovery (IR) sequences. The MRI
acquisition parameters of each sequence are listed in Table 7.1.

A second essential preprocessing step is the anatomically
correct alignment of the datasets obtained by the different
MRI sequences. In general, it is sufficient to process the raw
image data without further image registration, as the head of
the scanned subject is kept in a constant position during the
whole MRI acquisition protocol and a corresponding field of
view (FOV) is applied in each of the four MRI sequences. Only

TABLE 7.1 Acquisition parameters for the four MRI sequences of the
3D datasets

T 1 T 2 PD IR

Magn. field strength [T] 1.5 1.5 1.5 1.5
Number of images 126 63 63 63
Matrix size 512× 512 256× 256 256× 256 256× 256
Pixel size [mm] 0.449 0.898 0.898 0.898
Slice thickness [mm] 1.5 3.0 3.0 3.0
TR [ms] 11.6 3710 3710 9975
TE [ms] 4.9 90 22 60
TI [ms] — — — 223
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(a)

(c) (d)

(b)

FIGURE 7.3 Example of corresponding images of a multispectral 3D dataset of the human brain obtained by
different MRI acquisition techniques. Corresponding types of tissue are represented by different gray levels in
the different MRI sequences, (a) T 1 weighted image, (b) T 2 weighted image, (c) Proton density weighted image,
(d) Inversion recovery image.

the T 1 weighted image data had to be resampled with respect to
matrix size and slice position in order to match the parameters
of the other MRI sequences (see Table 7.1). However, correct
alignment may require additional preprocessing steps, if motion
artifacts have to be corrected. This situation will be discussed
in Section 7.6.1.

Figure 7.3 presents an example of corresponding images
of the four different MRI acquisition techniques. The exam-
ple shows one of 63 coronal cross-sections orthogonal to the
anterior commissure–posterior commissure (AC–PC) line that
were acquired according to a pilot plan shown in Figure 7.4.

7.6 Preprocessing

7.6.1 Image Registration

The concept of voxel-based multispectral image segmenta-
tion requires anatomically correct alignment of the datasets
acquired within different image acquisition procedures. As
pointed out in Section 7.5 for MRI datasets of the human brain,
this may already be achieved during the acquisition procedure
itself by stabilizing the subject’s head position and applying
a constant field of view in the different MRI sequences. In
general, this will be sufficient in order to obtain an acceptable
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FIGURE 7.4 Pilot plan for the acquisition of coronal cross-sections
of the human brain orthogonal to the anterior commissure–posterior
commissure (AC–PC) line.

co-registration of the different MRI datasets. Nevertheless, there
may be situations in which motion artifacts cannot be avoided.
In these cases additional image registration techniques have to
be applied. Registration methods can be classified with regard
to the level of human interaction required within the procedure
(see, e.g., [23,24]):

1. Manual interactive registration by a human observer.
2. Semi automatic procedures that require a lesser amount

of human interaction. An example is so-called mark-and-
link methods in which a human observer has to identify
corresponding anatomical landmarks serving as reference
points for the registration procedure.

3. Fully automatic procedures that do not require any
human working power (e.g., [25–27]): These methods
are frequently applied for the superposition of datasets
obtained in different medical imaging modalities such as
MRI, CT, positron emission tomography (PET), or sin-
gle photon emission computed tomography (SPECT),
in order to make use of the complementary diagnostic
information provided by the different modalities.

Figure 7.5 shows an example for manual interactive registra-
tion: for this purpose, the information of two datasets has to be
condensed within a single image. To obtain simultaneous visi-
bility of image information, the gray levels of the first dataset are
represented by the pixel intensity of the merged image, whereas
the gray levels of the second dataset are represented by the pixel
color. In Figure 7.5 a T 2 weighted image (Figure 7.5a) and a T 1

weighted image (Figure 7.5b) are superimposed in Figure 7.5c.
Misalignment of the anatomical structures can be identified.
The T 1 weighted image is then moved by translation and rota-
tion under interactive visual control of a human observer until
a correct anatomical alignment is achieved (Figure 7.5d) with
respect to the T 2 weighted image.

7.6.2 Presegmentation

After correct anatomical registration of the n image datasets,
an additional preprocessing step can be performed: all the
extracerebral structures that are not required for the tissue
classification task should be excluded from the dataset.

Figure 7.6a shows a T 1 weighted image of a coronal cross-
section through the head. Besides the brain, various other
structures can be identified, such as the skull and the phar-
ynx. When a mask is defined, these extracerebral structures are
removed. Finally, only the structures belonging to the brain
remain in the dataset (Figure 7.6b).

The restriction to brain structures by excluding all the vox-
els in the surrounding tissue structures provides important
advantages for the subsequent segmentation task:

1. Vector quantization is restricted only to voxels that are
relevant with respect to the segmentation task. The result-
ing codebook thus represents the gray-level distribution
of the brain voxels without the contribution of irrelevant
extracerebral voxels.

2. The gray-level range is restricted. Without presegmenta-
tion, some codebook vectors would specialize on tissue
classes outside the brain. This, however, would lead to a
decreased representation of tissue classes within the brain.
However, this could be compensated by increasing the
total number of codebook vectors applied in the vector
quantization procedure.

3. Voxels inside and outside the brain with a similar gray-
level representation do not cause problems for the brain
tissue segmentation task. If presegmentation was omit-
ted, such voxels would be attributed to the same codebook
vector; i.e., they could not be separated from each other.
This could be achieved only by considerably increasing the
number of codebook vectors in order to obtain a more
fine-grained resolution of the gray-level feature space,
which, in turn, would increase the computational expense
for vector quantization.

The last item in particular justifies the additional effort for
presegmentation. In analogy to image registration, there is
a wide scope of methods for presegmentation ranging from
manual contour tracing to semiautomatic or fully automatic
procedures. The latter exist in numerous implementations
and are available on a commercial basis. They are frequently
based on filter operations or region-growing algorithms (see,
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(a)

(c) (d)

(b)

FIGURE 7.5 Interactive matching of two corresponding images. (a) Gray-level representation of a T 2
weighted image (reference image). (b) Gray-level representation of a T 1 weighted image, (c) Superposition
of the two images; in practice, the T 2 weighted image is represented by the color of the merged image,
whereas the T 1 weighted image is represented by the pixel intensity; here, only black-and-white rep-
resentations are shown. Misalignment with respect to corresponding anatomical features can clearly be
identified. (d) The T 1 weighted image is moved in order to obtain a correct match with the T 2 weighted
image.

e.g., [28, 29]). For presegmentation of the datasets included in
this chapter, we performed manual contour tracing by human
observers.

7.6.3 Rescaling

In a last preprocessing step, the gray levels of each dataset
are normalized to the unit interval [0, 1]. Let G̃ ∈ IR(mx ,my ,l ,n)

represent the gray levels of a presegmented, multispectral
dataset according to the explanations of the previous sections,
consisting of n datasets with l images each of size mx ×my

(n = 4, l = 63, mx = my = 256 for the data applied in this

chapter). G̃r ,s,t ,u thus represents the gray level of a voxel, where
u denotes the index of the single dataset (e.g., 1 =̂T 1 weighted,
2=̂T 2 weighted, 3=̂ proton density weighted, 4=̂ inversion
recovery); t , the image, i.e., slice number; and r , s, the x- and
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(a) (b)

FIGURE 7.6 Presegmentation by masking of extracerebral structures, (a) Original image. (b) Presegmented
image.

y-position within the image, respectively. Let

g̃min(u) = min
1≤m′x≤mx , 1≤m′y≤my , 1≤l ′≤l

G̃m′x ,m′y ,l ′,u , u ∈ {1, . . . , n},

denote the minimal gray level of dataset u, and

g̃max(u) = max
1≤m′x≤mx , 1≤m′y≤my , 1≤l ′≤l

G̃m′x ,m′y ,l ′,u , u ∈ {1, . . . , n} ,

the maximal gray level. Then each dataset u ∈ {1, . . . , n} is
rescaled according to

Gr ,s,t ,u = G̃r ,s,t ,u − g̃min(u)

g̃max(u)− g̃min(u)
,

r ∈ {1, . . . , mx}, s ∈ {1, . . . , my

}
, t ∈ {1, . . . , l} . (7.41)

G ∈ IR(mx ,my ,l ,n) here denotes the rescaled multispectral data-
set. An alternative approach would be rescaling according to
the standard deviation of the gray-level distribution in each
of the single datasets. This would reduce the effect of outliers
on the rescaling procedure.

Rescaling enables equivalent weighting of the single datasets
in the subsequent vector quantization step; see Section 7.7.

7.7 Vector Quantization

After performing the preprocessing steps explained in the pre-
ceding section, we obtain multispectral data G ∈ IR(mx ,my ,l ,n)

consisting of n correctly aligned, normalized datasets, where
extracerebral voxels are excluded by a presegmentation mask.
This can be interpreted as follows.

Each voxel of the multispectral 3D dataset represents an n-
dimensional feature vector x that is determined by the tissue
class for this voxel:

x =

⎛
⎜⎜⎜⎝

g1

g2

...
gn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Gr ,s,t ,1

Gr ,s,t ,2

...
Gr ,s,t ,n

⎞
⎟⎟⎟⎠. (7.42)

The dataset X = {x} is now presented as the input to a vector
quantizer according to Section 7.3.1. By unsupervised cluster-
ing, a set C of codebook vectors wj with C = {wj ∈ Rn| j ∈
{1, . . . , N }} is computed that represent the dataset X . Here,
the number N of codebook vectors is much smaller than
the number of feature vectors. The codebook vector posi-
tions are determined by minimal free energy VQ presented in
Section 7.3.1, where the update of the codebook vectors wj is
performed employing the batch version of the algorithm:

wj = 〈aj(x)x〉x
〈aj(x)x〉x . (7.43)

The activation aj(x) is given by

aj(x) =
exp

(
−||x−wj ||2

2ρ2

)
∑N

i=1 exp
(
−||x−w||2

2ρ2

) . (7.44)

The calculation of the wj ’s implies an “external” computational
loop where pj is decreased and an internal loop where the wj ’s
are calculated by iteration of Equation 7.43 for each given ρ.



7 Segmentation with Neural Networks 125

In detail, this works as follows: in a first step, the number tmax

of the “external” iteration steps, the initial ρ(t = 0), and final
value ρ(tmax) of the widths ρj of the receptive fields are defined,
and the codebook vector positions are initialized at the center
of the data distribution X . While keeping ρj = ρ(t = 0) con-
stant, the “internal” loop is iterated according to Equation 7.43
until the codebook vectors have reached stationary positions or
a maximal number of iteration steps (e.g., 50) have been per-
formed. Subsequently, the widths ρj of the receptive fields are
reduced according to an exponential decay scheme

ρ(t ) = ρ(0)
(
ρ(tmax)

ρ(0)

) t
t max

, t ∈ [0, tmax] , (7.45)

and the procedure is repeated. The computation is stopped at
the iteration step tmax of the “external” loop.

As a result,we obtain a fuzzy tesselation of the feature space X .
According to Equation 7.23, the codebook vectors wj represent
the cluster-specific centroids 〈x〉j of the dataset. This tesselation
of the feature space provides the basis for two methods of tissue
segmentation that will be explained in Section 7.8.

It should be mentioned that for reducing the computational
expense of the procedure, it is useful not to present the total
dataset X , but to restrict the input of the vector quantizer
to a representative subset X ′ ⊂ X of randomly chosen feature
vectors x ′ ∈ X ′.

7.8 Classification

Given a set of feature vectors x in a gray-level feature space G,
vector quantization can determine a set of prototypical code-
book vectors wj representing the feature space. This provides
the basis for segmentation of the imaging dataset with respect to
different tissue classes. Two alternative approaches are discussed
in the following paragraphs.

7.8.1 Interactive Assignment of Codebook
Vectors

The interactive assignment approach requires two steps: in a
first step, each feature vector x is uniquely attributed to a code-
book vector wj according to a minimal distance criterion. If a
vector x is presented as an input to a GRBF network sketched
in Figure 7.1, the N neurons of the hidden layer are activated
according to

aj(x) =
exp

[
−‖x−wj‖2

2p2
j

]
∑N

i=1 exp
[
−‖x−wi‖2

2p2
i

] . (7.46)

Now the feature vector x is attributed to the neuron j, i.e.,
the codebook vector wj with maximal activation according to

Equation 7.3. This is obviously equivalent with assigning the
feature vector x to the codebook vector w(x) with minimal
distance to x:

w(x) = wj , with ||x − wj || = min
i
||x − wi ||. (7.47)

Thus, the fuzzy tesselation of the feature space is transformed
into an exhaustive and mutually exclusive“hard”tesselation that
assigns each feature vector x, i.e., each voxel of the 3D dataset
to the nearest-neighbor codebook vector wj .

In a second step, each codebook vector w j is assigned to a tis-
sue class λ ∈ {l , . . . , m} (e.g., 1=̂ gray matter, 2=̂ white matter,
3=̂ CSF) that is represented by the codebook vector. For this
reason, for each of the N codebook vectors wj , all the voxels
of the 3D dataset belonging to this codebook vector according
to Equation 7.47 are labeled automatically. Interactive visual
inspection of the images of the 3D dataset that contain the max-
imal number of pixels belonging to a specific codebook vector
wj usually enables a decision on which tissue class λ is rep-
resented by this codebook vector. Thus, it is usually sufficient
to analyze N images for assigning each codebook vector to a
tissue class. If a clear decision for a codebook vector cannot
be made, additional images with highlighted pixels belong-
ing to the specific codebook vector can be viewed in order
to perform a proper tissue class assignment. As a result, each
of the m tissue classes λ is represented by a set of codebook
vectors wλ

j .
When each voxel is assigned to a codebook vector wj accord-

ing to Equation 7.47 and each codebook vector is assigned to a
tissue class λ, all the voxels of the 3D dataset can be attributed
to a tissue class. This, however, is equivalent to the segmen-
tation of the dataset with respect to the given tissue classes.
Figure 7.7a shows a T 1 weighted image, and Figure 7.7b shows
the corresponding segmented image with gray-level represen-
tation of the three tissue classes “gray matter,” “white matter,”
and “CSF.”

Besides this simple manual assignment of codebook vectors
to tissue classes, segmentation can be performed by an alter-
native approach: classification by supervised learning. This is
explained in the following paragraph.

7.8.2 Supervised Classification

The classification by supervised learning approach makes use
of the whole GRBF network explained in Figure 7.1. If a feature
vector x is presented to the input layer, the neurons of the hidden
layer are activated according to Equation 7.3. The hidden layer
activations aj(x) are transferred via the output weights sj to the
m neurons of the output layer:

yi(x) =
N∑

j=1

sij aj(x), i ∈ {1, . . . , m}. (7.48)

Here, each output neuron i corresponds to one of the m tis-
sue classes λ. A voxel represented by its feature vector x is



126 Handbook of Medical Image Processing and Analysis

(a) (b)

FIGURE 7.7 Segmentation, (a) T 1 weighted image of a 3D dataset. (b) Corresponding segmented image with
gray-level representation of the tissue classes (medium gray =̂ “gray matter,” light gray =̂ “white matter,” dark
gray =̂ “CSF”).

assigned to the class λ(x) = i with maximal activation yi(x)
of the corresponding output neuron i:

λ(x) = i, with yi = max
j

yj . (7.49)

Assignment of all the voxels to a tissue class according to
Equation 7.49 finally yields the segmentation of the dataset.

This procedure requires the supervised training of the out-
put weights sj . For this purpose, the global training procedure
explained in Section 7.3.3 is employed. The training dataset
T = {(xv , yv)|v ∈ {1, . . . , p}} required for supervised learning
is provided by interactive labeling of a small representative sub-
set of the data by a human observer. This is performed by
manual contour tracing of regions that can clearly be attributed
to one of the tissue classes without ambiguity. Figure 7.8 shows
an example for regions manually labeled as“gray matter,”“white
matter,” and “CSF.” If a training vector xv can be assigned to
the tissue class λ, the corresponding component yv

λ of the tar-
get vector yv is set to 1, whereas all the other components are
set to 0.

7.9 Results

This section presents results for the segmentation of 3D MRI
datasets of the human brain described in Section 7.5 by the
methods explained earlier [30]. Multispectral MRI data were
acquired in four healthy male volunteers. In the following,

FIGURE 7.8 Manual labeling of tissue classes for supervised learning.
The labeled regions (medium gray =̂ “gray matter,” light gray =̂ “white
matter,”dark gray =̂“CSF”) provide the training dataset for supervised
learning of the output weights sj of the GRBF network.

“dataset q” refers to the multispectral data of volunteer q,
q ∈ {1, . . . , 4}.
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Initially, the four datasets were preprocessed according to
the procedures explained in Section 7.6. Interactive, anatomi-
cally correct manual alignment of the single MRI sequence data
according to Section 7.6.1 was necessary for only one of the
four datasets (dataset 4); all the other datasets were already
aligned correctly because of corresponding MRI acquisition
parameters.

After preprocessing, the datasets were segmented by applying
two different strategies:

• Manual interactive assignment of codebook vectors to
tissue classes according to Section 7.8.1.

• Semiautomatic classification by a GRBF network accord-
ing to Section 7.8.2.

In the following, the results and their evaluation are dis-
cussed with respect to the relation between segmentation
quality and the amount of human intervention required for
the segmentation procedures.

At first, the results for vector quantization of the gray-value
feature space with manual interactive assignment of code-
book vectors to tissue classes will be discussed. The parameters
used for minimal free energy vector quantization are listed in
Table 7.3.

As can be seen from Table 7.2, the simple manual assign-
ment of codebook vectors already yields good segmentation
results. Typical examples are presented in Figures 7.9b, 7.10b,
and 7.11b.

The average manual processing time for the assignment
of codebook vectors to tissue classes was 6 minutes per
dataset; i.e., the procedure requires only a little human
intervention.

However, this approach sometimes yields suboptimal res-
ults, especially in cases where a codebook vector cannot be
attributed to a single tissue class without ambiguity. Sometimes
a codebook vector is positioned at the border between two
tissue classes, which makes a clear assignment difficult or
even impossible. In these situations, a hard, i.e., unique,
assignment of the codebook vector to a single tissue class
leads to misclassifications resulting in decreased segmentation
quality.

Detailed segmentation results using vector quantization are
listed in Table 7.3.

TABLE 7.2 Semiquantitative evaluation of segmentation qual-
ity employing vector quantization in the gray-level feature space
and subsequent manual assignment of codebook vectors and
GRBF classification, respectivelya

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Manual assignment 2.0 1.8 1.9 1.9
GRBF classification 1.9 1.6 1.8 1.7

a The quality of each image of a 3D dataset was evaluated by a neuroradiologist on a
5–grade semiquantitative score (1= excellent, 5= insufficient). The table contains
the average scores of all the images belonging to a 3D dataset.

(a)

(b)

(c)

FIGURE 7.9 Comparison of the segmentation results for a
frontal coronal cross-section of dataset 2. (a) T 1 weighted image.
(b) Segmentation by vector quantization and subsequent manual inter-
active assignment of codebook vectors. (c) Segmentation by a GRBF
classifier.
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(a) (b)

(c)

FIGURE 7.10 Comparison of the segmentation results for a central coronal cross-section of dataset 2.
(a) T 1 weighted image. (b) Segmentation by vector quantization and subsequent manual interactive assignment
of codebook vectors. (c) Segmentation by a GRBF classifier.

In the following, the results for classification by a GRBF
network after preceding vector quantization of the gray-level
feature space are discussed. The parameters of the GRBF
classifier are listed in Table 7.3. The training data comprise
approximately 1% of the whole dataset each. Detailed numbers
are listed in Tables 7.4 and 7.5.

This approach yields better segmentation results than unsu-
pervised clustering with respect to subjective evaluation by a
neuroradiologist, as can be seen from Table 7.2. Typical segmen-
tation results are presented in Figures 7.9c, 7.10c, and 7.11c.

The improvement of segmentation quality, however, was
accompanied by a considerable increase of human intervention:
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(c)

(a)

(c)

(b)

FIGURE 7.11 Comparison of the segmentation results for an occipital coronal cross-section of dataset 2.
(a) T 2 weighted image. (b) Segmentation by vector quantization and subsequent manual interactive assignment
of codebook vectors. (c) Segmentation by a GRBF classifier.

Manual processing time for interactive labeling of the train-
ing data was approximately 30 minutes per dataset. Thus,
supervised classification requires more human intervention
than unsupervised clustering.

Table 7.6 presents a detailed list of segmentation results using
GRBF classification.

Tables 7.7 through 7.11 present a comparative evaluation of
results obtained by the two different segmentation approaches

using contingency tables. On average, 92.6% of the voxels were
assigned to corresponding class labels.

7.10 Discussion

In this chapter we have presented a neural network approach
to automatic segmentation of MRI datasets of the human
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TABLE 7.3 Parameters employed for vector quantization of the
gray-level feature space (see Section 7.7) and GRBF classification (see
Section 7.8.2)

Parameter Value

# Codebook vectors N 20
# Iteration steps tmax 250

VQ Radius ρ(t = 0) 0.2
Radius ρ(t = tmax) 0.02

# Classes m 3GRBF
Radius ρ 0.06

TABLE 7.4 Statistics of the training datasets used for the GRBF
classifiera

Tissue Dataset 1 Dataset 2 Dataset 3 Dataset 4

# Voxels 3177 3620 2887 3383
Gray matter Volume [cm3] 7.69 8.77 6.99 8.19

Ratio [%] 38.1 44.3 43.3 45.4
# Voxels 4664 3810 2986 3429

White matter Volume [cm3] 11.29 9.23 7.23 8.3
Ratio [%] 55.9 46.6 44.7 46.0
# Voxels 500 746 799 638

CSF Volume [cm3] 1.21 1.81 1.93 1.54
Ratio [%] 6.0 9.1 12.0 8.6
# Voxels 8341 8179 6672 7450

Total Volume [cm3] 20.19 19.81 16.16 18.03
Recognition

rate [%] 98.2 99.1 99.2 97.5

a The table shows the number of voxels labeled as “gray matter,”“white matter,” and “CSF”;
the resulting volumes; and the corresponding percentage of the whole training dataset.
Furthermore, the ratio of correct GRBF classification results for the training dataset is
listed.

TABLE 7.5 Segmentation results for vector quantization of the
gray-level feature space according to Section 7.7 and subsequent man-
ual interactive assignment of the codebook vectors to the tissue classes
according to Section 7.8.1a

Tissue Dataset 1 Dataset 2 Dataset 3 Dataset 4

# Voxels 318551 347602 297290 354015
Gray matter Volume [cm3] 771.39 841.74 719.91 857.27

Ratio [%] 51.3 51.6 47.3 53.7
# Voxels 199684 230728 230532 232711

White matter Volume [cm3] 483.55 588.72 558.25 563.53
Ratio [%] 32.2 34.2 36.7 35.3
# Voxels 102372 95705 100526 72305

CSF Volume [cm3] 247.9 231.76 243.43 175.09
Ratio [%] 16.5 14.2 16.0 11.0

Total # Voxels 620607 674035 628348 659031
Volume [cm3] 1502.84 1632.22 1521.59 1595.89

a The table shows the number of voxels labeled as “gray matter,”“white matter,” and “CSF”;
the resulting absolute volumes; the corresponding percentage of the total volume; and the
total values for each dataset.

TABLE 7.6 Results for segmentation by vector quantization
according to Section 7.7 and subsequent classification by a GRBF
network according to Section 7.8.2a

Tissue Dataset 1 Dataset 2 Dataset 3 Dataset 4

# Voxels 365574 378156 331883 362367
Gray matter Volume [cm3] 885.26 915.73 803.68 877.50

Ratio [%] 58.9 56.1 52.8 55.0
# Voxels 185608 212557 204439 225901

White matter Volume [cm3] 449.46 514.72 495.06 547.04
Ratio [%] 29.9 31.5 32.5 34.3
# Voxels 69425 83322 92026 70763

CSF Volume [cm3] 168.1 201.77 222.85 171.36
Ratio [%] 11.2 12.4 14.7 10.7

Total # Voxels 620607 674035 628348 659031
Volume [cm3] 1502.84 1632.22 1521.59 1595.89

a The table shows the number of voxels labeled as “gray matter,”“white matter,” and “CSF”;
the resulting absolute volumes; the corresponding percentage of the total volume; and the
total values for each dataset.

TABLE 7.7 Explanation of the contingency tables used for the
comparison of two segmentation procedures: The tables contain a
contingency matrix A = (aij)

a

Manual assignment

Gray White CSF

Gray a11 a12 a13

GRBF White a21 a22 a23

CSF a31 a32 a33

a The matrix element aij denotes the number of voxels classified as belonging to tissue
class i(i ∈ {gray matter, white matter, CSF}) by the GRBF network and to tissue class j(j ∈
{gray matter, white matter, CSF}) by manual assignment of codebook vectors.

TABLE 7.8 Contingency table for dataset 1; class labels corres-
ponded in 569,701 of 620,607 voxels (91.8%)

Manual assignment

Gray White CSF

Gray 316,721 16,123 32,730
GRBF White 1,824 183,561 223

CSF 6 0 69,419

TABLE 7.9 Contingency table for dataset 2; class labels corres-
ponded in 623,303 of 674,035 voxels (92.5%)

Manual assignment

Gray White CSF

Gray 337,542 27,308 13,306
GRBF White 9,079 203,420 58

CSF 981 0 82,341
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TABLE 7.10 Contingency table for dataset 3; class labels corre-
sponded in 588,520 of 628,348 voxels (93.7%)

Manual assignment

Gray White CSF

Gray 294,677 26,764 10,442
GRBF White 662 203,768 9

CSF 1,951 0 90,075

TABLE 7.11 Contingency table for dataset 4; class labels corre-
sponded in 609,789 of 659,031 voxels (92.5%)

Manual assignment

Gray White CSF

Gray 333,576 25,512 3,279
GRBF White 18,700 207,194 7

CSF 1,739 5 69,019

brain by neural network computation. The GRBF architec-
ture enables an effective combination of unsupervised and
supervised learning procedures.

Although the results presented in the preceding section are
very encouraging, several critical issues still need to be discussed
with regard to the data, the aim of segmentation, and the vali-
dation of the results. These remarks can provide an outlook for
further research activities:

1. Validation. As there is no “gold standard” for evaluating
the quality of segmentation results, careful considerations
have to be made with regard to defining the objectivity,
reliability, and validity of the procedure.

a. Objectivity. This has two aspects: On one hand, more
detailed investigations have to be made with regard
to the interobserver variability of the segmentation
results that are influenced by human interaction:
In the unsupervised learning approach there may
be interindividual variations in cluster assignment
decisions, whereas in the supervised classification
approach there may be different segmentation results
due to different choices of the training data that are
interactively labeled by a human observer perform-
ing manual contour tracing. A second aspect that
should be subject to more detailed investigation is
the reproducibility of the GRBF neural network seg-
mentation results compared to other semiautomatic
segmentation procedures.

b. Reliability. A closer examination of the intraobserver
variability of the segmentation results has to be made
in cases where the same data are reprocessed by the
same individual at different times. The segmentation

results may differ because of those parts of the pro-
cedure that require human interaction, as explained
previously. A different aspect is the variability of
the segmentation results in repetitive MRI exami-
nations of the same subject at different times. This
is especially important for studies that focus on
the temporal monitoring of size and growth of
pathological processes.

c. Validity. The semiquantitative evaluation by an
experienced neuroradiologist as presented in the
previous section can be only a first step to critical
analysis of segmentation quality. In further studies,
this should be accompanied by objective measure-
ments such as the planimetric analysis in a series of
cross-sections after neuropathological preparation of
animal brains.

2. Data. Segmentation results can be influenced by the
choice of the MRI sequences as well as different ways of
extracting information from these input data.

a. MRI sequences. Further studies are required with
regard to which MRI sequences should contribute to
the multispectral dataset serving as raw data for the
segmentation procedure. These may vary according
to the focus of interest in specific clinical situations.
One might expect, for example, that proton den-
sity weighted sequences are not very helpful when
a detailed white/gray matter segmentation is to be
performed. On the other hand, additional sequences
such as FLAIR may be useful for providing better
segmentation results for various types of pathologi-
cal tissue. Such considerations should be guided by
the attempt to achieve a reasonable trade-off between
two complementary optimization criteria: segmen-
tation quality and MRI sequence acquisition time.
The latter is a critical issue when examining patients
instead of healthy volunteers.

b. Product space. Because of local inhomogeneities of
imaging properties, a specific tissue class may have
different location-dependent gray-level appearance.
Thus, it could be helpful to extend the segmenta-
tion procedures explained in this chapter in order to
account for such gray-level shift effects. A possible
solution could be to operate in the product space of
gray-level and spatial coordinates, serving as a new
input feature space. This could provide a more com-
prehensive description of the dataset and, thus, may
improve the segmentation results.

3. Aim of segmentation. The three tissue types—gray
matter, white matter, and CSF—are just a preliminary
choice for defining brain tissue segmentation classes,
although they turn out to be sufficient for most clinical
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applications. However, they may be completed by intro-
ducing additional classes for venous blood, meninges, etc.,
thus providing a more fine-grained tissue separation. This
is extremely important when segmentation is to be used
for defining the spatial extent of pathological lesions. Here,
one could specify classes for types of pathological tissue,
e.g., for defining focal lesions such as tumors or multiple
sclerosis plaques.

In summary, a wide range of further research topics has
to be covered in future studies based on the results presented
here. Such investigations can help to introduce automatic neu-
ral network segmentation as a cost-effective and reliable tool
for routine medical image processing according to the growing
importance of quantitative image analysis techniques for clin-
ical decision making. Successful applications of this kind are
presented in the remainder of this chapter.

7.11 Topical Applications, Conceptual
Extensions, and Outlook

In the following, we sketch conceptual extensions and a wide
range of recent applications in biomedical image processing,
where the multispectral segmentation approach introduced
in this chapter has proven to be useful for using quanti-
tative imaging as a biomarker: (i) The Deformable Feature
Map (DM) algorithm as a novel neural network method for
self-organized model adaptation with applications in image
registration and segmentation, (ii) Analyzing disease progres-
sion in Multiple Sclerosis (MS) by quantitative bioimaging,
and (iii) Functional segmentation as a multi-purpose tool for
the exploratory analysis of biomedical image time-series. The
latter has been proven to be useful in applications to func-
tional MRI data analysis for human brain mapping, to dynamic
contrast-enhanced perfusion MRI for the diagnosis of cere-
brovascular disease, to magnetic resonance mammography for
the analysis of suspicious lesions in patients with breast can-
cer, and to nuclear medicine in dynamic renal scintigraphy
for the differential diagnosis between functional and obstruc-
tive urinary excretion deficits in children. Topical projects
related to the modeling of speech production based on in vivo
MRI data and to genomewide expression analysis of microar-
ray data in bioinformatics confirm the broad applicability of
the presented methods to many fields of biomedicine, rang-
ing from biomedical basic research to clinical assessment of
patient data.

7.11.1 The Deformable Feature Map

Looking at the multispectral segmentation approaches sketched
in the previous sections of this chapter, the question arises: Do
we have to acquire specific training data for each individual

dataset for obtaining acceptable segmentation results? In other
words, from a theoretical machine learning perspective, we
have to address the question: Can we re-utilize previously
acquired knowledge in order to economize the pattern recognition
procedure?

To develop successful strategies to cope with this question,
we analyzed methods for supervised function approximation,
which led to an idea on how to exploit apparent similarities of
datasets when comparing different but similar objects.

Various algorithms have been proposed for function approx-
imation and classification, e.g., multi-layer-perceptrons trained
by the error-back-propagation algorithm [33], support vector
machines [34], or the GRBF networks [35], [36] explained
in Section 7.2 of this chapter. These algorithms are based
on the supervised training of a sample dataset by adapt-
ing the neural network parameters in order to represent an
appropriate model of the target function. Here, the GRBF
approach is specific in the sense that it decouples the func-
tion approximation problem into two different computational
steps: an initial unsupervised vector quantization step is fol-
lowed by a supervised training of the neural network output
weights.

To address the aforementioned question of re-utilization of
previously acquired knowledge in the pattern recognition pro-
cess, we needed to refer to the problem of training a changing
target function. For instance, the target function may repre-
sent a dynamical system in a changing environment involving
an inevitable temporal shift of parameters. A different example
refers to apparent similarities within pattern analysis problems
when comparing different but similar objects. In biomedical
research datasets, this phenomenon can be observed frequently
(see, e.g., [37]). One may think of the interindividual variabil-
ity of anatomical features: there are no completely identical
biological individuals, but there may be obvious anatomical
“resemblances” (see, e.g., Figure 7.12a,b).

These examples imply the need for adaptive plasticity in
order to avoid a complete retraining of the function approx-
imation network. Within the framework of GRBF function
approximation, it is usually the supervised training of the out-
put weights that is kept flexible in order to meet the needs of
learning a changing target function, whereas the parameters
obtained in the initial VQ procedure are preserved. For exam-
ple, this approach has frequently been chosen in the so-called
mixture-of-experts solution of time-series prediction by com-
peting RBF networks (see, e.g., [38]). This is motivated by the
observation that the VQ step is computationally more expen-
sive than the adaptive training of the output weights. However,
there may be situations in which repetitive supervised train-
ing is a critical issue, as an appropriate labeled training dataset
may be expensive, e.g., require human effort, or may not be
available at all.

In [39, 40], the author presented an algorithm that pro-
vides a reverse, alternative approach to adaptive function
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(a) (b)

(c) (d)

FIGURE 7.12 Results of fully automatic segmentation of multispectral magnetic reso-
nance imaging datasets of the human brain using the Deformable Feature Map approach.
The upper row (a, b) shows T 1–weighted MR images. The lower row (c, d) shows the cor-
responding segmentations with respect to three classes “white matter” (light gray), “gray
matter” (middle gray), and “cerebrospinal fluid” (dark gray). The images of the left column
(a, c) belong to an individual Y , the images of the right column (b, d) belong to a different
individual X . The segmentation of Y (c) served as a reference dataset for a fully automatic
segmentation of X , shown in (d). From [39]. (See also color insert).

approximation: the Deformable Feature Map (DM). Here, the
output weights of a GRBF network are kept constant, whereas
the retraining is performed at theVQ level using an unsupervised
method. In this context, the need for explicit supervised train-
ing is restricted to a single dataset. From a theoretical point of
view, this approach reduces a class of “similar” function approx-
imation problems to a single supervised training requiring only
a single labeled dataset, followed by a series of appropriate sub-
sequent similarity transformations, each of which is obtained
with an unsupervised method.

In [40] the DM algorithm as well as its extension to super-
vised learning have been explained. In addition, its application
to the real-world problem of automatic nonlinear multispec-
tral image registration, employing magnetic resonance imaging
datasets of the human brain has been described there, whereas
the publications [41], [39], [43], and [42] refer to the applica-
tion of the DM algorithm to multispectral image segmentation;
see Figure 7.12.

7.11.2 Quantitative Imaging as a Biomarker in
Multiple Sclerosis

Multiple sclerosis (MS) is the most common demyelinating
disease of the CNS in humans characterized by a wide scope
of neurological deficits. Image segmentation related to MS-
induced pathological structural changes can provide valuable
indicators for disease progression as well as objective criteria
for therapy control. For this purpose, manual segmentation of
MRI data by human observers, however, is time consuming and
expensive, i.e., not feasible in clinical practice. Therefore, there is
an urgent need for precise and reliable automatic segmentation
techniques.

Several semi-automatic segmentation methods for MRI data
in MS patients have been described in the literature. A common
conventional approach is threshold-based White Matter Lesion
(WML) segmentation on T2w/PDw spin echo MRI images. In
recent years, however, additional MRI techniques have been
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introduced into clinical practice such as magnetization transfer
or diffusion-weighted imaging. In this context, there is a lack
of flexible segmentation methods that enable one to choose
freely among different MRI sequences and various combina-
tions thereof in order to systematically explore the potential
role of different image sources for obtaining information of
neurophysiological or clinical relevance in MS.

Based on the methods of multispectral image segmenta-
tion explained in this chapter, the development of a flexible
semi-automatic segmentation system for high-precision white
matter lesion load quantification of multispectral MRI datasets
in patients with multiple sclerosis was started. Details of the
current status of the system have been published in [44].

In a small applicability study, six female patients with
relapsing-remitting MS (aged 23–46 years) were examined with
a standardized MR sequence protocol (T1w+/− C, T2w/PDw
SE,FLAIR,MT+/−C,anatomically correct image registration)
on a 1.5 T system. After automatic nonuniformity inhomo-
geneity correction, WML segmentation was performed by a
computer-assisted image analysis technique based on the vec-
tor quantization approach explained in Section 7.7 of this
chapter. This, in contrast to conventional methods, allows one
to flexibly combine the complementary image information
obtained from different MRI sequences in order to optimize
WML quantification by a semi-automatic machine learning
approach: After unsupervised clustering of the gray-level spec-
tra by minimal free energy vector quantization, as explained in
Section 7.8.1 of this chapter, tissue classification is performed
based on systematic interactive assignment and collection of all
voxel clusters identified as WML by expert readers. For this
purpose, a specifically developed Computer-Assisted Cluster
Assignment Decision Environment (CASCADE) allows for
quick and efficient screening of both cluster assignment maps
and underlying MRI data. In addition, the system can provide
high-precision Percentage of Brain Volume (PBV) measure-
ment. For this purpose, the segmentation of cerebrospinal fluid
is performed based on the supervised GRBF neural network
approach explained in Section 7.8.2 of this chapter. An example
of segmentation results is shown in Figure 7.13.

The evaluation of the system yielded the following results
[45]: interactive computer-assisted cluster assignment by two
independent expert readers required 9± 3 min, and conven-
tional threshold-based region growing WML segmentation
[46, 47] on FLAIR data required 14± 4 min for each dataset.
The comparison revealed average inter-/intraobserver agree-
ment indices (British Standards Institution) of 0.971/0.982 for
CASCADE, and 0.956/0.960 for the conventional threshold-
based segmentation, respectively. Average intermethod agree-
ment between both techniques was 0.941. We measured
a significant improvement of interobserver agreement for
CASCADE in comparison to the conventional threshold-based
WML segmentation technique (p < 0.03). Inter-/intraobserver
agreement for PBV measurement based on whole-brain

segmentation was 0.989/0.992, where we found a significant
improvement in comparison to the threshold-based “angle
image” method [48] (p < 0.003) [49].

Thus, in conclusion, computer-assisted machine learning
based WML quantification in patients with MS using semi-
automatic neural network segmentation, as explained in this
chapter, outperformed conventional threshold-based tech-
niques w.r.t. inter- and intraobserver agreement levels and
human intervention time. At the same time, it allows the radiol-
ogist to choose freely among different input MRI sequences and
various combinations thereof in order to systematically explore
their contribution to brain segmentation in multiple sclerosis.

In the meantime, our system based on the multispectral seg-
mentation approach described in this chapter has been used
in clinical trials, where quantitative MR imaging was applied
as a biomarker for drug response in patients with multi-
ple sclerosis: in this context, it could be shown that monthly
intravenous methylprednisolone therapy in relapsing-remitting
multiple sclerosis leads to a significant reduction in both the
load of contrast-enhancing lesions and the total lesion volume
in T2–weighted MRI sequences [50].

7.11.3 Vector Quantization as a Multipurpose
Tool for Image Time-Series Analysis: From
Functional MRI to MR Mammography

In the preceding sections, the multispectral segmentation
approach developed in this chapter has been summarized in
the light of structural biomedical image segmentation on MRI
datasets of the human brain. Instead of recording data of the
same object imaged by different acquisition techniques, e.g.,
using different MRI sequence parameters, one may obtain repet-
itive image recordings over time using the same acquisition
procedure. In this complementary scenario, we can extend the
multispectral segmentation approach sketched in this chapter
to the exploratory analysis of image time-series. Although the
main focus of the scientific work in this field has been radiolog-
ical imaging data, it should be emphasized that the resulting
computational approaches can be applied to other applica-
tion domains as well, such as large time-series ensembles in
bioinformatics or economy.

Advanced noninvasive medical imaging techniques, such as
PET, dynamic CT, and MRI, provide image time-series where,
beyond the plain imaging of morphological structure, the anal-
ysis of biological function increasingly moves into the focus
of attention. Thus, the analysis and visualization of dynamic
medical image time-series data are a challenge with growing
importance for both basic research and clinical application.

The basic principle of dynamic biomedical imaging can be
summarized as follows: after administration of some contrast
agent, one can observe, as a function of time, contrast agent-
induced dynamic changes with regard to the imaging properties
of the examined tissue. These changes can be recorded by a
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(a) (b) (c) (d)

FIGURE 7.13 Example of segmentation results in a patient with multiple sclerosis. (a) Axial FLAIR slice of a brain with white matter
lesions (WML); (b) WML classification based on interactive cluster assignment using the CASCADE system; (c) supervised automatic WML
classification using a GRBF neural network; (d) CSF segmentation by GRBF neural network classification.

series of images taken in rapid succession. The term “contrast
agent” should be considered very general here, as it includes
both exogenous and endogenous effects: it ranges from exoge-
nous intravenous administration of iodinated or paramagnetic
contrast media by a physician to the concentration shifts of
endogenous substances that may be induced by functional
changes in biological tissue. Thus, for each pixel, we obtain
a signal time-series that may be interpreted in the light of
experimental conditions, a so-called Pixel Time Course (PTC).
These PTCs can be interpreted as high-dimensional feature vec-
tors that can be used for functional segmentation; i.e., they
can be processed by the unsupervised or supervised learning
techniques discussed in this chapter.

Specifically, in [51] the neural network vector quantization
techniques explained in Section 7.3.1 of this chapter have been
introduced as a multipurpose approach to image time-series
analysis that can be applied to many fields of medicine, ranging
from biomedical basic research to clinical assessment of patient
data. In particular, this model-free approach has been proven
to be useful in applications to (i) functional MRI data analysis
for human brain mapping [51–59]; (ii) dynamic contrast-
enhanced perfusion MRI for the diagnosis of cerebrovascular
disease [51, 60, 61]; (iii) magnetic resonance mammography
for the analysis of suspicious lesions in patients with breast
cancer [62–65]; and (iv) nuclear medicine in dynamic renal
scintigraphy for the differential diagnosis between functional
and obstructive urinary excretion deficits in children [66].

As an example of current research efforts, functional seg-
mentation in MRI mammography for the diagnosis of breast
cancer should be discussed: in dynamic MR imaging of the
breast, time-signal intensity characteristics after intravenous
application of gadolinium contrast agent, such as rapid and
intense contrast enhancement followed by a wash-out phase,
were described as a strong indicator for malignancy [67].
Morphological criteria have also been identified as a valuable
diagnostic tool [68–70]. Recently, combinations of kinetic and

morphologic characteristics have been reported [71–74]. Many
of these studies were performed in the preoperative staging
of patients with suspicious lesions (classified according to
BI-RADS IV and V), including predominantly tumors with
diameters larger than 2 cm. In this situation, MRI yields a
very high sensitivity in the detection of invasive breast cancer
due to both the typical morphological appearance of malig-
nant tumors, such as ill-defined shape, stellate borders, rim
enhancement, etc., as well as characteristic signal intensity time-
courses of contrast enhancement. However, if, in particular,
small lesions are to be analyzed, morphological criteria may
be difficult to apply due to limited spatial resolution. Here,
dynamic MRI may provide a specific value for the classification
of small lesions, when clinical findings, mammography, and
ultrasound are unclear.

For the study to be published in [75], 82 women with
84 indeterminate mammographic lesions (BIRADS III-IV, 38
benign and 46 malignant lesions confirmed by histopathology
and follow-up, median lesion diameter 12 mm) were examined
by standardized dynamic contrast-enhanced breast MRI on a
1.5 T system (3D FLASH sequence, TR/TE = 12/5 ms, FA =
25◦, 6 measurements with scan interval 110 s, 25 transversal
slices per scan) after i.v. administration of 0.1 mmol/kg BW
gadopentetate dimeglumine.

The contrast agent-induced temporal MRI signal dynamics
results in a signal intensity (SI) time-series for each voxel rep-
resented by a vector in a 6–dimensional feature space. After
appropriate preprocessing, these vectors were clustered by min-
imal free energy vector quantization (MFE-VQ), as explained
in Section 7.3.1 of this chapter. This procedure identifies groups
of pixels with similar MRI signal dynamics represented by pro-
totypical time-series in the sense of codebook vectors (CVs),
resulting in a self-organized fuzzy tessellation of the feature
space. As a reference for quality evaluation, the conventional
radiological dynamic data analysis method based on inter-
active visual classification of SI time courses was performed
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by human experts (initial SI increase and post-initial SI time
course) according to a standardized semi-quantitative eval-
uation score similar to [67]. For quantitative assessment of
diagnostic accuracy, areas under ROC curves (AUC) were com-
puted for both vector quantization and standard human expert
classification.

Here, the vector quantization algorithm is applied to the
dynamic time-series of relative signal intensity change of the
selected voxels within the respective lesion. In current studies
[75–77], the number k of CVs for each lesion was chosen to
be k = 4. Those voxels assigned to specific CVs were color-
coded and superimposed with the morphological images in
the sense of cluster assignment maps. For each codebook
vector, the initial signal increase and the post-initial signal
course were calculated. Subsequently, the codebook vectors
were classified according to the conventional analysis with a
score system for dynamic evaluation, as described previously
for the conventional analysis.

We found numerous examples where vector quantization
improved the classification between benign and malignant
lesions. Specifically, we observed cases where, in the conven-
tional analysis approach, the malignant character of the signal
dynamics is hidden by a quantitative dominance of voxels
exhibiting a benign-looking contrast agent uptake pattern, if
the dynamics is averaged over all voxels belonging to the lesion,
thus leading to a false negative classification. Figure 7.14 shows
a typical example of this kind. Other cases that imply a diagnos-
tic benefit of vector quantization over the conventional analysis
method have been reported recently [76].

The diagnostic benefit of our neural network vector quanti-
zation approach for the analysis of dynamic contrast-enhanced
MR mammography is quantitatively documented in [75] using
ROC analysis in a database of diagnostically challenging small
focal breast lesions where the neural network vector quanti-
zation approach provides better diagnostic accuracy than the
conventional dynamic MR mammography method. Although
this result is an encouraging milestone for demonstrating the
clinical applicability of the segmentation methods explained in
this chapter, future prospective clinical trials will be required
to further validate the benefit of the methods and to provide
a better understanding of the importance of signal intensity
time course analysis for the differential diagnosis of enhancing
lesions in breast MRI.

7.11.4 Outlook to Additional Applications

Several additional applications, conceptual extensions, and
future perspectives have been developed in the context of
the image segmentation approach described in this chapter.
Selected examples follow.

1. Vessel segmentation: The segmentation approaches in
this chapter can be useful for plaque characterization
in atherosclerosis; see, e.g., Figures 7.15 and 7.16. The

goals for future clinical applications in this context
include (i) the characterization of the vessel wall refer-
ring to localization and structure of pathological changes,
(ii) the development of models for pathogenesis and dis-
ease progression in atherosclerosis and other vascular
diseases, and (iii) the identification of diagnostic criteria
with predictive value for the outcome of interventional
therapeutic measures, such as percutaneous transluminal
angioplasty (PTA).

2. Automatic presegmentation: As mentioned in Section
7.6.2, relevant regions of interest have to be extracted
prior to segmentation; see, e.g., Figure 7.6. As man-
ual contour tracing by human observers is very time
consuming, this is an important issue for the practi-
cal applicability of the image analysis approach. For
this purpose, a neural network-based presegmentation
system for the definition of brain contours in mul-
tispectral MRI datasets (such as in Figure 7.3) was
developed and evaluated [78–80]. Image data were repre-
sented in a 63–dimensional feature space including 3
spatial and 60 gray-level coordinates of each voxel and
its neighborhood. The segmentation quality achieved
by GRBF neural network classification was comparable
to results obtained by human observers: the variability
between manual and automatic contour definition was
in the range of the interobserver variability of different
human expert readers.

3. Multispectral image synthesis: For some applications,
it is useful to compress the image information of mul-
tispectral data into a single dataset. For this purpose,
nonlinear principal component analysis by data projec-
tion onto a parameterized one-dimensional SOM has
been performed. An example is presented in Figure 7.9.
The method has been shown to be helpful as a prepro-
cessing step to nonlinear image registration of multispec-
tral MRI data of the human brain by the Deformable
Feature Map presented in Section 7.11.1, as presented
in [81].

4. Analysis of phonation using MRI: For the evaluation
of the functional anatomy of the oro-pharyngeal cavity
during phonation based on MRI datasets, a data analy-
sis technique similar to that in Example 3 was applied:
The goal was to define a nonlinear principal component
of the vocal tract in order to define cross-sectional “area
functions” that play an important role in speech produc-
tion modeling. For this purpose, healthy professionally
trained volunteer speakers performed a prolonged emis-
sion of sounds of the German phonemic inventory during
MRI acquisition. After semi-automatic segmentation of
the vocal tract, the nonlinear principal component was
determined by a one-dimensional SOM [82,83]. In con-
trast to the multispectral image synthesis task sketched
above in Example 2, spatial coordinates have been used
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FIGURE 7.14 Results on a dataset confirmed as a malignant lesion (ductal carcinoma) by histopathology. (a) The lesion extent over three
slices. (b) shows the average time-signal intensity curve of all the voxels belonging to this lesion, (c) and (d) the vector quantization results using
four clusters. (c) shows the color-coded cluster assignment maps for each slice, and (d) presents the representative time-signal intensity curves
for each of the four clusters. The uptake kinetics of cluster 1 is clearly indicative for a malignant lesion, whereas the averaged time course over
all the voxels belonging to the lesion (b) does not obviously exhibit a malignant character. Thus, the conventional analysis according to (a) and
(b) may lead to a false negative, i.e., benign classification, of this lesion. Modified from [76]. (See also color insert).

FIGURE 7.15 Tissue classification based on multispectral MRI data: Left: T 1–weighted MRI cross-section of the thigh of a patient with
atherosclerosis. The region of the femoral vessels is approximately located in the center of the image. Middle: Magnification of the vessel
region in the center of the left image. Right: Tissue segmentation based on minimal free energy VQ of the gray-level spectra enabling a
distinction between different tissue classes such as fat, muscle, fibrotic tissue, etc.

FIGURE 7.16 Cluster specializing on voxels representing the arterial vessel wall (Superficial Femoral Artery) indicated by highlighted pixels.
The images represent subsequent cross-sections of the vessel region (such as indicated by Figure 7.15, middle) at different levels. The lumen
of the vessel is reduced by regional plaque-induced thickening of the vessel wall in the last few images.
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(b)(a)

FIGURE 7.17 Evaluation of the functional anatomy of the oro-pharyngeal cavity during phonation
using MRI: (a) Midsagittal MRI section of the vocal tract. (b) Segmented vocal tract with nonlinear
principal component as defined by a 1D-SOM.

here instead of signal intensity coordinates. An example
is presented in Figure 7.17 where a curved “midline” of
a vocal tract segmented from MRI data acquired during
phonation is constructed based on nonlinear principal
component analysis using a 1D-SOM.

5. Functional genomics and bioinformatics: Exploratory
analysis of gene expression profiles has emerged as an
important field of bioinformatics. For data partition-
ing and visualization, various clustering approaches have
been proposed in the literature, such as agglomerative
clustering [84] or several variants of 2D-SOMs [85, 86],
and the so-called Double SOM [87, 88]. In this context,
it could be shown in the author’s group [89] that by
applying minimal free energy VQ to gene expression clus-
tering, the sensitivity to noise can be markedly reduced in
comparison to agglomerative clustering.

An alternative approach for data visualization in functional
genomics has been explored in [89] as well. On the method
level, it focuses on a one-dimensional parameterized SOM that
allows for fast and convenient projection of high-dimensional
microarray gene expression profiles onto a one-dimensional
manifold. In contrast to the 2D-SOM approaches cited previ-
ously, this provides a graphical output intuitive for biologists,
where the gene expression profiles are ordered along a linear
list of subsequent entries in analogy to the classical agglom-
erative clustering approach by Eisen et al. [84]. However, the
linear arrangement here is solely data-driven by self-organized
alignment; i.e., it does not require meta-knowledge such as
chromosomal position or heuristic ordering criteria, e.g., aver-
age expression level or time of maximal induction used in

[84] in order to enforce graphically appealing visualization.
Figure 7.18a shows the yeast genome dataset published in [84]
in the original alignment based on agglomerative clustering,
heuristic criteria, and meta-knowledge, as mentioned earlier.
Figure 7.18b presents the self-organized alignment obtained
by the one-dimensional parameterized SOM. In contrast to
Figure 7.18a, discontinuities between neighboring expression
profiles are markedly reduced.

7.12 Conclusion and Outlook

Although, at a first glance, the growing number of applica-
tions in the field of structural and functional biomedical image
segmentation may seem encouraging, there are still consid-
erable unsolved problems. In particular, there is a need for
continuous research emphasizing quality assessment, includ-
ing critical comparative evaluation of competing segmentation
algorithms with respect to specific constraints of given appli-
cation domains. In this context, it increasingly becomes clear
that theoretical knowledge about computer science alone is
not sufficient for designing successful applications aiming at
the solution of relevant real-world problems in biomedicine.
What is required in addition is a sound knowledge of the
data, i.e., the underlying application domain. Although there
may be methodological similarities, each application requires
specific careful consideration with regard to data preprocess-
ing, postprocessing, interpretation, and quality assessment.
This challenge can be managed only by close interdisciplinary
collaboration of radiologists, computer scientists, biologists,
engineers, and physicists. Hence, this subject can serve as
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(b)(a)

FIGURE 7.18 Analysis of microarray gene expression profiles of the budding yeast saccharomyces cere-
visiae. The data published in [84] includes 2479 79–dimensional gene expression profiles. (a) Original
order proposed by [84]. (b) Order induced by topology-preserving mapping using a parameterized
1D-SOM as described in the text.

an example for lively cross-fertilization between biomedical
imaging and related basic research.

In the core application field covered by the author’s work,
computer-assisted radiology, technical innovations in biomed-
ical cross-sectional imaging have opened up new avenues for
the exploration of structure and function of living biologi-
cal organisms, such as the human body, providing both high
spatial and temporal resolution. However, these techniques
have led to vast amounts of image data whose precise and
reliable visual analysis by radiologists requires a considerable
amount of human intervention and expertise, thus resulting
in a cost factor of substantial economic relevance. Hence,
the computer-assisted processing of biomedical image data
has moved into the focus of interest as an issue of high-
priority research efforts. In this context, innovative approaches
to exploratory analysis of huge complex spatio-temporal pat-
terns, such as those presented in this chapter, play a key role
to improve automated digital signal and image processing in
biomedicine.
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8.1 Introduction

The rapid development and proliferation of medical imag-
ing technologies is revolutionizing medicine. Medical imaging
allows scientists and physicians to glean potentially life-saving
information by peering noninvasively into the human body. The
role of medical imaging has expanded beyond the simple visu-
alization and inspection of anatomic structures. It has become a
tool for surgical planning and simulation, intra-operative nav-
igation, radiotherapy planning, and for tracking the progress
of disease. For example, ascertaining the detailed shape and
organization of anatomic structures enables a surgeon preoper-
atively to plan an optimal approach to some target structure. In
radiotherapy, medical imaging allows the delivery of a necrotic
dose of radiation to a tumor with minimal collateral damage to
healthy tissue.

With medical imaging playing an increasingly prominent
role in the diagnosis and treatment of disease, the medi-
cal image analysis community has become preoccupied with
the challenging problem of extracting, with the assistance of
computers, clinically useful information about anatomic struc-
tures imaged through CT, MR, PET, and other modalities
[5, 6, 13, 43, 44, 72, 130, 141, 156, 166]. Although modern
imaging devices provide exceptional views of internal anatomy,
the use of computers to quantify and analyze the embedded

structures with accuracy and efficiency is limited. Accurate,
repeatable, quantitative data must be efficiently extracted in
order to support the spectrum of biomedical investigations and
clinical activities from diagnosis, to radiotherapy, to surgery.

For example, segmenting structures from medical images
and reconstructing a compact geometric representation of these
structures is difficult due to the sheer size of the datasets and
the complexity and variability of the anatomic shapes of inte-
rest. Furthermore, the shortcomings typical of sampled data,
such as sampling artifacts, spatial aliasing, and noise, may cause
the boundaries of structures to be indistinct and disconnected.
The challenge is to extract boundary elements belonging to the
same structure and integrate these elements into a coherent and
consistent model of the structure. Traditional low-level image
processing techniques which consider only local information
can make incorrect assumptions during this integration pro-
cess and generate infeasible object boundaries. As a result, these
model-free techniques usually require considerable amounts
of expert intervention. Furthermore, the subsequent analysis
and interpretation of the segmented objects is hindered by the
pixel- or voxel-level structure representations generated by most
image processing operations.

This chapter surveys deformable models, one of the most
intensively researched model-based approaches to computer-
assisted medical image analysis. The widely recognized potency

Copyright © 2008 by Elsevier, Inc.
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of deformable models stems from their ability to segment,
match, and track images of anatomic structures by exploiting
(bottom-up) constraints derived from the image data together
with (top-down) a priori knowledge about the location, size,
and shape of these structures. Deformable models are capa-
ble of accommodating the often significant variability of
biological structures over time and across different individu-
als. Furthermore, deformable models support highly intuitive
interaction mechanisms that allow medical scientists and prac-
titioners to bring their expertise to bear on the model-based
image interpretation task when necessary. We will review the
basic formulation of deformable models and survey their
application to fundamental medical image analysis problems,
including segmentation, shape representation, matching, and
motion tracking. The chapter is an updated version of [104]
(see also the compilation [135]).

8.2 Mathematical Foundations of
Deformable Models

The classical mathematical foundations of deformable models
represent the confluence of geometry, physics, and approxima-
tion theory. Geometry serves to represent object shape, physics
imposes constraints on how the shape may vary over space
and time, and optimal approximation theory provides the for-
mal underpinnings of mechanisms for fitting the models to
measured data.

Deformable model geometry usually permits broad shape
coverage by employing geometric representations that involve
many degrees of freedom, such as splines. The model remains
manageable, however, because the degrees of freedom are gener-
ally not permitted to evolve independently, but are governed by
physical principles that bestow intuitively meaningful behavior
upon the geometric substrate. The name “deformable mod-
els” stems primarily from the use of elasticity theory at the
physical level, generally within a Lagrangian dynamics set-
ting. The physical interpretation views deformable models as
elastic bodies which respond naturally to applied forces and
constraints. Typically, deformation energy functions defined in
terms of the geometric degrees of freedom are associated with
the deformable model. The energy grows monotonically as the
model deforms away from a specified natural or“rest shape”and
often includes terms that constrain the smoothness or symme-
try of the model. In the Lagrangian setting, the deformation
energy gives rise to elastic forces internal to the model. Taking a
physics-based view of classical optimal approximation, external
potential energy functions are defined in terms of the data of
interest to which the model is to be fitted. These potential ener-
gies give rise to external forces which deform the model such
that it fits the data.

Deformable curve, surface, and solid models gained popu-
larity after they were proposed for use in computer vision [153]
and computer graphics [150] in the mid 1980’s. Terzopoulos

introduced the theory of continuous (multidimensional)
deformable models in a Lagrangian dynamics setting [148],
based on deformation energies in the form of (controlled-
continuity) generalized splines [149]. Ancestors of the
deformable models now in common use include Fischler and
Elshlager’s spring-loaded templates [52] and Widrow’s rubber
mask technique [168].

The deformable model that has attracted the most atten-
tion to date is popularly known as “snakes” [78]. Snakes or
“active contour models” represent a special case of the gen-
eral multidimensional deformable model theory [148]. We will
review their simple formulation in the remainder of this sec-
tion in order to illustrate with a concrete example the basic
mathematical machinery that is present in many deformable
models.

Snakes are planar deformable contours that are useful in
several image analysis tasks. They are often used to approxi-
mate the locations and shapes of object boundaries in images
based on the reasonable assumption that boundaries are piece-
wise continuous or smooth (Figure 8.1). In its basic form, the
mathematical formulation of snakes draws from the theory of
optimal approximation involving functionals.

8.2.1 Energy-Minimizing Deformable Models

Geometrically, a snake is a parametric contour embedded in the
image plane (x , y) ∈ �2. The contour is represented as v(s) =
(x(s), y(s))�, where x and y are the coordinate functions and
s ∈ [0, 1] is the parametric domain. The shape of the contour

FIGURE 8.1 Snake (white) attracted to cell membrane in an EM
photomicrograph (from [18]).
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subject to an image I (x , y) is dictated by the functional

E(v) = S(v)+ P(v). (8.1)

The functional can be viewed as a representation of the energy
of the contour and the final shape of the contour corresponds
to the minimum of this energy. The first term of the functional,

S(v) =
∫ 1

0
w1(s)

∣∣∣∣∂v

∂s

∣∣∣∣2

+ w2(s)

∣∣∣∣∂2v

∂s2

∣∣∣∣2

ds, (8.2)

is the internal deformation energy. It characterizes the defor-
mation of a stretchy, flexible contour. Two physical parameter
functions dictate the simulated physical characteristics of the
contour: w1(s) controls the “tension” of the contour while w2(s)
controls its “rigidity”.1 The second term in (8.1) couples the
snake to the image. Traditionally,

P(v) =
∫ 1

0
P(v(s))ds, (8.3)

where P(x , y) denotes a scalar potential function defined on
the image plane. To apply snakes to images, external poten-
tials are designed whose local minima coincide with intensity
extrema, edges, and other image features of interest. For exam-
ple, the contour will be attracted to intensity edges in an image
I (x , y) by choosing a potential P(x , y) = −c |∇[Gσ ∗ I (x , y)]|,
where c controls the magnitude of the potential, ∇ is the gra-
dient operator, and Gσ ∗ I denotes the image convolved with
a (Gaussian) smoothing filter whose characteristic width σ

controls the spatial extent of the local minima of P .
In accordance with the calculus of variations, the contour

v(s) which minimizes the energy E(v) must satisfy the Euler-
Lagrange equation

− ∂

∂s

(
w1
∂v

∂s

)
+ ∂2

∂s2

(
w2
∂2v

∂s2

)
+ ∇P(v(s, t )) = 0. (8.4)

This vector-valued partial differential equation expresses the
balance of internal and external forces when the contour
rests at equilibrium. The first two terms represent the inter-
nal stretching and bending forces, respectively, while the third
term represents the external forces that couple the snake to the
image data. The usual approach to solving (8.4) is through the
application of numerical algorithms (Sec. 8.2.3).

1 The values of the non-negative functions w1(s) and w2(s)determine the extent

to which the snake can stretch or bend at any point s on the snake. For example,

increasing the magnitude of w1(s) increases the“tension”and tends to eliminate

extraneous loops and ripples by reducing the length of the snake. Increasing

w2(s) increases the bending “rigidity” of the snake and tends to make the snake

smoother and less flexible. Setting the value of one or both of these functions

to zero at a point s permits discontinuities in the contour at s.

8.2.2 Dynamic Deformable Models

While it is natural to view energy minimization as a static
problem, a potent approach to computing the local minima
of a functional such as (8.1) is to construct a dynamical
system that is governed by the functional and allow the sys-
tem to evolve to equilibrium. The system may be constructed
by applying the principles of Lagrangian mechanics. This
leads to dynamic deformable models that unify the descrip-
tion of shape and motion, making it possible to quantify
not just static shape, but also shape evolution through time.
Dynamic models are valuable for medical image analysis, since
most anatomical structures are deformable and continually
undergo nonrigid motion in vivo. Moreover, dynamic mod-
els exhibit intuitively meaningful physical behaviors, making
their evolution amenable to interactive guidance from a user
(Figure 8.2).

A simple example is a dynamic snake which can be rep-
resented by introducing a time-varying contour v(s, t ) =
(x(s, t ), y(s, t ))� with a mass density μ(s) and a damping den-
sity γ(s). The Lagrange equations of motion for a snake with
the internal energy given by (8.2) and external energy given by
(8.3) is

μ
∂2v

∂t 2
+ γ ∂v

∂t
− ∂

∂s

(
w1
∂v

∂s

)
+ ∂2

∂s2

(
w2
∂2v

∂s2

)
= −∇P(v(s, t )).

(8.5)

FIGURE 8.2 Snake deforming towards high gradients in a processed
cardiac image, influenced by “pin” points and an interactive “spring”
which pulls the contour towards an edge (from [102]).
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The first two terms on the left hand side of this partial differen-
tial equation represent inertial and damping forces. Referring
to (8.4), the remaining terms represent the internal stretch-
ing and bending forces, while the right hand side represents
the external forces. Equilibrium is achieved when the inter-
nal and external forces balance and the contour comes to
rest (i.e., ∂v/∂t = ∂2v/∂t 2 = 0), which yields the equilibrium
condition (8.4).

8.2.3 Discretization and Numerical Simulation

In order to numerically compute a minimum energy solu-
tion, it is necessary to discretize the energy E(v). The usual
approach is to represent the continuous geometric model v in
terms of linear combinations of local-support or global-support
basis functions. Finite elements [177], finite differences [128],
and geometric splines [50] are local representation methods,
whereas Fourier bases [9] are global representation methods.
The continuous model v(s) is represented in discrete form by
a vector u of shape parameters associated with the basis func-
tions. The discrete form of energies such as E(v) for the snake
may be written as

E(u) = 1

2
u�Ku + P(u), (8.6)

where K is called the stiffness matrix, and P(u) is the discrete
version of the external potential. The minimum energy solution
results from setting the gradient of (8.6) to 0, which is equivalent
to solving the set of algebraic equations

Ku = −∇P = f , (8.7)

where f is the generalized external force vector.
The discretized version of the Lagrangian dynamics equa-

tion (8.5) may be written as a set of second order ordinary
differential equations for u(t ):

Mü + Cu̇ + Ku = f , (8.8)

where M is the mass matrix and C is a damping matrix. The
time derivatives in (8.5) are approximated by finite differences
and explicit or implicit numerical time integration methods are
applied to simulate the resulting system of ordinary differential
equations in the shape parameters u.

8.2.4 Probabilistic Deformable Models

An alternative view of deformable models emerges from cast-
ing the model fitting process in a probabilistic framework, often
taking a Bayesian approach. This permits the incorporation of
prior model and sensor model characteristics in terms of prob-
ability distributions. The probabilistic framework also provides
a measure of the uncertainty of the estimated shape parameters
after the model is fitted to the image data [145].

Let u represent the deformable model shape parameters
with a prior probability p(u) on the parameters. Let p(I |u)
be the imaging (sensor) model—the probability of producing
an image I given a model u. Bayes’ theorem

p(u|I ) = p(I |u)p(u)
p(I )

(8.9)

expresses the posterior probability p(u|I ) of a model given the
image, in terms of the imaging model and the prior probabilities
of model and image.

It is easy to convert the internal energy measure (8.2) of
the deformable model into a prior distribution over expected
shapes, with lower energy shapes being more likely. This is
achieved using a Boltzman (or Gibbs) distribution of the form

p(u) = 1

Zs
exp(−S(u)), (8.10)

where S(u) is the discretized version of S(v) in (8.2) and Zs is a
normalizing constant (called the partition function). This prior
model is then combined with a simple sensor model based on
linear measurements with Gaussian noise

p(I |u) = 1

ZI
exp(−P(u)), (8.11)

where P(u) is a discrete version of the potential P(v) in (8.3),
which is a function of the image I (x , y).

Models may be fitted by finding u which locally maximize
p(u|I ) in (8.9). This is known as the maximum a posteriori
solution. With the above construction, it yields the same result
as minimizing (8.1) the energy configuration of the deformable
model given the image.

The probabilistic framework can be extended by assuming a
time-varying prior model,or system model, in conjunction with
the sensor model, resulting in a Kalman filter. The system model
describes the expected evolution of the shape parameters u over
time. If the equations of motion of the physical snakes model
(8.8) are employed as the system model, the result is a sequential
estimation algorithm known as “Kalman snakes” [152].

8.3 Medical Image Analysis with
Deformable Models

Although originally developed for application to problems
in computer vision and computer graphics, the potential of
deformable models for use in medical image analysis has been
quickly realized. They have been applied to images generated by
imaging modalities as varied as X-ray, computed tomography
(CT), angiography, magnetic resonance (MR), and ultrasound.
Two-dimensional and three-dimensional deformable models
have been used to segment, visualize, track, and quantify a vari-
ety of anatomic structures ranging in scale from the macroscopic
to the microscopic. These include the brain, heart, face, cerebral,
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coronary and retinal arteries, kidney, lungs, stomach, liver, skull,
vertebra, objects such as brain tumors, a fetus, and even cellu-
lar structures such as neurons and chromosomes. Deformable
models have been used to track the nonrigid motion of the
heart, the growing tip of a neurite, and the motion of erythro-
cytes. They have been used to locate structures in the brain, and
to register images of the retina, vertebra and neuronal tissue.

In the following sections, we review and discuss the appli-
cation of deformable models to medical image interpretation
tasks including segmentation, matching, and motion analysis.

8.3.1 Image Segmentation with Deformable
Curves

The segmentation of anatomic structures—the partitioning of
the original set of image points into subsets corresponding
to the structures—is an essential first stage of most medi-
cal image analysis tasks, such as registration, labeling, and
motion tracking. These tasks require anatomic structures in the
original image to be reduced to a compact, analytic represen-
tation of their shapes. Performing this segmentation manually
is extremely labor intensive and time-consuming. A primary
example is the segmentation of the heart, especially the left
ventricle (LV), from cardiac imagery. Segmentation of the left
ventricle is a prerequisite for computing diagnostic informa-
tion such as ejection-fraction ratio, ventricular volume ratio,
heart output, and for wall motion analysis which provides
information on wall thickening, etc. [136].

Most clinical segmentation is currently performed using
manual slice editing. In this scenario, a skilled operator, using
a computer mouse or trackball, manually traces the region of
interest on each slice of an image volume. Manual slice editing
suffers from several drawbacks. These include the difficulty in
achieving reproducible results, operator bias, forcing the oper-
ator to view each 2D slice separately to deduce and measure the
shape and volume of 3D structures, and operator fatigue.

Segmentation using traditional low-level image process-
ing techniques, such as thresholding, region growing, edge
detection, and mathematical morphology operations, also
requires considerable amounts of expert interactive guidance.
Furthermore, automating these model-free approaches is diffi-
cult because of the shape complexity and variability within and
across individuals. In general, the underconstrained nature of
the segmentation problem limits the efficacy of approaches that
consider local information only. Noise and other image arti-
facts can cause incorrect regions or boundary discontinuities in
objects recovered by these methods.

A deformable model based segmentation scheme, used in
concert with image pre-processing, can overcome many of the
limitations of manual slice editing and traditional image pro-
cessing techniques. These connected and continuous geometric
models consider an object boundary as a whole and can make
use of a priori knowledge of object shape to constrain the

segmentation problem. The inherent continuity and smooth-
ness of the models can compensate for noise, gaps and other
irregularities in object boundaries. Furthermore, the paramet-
ric representations of the models provide a compact, analytical
description of object shape. These properties lead to an efficient,
robust, accurate and reproducible technique for linking sparse
or noisy local image features into a complete and consistent
model of the object.

Among the first and primary uses of deformable models in
medical image analysis was the application of deformable con-
tour models, such as snakes [78], to segment structures in 2D
images [12, 18, 29, 30, 35, 65, 86, 93, 122, 132, 159]. Typically
users initialized a deformable model near the object of interest
(Figure 8.3) and allowed it to deform into place. Users could
then exploit the interactive capabilities of these models and
manually fine-tune them. Furthermore, once the user is satis-
fied with the result on an initial image slice, the fitted contour
model may then be used as the initial boundary approximation
for neighboring slices. These models are then deformed into
place and again propagated until all slices have been processed.
The resulting sequence of 2D contours can then be connected
to form a continuous 3D surface model [24, 29, 30, 91].

The application of snakes and other similar deformable con-
tour models to extract regions of interest is, however, not
without limitations. For example, snakes were designed as inter-
active models. In non-interactive applications, they must be
initialized close to the structure of interest to guarantee good
performance. The internal energy constraints of snakes can
limit their geometric flexibility and prevent a snake from rep-
resenting long tube-like shapes and shapes with significant
protrusions or bifurcations. Furthermore, the topology of the
structure of interest must be known in advance since classical
deformable contour models are parametric and are incapable
of topological transformations without additional machinery
(such as that in T-snakes [107]).

Various methods have been proposed to improve and further
automate the deformable contour segmentation process. Cohen
and Cohen [30] used an internal “inflation” force to expand a
snakes model past spurious edges towards the real edges of the
structure, making the snake less sensitive to initial conditions
(inflation forces were also employed in [153]). Amini et al. [3]
use dynamic programming to carry out a more extensive search
for global minima. Poon et al. [127] and Grzeszczuk and Levin
[62] minimize the energy of active contour models using sim-
ulated annealing which is known to give global solutions and
allows the incorporation of non-differentiable constraints.

Other researchers [22, 54, 64, 70, 74, 76, 98, 131] have
integrated region-based information into deformable contour
models or used other techniques in an attempt to decrease sen-
sitivity to insignificant edges and initial model placement. For
example, Poon et al. [127] use a discriminant function to incor-
porate region based image features into the image forces of their
active contour model. The discriminant function allows the
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FIGURE 8.3 (a) Intensity CT image slice of canine LV. (b) Edge detected image. (c) Initial snake. (d)-(f)
Snake deforming towards LV boundary, driven by “inflation” force (from [102]).

FIGURE 8.4 Image sequence of clipped angiogram of retina showing an automatically subdividing snake flowing and branching along a
vessel (from [103]).

inclusion of additional image features in the segmentation and
serves as a constraint for global segmentation consistency (i.e.,
every image pixel contributes to the discriminant function).

Several researchers [20, 21, 82, 85, 96, 97, 107, 118, 134,
167, 171] have been developing topologically adaptive shape
modeling schemes that are not only less sensitive to initial
conditions, but also allow a deformable contour or surface
model to represent long tube-like shapes or shapes with bifur-
cations (Figure 8.4), and to dynamically sense and change its
topology (Figure 8.5).

Finally,another development is a snake-like technique known
as “live-wire” [11, 49]. This semiautomatic boundary trac-
ing technique computes and selects optimal boundaries at
interactive rates as the user moves a mouse, starting from a
user-specified seed point. When the mouse is moved close
to an object edge, a live-wire boundary snaps to, and wraps
around the object of interest. The live-wire method has
also been combined with snakes, yielding a segmentation
tool that exploits the best properties of both techniques
[89, 90].
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FIGURE 8.5 Segmentation of a cross sectional image of a human vertebra phantom with a topologically adaptable snake (from [103]). The
snake begins as a single closed curve and becomes three closed curves.

8.3.2 Volume Image Segmentation with
Deformable Surfaces

Segmenting 3D image volumes slice by slice using manual slice
editing (or image processing techniques) is a laborious process
and requires a post-processing step to connect the sequence
of 2D contours into a continuous surface. Furthermore, the
resulting surface reconstruction can contain inconsistencies or
show rings or bands. As described in the previous section, the
application of a 2D active contour model to an initial slice and
the propagation of the model to neighboring slices can sig-
nificantly improve the volume segmentation process. However,
the use of a true 3D deformable surface model can potentially
result in even greater improvements in efficiency and robustness
and also ensures that a globally smooth and coherent surface is
produced between image slices.

Deformable surface models in 3D were first used in com-
puter vision [153]. Many researchers have since explored the
use of deformable surface models for segmenting structures in
medical image volumes. Miller [111] constructs a polygonal
approximation to a sphere and geometrically deforms this “bal-
loon” model until the balloon surface conforms to the object
surface in 3D CT data. The segmentation process is formu-
lated as the minimization of a cost function where the desired
behavior of the balloon model is determined by a local cost
function associated with each model vertex. The cost function
is a weighted sum of three terms: a deformation potential that
“expands” the model vertices towards the object boundary, an
image term that identifies features such as edges and opposes
the balloon expansion, and a term that maintains the topology
of the model by constraining each vertex to remain close to the
centroid of its neighbors.

Cohen and Cohen [28, 30] and McInerney and Terzopoulos
[102] use finite element and physics-based techniques to
implement an elastically deformable cylinder and sphere,
respectively. The models are used to segment the inner wall

of the left ventricle of the heart from MR or CT image vol-
umes (Figure 8.6). These deformable surfaces are based on a
thin-plate under tension surface spline, the higher dimensional
generalization of equation (8.2), which controls and constrains
the stretching and bending of the surface. The models are fit-
ted to data dynamically by integrating Lagrangian equations
of motion through time in order to adjust the deformational
degrees of freedom. Furthermore, the finite element method
is used to represent the models as a continuous surface in
the form of weighted sums of local polynomial basis func-
tions. Unlike Miller’s [111] polygonal model, the finite element
method provides an analytic surface representation and the
use of high-order polynomials means that fewer elements are
required to accurately represent an object. Pentland and Sclaroff
[124] and Nastar and Ayache [116] also develop physics-based
models but use a reduced model basis for the finite elements
(see Section 8.3.5).

Staib and Duncan [139] describe a 3D surface model used
for geometric surface matching to 3D medical image data.
The model uses a Fourier parameterization which decomposes
the surface into a weighted sum of sinusoidal basis functions.
Several different surface types are developed such as tori, open
surfaces, closed surfaces and tubes. Surface finding is formu-
lated as an optimization problem using gradient ascent which
attracts the surface to strong image gradients in the vicinity
of the model. An advantage of the Fourier parameterization is
that it allows a wide variety of smooth surfaces to be described
with a small number of parameters. That is, a Fourier represen-
tation expresses a function in terms of an orthonormal basis
and higher indexed basis functions in the sum represent higher
spatial variation. Therefore, the series can be truncated and still
represent relatively smooth objects accurately.

In a different approach, Szeliski et al. [146] use a dynamic,
self-organizing oriented particle system to model surfaces of
objects. The oriented particles, which can be visualized as
small, flat disks, evolve according to Newtonian mechanics and
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(a) (b)

FIGURE 8.6 (a) Deformable “balloon” model embedded in volume image deforming
towards LV edges of canine heart. (b) Reconstruction of LV (from [102]).

interact through external and interparticle forces. The exter-
nal forces attract the particles to the data while interparticle
forces attempt to group the particles into a coherent surface.
The particles can reconstruct objects with complex shapes and
topologies by “flowing” over the data, extracting and conform-
ing to meaningful surfaces. A triangulation is then performed
which connects the particles into a continuous global model
that is consistent with the inferred object surface.

We have generalized the topologically adaptive snakes
(T-snakes) [107] that were cited earlier (Figure 8.5), to higher-
dimensional surfaces. Known as T-surfaces [105, 106], these
deformable surface models are formulated in terms of an Affine
Cell Image Decomposition (ACID), which significantly extends
standard deformable surfaces while retaining their interactivity
and other desirable properties. In particular, the ACID induces
an efficient reparameterization mechanism that enables para-
metric deformable surfaces to evolve into complex geometries
and even modify their topology as necessary in order to segment
complex anatomic structures from medical volume images.

Other notable work involving 3D deformable surface models
and medical image applications can be found in [21, 34, 39, 41,
117, 147, 167, 170, 176] as well as several models described in
the following sections.

8.3.3 Incorporating A Priori Knowledge

In medical images, the general shape, location and orientation
of an anatomical structure is known and this knowledge may be
incorporated into the deformable model in the form of initial
conditions, data constraints, constraints on the model shape
parameters, or into the model fitting procedure. The use of
implicit or explicit anatomical knowledge to guide shape recov-
ery is especially important for robust automatic interpretation
of medical images. For automatic interpretation, it is essential to

have a model that not only describes the size, shape, location and
orientation of the target object but that also permits expected
variations in these characteristics. Automatic interpretation of
medical images can relieve clinicians from the labor intensive
aspects of their work while increasing the accuracy, consistency,
and reproducibility of the interpretations. In this section, and in
the following sections on matching and motion tracking, we will
describe several deformable model techniques that incorporate
prior anatomical knowledge in different ways.

A number of researchers have incorporated knowledge of
object shape into deformable models by using deformable shape
templates. These models usually use “hand-crafted” global
shape parameters to embody a priori knowledge of expected
shape and shape variation of the structures and have been used
successfully for many applications of automatic image inter-
pretation. The idea of deformable templates can be traced back
to the early work on spring loaded templates by Fischler and
Elshlager [52]. An excellent example in computer vision is the
work of Yuille et al. [175] who construct deformable templates
for detecting and describing features of faces, such as the eye. In
an early example from medical image analysis, Lipson et al. [92]
note that axial cross sectional images of the spine yield approxi-
mately elliptical vertebral contours and consequently extract the
contours using a deformable ellipsoidal template. Subsequently,
Montagnat and Delingette [113] used a deformable surface tem-
plate of the liver to segment it from abdominal CT scans, and
a ventricle template to segment the ventricles of the brain from
MR images.

Deformable models based on superquadrics are another
example of deformable shape templates that are gaining in
popularity in medical image research. Superquadrics contain
a small number of intuitive global shape parameters that can
be tailored to the average shape of a target anatomic structure.
Furthermore, the global parameters can often be coupled with
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local shape parameters such as splines resulting in a powerful
hybrid shape representation scheme. For example, Metaxas and
Terzopoulos [110] employ a dynamic deformable superquadric
model [151] to reconstruct and track human limbs from 3D
biokinetic data. Their prior models can deform both locally
and globally by incorporating the global shape parameters of
a superellipsoid with the local degrees of freedom of a mem-
brane spline in a Lagrangian dynamics formulation. The global
parameters efficiently capture the gross shape features of the
data, while the local deformation parameters reconstruct the
fine details of complex shapes. Using Kalman filtering the-
ory, they develop and demonstrate a biokinetic motion tracker
based on their deformable superquadric model.

Vemuri and Radisavljevic [162, 163] construct a deformable
superquadric model in an orthonormal wavelet basis. This
multi-resolution basis provides the model with the ability to
continuously transform from local to global shape deforma-
tions thereby allowing a continuum of shape models to be
created and to be represented with relatively few parameters.
They apply the model to segment and reconstruct anatomical
structures in the human brain from MRI data.

As a final example, Bardinet et al. [10] fit a deformable
superquadric to segmented 3D cardiac images and then refine
the superquadric fit using a volumetric deformation technique
known as free form deformations (FFDs). FFDs are defined
by tensor product trivariate splines and can be visualized as
a rubber-like box in which the object to be deformed (in
this case the superquadric) is embedded. Deformations of the
box are automatically transmitted to embedded objects. This
volumetric aspect of FFDs allows two superquadric surface
models to be simultaneously deformed in order to reconstruct
the inner and outer surfaces of the left ventricle of the heart
and the volume in between these surfaces. Further examples
of deformable superquadrics can be found in [25, 123] (see
Section 8.3.5). Further examples of FFD-based (or FFD-like)
deformable models for medical image segmentation can be
found in [94, 101].

Several researchers cast the deformable model fitting process
in a probabilistic framework (see Section 8.2.4) and include
prior knowledge of object shape by incorporating prior prob-
ability distributions on the shape variables to be estimated
[55, 138, 162, 169]. For example, Staib and Duncan [138] use
a deformable contour model on 2D echocardiograms and MR
images to extract the LV of the heart and the corpus callosum
of the brain, respectively. This closed contour model is parame-
terized using an elliptic Fourier decomposition and a priori
shape information is included as a spatial probability expressed
through the likelihood of each model parameter. The model
parameter probability distributions are derived from a set of
example object boundaries and serve to bias the contour model
towards expected or more likely shapes.

Szekely et al. [144] have also developed Fourier parame-
terized models. Furthermore, they have added elasticity to

their models to create “Fourier snakes” in 2D and elastically
deformable Fourier surface models in 3D. By using the Fourier
parameterization followed by a statistical analysis of a train-
ing set, they define mean organ models and their eigen-
deformations. An elastic fit of the mean model in the subspace
of eigenmodes restricts possible deformations and finds an
optimal match between the model surface and boundary
candidates.

Cootes et al. [31] and Hill et al. [71] present a statistically
based technique for building deformable shape templates and
use these models to segment various organs from 2D and
3D medical images. The statistical parameterization provides
global shape constraints and allows the model to deform only
in ways implied by the training set. The shape models repre-
sent objects by sets of landmark points which are placed in
the same way on an object boundary in each input image. For
example, to extract the LV from echocardiograms, they choose
points around the ventricle boundary, the nearby edge of the
right ventricle, and the top of the left atrium. The points can
be connected to form a deformable contour. By examining
the statistics of training sets of hand-labeled medical images,
and using principal components analysis (PCA), a shape model
is derived that describes the average positions and the major
modes of variation of the object points. New shapes are gener-
ated using the mean shape and a weighted sum of the major
modes of variation. Object boundaries are then segmented
using this active shape model by examining a region around each
model point to calculate the displacement required to move it
towards the boundary. These displacements are then used to
update the shape parameter weights. An example of the use of
this technique for segmenting MR brain images can be found
in [46].

An extreme example of incorporating prior knowledge,aspir-
ing toward fully automated medical image segmentation, is
deformable organisms [68, 100]. This recent paradigm for
automatic image analysis combines deformable models and
concepts from artificial life modeling. The goal is to incorpo-
rate and exploit all the available prior knowledge and global
contextual information in any specific medical image analy-
sis task. Analogous to natural organisms capable of voluntary
movement, deformable organisms possess deformable bodies
with distributed sensors, as well as (rudimentary) brains with
motor, perception, behavior, and cognition centers. Deformable
organisms are perceptually aware of the image analysis process.
Their behaviors, which manifest themselves in voluntary move-
ment and body shape alteration, are based upon sensed image
features, stored structural knowledge, and a cognitive plan. The
organism framework separates global top-down, model-fitting
control functionality from the local, bottom-up, feature inte-
gration functionality. This separation enables the definition of
model-fitting controllers or ‘brains’ in terms of the high-level
structural features of objects of interest, rather than the low-
level image features. The result is an ‘intelligent agent’ that



154 Handbook of Medical Image Processing and Analysis

(1)

(5)

(9) (10) (11) (12)

(13) (14) (15) (16)

(6) (7) (8)

(2) (3) (4)

FIGURE 8.7 Automatic brain MR image segmentation by multiple deformable organisms (from [100]). The sequence of images illustrates
the temporal progression of the segmentation process. Deformable lateral ventricle (1–7), caudate nucleus (8–10), and putamen (11–16)
organisms are spawned in succession and progress through a series of behaviors to detect, localize, and segment the corresponding structures
in the MR image.

is continuously ‘aware’ of the progress of the segmentation
process, allowing it to apply prior knowledge about target
objects in a deliberative manner (Figure 8.7). 3D physics-based
deformable organisms have recently been developed [109] and
software is available [108].

8.3.4 Matching

Matching of regions in images can be performed between the
representation of a region and a model (labeling) or between the
representation of two distinct regions (registration). Nonrigid
registration of 2D and 3D medical images is necessary in order

to study the evolution of a pathology in an individual, or to
take full advantage of the complementary information coming
from multimodality imagery [60, 95]. Examples of the use of
deformable models to perform medical image registration are
found in [14, 51, 63, 67, 83, 114, 115, 154]. These techniques
primarily consist of constructing highly structured descriptions
for matching. This operation is usually carried out by extracting
regions of interest with an edge detection algorithm, followed
by the extraction of landmark points or characteristic contours
(or curves on extracted boundary surfaces in the case of 3D
data). In 3D, these curves usually describe differential structures
such as ridges, or topological singularities. An elastic matching
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algorithm can then be applied between corresponding pairs
of curves or contours where the “start” contour is iteratively
deformed to the “goal” contour using forces derived from local
pattern matches with the goal contour [114].

An example of matching where the use of explicit a priori
knowledge has been embedded into deformable models is the
automatic extraction and labeling of anatomic structures in
the brain from MR images, or the registration of multimodal-
ity brain images. The anatomical knowledge is made explicit
in the form of a 3D brain atlas. The atlas is modeled as a
physical object and is given elastic properties. After an initial
global alignment, the atlas deforms and matches itself onto cor-
responding regions in the brain image volume in response to
forces derived from image features. The assumption underly-
ing this approach is that at some representational level, normal
brains have the same topological structure and differ only in
shape details. The idea of modeling the atlas as an elastic object
was originated by Broit [17], who formulated the matching
process as a minimization of a cost function. Subsequently,
Bajcsy and Kovacic [8] implemented a multiresolution version
of Broit’s system where the deformation of the atlas proceeds
step-by-step in a coarse to fine strategy, increasing the local
similarity and global coherence. The elastically deformable atlas
technique is very promising and consequently has become a
very active area of research that is being explored by several
groups [15,16,26,36–38,48,55,99,133,137,142,155,160,164].

The automatic brain image matching problem is extremely
challenging and there are many hurdles that must be overcome
before the deformable atlas technique can be adopted for clinical
use. For example, the technique is sensitive to the initial posi-
tioning of the atlas—if the initial rigid alignment is off by too
much, then the elastic match may perform poorly. The presence
of neighboring features may also cause matching problems—
the atlas may warp to an incorrect boundary. Finally, without
user interaction, the atlas can have difficulty converging to
complicated object boundaries. A proposed solution to these
problems is to use image preprocessing in conjunction with the
deformable atlas. Sandor and Leahy [133] use this approach to
automatically label regions of the cortical surface that appear
in 3D MR images of human brains (Figure 8.8). They automat-
ically match a labeled deformable atlas model to preprocessed
brain images, where preprocessing consists of 3D edge detec-
tion and morphological operations. These filtering operations
automatically extract the brain and sulci (deep grooves in the
cortical surface) from an MR image and provide a smoothed
representation of the brain surface to which their 3D B-spline
deformable surface model can rapidly converge.

8.3.5 Motion Tracking and Analysis

The idea of tracking objects in time-varying images using
deformable models was originally proposed in the context of
computer vision [78, 153]. Deformable models have been used
to track nonrigid microscopic and macroscopic structures in

FIGURE 8.8 The result of matching a labeled deformable atlas to a
morphologically preprocessed MR image of the brain (from [133]).

motion, such as blood cells [88] and neurite growth cones
[66] in cine-microscopy, as well as coronary arteries in cine-
angiography [87]. However, the primary use of deformable
models for tracking in medical image analysis is to measure
the dynamic behavior of the human heart, especially the left
ventricle. Regional characterization of the heart wall motion is
necessary to isolate the severity and extent of diseases such as
ischemia. Magnetic resonance and other imaging technologies
can now provide time varying three dimensional images of the
heart with excellent spatial resolution and reasonable temporal
resolutions. Deformable models are well suited for this image
analysis task.

In the simplest approach, a 2D deformable contour model is
used to segment the LV boundary in each slice of an initial image
volume. These contours are then used as the initial approx-
imation of the LV boundaries in corresponding slices of the
image volume at the next time instant and are then deformed
to extract the new set of LV boundaries [7, 57, 69, 136, 159].
This temporal propagation of the deformable contours dra-
matically decreases the time taken to segment the LV from a
sequence of image volumes over a cardiac cycle. Singh et al.
[136] report a time of 15 minutes to perform the segmentation,
considerably less than the 1.5–2 hours that a human expert
takes for manual segmentation. Deformable contour models
have also been successfully used to track the LV boundary in
noisy echocardiographic image sequences [23, 75].

McInerney and Terzopoulos [102] have applied the temporal
propagation approach in 3D using a 3D dynamic deformable
“balloon” model to track the contractile motion of the LV
(Figures 8.9, 8.10).

In a more involved approach, Amini and Duncan [2] use
bending energy and surface curvature to track and analyze LV
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FIGURE 8.9 Sagittal slice of successive CT volumes over one cardiac cycle (1–16) showing motion of canine LV (from [102]).

motion. For each time instant, two sparse subsets of surface
points are created by choosing geometrically significant land-
mark points, one for the endocardial surface, and the other for
the epicardial surface of the LV. Surface patches surrounding
these points are then modeled as thin, flexible plates. Making
the assumption that each surface patch deforms only slightly
and locally within a small time interval, for each sampled point
on the first surface they construct a search area on the LV surface
in the image volume at the next time instant. The best matched
(i.e., minimum bending energy) point within the search win-
dow on the second surface is taken to correspond to the point
on the first surface. This matching process yields a set of initial

motion vectors for pairs of LV surfaces derived from a 3D image
sequence. A smoothing procedure is then performed using the
initial motion vectors to generate a dense motion vector field
over the LV surfaces.

Cohen et al. [27] also employ a bending energy technique in
2D and attempt to improve on this method by adding a term to
the bending energy function that tends to preserve the matching
of high curvature points. Goldgof et al. [59,73,77,112] have also
been pursuing surface shape matching ideas primarily based on
changes in Gaussian curvature and assume a conformal motion
model (i.e., motion which preserves angles between curves on
a surface but not distances).
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FIGURE 8.10 Tracking of the LV motion of canine heart during one cardiac cycle (1–16) using
deformable balloon model (from [102]).

An alternative approach is that of Chen et al. [25], who use a
hierarchical motion model of the LV constructed by combining
a globally deformable superquadric with a locally deformable
surface using spherical harmonic shape modeling primitives.
Using this model, they estimate the LV motion from angio-
graphic data and produce a hierarchical decomposition that
characterizes the LV motion in a coarse-to-fine fashion.

Pentland and Horowitz [123] and Nastar and Ayache [116]
are also able to produce a coarse-to-fine characterization of

the LV motion. They use dynamic deformable models to
track and recover the LV motion and make use of modal
analysis, a well-known mechanical engineering technique, to
parameterize their models. This parameterization is obtained
from the eigenvectors of a finite element formulation of
the models. These eigenvectors are often referred to as the
“free vibration” modes and variable detail of LV motion
representation results from varying the number of modes
used.
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The heart is a relatively smooth organ and consequently there
are few reliable landmark points. The heart also undergoes
complex nonrigid motion that includes a twisting (tangen-
tial) component as well as the normal component of motion.
The motion recovery methods described above are, in general,
not able to capture this tangential motion without additional
information. Magnetic resonance techniques, based on mag-
netic tagging [4], have been developed to track material points
on the myocardium in a non-invasive way. The temporal cor-
respondence of material points that these techniques provide
allow for quantitative measurement of tissue motion and defor-
mation including the twisting component of the LV motion.
Several researchers have applied deformable models to image
sequences of MR tagged data [1, 45, 80, 81, 121, 173, 174]. For
example, Amini et al. [1] and Kumar and Goldgof [81] use
a 2D deformable grid to localize and track SPAMM (Spatial
Modulation of Magnetization) tag points on the LV tissue.
Park et al. [120, 121] fit a volumetric physics-based deformable
model to MRI-SPAMM data of the LV. The parameters of the
model are functions which can capture regional shape vari-
ations of the LV such as bending, twisting, and contraction.
Based on this model, the authors quantitatively compare normal
hearts and hearts with hypertrophic cardiomyopathy.

Another problem with most of the methods described above
is that they model the endocardial and epicardial surfaces of
the LV separately. In reality the heart is a thick-walled struc-
ture. Duncan et al. [45] and Park et al. [120, 121] develop
models which consider the volumetric nature of the heart
wall. These models use the shape properties of the endocardial
and epicardial surfaces and incorporate mid-wall displacement
information of tagged MR images. By constructing 3D finite
element models of the LV with nodes in the mid-wall region
as well as nodes on the endocardial and epicardial sur-
faces, more accurate measurements of the LV motion can be
obtained. Young and Axel [172, 174], and Creswell [33] have
also constructed 3D finite element models from the boundary
representations of the endocardial and epicardial surfaces.

8.4 Discussion

In the previous sections we have surveyed the considerable
and still rapidly expanding body of work on deformable mod-
els in medical image analysis. The survey has revealed several
issues that are relevant to the continued development of the
deformable model approach. This section summarizes key
issues and indicates some promising research directions.

8.4.1 Autonomy vs Control

Interactive (semi-automatic) algorithms and fully automatic
algorithms represent two alternative approaches to computer-
ized medical image analysis. Certainly automatic interpretation
of medical images is a desirable, albeit very difficult, long-term

goal, since it can potentially increase the speed, accuracy,
consistency, and reproducibility of the analysis. However, the
interactive or semiautomatic methodology is likely to remain
dominant in practice for some time to come, especially in
applications where erroneous interpretations are unacceptable.
Consequently, the most immediately successful deformable
model based techniques will likely be those that drastically
decrease the labor intensiveness of medical image processing
tasks through partial automation and significantly increase their
reproducibility, while still allowing for interactive guidance or
editing by the medical expert. Although fully automatic tech-
niques based on deformable models will likely not reach their
full potential for some time to come, they can be of immediate
value in specific application domains such as the segmenta-
tion of healthy tissue surrounding a pathology for enhanced
visualization.

8.4.2 Generality vs Specificity

Ideally a deformable model should be capable of represent-
ing a broad range of shapes and be useful in a wide array
of medical applications. Generality is the basis of deformable
model formulations with local shape parameters such as
snakes. Alternatively, highly specific, “hand-crafted” or con-
strained deformable models appear to be useful in appli-
cations such as tracking the nonrigid motion of the heart
(Section 8.3.5), automatically matching and labeling structures
in the brain from 3D MR images (Section 8.3.4), or segmenting
very noisy images such as echocardiograms. Certainly attempts
to completely automate the processing of medical images would
require a high degree of application and model specificity.
A promising direction for future study appears to be techniques
for learning “tailored” models from simple general purpose
models. The work of Cootes et al. [31] may be viewed as an
example of such a strategy.

8.4.3 Compactness vs Geometric Coverage vs
Topological Flexibility

A geometric model of shape may be evaluated based
on the parsimony of its formulation, its representational
power, and its topological flexibility. Generally, parameter-
ized models offer the greatest parsimony, free-form (spline)
models feature the broadest coverage, and implicit models
have the greatest topological flexibility. Deformable models
have been developed based on each of these geometric classes.
Increasingly, researchers are turning to the development of
hybrid deformable models that combine complementary fea-
tures. For objects with a simple, fixed topology and without
significant protrusions, parameterized models coupled with
local (spline) and/or global deformations schemes appear to
provide a good compactness-descriptiveness tradeoff [25, 123,
151, 162]. On the other hand, the segmentation and modeling
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of complex, multipart objects such as arterial or bronchial
“tree” structures, or topologically complex structures such as
vertebrae, is a difficult task with these types of models [106].
Polygon based or particle based deformable modeling schemes
seem promising in segmenting and reconstructing such struc-
tures. Polygon based models may be compacted by removing
and “retiling” [40, 61, 158] polygons in regions of low shape
variation, or by replacing a region of polygons with a sin-
gle, high-order finite element or spline patch [129]. A possible
research direction is to develop alternative models that blend
or combine descriptive primitive elements (rather than simple
particles), such as flexible cylinders, into a global structure.

8.4.4 Curve vs Surface vs Solid Models

The earliest deformable models were curves and surfaces.
Anatomic structures in the human body, however, are either
solid or thick-walled. To support the expanding role of medical
images into tasks such as surgical planning and simulation, and
the functional modeling of structures such as bones, muscles,
skin, or arterial blood flow, may require volumetric or solid
deformable models rather than surface models. For example,
the planning of facial reconstructive surgery requires the extrac-
tion and reconstruction of the skin, muscles, and bones from 3D
images using accurate solid models. It also requires the ability
to simulate the movement and interactions of these structures
in response to forces, the ability to move, cut and fuse pieces
of the model in a realistic fashion, and the ability to stimu-
late the simulated muscles of the model to predict the effect of
the surgery. Several researchers have begun to explore the use
of volumetric or solid deformable models of the human face
and head for computer graphics applications [47, 84] and for
medical applications [42, 56, 58, 79, 125, 165, 166], particularly
reconstructive surgery simulation, and there is much room for
further research. Researchers have also begun to use volumet-
ric deformable models to more accurately track and analyze LV
motion [33, 45, 121, 172].

8.4.5 Accuracy and Quantitative Power

Ideally it should be possible to measure and control the accuracy
of a deformable model. The most common accuracy control
mechanisms are the global or local subdivision of model basis
functions [111], or the repositioning of model points to increase
their density in regions of the data exhibiting rapid shape vari-
ations [161]. Other mechanisms that warrant further research
are the local control and adaptation of model continuity, para-
meter evolution (including the rate and scheduling of the
evolution), and the automation of all accuracy control mech-
anisms. The parametric formulation of a deformable model
should not only yield an accurate description of the object, but
it should also provide quantitative information about the object
in an intuitive, convenient form. That is, the model parameters

should be useful for operations such as measuring, matching,
modification, rendering, and higher-level analysis or geomet-
ric reasoning. This “parameter descriptiveness” criterion may
be achieved in a postprocessing step by adapting or optimizing
the parameterization to more efficiently or more descriptively
match the data. However, it is preferable to incorporate the
descriptive parameterization directly into the model formula-
tion. An example of this strategy is the deformable model of
Park et al. [121].

8.4.6 Robustness

Ideally, a deformable model should be insensitive to initial con-
ditions and noisy data. Deformable models are able to exploit
multiple image attributes and high level or global information
to increase the robustness of shape recovery. For example, many
snakes models now incorporate region based image features
as well as the traditional edge based features (Section 8.3.1).
Strategies worthy of further research include the incorporation
of shape constraints into the deformable model that are derived
from low level image processing operations such as thinning,
medial axis transforms [53], or mathematical morphology.
A classical approach to improve the robustness of model fit-
ting is the use of multiscale image preprocessing techniques
[78, 153], perhaps coupled with a multiresolution deformable
model [8]. A multiresolution technique that merits further
research in the context of deformable models is the use of
wavelet bases [140] for deformations [162, 163]. A deformable
model should be able to easily incorporate added constraints
and any other a priori anatomic knowledge of object shape
and motion. Section 8.3.3 reviewed several of the most promis-
ing techniques to incorporate a priori knowledge. For example,
for LV motion tracking, a promising research direction is the
incorporation of biomechanical properties of the heart and the
inclusion of the temporal periodic characteristics of the heart
motion. Future directions include modeling schemes that incor-
porate reasoning and recognition mechanisms using techniques
from artificial intelligence, such as rule-based systems or neural
networks, and techniques from artificial life [100].

8.4.7 Lagrangian vs Eulerian Deformable Models

An alternative to the Lagrangian formulation of deformable
models upon which this survey has focused, is the Eulerian
formulation. The latter leads to so called level set methods,
which have attracted much attention in the medical image
analysis literature. Covering the now voluminous literature is
beyond the scope of this survey, but we point the reader to the
recent volume by Osher and Paragios [119] and recent survey
articles [32, 143, 157] for relevant background material and ref-
erences. The important point is that the two approaches are
complementary in precisely the same sense that Lagrangian
solid models complement Eulerian fluid models in continuum
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mechanics and that parametric and implicit geometric models
complement one another in computer-aided geometric design.
The substantial medical image analysis literature on Lagrangian
and Eulerian deformable models is a testament to the fact that
each approach is useful in particular applications.

The initial motivation for the Eulerian formulation of
deformable models was to introduce topological flexibility into
the model-based image segmentation problem through the
adaptation of the Osher-Sethian level set evolution technique
[19, 20, 97, 134, 167]. Formulated as evolving contours (sur-
faces in 3D) or “fronts” which define the level set of some
higher-dimensional (hyper-) surface over the image domain,
the main feature of this approach is that topological changes
are handled naturally, since the level set need not be simply
connected; the higher-dimensional surface remains a simple
function even as the level set changes topology. While the level
set technique is an attractive mathematical framework, par-
tial differential equations governing curvature-dependent front
evolution, implicit formulations are generally not as conve-
nient as the explicit, parametric formulations when it comes to
incorporating additional control mechanisms including inter-
nal deformation energies and external interactive guidance
by expert users. Furthermore, the higher-dimensional implicit
surface formulation makes it difficult to impose arbitrary geo-
metric or topological constraints on the level set indirectly
through the higher dimensional representation. Therefore, the
implicit formulation may potentially limit the ease of use, effi-
ciency and degree of automation achievable in the segmentation
task.

Among newer approaches that address these difficulties are
T-snakes and T-surfaces [106, 107], which can be viewed as
hybrid models that combine aspects of the Lagrangian and
Eulerian approaches (with the ACID introducing aspects of
the latter to induce topological flexibility). A recent, purely
Lagrangian approach that maintains the advantages of level
set methods while avoiding their drawbacks is the Delaunay
Deformable Models [126]. This reference provides additional
discussion of the shortcomings of the level set method and cites
several other recent alternatives to the T-snakes approach.

8.5 Conclusion

The increasingly important role of medical imaging in the
diagnosis and treatment of disease has opened an array of
challenging problems centered on the computation of accu-
rate geometric models of anatomic structures from medical
images. Deformable models offer an attractive approach to tack-
ling such problems, because these models are able to represent
the complex shapes and broad shape variability of anatomical
structures. Deformable models overcome many of the limi-
tations of traditional low-level image processing techniques,
by providing compact and analytical representations of object
shape, by incorporating anatomic knowledge, and by providing

interactive capabilities. The continued development and
refinement of these models should remain an important area
of research into the foreseeable future.
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9.1 Background

The need for automated techniques for the difficult problems
involved in the segmentation and measurement of structure
from medical images has only continued to increase [38].
Segmentation and quantitative analysis of structures in medi-
cal images have tremendous scientific and clinical applications.
Reliable, valid and efficient methods are needed to quantify

image information and the exploitation of available prior
shape information is essential. The two principal sources of
image derived information that are used by most segmentation
methods are region-based and boundary-based. In addition,
extrinsic information from prior knowledge of shape or shape
characteristics can be brought to bear on the problem in the
form of shape models, constraints, atlases, etc.
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9.1.1 Tissue Classification

Region information can be used to perform tissue classification
in order to assign voxels to classes based on the gray-level of the
voxel, the gray level distribution of the class, the image, neigh-
boring voxels or other measures of homogeneity. Techniques
from pattern recognition have been used, such as linear dis-
criminant analysis, k-nearest neighbors and support vector
classification [1, 20]. In order to incorporate spatial relation-
ships between pixels, Markov Random Fields [22, 29] have
been widely used to explicitly model probabilistic constraints
on image gray levels to aid in classification. Wells et al. [53] pro-
posed to estimate brain tissue classes (gray, white, CSF) while
simultaneously estimating the underlying magnetic resonance
bias field using an Expectation-Maximization (EM) strategy.
Other work includes that of Mumford and Shah who proposed
a minimization for segmentation based on a piecewise smooth
image model [36]. Cline et al. [9] use a multispectral voxel clas-
sification method in conjunction with connectivity to segment
the brain into different tissue types from 3D magnetic reso-
nance (MR) images. While all of these methods work to some
extent, region-based methods typically require further process-
ing to group segmented regions into coherent structure(s), and
hence constraints based on topological or geometric coherence
cannot be easily built into the processing. This inability makes
such techniques limited when applied to medical images where
such constraints are a necessity. Multiple features at each pixel
can also be exploited [18]. Region information has also been
successfully incorporated into deformable boundary finding
methods using, for example, integrated techniques [6, 7, 43].

9.1.2 Deformable Models

A large amount of work has been carried out using deformable
surfaces for 3D boundary finding, particularly using the snakes
approach of Kass et al. [26]. These approaches use energy min-
imizing boundaries combining smoothness constraints with
image features. While there have been many refinements, the
parameters are typically still free to take almost any smooth
boundary with no constraints on the overall shape. Close ini-
tialization is needed in order to achieve good results; outward
balloon forces can help with this problem. Deformable surface
models using the finite-element method have also been used
[10]. However, the need to override local smoothness to allow
for the significant protrusions that a shape may possess (which
is highly desirable in order to capture, for example, the folds of
the cortex) remains a problem.

Another type of deformable model involves level set meth-
ods [4, 33, 34, 41], which are powerful techniques for analyzing
and computing interface motion. The essential idea is to rep-
resent the boundary of interest as a propagating wavefront.
Equations governing the motion are typically developed so
that the boundary propagates along its normal direction with a
speed controlled as a function of surface characteristics (e.g.,

curvature, normal direction, etc.) and image characteristics
(e.g., gray level, gradient, etc.). This powerful approach can
be extended, as will be described below, to include a variety
of forms of shape constraints in order to control the behavior
of the standard level set algorithms which may be unsuccessful
when the image information is not strong enough. Chan and
Vese [8] proposed a level-set-based method that uses region-
based information and derives the speed of propagation from
the optimization of an objective function.

A number of groups have attempted to develop variations
of deformable models specifically for solving the problem of
segmenting cortical gray matter, a particular challenge to such
methods and an important application area. Davatzikos et al.
used a ribbon for modeling the outer cortex and proposed an
active contour algorithm for determining the spine of such a
ribbon [17]. However, close initialization and human interac-
tion are still needed to force the ribbon into the sulcal folds.
Xu et al. [54] used gradient vector flow fields in conjunction
with tissue membership functions as a way of better controlling
the deformation of snake-like active contour models for find-
ing the central cortical layer half way between the gray/white
and gray/CSF boundaries. Teo et al. [48] used a system that
exploited knowledge of cortical anatomy, in which white mat-
ter and CSF regions were first segmented, then the connectivity
of the white matter was verified in regions of interest. Finally,
a connected representation of the gray matter was created by
growing out from the white matter boundary. MacDonald
et al. [32] designed an iterative algorithm for simultaneous
deformation of multiple surfaces to segment MR brain images
with inter-surface constraints and self-intersection avoidance
using cost function minimization. Kapur et al. [25] also used
a snake approach, in conjunction with EM segmentation and
mathematical morphology.

9.1.3 Statistical Shape Models

Statistical models can be powerful tools for directly capturing
the variability of structures being modelled. Such techniques
are a necessity for the segmentation of structure which is con-
sistent in shape but poorly defined by image features, as is often
the case in medical images. Atlas registration for the purposes of
segmentation [11, 19] is one way of using prior shape informa-
tion. Collins et al. [12], for example, segment the brain using an
elastic registration to an average brain, based on a hierarchical
local correlation. The average brain provides strong prior infor-
mation about the expected image data and can be used to form
probabilistic brain atlases [49]. A variety of specific paramet-
ric models for prior shape have been used successfully in our
laboratory [44, 46, 52] and by other groups [13, 47, 50] for seg-
mentation. The statistics of a sample of images can be used to
guide the deformation in a way governed by the measured vari-
ation of individuals. Staib and Duncan use prior probabilities
to model deformable objects with a Fourier representation for
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segmentation [44, 46]. The prior is computed based on statistics
gathered from a sample of image-derived shapes. Point-based
models and their associated statistics are used in medical images
for segmentation [13, 16]. Cootes et al. find corresponding
points across a set of training images and construct a statisti-
cal model of shape variation from the point positions based on
principal components analysis. Later, we describe a formulation
based on this approach [52]. The use of principal components
has also been adapted for the Fourier representations by Szekély
et al. [47]. Others have used moment based constraints [39]
to incorporate shape information. Pentland and Sclaroff [37]
used linear deformations based on the shape’s elastic modes
of vibration. This model is not, however, statistically based.
Region-based information can be combined with prior models
in a single objective [7, 43] or game theoretic manner [6] in
order to enhance the robustness of the approach.

Zeng et al. [63] developed a coupled surfaces algorithm to
segment the cortex using a thickness prior constraint. Leventon
et al. [30, 31] extend the geodesic contours of Caselles et al.
[5] by incorporating shape information into the evolution pro-
cess. Shape information from the spatial context can also be
incorporated because neighboring structures often have consis-
tent locations and shapes that can aid in segmentation. These
inter-object constraints have been used for subcortical structure
segmentation [57–60]. Yan et al. built on this idea with a simi-
lar levelset method which first computes an initial shape based
on Leventon’s formulation [30] and then constrains neighbors
with overlap competition [55, 56].

9.1.4 Overview

We categorize segmentation problems into two types: the delin-
eation of structure of known shape whose form is a continuous
variation around a mean shape and the finding of more com-
plex structure that varies significantly between individuals. In
the first case, we have developed approaches using parametric
shape models applied to structures such as the caudate in the
subcortex of the brain and the left ventricle of the heart. We
also describe how this technique can also be used to incorpo-
rate varying degrees of generic information. In the second, we
have developed level-set approaches using multiple level-sets
applied to structures in the cortex and subcortex of the brain.
These methods have been tested on a variety of synthetic and
real images.

9.2 Global Shape Constraints

When there is prior knowledge of shape that can be represented
in a global shape model, we can develop prior models to take
advantage of that in order to locate structure from images and
a Bayesian formulation can be used. We want to determine the
surface (or curve, in 2D) parameters which correspond to the

structure which best compromises between the image derived
information and the prior shape model.

In this section, we describe a formulation based on based
on principal component analysis of four different covariance
matrices corresponding to independence, smoothness, statisti-
cal shape and combined models. Snakes [26], modal analysis
[37], Fourier descriptors [44], and point distribution models
[16] all have a correspondence to these different forms of prior
models. When the true training set does not contain enough
variability to express the full range of deformations, a mixed
covariance matrix can be used which combines a smoothness
prior and statistical variation modes. It adapts gradually to
use more statistical modes of variation as larger data sets are
available.

The goal of this work is to examine different prior models
for boundary finding and point correspondence based on a
simple unified Bayesian framework. In addition, we consider
the use of an integrated prior model based on a combination
of smoothness and training set covariance matrices for training
sets lacking adequate variation.

9.2.1 Point Distribution Model: Ctraining

Suppose we want to derive a model to represent the shapes
shown in Figure 9.1(b). We can represent each example shape as
a set of hand-labeled boundary points. The landmark points on
the boundary are usually easily identified features, such as high
curvature points, sharp corners, etc. Equally spaced points are
interpolated between the landmark points along the boundary
(Figure 9.1(a)). The training set points are first aligned to min-
imize a weighted sum of squared distances between equivalent
points on different shapes.

The following 2D formulation is similar to that of Cootes
et al. [16]. Given m aligned examples and each example
of a set of N aligned labeled points, Li = (xi(1), yi(1),
xi(2), yi(2), . . . , xi(N ), yi(N ))T (i = 1, 2, . . . , m), we calculate
the mean shape, L, and the covariance about the mean, Ctraining.
The eigenvectors of the 2N × 2N covariance matrix, Ctraining,
corresponding to the largest eigenvalues describe the most sig-
nificant modes of variation in the variables used to derive the
covariance matrix. Further, the proportion of the total variance
explained by each eigenvector is proportional to the corre-
sponding eigenvalue λk [23]. Typically, most of the variation
can be explained by a small number of modes, t (< 2N ). Any
shape in the training set can be approximated using the mean
shape and a weighted sum of deviations obtained from the first
t modes:

L = L + Qa (9.1)

where Q = (q1 | q2 | . . . | qt ) is the matrix of the first t eigen-
vectors, and a = (a1a2 . . . at )

T is a vector of weights, which
is also the set of t shape parameters to be optimized later.
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(a) (b) (c)

(22Ö�k ¬ ak ® 2Ö�k)

FIGURE 9.1 Synthetic shape model. (a): synthetic image (64× 64) with its 24 point model of the boundary (4 landmark points, (large dots),
shown with equally spaced points (small dots)); (b): 16 examples of synthetic shapes from a training set; (c): effects of varying each of the first
two shape parameters of the synthetic model.

This equation allows us to generate new examples of shapes
by varying the parameter a.

9.2.2 Independence Model: Cidentity

Consider a 2N×2N identity covariance matrix Cidentity , instead
of the covariance derived from the training set. This means that
all points (x and y coordinates) are uncorrelated. The eigenvec-
tors of Cidentity , qk (size 2N ), for k = 1, 2, . . . , 2N , can be taken
to be:

q1 = (1, 0, 0, 0, . . . , 0, 0, 0)T

q2 = (0, 1, 0, 0, . . . , 0, 0, 0)T

...
...

... (9.2)

q2N = (0, 0, 0, 0, . . . , 0, 0, 1)T

with the corresponding eigenvalues λk = 1. If k is even, the
kth eigenvector moves point k/2 in the y direction; if k is
odd, the kth eigenvector moves point (k + 1)/2 in the x direc-
tion (see Figure 9.2). Combinations of vectors, one for each
mode, can move the modeled landmark points anywhere in the
image. Any shape can also be approximated using the mean
shape and a weighted sum of deviations obtained from the
2N modes.

9.2.3 Smoothness Model: Csmooth

The identity covariance matrix is completely unconstrained;
therefore, consider the incorporation of a type of smoothness
constraint into the covariance matrix where neighboring points
are correlated, as in a Markov model. That is:

Csmooth =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0.5 0 0 . . . 0.5 0
0 1 0 0.5 0 . . . 0 0.5
...

...
...

...
...

. . .
...

...
0.5 0 0 0 0 . . . 1 0
0 0.5 0 0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎦ (9.3)

a1

a2

220Ö�k  mean  20Ö�k

FIGURE 9.2 Effects of varying each of the 1st and 2nd shape param-
eters of the synthetic model with the identity covariance matrix.
A large range is used here due to the small magnitude of the
eigenvalues.
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FIGURE 9.3 Effects of varying each of the 3rd and 6th shape
parameters of the synthetic model with the smoothness covariance
matrix.

where Csmooth is a 2N × 2N matrix. Thus, neighboring points
are more likely to move together. The first two eigenvectors
of Csmooth (with equal eigenvalues) allow for a rigid transla-
tion. The other eigenvectors correspond to increasing frequency
variation. The shapes generated (Figure 9.3) are smoother
than those using the identity covariance matrix. If we examine
Csmooth, we see that it is circulant and therefore has sinusoidal
eigenvectors [40]. Eigenvectors corresponding to higher fre-
quencies have lower eigenvalues and will have less influence.
Shapes are not restricted by a training set and thus the model
is not specific but allows smooth variability. Also, landmark
points are unlikely to correspond when using this model due to
its flexibility.

Note that the degree or scale of smoothing can be controlled
by changing the coefficients along the off-diagonals thereby
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changing the covariance values for the boundary neighbor
points. The identity covariance matrix, Cidentity , described above
can be considered as an extreme case of Csmooth with scale zero
(i.e., considering only zero order boundary neighbor smooth-
ness). The Csmooth in Eq. (9.3) has a medium scale by including
first order boundary neighbors with covariance 0.5. Another
way to construct Csmooth is to set the covariance values for the
boundary neighbor points according to a Gaussian. However,
because most of the variation can be explained by a small
(or medium) number of significant modes, the cut-off of the
high frequency components makes the scale of Csmooth a rela-
tively unimportant factor during optimization [51]. In practice,
results are robust to a wide range of scales. Hence, in the later
experiments, we always use Csmooth as given by Eq. (9.3).

The motivation for the use of this smoothness covariance
matrix is similar to that of the internal smoothness forces in
Kass’s snakes [26]. However, it is expected that our optimization
with this smoothness constraint would be more efficient than
Kass’s because we reduce the dimensionality of the search space.
The use of this smoothness covariance matrix is also similar
to Pentland’s modal analysis scheme [37] and Staib’s Fourier
descriptors [45] since both of them represent shapes based on
frequency components.

9.2.4 Combined Model: Cmix

For a small training set, Ctraining is unlikely to contain ade-
quate statistics to characterize valid distortions. The generic
constraint of Csmooth can help augment the available statistics.
The combination of Ctraining and Csmooth results in a much bet-
ter model allowing variability due to Csmooth and specificity due
to Ctraining when few training set examples are available. Also,
given the time necessary to build the model, it will save time if
we use fewer training images. Similar approaches, combining
vibration modes [14, 37] or other covariance [15], have been
proposed.

In addition to the true training set, suppose we also
have a smoothness set with m′ aligned examples and each
example has a set of N aligned labeled points, L′i = (x ′i (1),
y ′i (1), x ′i (2), y ′i (2), . . . , x ′i (N ), y ′i (N ))

T (i = 1, 2, . . . , m′) with
the same mean as the training set. The smoothness set is the
virtual set which would correspond to the artificial covariance
matrix Csmooth. The covariance matrices of random vectors L
and L′ are respectively

Ctraining = 1

m − 1

m∑
i=1

(Li − L)(Li − L)T ;

Csmooth = 1

m′

m′∑
i=1

(L′i − L)(L′i − L)T (9.4)

A pooled estimate of the covariance matrix (denoted Cmix)
derived from the sets used to form Ctraining and Csmooth can

be calculated as [42]:

Cmix =
∑m

i=1(Li − L)(Li − L)T +∑m′
i=1(L

′
i − L)(L′i − L)T

(m − 1)+m′

=
[

Ctraining + m′

m − 1
Csmooth

]
m − 1

(m − 1)+m′ (9.5)

We then have:

Cmix =
[
Ctraining + w · Csmooth

] 1

1+ w
using w = m′

m − 1
(9.6)

In this way, we can build a model by calculating the eigenvec-
tors and eigenvalues of matrix Cmix when few true training set
examples are available.

For m′ > 0, Cmix will include both the training set statis-
tics and the smoothness model. Ctraining will have up to m − 1
non-zero eigenvalues (for m ≤ 2N ). Using Cmix, however, gives
the full 2N non-zero eigenvalues no matter what the training
set size and allows for greater flexibility in the model consis-
tent with the additional smoothness statistics. By definition, w
tends to decrease as m increases. We choose m′ as a constant so
that when fewer training examples are available, the smooth-
ness examples increase the variability of the model. When more
training examples are available, the role of the smoothness set
is decreased because we have more reliable variation modes
derived from the true training set.

As an example, two sets of 20 points were generated in
Figure 9.4: a square and a rectangle (similar to the examples
in [15, 16]). Figure 9.5 shows the modes of variation generated

FIGURE 9.4 Training set of the square and rectangle shape model (20
labeled points for each).

a3

a7

210Ö�k  mean  10Ö�k

FIGURE 9.5 Effects of varying each of the 3rd and 7th shape param-
eters of the square and rectangle shape model with smoothness
covariance matrix Csmooth. The first two shape parameters correspond
to rigid translation.
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FIGURE 9.6 Effects of varying each of the 1st and 7th shape parame-
ters of the square and rectangle shape model with combined covariance
matrix Cmix. The 2nd and 3rd shape parameters correspond to rigid
translation.

by Csmooth (Eq. (9.3)) allowing smooth changes to the mean
shape. Figure 9.6 shows the modes of variation generated by
Cmix (Eq. (9.6)) with w = 30 equivalent to m′ = 30. Here, in
addition to smooth variation, the principal mode a1 changes
the aspect ratio reflecting the variation in the training set. In
fact, this would be the only mode of Ctraining.

Note that our combined model achieves the similar goal as
previous work [15, 16] but in a simpler and more unified way
as part of our framework for boundary finding. Using a sta-
tistically pooled estimate of Csmooth and Ctraining provides a
justification and rationale for the construction of Cmix. The
proportion of Csmooth included can then be determined by
experiment.

9.2.5 Bayesian Objective Function

Given the prior models derived from our covariance matri-
ces, our aim is to use them to model particular examples of
structure in individual images, and then to find the shape
parameters a = (a1a2 . . . at )

T , and pose parameters: scale s,
rotation θ, translation Tx , Ty . The combined pose and shape
parameter vector to be determined is represented by p =
(s, θ, Tx , Ty , a1, a2, . . . , at )

T . The point representation of the
nth boundary point (n = 0, 1, . . . , N − 1) is

x(p, n) = s cos θ

[
x(n)+

t∑
k=1

Q 2n,kak

]

− s sin θ

[
y(n)+

t∑
k=1

Q 2n+1,kak

]
+ Tx

y(p, n) = s sin θ

[
x(n)+

t∑
k=1

Q 2n,kak

]

+ s cos θ

[
y(n)+

t∑
k=1

Q 2n+1,kak

]
+ Ty (9.7)

where (x(n), y(n)) is the nth point of the mean shape, and
Q is the matrix of the first t eigenvectors of the covariance
matrix (Ctraining, Cmix, Cidentity , or Csmooth). In order to apply
prior knowledge of the shape model to the problem of boundary

determination, we pose the problem in a maximum a posteriori
Bayesian formulation.

We model the prior by using a multivariate Gaussian density
Pr(p) for the shape and pose parameters (as in [45]). The like-
lihood we propose only uses the edge image information of the
input image, E , and is calculated by the Canny edge detector
[3]. Other appropriate feature images, such as gradient images,
are possible, as well.

By using Bayes rule, the a posteriori probability density of
the deformed boundary given the input edge image can be
expressed as:

Pr(p |E) = Pr(E | p)Pr(p)

Pr(E)
(9.8)

Our objective is to maximize the a posteriori density in Eq. (9.8)
with respect to p. This can be simplified to maximize (as in [45],
see [51, 52] for a detailed derivation):

M (p) =
t+4∑
j=1

[
− (pj −mj)

2

2σ2
j

]
+ 1

σ2
n

N∑
n=1

E(x(p, n), y(p, n))

(9.9)

Here, mj is the mean of pj . For the shape parameters, transla-
tion and rotation, the means are defined to be zero relative to
the mean point configuration. The mean scale (m1) is defined to
be 1. The variance for each of the parameters is σ2

j . The variance
for each shape parameter is the eigenvector’s corresponding
eigenvalue. For the pose parameters, the variance is calculated
from the training set alignment. Also note that σ2

n is the vari-
ance of the white zero mean Gaussian noise associated with the
image noise model [51, 52].

Eq. (9.9) is the maximum a posteriori objective incorporat-
ing a prior bias to likely shapes and poses (first term) and match
to the edges in the image by maximizing the sum of the edge
strength at the boundary points defined by vector p (second
term). We optimize the objective function M (p) using the con-
jugate gradient method. We can efficiently compute the gradient
from an analytic formulation.

9.2.6 Experimental Results

The error of each labeled boundary point on the final bound-
ary is calculated by finding the distance to the closest point on
the true (or expert delineated) boundary. We use both average,
avg(Eb), and maximum, max(Eb), boundary error measures.
The correspondence error of each landmark point on the final
boundary is the distance between this point and its correspond-
ing landmark point on the true boundary. The average error of
the correspondence is denoted as avg(Ec ).

Using synthetic images, we demonstrated the robustness of
the training set method to noise as well as varying mean (and
thus varying initialization) using Ctraining [51, 52]. Good results
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are achieved for a range of position, shape and scale. When
the initialization is too far away from the true boundary, the
optimization may be trapped by local maxima.

9.2.6.1 Real Images

The result of the training set method (Ctraining) applied to a
sagittal magnetic resonance (MR) image of the human brain is
shown in Figure 9.7 (a), (b). Here, we used a 49 point model
derived from a set of 12 corpus callosum shapes. For an axial MR
image of the human brain, a 93 point model derived from a set
of 12 basal ganglia and ventricle boundaries is used. Figure 9.7
shows that our Bayesian formulation with Ctraining gives quite
good final contours and correspondence although we do not
explicitly match features for correspondence.

Figure 9.8 shows our method applied to the endocardium
in an MR image of a dog heart. We compared three different
prior models for this heart image with the same initial posi-
tion. With the identity covariance, the objective function only
includes the likelihood term. The model will try to match to
edges without regard to shape or correspondence. The bound-
ary here cannot be found since the shape is complicated and the
points move independently. With the smoothness covariance of

TABLE 9.1 Error measure for the heart image with
different covariance matrices: max(Eb) — bound-
ary maximum error; avg(Ec ) — correspondence
average error

Cidentity Csmooth Ctraining

max(Eb) 6.12 1.79 1.32
avg(Ec ) 5.57 7.19 0.95

Eq. (9.3), the resulting boundary points will try to match edges
while maintaining the smoothness, but the correspondence of
the points may not be maintained. By using the heart shape
model derived from the true training set, both the boundary
and correspondence are found correctly. Table 9.1 shows the
quantitative comparison with an expert drawn endocardium.
The training set covariance Ctraining works best, as expected,
while the smoothness covariance may be suitable in situations
where there is no training set and correspondence is not needed.
The identity matrix fails to locate the boundary. For this type
of heart image, a shape model is a necessity for finding the
endocardium and its landmark points.

In testing for the case when few training set examples are
available, we showed the advantage of the combined prior

(a) (b) (c) (d)

FIGURE 9.7 MR sagittal ((a),(b)) and axial ((c),(d)) brain examples. (a): initial contour (mean curve) on the original MR sagittal image
(100× 64); (b): final contour on corpus callosum; (c): initial contour (mean curve) on the original MR axial image (100× 80); (d): final
contour on basal ganglia and ventricle boundaries.

(a) (b) (c) (d) (e) (f)

FIGURE 9.8 MR heart image example and prior experiment. (a): original MR image (150 × 150); (b): initial contour (mean curve) on
endocardium (cropped); (c): contour on the endocardium drawn by expert (d): final contour on the endocardium using identity covariance
matrix Cidentity ; (e): final contour using smoothness covariance matrix Csmooth; (f): final contour using training set covariance matrix Ctraining.
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FIGURE 9.9 Combined model testing. The performance of Ctraining and Cmix training with varying number of examples.

model over the regular statistical point prior model. Our
mixed model performs well. It gives a significant improvement
over the pure statistical point model over a wide range: 2 ≤√

m′ ≤ 6 (4 ≤ m′ ≤ 36) and is thus not very sensitive to the
parameter m′. Figure 9.9 shows the variation of error with train-
ing set size for the two models using m′ = 10. The smaller the
training set size, the greater the improvement of the combined
model. Only a relatively small training set may therefore be
necessary in order to achieve satisfying results. As the train-
ing set size increases (>14), the improvement is negligible due
to the improved quality of the statistical information. In real
applications, sometimes even large training sets may not con-
tain enough variability to adequately span the space of plausible
shapes. Our combined model will also help in this case by setting
the weighting w appropriately.

9.3 Level Set Methods Incorporating
Generic Constraints

We have developed a coupled surfaces approach for automati-
cally segmenting a volumetric layer from a 3D image [61–63].
This approach uses a set of coupled differential equations, with
each equation determining the evolution or propagation of a
surface within a level set framework. In the case of the cortex,

one surface attempts to localize the white matter/gray matter
(WM/GM) inner cortical boundary and the other the gray mat-
ter/cerebrospinal fluid (GM/CSF) outer boundary. Coupling
between the surfaces incorporates the notion of an approxi-
mately fixed thickness separating the surfaces everywhere in the
cortex. This soft constraint helps in ensuring that the GM/CSF
boundary is captured even in the deeper cortical folds in the
brain. A further assumption is that across each surface, there is
a local difference in the gray level values, while in between the
two surfaces there is a homogeneity of gray levels. By evolving
two embedded surfaces simultaneously, each driven by its own
image-based information while maintaining the coupling, we
are able to achieve an automatic and robust segmentation of
the cortex, and simultaneously obtain a representation of the
inner and outer cortical surfaces.

9.3.1 Level Set Method

For our purposes, the volumetric layer is defined completely
by its bounding surfaces and the homogeneity in between. The
essential idea is to first represent each cortical surface (in this
case) as a front γ(t ). Given a moving closed front γ(t ), the idea
is to produce an Eulerian formulation for the motion of this
surface propagating along its normal direction with speed F ,
where F can be a function of geometric surface characteristics



9 Shape Information in Deformable Models 175

and image characteristics (such as described above). Such a
formulation can be produced by embedding the propagating
interface as the zero level set of a higher dimensional func-
tion � defined by �(x , t ) = d , where d is the signed distance
from position x to γ(t ). The equation of evolution of �, inside
which our surface is embedded as the zero level set is given
by:�t + F |∇�| = 0. As�(x , t ) evolves, it remains a function.
However, the propagating hypersurface γ(t )may change topol-
ogy, break, merge and form sharp corners as the function �
changes. This flexibility greatly assists in the convergence to
complex structures. In addition, the level set approach facilitates
structural measurement through the direct computation of geo-
metric parameters, such as curvature and thickness, via the level
set function. For example, the intrinsic geometric properties of
the front may be computed directly and accurately from the
level function �. At any point on the front, the outward nor-
mal vector is given by �n = ∇�, and the mean curvature is easily
obtained from the divergence of the gradient of the unit normal
vector to front, that is, K = ∇ · ∇�

|∇�| .

9.3.2 Coupled Surfaces Propagation: Speed Term
Design

In solving the problem of segmenting the cortical gray matter
layer bounded by two surfaces, we consider two moving inter-
faces describing the bounding surfaces. Starting from inside
the inner bounding surface (gray/white boundary), with an
offset in between, the interfaces propagate along the normal
direction stopping at the desired place, while maintaining the
distance between them. Embedding each surface as the zero
level set in its own level function, we have two equations:

�int + Fin|∇�in| = 0 and �outt + Fout|∇�out| = 0 where Fin

and Fout are functions of the surface normal direction, image-
derived information and the distance between the two surfaces.
The coupling is embedded in the design of Fin and Fout. Where
the distance between the two surfaces is within the normal range
for cortical thickness, the two surfaces propagate according to
the image-based information; where the distance between the
two surfaces is out of the normal range, the distance constrains
the propagation. We define:

Fin = g (pGM−WM (�θ∗))h(�out)

Fout = g (pCSF−GM (�θ∗))h(�in) (9.10)

on agreement with Gaussian models for the intensities on either
side of the putative edge [63]. Function g smoothly maps larger
transition probability to slower speed, i.e., as the probability gets
larger, g tends to zero, while as the probability approaches zero,
g tends to a constant. Function h smoothly penalizes the dis-
tance outside of the normal range. As the distance between the
surfaces goes out of normal range, h goes to zero, while within
the normal range, h is constant. Thus, each surface moves with
constant speed along the normal direction, and slows down or
stops when either the image-based information becomes strong
or the distance to the other surface moves away from the normal
range. Surface renderings showing the inner and outer cortical
layers found from a normal 3D brain MR image using this
approach are shown in Figure 9.10. A 2D example showing the
delineation of the endocardium and epicardium of the left ven-
tricle from an MR heart image is shown in Figure 9.11. Here,
the thickness constraint is much wider to allow for the larger
variation in the thickness of the myocardium.

(a) (b) (c) (d)

FIGURE 9.10 Results of coupled level set cortical segmentation. (a) Initialization of pairs of concentric spheres in 3D MR brain images (frontal
part); (b) intermediate step; (c) final result of the outer (top) and inner (bottom) cortical surfaces of the frontal lobe; (d) Single vs. coupled
surfaces approach. Upper: surfaces resulting from single surface approach shown on a sagittal image (finding the inner and outer cortical surfaces
separately); lower: results from the coupled surfaces approach run on original 3D data overlaid on a sagittal slice of the expert tracing result.
The outer cortical surface resulting from the coupled algorithm nicely fits the boundary from the expert tracing. Coupling prevents the inner
surface from collapsing into CSF(∗1) and the outer surface from penetrating non-brain tissue(∗2). (See also color insert).
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FIGURE 9.11 From left to right, evolving coupled level set for heart segmentation showing initialization, through intermediate and final results
on the epicardium (red) and endocardium (green). (See also color insert).
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FIGURE 9.12 The inner and outer cortical surfaces of a brain colored according to the corresponding shape index [27]. (See also color insert).

9.3.3 Validation

For algorithm testing with ground truth information, we used
brain images from an MRI simulator [28] developed at the
Montreal Neurological Institute (MNI) [35]. The images are
generated using a labeled source image that allows users to inde-
pendently control various acquisition parameters and obtain
realistic MR images. The ground truth of the phantom is pro-
vided in the form of membership functions for each voxel
belonging to different tissue types, such as the skull, CSF, gray
matter and white matter.

We tested our cortical coupled surface segmentation algo-
rithm on simulated T1-weighted images of a normal brain
from the MNI simulator. Starting from the unedited images,
user interaction is required to initialize the concentric spheres
within the white matter. The spheres grow out and automati-
cally lock onto the inner and outer cortical surfaces. As long as
the spheres are placed inside the white matter, the algorithm
is robust to starting position. To evaluate the segmentation
result we defined the following measures. TP (true positive)
rate for a particular tissue type T is defined as the percent of

phantom defined tissue voxels that were found by the algorithm.
FP (false positive) rate is defined as the percentage of algorithm
defined tissue voxels that were not defined by the phantom. We
also define the volume ratio to be the volume of all the voxels
segmented as of tissue type T by our algorithm to the total par-
tial volume of tissue type T specified by the phantom (partial
volume voxels contribute proportionally). Table 9.2 shows our
measurement results over four types: total brain tissue (includ-
ing white and gray matter), cortical gray matter in selected slices

TABLE 9.2 Cortex Segmentation Validation: comparison of
coupled algorithm volume measurements with MNI phantom
ground truth. Whole brain includes gray and white matter;
cortical gray is measured on coronal and axial slices with no
subcortical structure

Whole Cort. gray White

TP rate 92.3 93.0 92.4

FP rate 2.0 6.0 3.3

Volume ratio 96.3 103.3 98.1
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and frontal white matter. Since the algorithm is designed specif-
ically for the nearly constant thickness of the cerebral cortex, it
recovers only part of the gray matter in the brain stem and the
cerebellum where the constant thickness constraint is not sat-
isfied. These regions account for most of the errors in the TP
rate and volume ratio for the whole brain tissue. We compared
the cortical gray matter volume on 49 frontal and 56 coronal
slices where there is only white matter and cortical gray matter.
These results show that our algorithm performs well in isolating
the brain from non-brain tissues and in segmenting the cortex
from simulated data.

9.3.3.1 Images from Human Subjects

We have applied our cortical segmentation to true image data in
an effort to further evaluate our approach. A quantitative com-
parison of our algorithm’s results and those obtained by expert
manual tracing was performed using a small set (N = 14) of
studies. We compared either whole brain volume or cortical
gray matter volume using our algorithm with that from the
expert tracing. We found an average true positive rate of 95.2%
for whole brain, a false positive rate of 3.9% for whole brain
and a true positive rate of 86.6% for cortical gray matter. These
rates are very good and could be improved even further by
adding the missing part of the brain stem and cerebellum by
hand editing within minutes.

9.3.3.2 Cortical Thickness and Surface Area

A large battery of measurements have been recorded, including
measures related to both cortical and subcortical volume and
shape. For any point on the outer cortical surface, the absolute
value of �in at the point is simply the distance from the point
to the inner cortical surface. Using this measure, we obtain a
thickness map between the inner and outer cortical surfaces,

which can be used to study the normal thickness variations in
different regions as well as abnormalities. We have recorded
the spatial variation in normal thickness for N = 30 normal
subjects as seen in Figure 9.13. These measurements are in
good agreement with direct measurement of thickness in post-
mortem samples, which average about 3 mm across the whole
brain [2]. Moreover, the cortical thickness of the frontal lobes is
significantly greater (paired t (28) = 10.4, p < 0.0001) than the
thickness of the posterior cortex. This is consistent with other
sources on cortical thickness, including postmortem data [2].
Also, two areas of posterior cortex expected to be thinner, the
postcentral gyrus and the primary and secondary visual cortices
in the occipital lobe, across the 30 control subjects tested, are
found to be consistently relatively thinner as expected, as seen
in Figure 9.13, providing a degree of further validation.

Cortical surface area is also easily captured and measured
from our segmentation approach. Our method yields area mea-
surements from the inner and outer cortical surfaces for the
entire cerebrum. Both inner (GM/WM) (1823 ± 170 cm2)
and outer (GM/CSF) surface area estimates (1527 ± 271 cm2)
are commensurate with postmortem neuroimaging estimates
of about 1600 mm2 [21, 24]) suggesting that our approach is
accurate. However, the smaller outer compared to inner surface
area points to some error in our method due to incomplete rep-
resentation of the outer surface deep within some of the more
tightly packed sulci.

9.3.4 Sulcal Surface Determination

Cortical surface determination facilitates further analysis by the
determination of sulcal surfaces [64]. First, sulcal curves at the
top and bottom of the sulcus can be automatically traced after
the specification of start and end points using dynamic pro-
gramming based on a surface maximum principal curvature
cost function. Sulcal ribbon surfaces (shown in Figure 9.14)

Region
(Lobe)

Thickness
(mm)(± SD)

Left Frontal
Right Frontal

Left Posterior*
Right Posterior*

3.40(.43)
3.25(.42)
3.06(.41)
3.00(.40)

1

thickness(mm)

2 3 4 5

FIGURE 9.13 Measurement of Cortical Thickness. (i): Table reporting mean thickness values for N = 30 normal control males. Note: ∗ Posterior
region encompasses all parietal, temporal and occipital cortical tissue. (ii): Thickness plots of 2 normal brains (one brain: a, b; second brain: c)
showing marked thinning in the postcentral gyrus and primary and secondary visual cortices in the occipital lobe. (See also color insert).
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(a) (b) (c)

FIGURE 9.14 Sulcal surfaces shown with cut-away view of brain (b) and on outer cortical rendering (c). (See also color insert).

can then be determined between these curves deforming the
surface between these curves based on the distance function of
the surface within the sulcus.

9.4 Conclusions

While the situations requiring global shape models and more
generic constraints are different, ultimately, these techniques
can benefit from each other. Both types of information should
be exploited when available and appropriate. Generic con-
straints, as we described, can be incorporated into global
shape methods to augment their descriptive power. When both
global shape and generic properties are applied, to the degree
they are available, the result should be increased robustness
and accuracy. New generic constraints can be designed as we
tackle problems with structural variability but with consis-
tency governed by, for example, biomechanical or physiologic
models.
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10.1 Introduction

Deformable models are curves or surfaces defined within an
image domain that can move under the influence of internal
forces coming within the model itself and external forces com-
puted from the image data. The internal and external forces are
defined so that the model will conform to an object boundary
or other desired features within an image. Deformable models
are widely used in many applications, including edge detection
[7, 14], shape modeling [19, 26], segmentation [10, 16], and
motion tracking [16, 27].

There are two general types of deformable models in
the literature today: parametric deformable models (PDM)
[6, 14, 19, 26] and geometric deformable models (GDM)
[3, 4, 18], which differ in terms of contour representation and
numerical implementation. PDMs are represented explicitly as
parametrized contours in a Lagrangian formulation. GDMs,
on the other hand, are represented implicitly as level sets of
higher-dimensional embedding functions that evolve according
to an Eulerian formulation. The two models share many design
principles, and the connections between them have been estab-
lished in [4, 33]. Typically, both models are drawn toward image
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edges (object boundaries) by potential forces, which are defined
to be the negative gradient of potential functions. Additional
forces, such as pressure forces [4, 6], together with the poten-
tial forces comprise the external forces. There are also internal
forces designed to hold the model together (curvature or elas-
ticity forces) or to keep it from bending too much (bending
forces).

There have been two key difficulties with traditional energy-
minimizing deformable models. First, the initial model must,
in general, be close to the true boundary or else it will likely
converge to the wrong result. Several methods have been
proposed to address this problem including multiresolution
methods [15], pressure forces [6], and distance potentials [7].
The basic idea is to increase the capture range of the exter-
nal force fields and to guide the model toward the desired
boundary. The second problem is that deformable models have
difficulties progressing into boundary concavities [1, 9]. There
has been no satisfactory solution to this problem, although
pressure forces [6], control points [9], domain-adaptivity [8],
directional attractions [1], and the use of solenoidal fields [21]
have been proposed. Most of the methods proposed to address
these problems, however, solve only one problem while cre-
ating new difficulties. For example, multiresolution methods
have addressed the issue of capture range, but specifying how
the deformable model should move across different resolu-
tions remains problematic. Another example is that of pressure
forces, which can push a deformable model into boundary
concavities, but cannot be too strong or “weak” edges will
be overwhelmed [25]. Pressure forces must also be initialized
to push out or push in, a condition that mandates careful
initialization.

In this chapter, we present a class of external force fields for
deformable models that addresses both problems listed above.
These fields, which we call gradient vector f low (GVF) fields, are
dense vector fields derived from images by solving a vector dif-
fusion equation that diffuses the gradient vectors of a gray-level
or binary edge map computed from the image. GVF was first
introduced in [31] and a generalization to GVF was then pro-
posed in [30]. In this chapter, we present the GVF in the context
of its generalized framework. We call the deformable model that
uses the GVF field as its external force a GVF deformable model .
The GVF deformable model is distinguished from other edge-
based deformable model formulations in that its external forces
cannot be written as the negative gradient of a potential func-
tion. Because of this, it cannot be formulated using the standard
energy minimization framework; instead, it is specified directly
from a dynamic force equation.

Particular advantages of the GVF deformable model over a
traditional deformable model are its insensitivity to initializa-
tion and its ability to move into boundary concavities. As we
show in this chapter, its initializations can be inside, outside,
or across the object’s boundary. Unlike deformable models that
use pressure forces, a GVF deformable model does not need
prior knowledge about whether to shrink or expand toward

the boundary. The GVF deformable model also has a large
capture range, which means that, barring interference from
other objects, it can be initialized far away from the bound-
ary. This increased capture range is achieved through a spatially
varying diffusion process that does not blur the edges them-
selves, so multiresolution methods are not needed. The external
force model that is closest in spirit to GVF is the distance poten-
tial forces of Cohen and Cohen [7]. Like GVF, these forces
originate from an edge map of the image and can provide a
large capture range. We show, however, that unlike GVF, dis-
tance potential forces cannot move a deformable model into
boundary concavities. We believe that this is a property of all
conservative forces characterizing nearly all deformable model
external forces, and that exploring non-conservative external
forces, such as GVF, is an important direction for future research
in deformable models.

This chapter is organized as follows. We focus our most
attention in 2D and introduce the formulation for traditional
2D deformable models in Section 10.2. We next describe the
2D GVF formulation in Section 10.3 and introduce a multigrid
GVF computation scheme. We demonstrate the performance of
the GVF deformable model on both simulated and real images
in Section 10.4. We then briefly present the formulation for
3D GVF deformable models and their results on two exam-
ples in Section 10.5. In Section 10.6, we discuss some recent
developments of GVF by other groups. Finally, in Section 10.7,
we conclude this chapter and point out future research
directions.

10.2 Background

10.2.1 Deformable Model Methods

A traditional 2D deformable model or deformable contour is
a curve x(s) = [x(s), y(s)], s ∈ [0, 1], that moves through the
spatial domain of an image to minimize the energy functional

E =
∫ 1

0

1

2
(α|x′(s)|2 + β|x′′(s)|2)+ Eext(x(s))ds, (10.1)

where α and β are weighting parameters that control the
deformable contour’s tension and rigidity, respectively, and
x′(s) and x′′(s) denote the first and second derivatives of x(s)
with respect to s. The external potential function Eext is derived
from the image so that it takes on its smaller values at the fea-
tures of interest, such as boundaries. Given a gray-level image
I (x , y), viewed as a function of continuous position variables
(x , y), typical external potential functions designed to lead a
deformable contour toward step edges are [14]:

E (1)ext (x , y) = −|∇I (x , y)|2 (10.2)

E (2)ext (x , y) = −|∇(Gσ(x , y) ∗ I (x , y))|2, (10.3)
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where Gσ(x , y) is a two-dimensional Gaussian function with
standard deviationσ and∇ is the gradient operator. If the image
is a line drawing (black on white), then appropriate external
energies include [6]:

E (3)ext (x , y) = I (x , y) (10.4)

E(4)ext (x , y) = Gσ(x , y) ∗ I (x , y). (10.5)

It is easy to see from these definitions that larger σ’s will cause
the boundaries to become blurry. Such large σ’s are often nec-
essary, however, in order to increase the capture range of the
deformable contour.

A deformable contour that minimizes E must satisfy the Euler
equation [14]

αx′′(s)− βx′′′′(s)− ∇Eext = 0. (10.6)

This can be viewed as a force balance equation

Fint + F(p)ext = 0, (10.7)

where Fint = αx′′(s)− βx′′′′(s) and F(p)ext = −∇Eext. The inter-
nal force Fint discourages stretching and bending while the
external potential force F(p)ext pulls the deformable contour
toward the desired image edges.

To find a solution to (10.6), the deformable contour is made
dynamic by treating x as function of time t as well as s—i.e.,
x(s, t ). Then, the partial derivative of x with respect to t is set
equal to the left hand side of (10.6) as follows

xt (s, t ) = Fint + F(p)ext = αx′′(s, t )− βx′′′′(s, t )− ∇Eext.
(10.8)

When the solution x(s, t ) stabilizes, the term xt (s, t ) vanishes
and we achieve a solution of (10.6).

Numerical solutions to (10.8) can be found by first dis-
cretizing the continuous contour model x(s, t ) into a list
of discrete contour nodes, x(s0, t ), x(s1, t ), . . . , x(sN , t ), and
explicitly tracking the position of individual contour nodes over
time. This gives a PDM implementation. Instead, in a GDM
framework, the contour x(s, t ) is embedded as the zero level set
of a smooth, Lipschitz-continuous scalar function �(x, t ), in
the sense that x(s, t ) = {x|�(x, t ) = 0}. It can then be shown
that the deformation of the contour according to (10.8) can be
exactly simulated by evolving�(x, t ) according to the following
dynamic equation [23, 32, 33]

�t (x, t ) = (Fint · N + F(p)ext · N)N, (10.9)

where N=∇�/|∇�| gives the normal to the contour. The
internal force Fint, originally defined in terms of contour
derivatives, can be expressed using spatial derivatives of �, as
detailed in [23, 32, 33]. Numerical solutions of (10.9) are typ-
ically found using the level set method [23], which is the key
component of a GDM implementation.

10.2.2 Behavior of Traditional Deformable
Contours

An example of the behavior of a traditional deformable contour
is shown in Figure 10.1. Figure 10.1a shows a 64× 64-pixel
line-drawing of a U-shaped object (shown in gray) having a
boundary concavity at the top. It also shows a sequence of
curves (in black) depicting the iterative progression of a tra-
ditional deformable contour (α = 0.6, β = 0.0) initialized out-
side the object but within the capture range of the potential force
field. The potential force field F(p)ext = −∇E (4)ext where σ = 1.0
pixel is shown in Figure 10.1b. We note that the final solution in
Figure 10.1a solves the Euler equations of the deformable con-
tour formulation, but remains split across the concave region.

(a) (b) (c)

FIGURE 10.1 (a) The convergence of a deformable contour using (b) traditional potential forces; (c) Shown close-up within the boundary
concavity.
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The reason for the poor convergence of this deformable
contour is revealed in Figure 10.1c, where a close-up of the
external force field within the boundary concavity is shown.
Although the external forces correctly point toward the object
boundary, within the boundary concavity the forces point
horizontally in opposite directions. Therefore, the deformable
contour is pulled apart toward each of the “fingers” of the U-
shape, but not made to progress downward into the concavity.
There is no choice of α and β that will correct this problem.

Another key problem with traditional deformable contour
formulations, the problem of limited capture range, can be
understood by examining Figure 10.1b. In this figure, we see
that the magnitude of the external forces dies out quite rapidly
away from the object boundary. Increasing σ in (10.5) will
increase this range, but the boundary localization will become
less accurate and distinct, ultimately obliterating the concavity
itself when σ becomes too large.

Cohen and Cohen [7] proposed an external force model
that significantly increases the capture range of a traditional
deformable model. These external forces are the negative gradi-
ent of a potential function that is computed using a Euclidean
(or chamfer) distance map. We refer to these forces as dis-
tance potential forces to distinguish them from the traditional
potential forces defined in Section 10.2.1. Figure 10.2 shows the
performance of a deformable contour using distance potential
forces. Figure 10.2a shows both the U-shaped object (in gray)
and a sequence of contours (in black) depicting the progression
of the deformable contour from its initialization far from the
object to its final configuration. The distance potential forces
shown in Figure 10.2b have vectors with large magnitudes far
away from the object, explaining why the capture range is large
for this external force model.

As shown in Figure 10.2a, this deformable contour also fails
to converge to the boundary concavity. This can be explained by

inspecting the magnified portion of the distance potential
forces shown in Figure 10.2c. We see that, like traditional
potential forces, these forces also point horizontally in oppo-
site directions, which pulls the deformable contour apart but
not downward into the boundary concavity. We note that
Cohen and Cohen’s modification to the basic distance potential
forces, which applies a nonlinear transformation to the dis-
tance map [7], does not change the direction of the forces, only
their magnitudes. Therefore, the problem of convergence to
boundary concavities is not solved by distance potential forces.

10.3 GVF Deformable Contours

Our overall approach is to use the dynamic force equation (10.8)
as a starting point for designing a deformable contour. We define
below a novel external force field v(x) called a gradient vec-
tor f low (GVF) field and replace the potential force −∇Eext in
(10.8) with v(x), yielding

xt (s, t ) = αx′′(s, t )− βx′′′′(s, t )+ v(x). (10.10)

We call the deformable contour solving the above dynamic
equation a GVF deformable contour. The contour deformation
can be computed using either the parametric or the geometric
framework. The geometric formulation is preferred if topol-
ogy change of the evolving contour is expected. Otherwise, the
results of both formulation are typically identical.

Although the final configuration of a GVF deformable con-
tour will satisfy the force-balance equation (10.7), this equation
does not, in general, represent the Euler equations of the energy
minimization problem in (10.1). This is because v(x) cannot,
in general, be written as the negative gradient of a poten-
tial function. The loss of this optimality property, however, is
well-compensated by the significantly improved performance
of the GVF deformable contour.

(a) (b) (c)

FIGURE 10.2 (a) The convergence of a deformable contour using (b) distance potential forces; (c) Shown close-up within the boundary
concavity.
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10.3.1 Edge Map

We begin by defining an edge map f (x) derived from the image
I (x) having the property that it is larger near the image edges.1

We can use any gray-level or binary edge map defined in the
image processing literature (cf. [13]); for example, we could use

f (x) = −E (i)ext(x), (10.11)

where i = 1, 2, 3, or 4. Three general properties of edge maps
are important in the present context. First, the gradient of an
edge map ∇f has vectors pointing toward the edges, which are
normal to the edges at the edges. Second, these vectors generally
have large magnitudes only in the immediate vicinity of the
edges. Third, in homogeneous regions, where I (x) is nearly
constant,∇f is nearly zero.

Now consider how these properties affect the behavior of a
traditional deformable contour when the gradient of an edge
map is used as an external force. Because of the first property,
a deformable contour initialized close to the edge will con-
verge to a stable configuration near the edge. This is a highly
desirable property. Because of the second property, however,
the capture range will be very small, in general. Because of
the third property, homogeneous regions will have no external
forces whatsoever. These last two properties are undesirable.
Our approach is to keep the highly desirable property of the
gradients near the edges, but to extend the gradient map farther
away from the edges and into homogeneous regions using a
computational diffusion process. As an important benefit, the
inherent competition of the diffusion process will also create
vectors that point into boundary concavities.

10.3.2 Gradient Vector Flow

We define the GVF field v(x) as the equilibrium solution to the
following vector diffusion equation

ut = g (|∇f |)∇2u − h(|∇f |)(u − ∇f ) (10.12a)

u(x, 0) = ∇f (x). (10.12b)

In (10.12a), the first term on the right is referred to as the
smoothing term since this term alone will produce a smoothly
varying vector field. The second term is referred as the data
term since it encourages the vector field u to be close to ∇f
computed from the data. The weighting functions g (·) and
h(·) apply to the smoothing and data terms, respectively. Since
these weighting functions are dependent on the gradient of the
edge map which is spatially varying, the weights themselves are
spatially varying, in general. Since we want the vector field u to
be slowly-varying (or smooth) at locations far from the edges,
but to conform to ∇f near the edges, g (·) and h(·) should be

1 Other features can be sought by redefining f(x) to be larger at the desired

features.

monotonically non-increasing and non-decreasing functions
of |∇f |, respectively.

In [31], the following weighting functions were chosen:

g (|∇f |) = μ (10.13a)

h(|∇f |) = |∇f |2. (10.13b)

Since g (·) is constant here, smoothing occurs everywhere; how-
ever, h(·) grows larger near strong edges, and should dominate
at the boundaries. Thus, GVF computed using these weight-
ing functions should provide good edge localization. The effect
of smoothing becomes apparent, however, when there are two
edges in close proximity, such as when there is a long, thin
indentation along the boundary. In this situation, GVF tends to
smooth between opposite edges, losing the forces necessary to
drive a deformable contour into this region.

To address this problem, in [30] we proposed weighting func-
tions in which g (·) gets smaller as h(·) becomes larger. Then, in
the proximity of large gradients, there will be very little smooth-
ing, and the effective vector field will be nearly equal to the
gradient of the edge map. There are many ways to specify such
pairs of weighting functions. In [30], the following weighting
functions were used:

g (|∇f |) = e−(
|∇f |

K )2 (10.14a)

h(|∇f |) = 1− g (|∇f |). (10.14b)

The GVF field computed using such weighting functions will
conform to the edge map gradient at strong edges, but will vary
smoothly away from the boundaries. The specification of K
determines to some extent the degree of tradeoff between field
smoothness and gradient conformity.

In most examples, the use of either (10.13) or (10.14) pro-
duces very similar results. In Section 10.4, we will demonstrate
most of the properties of GVF using (10.13). When necessary
to contrast their performance, we will refer to the GVF using
(10.13) and (10.14) as GVF-I and GVF-II respectively.

10.3.3 Multigrid GVF Computation

The vector diffusion equation (10.12) specifying GVF with var-
ious weighting functions was implemented using an explicit
finite difference scheme in [31]. This simple iterative method is
slow to converge; so, we have since designed a multigrid algo-
rithm for more efficient computation of GVF forces [2, 12].
The multigrid GVF method directly solves the equilibrium
solution of (10.12a) — i.e., with the left-hand-side set to zero.
This linear system of equations is separable and can be writ-
ten as a scalar PDE Lu = r for each component of the GVF
vector field, where L is a linear operator defined by Lu =
∇ · (g∇u)− hu, and −r equals h times the corresponding
component of ∇f .
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The multigrid method uses a recursive algorithm known as
the multigrid V-cycle [2] involving PDE solutions on grids of
different scales: fine to coarse. Before presenting the algorithm,
we establish some notation. The grid level within this grid hier-
archy is denoted by �, where larger � corresponds to a coarser
grid. r� is the right-hand side of the discretized PDE L�u� = r�
at the grid of level �. v� is an initial guess for the solution u�
and the updated solution is returned in ṽ�. The symbols I

j
i in

the algorithm represent the inter-grid transfer operators that
transfer values initially defined on the grid at level i to the grid

at level j. In particular, if j = i + 1, then I
j
i is called a restric-

tion operator; however, if j = i − 1, then I
j
i is a prolongation or

interpolation operator.

Algorithm 1: ṽ� = MultigridV(r�, v�, �)

1. Pre-smoothing: Start with the initial guess v�, relax ν1

times on L�u� = r� using a relaxation method; store the
result back to v�. We typically set ν1 = 2 for both 2D and
3D cases, and use a Gauss-Seidel method as the relaxation
method.

2. If � is the coarsest level at the grid hierarchy, then go
to Step 5. Else, compute the residue ρ� = r� − L�v�. Set
r�+1 = I �+1

� ρ�, and initialize v�+1 = 0.

3. Call ṽ�+1 = MultigridV(r�+1, v�+1, �+ 1).

4. Correction: v� = v� + I ��+1ṽ�+1.

5. Post-smoothing: Relax ν2 times on L�u� = r� with initial
guess u� = v�; and store the result back to ṽ�. We choose
ν2 = 2 by default.

The algorithm works by recursively applying a coarse grid
correction scheme [2]. Step 1 aims to smooth the error or cor-
rection e�(= u� − v�) in the initial estimate v�. Steps 2 and 3
aim to get a good approximation of the correction e� by solving
the residue equation that e� satisfies: L�e� = ρ�, where ρ� is the
residue defined by ρ� = r� − L�v�. Instead of solving the residue
equation on the original grid, it is projected onto a coarser grid
and solved there by a recursive call to the V-cycle algorithm,
since it has exactly the same form of the original equation. The
projection makes sense since the error e� can be assumed to be
smooth after Step 1, and thus can be well approximated on a
coarser grid. Step 4 projects or interpolates the solution of the
residue equation back to the current grid to get an approxima-
tion of e�, and uses it to correct the previous solution v�. Step
5 further improves the solution by performing more relaxation
starting with a better estimate obtained by Step 4. The use of
coarser grid makes it much more efficient to reduce the error in
the initial solution.

The convergence property of a multigrid algorithm is largely
determined by the selection of suitable relaxation methods
and the design of proper inter-grid transfer operators. We
have found that the red-black Gauss-Seidel method (RBGS) [2]
always produces a much higher convergence rate than other

schemes such as the Jacobi or the weighted-Jacobi methods.
For inter-grid transfer operators, we use a cell-centered full-
weighting scheme2 for the restriction operation and the
piecewise constant interpolation as the prolongation operator.
We found that this combination gave good convergence for
images with arbitrary size (not only powers of 2). To further
improve the computational efficiency, we adopt the full multi-
grid method [2], which embeds the above multigrid V-cycle
in a coarse-to-fine strategy and is known to deliver the best
performance of all multigrid schemes.

The multigrid GVF implementation has been found to sig-
nificantly improve the computational speed by at least an order
of magnitude. For example, for the GVF computation of the
heart image in Figure 10.6, the simple iterative method took
about 0.68 second on a 2.2 GHz Pentium4 PC while the multi-
grid GVF took only 0.02 second. Reduction in computation time
is even greater for large 3D images. For example, we found that
the multigrid scheme cut down the computation time of GVF
from nearly 2 hours to only 3–4 minutes for 3D images of size
around 3203 voxels. Detailed comparisons can be found in [12].

10.4 Experiments

In this section, we first show several examples of GVF field
computations on simple objects and demonstrate several key
properties of GVF deformable contours. We then show the
results of applying GVF deformable contours on both a noisy
image and a real MR image. We adopt the PDM framework
in these experiments; a GDM implementation using the same
GVF external force will produce similar results. We usedα = 0.6
and β = 0.0 for all deformable contours and μ = 0.2 for GVF
unless stated separately. The parametric deformable contours
were dynamically reparameterized to maintain contour point
separation to within 0.5–1.5 pixels (cf. [17]). All edge maps
used in GVF computations were normalized to the range [0, 1].

10.4.1 Convergence to Boundary Concavity

In our first experiment, we computed the GVF field for the
same U-shaped object used in Figures 10.1 and 10.2. The
results are shown in Figure 10.3. Comparing the GVF field,
shown in Figure 10.3b, to the traditional potential force field
of Figure 10.1b, reveals several key differences. First, like the
distance potential force field (Figure 10.2b), the GVF field has
a much larger capture range than traditional potential forces.
A second observation, which can be seen in the closeup of
Figure 10.3c, is that the GVF vectors within the boundary con-
cavity at the top of the U-shape have a downward component.
This stands in stark contrast to both the traditional poten-
tial forces of Figure 10.1c and the distance potential forces of

2 The value at a coarse grid cell is taken as the average of its 4-children

(8-children in 3D) cells in the fine grid.
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(a) (b) (c)

FIGURE 10.3 (a) The convergence of a deformable contour using (b) GVF external forces; (c) Shown close-up within the boundary
concavity.

Figure 10.2c. Finally, it can be seen from Figure 10.3b that the
GVF field behaves in an analogous fashion when viewed from
the inside of the object. In particular, the GVF vectors are point-
ing upward into the “fingers” of the U shape, which represent
concavities from this perspective.

Figure 10.3a shows the initialization, progression, and final
configuration of a GVF deformable contour. The initialization
is the same as that of Figure 10.2a, and the deformable con-
tour parameters are the same as those in Figures 10.1 and 10.2.
Clearly, the GVF deformable contour has a broad capture range
and superior convergence properties. The final deformable
contour configuration closely approximates the true bound-
ary, arriving at a sub-pixel interpolation through bilinear
interpolation of the GVF force field.

As discussed in Section 10.3.2, the GVF-I field tends to
smooth between opposite edges when there is a long, thin
indentation along the object boundary while the GVF-II field
does not. Figure 10.4 demonstrates this performance differ-
ence. Using an edge map obtained from the original image
shown in Figure 10.4a, both the GVF-I field (μ = 0.2) and
the GVF-II field (K = 0.05) were computed, as shown zoomed
in Figures 10.4b and 10.4c, respectively. We note that in this
experiment both the GVF-I field and the GVF-II field were nor-
malized with respect to their magnitudes and used as external
forces. Next, a deformable contour (α = 0.25, β = 0) was ini-
tialized at the position shown in Figure 10.4d and allowed to
converge within each of the external force fields. The GVF-I
result, shown in Figure 10.4e, stops well short of convergence
to the long, thin, boundary indentation. On the other hand, the
GVF-II result, shown in Figure 10.4f, is able to converge com-
pletely to this same region. It should be noted that both GVF-I
and GVF-II have wide capture ranges (which is evident because
the initial deformable contour is fairly far away from the object),

and they both preserve subjective contours (meaning that they
cross the short boundary gaps).

10.4.2 Results on Gray-level Images

The underlying formulation of GVF is valid for gray-level
images as well as binary images. To compute GVF for gray-level
images, the edge-map function f (x , y)must first be calculated.
Two possibilities are f (1)(x , y) = |∇I (x , y)| or f (2)(x , y) =
|∇(Gσ(x , y) ∗ I (x , y))|, where the latter is more robust in the
presence of noise. Other more complicated noise-removal
techniques such as median filtering, morphological filtering,
and anisotropic diffusion could also be used to improve the
underlying edge map. Given an edge-map function and an
approximation to its gradient, GVF is computed in the usual
way as in the binary case.

Figure 10.5a shows a gray-level image of the U-shaped object
corrupted by additive white Gaussian noise; the signal-to-noise
ratio is 6 dB. Figure 10.5b shows an edge-map computed using
f (x , y) = f (2)(x , y)with σ = 1.5 pixels, and Figure 10.5c shows
the computed GVF field. It is evident that the stronger edge-map
gradients are retained while the weaker gradients are smoothed
out. Superposed on the original image, Figure 10.5d shows a
sequence of GVF deformable contours (plotted in a shade of
gray) and the GVF deformable contour result (plotted in white).
The result shows an excellent convergence to the boundary,
despite the initialization from far away, the image noise, and the
boundary concavity.

Another demonstration of GVF applied to gray-scale imagery
is shown in Figure 10.6. Figure 10.6a shows a magnetic res-
onance image (short-axis section) of the left ventrical of a
human heart, and Figure 10.6b shows an edge map computed
using f (x , y) = f (2)(x , y) with σ = 2.5. Figure 10.6c shows the
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(a) (b) (c)

(d) (e) (f)

FIGURE 10.4 (a) A square with a long, thin indentation and broken boundary; (b) GVF-I field (zoomed); (c) GVF-II field (zoomed); (d) Initial
contour position for both the GVF-I deformable contour and the GVF-II deformable contour; (e) Final result of the GVF-I deformable contour;
and (f) Final result of the GVF-II deformable contour.

computed GVF, and Figure 10.6d shows a sequence of GVF
deformable contours (plotted in a shade of gray) and the GVF
deformable contour result (plotted in white), both overlaid on
the original image. Clearly, many details on the endocardial bor-
der are captured by the GVF deformable contour result, includ-
ing the papillary muscles (the bumps that protrude into the
cavity).

10.5 3D GVF Deformable Models and
Results

Both the GVF and the deformable contour formulations can be
readily extended into 3D. In fact, 3D GVF has the identical for-
mulation as the 2D GVF described in (10.12) since it is written
in a dimension-independent form. Examples of work on 3D
deformable models known also as deformable surfaces can be
found in [7, 19].

Figure 10.7 shows an experiment using a GVF deformable
surface on a simulated 3D image created on a 643 voxel grid.
The object to be reconstructed, rendered using an isosurface
algorithm, is shown in Figure 10.7a. The 3D GVF field was
computed using a numerical scheme similar to the one of 2D
with μ = 0.15. The GVF result is visualized using both 2D and
3D streamlines as shown in Figure 10.8, where Figures 10.8b
and 10.8c show 2D streamlines of the GVF field projected onto
two cross-sectional planes, and Figure 10.8d is a magnified view
of the 3D streamlines. The same characteristics observed in 2D
GVF fields are apparent here as well. A deformable surface using
a 3D GVF was initialized as the sphere shown in Figure 10.7b,
which is neither entirely inside nor entirely outside the object.
Intermediate results after 10, 40, and 100 iterations of the
deformable surface algorithm are shown in Figures 10.7c–e.
The final result after 140 iterations is shown in Figure 10.7f.
The resulting surface is smoother than the isosurface rendering
because of the internal forces in the deformable surface model.
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(a) (b)

(c) (d)

FIGURE 10.5 (a) A noisy 64× 64-pixel image of a U-shaped object; (b) The edge map |∇(Gσ ∗ I )|2 with σ = 1.5; (c) The GVF external force
field; and (d) Convergence of the GVF deformable contour.

Figure 10.9 shows an example of using the GVF deformable
surface to reconstruct a surface representation of the central
layer of the human cerebral cortex from a 3D MR brain image.
Details of this work can be found in [11, 28, 29].

10.6 Discussion

In addition to the examples shown above, the GVF method and
GVF deformable models have been successfully applied in many
other medical image segmentation problems. There have also
been several efforts aiming to further improve the performance

of the method [5, 20, 22, 24, 34]. We briefly summarize these
recent developments in the following.

In [34], Yu and Bajaj proposed to formulate the vector dif-
fusion equation of GVF in a polar-coordinate representation
in order to compute the diffusion of the vector magnitudes
and orientations separately. With this approach, weak gradi-
ent vectors can have a strong influence on the overall GVF
field. The authors have shown that this new formulation fur-
ther improves the convergence of GVF deformable models into
long thin boundary cavities and reduces the boundary“leaking”
problem that can happen when a weak boundary or bound-
ary gap is closely adjacent to a strong boundary nearby. This
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(a)

(d)(c)

(b)

FIGURE 10.6 (a) A 160× 160-pixel magnetic resonance image of the left ventrical of a human heart; (b) The edge map |∇(Gσ ∗ I )| with
σ = 2.5; (c) The GVF field (shown subsampled by a factor of two); and (d) Convergence of the GVF deformable contour.

method, however, can be sensitive to image noise, and thus
image de-noising might be needed as a preprocessing step
before the proposed magnitude and orientation diffusion can
be computed. In contrast to [34], Paragios et al. [20] proposed
to reduce the influence of weak edges by replacing (10.13b) with
h(|∇f |) = f |∇f |2.

Ray et al. [22] proposed to augment the GVF diffusion equa-
tion with alternate boundary conditions in order to improve
the robustness of GVF deformable models with respect to the
model initialization. The new boundary conditions are spec-
ified at the locations of the initial contour(s) and the values

of the GVF field are set to be equal to the outward normal
of the contours at these locations. The resulting GVF field
always originates from the initial contour(s) and thus elim-
inates the risk that an initial contour will collapse onto one
side of the object boundary if it does not enclose any part of
the skeleton of the object. Ray et al. [22] also proposed to use
multiple contours to segment a large object region. The GVF
force computed with the specified boundary condition ensures
that the multiple initial contours will not move across each
other and will thereby generate a natural partition of the whole
region.
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FIGURE 10.7 (a) Isosurface of a 3D object defined on a 643 voxel grid; (b) The initial configuration of a deformable surface using GVF and its
positions after (c) 10, (d) 40, (e)100, and (f) 140 iterations.

Tang et al. [24] and Cheng and Foo [5] proposed to use the
edge direction information in the GVF force design. In Tang
et al. [24], it is assumed that the object boundary of interest
has a (roughly) known direction that can be represented by a
single vector n (the boundary is not closed). The gradient edge
map ( f in (10.12a)) is truncated to zero if ∇I · n ≤ 0. The
modified edge map is then used to compute a directional GVF
force, which can distinguish edges with expected direction from
interfering ones with different directions. Cheng and Foo [5]
generalized the method for more complex shaped objects by
generating four edge maps (in 2D) corresponding to positive
and negative edges in the two coordinate directions, respec-
tively. Four GVF vector fields are then computed from the
four edge maps, and they are used to drive a deformable con-
tour model to object boundaries having the desired polarity.
Incorporating edge direction information can help distinguish
a bright object on a dark background from a dark object on
a bright background. The resulting GVF deformable model
can thus produce more robust segmentation for objects in a
cluttered scene, as demonstrated in [5, 24].

10.7 Conclusions

We have described the rationale, computational framework,
and selected results for the gradient vector flow (GVF)
deformable model. The field is calculated as a diffusion of the
gradient vectors of a gray-level or binary edge map. We have
shown that it allows for flexible initialization of the deformable
model and encourages convergence to boundary concavities.

Further investigations into the nature and uses of GVF are
warranted. In particular, a complete characterization of the cap-
ture range of the GVF field would help in deformable model
initialization procedures. It would also help to more fully under-
stand the GVF-I parameter μ and the GVF-II parameter K ,
perhaps finding a way to choose them optimally for a partic-
ular image, and to understand the interplay between the GVF
parameters and the deformable model parameters α and β.
Finally, making connections between GVF with other appli-
cations in image processing, computer vision, and medical
imaging might provide some new insights or even new sol-
utions to existing problems.
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FIGURE 10.8 Streamline visualization of the GVF field used in the experiment of Figure 7. (a) The 3D object with three regions of interest
indicated; (b) and (c): Streamlines of planar cross-sections of the GVF field on planes A and B respectively; (d) Magnified view of the 3D GVF
streamlines in the small rectangular region of (a).
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11.1 Introduction

In studies of brain pathology, such as multiple sclerosis
(MS) [25], regions of interest (ROIs) that must be well defined
are often examined in detail in magnetic resonance images
(MRIs). Traditionally, ROIs are outlined manually by a skilled
operator using a mouse or cursor. Computer-assisted methods
are used for specific applications such as extraction of MS
lesions from MRI brain scans [18, 36], or extraction of the
cerebral ventricles in schizophrenia studies [11]. In many cases,
the computer-assisted tasks need to segment the whole brain
from the head. Typically this may be required either because
the whole brain is the ROI, such as in studies of alcoholics [16]
or Alzheimer’s patients [13], or because automated extraction
using statistical methods is facilitated if the skull and scalp have
been removed from the image [18]. In this chapter we present a
fully automated method we have developed that is in common
use in our research setting [4]. The chapter also includes an
overview of several other methods for automated segmentation
of the brain in MRI.

Fully automated segmentation algorithms have to set their
parameters such as thresholds automatically, they must address
the partial volume effect in a reasonable manner, and they
must work in the presence of typical radio-frequency (RF)
inhomogeneities. Fully automated methods must be robust—
in other words, they must provide consistent segmentation
on images acquired from any MR scanner using different
fields-of-view, relaxation times, and slice thicknesses.

Hybrid methods that include both image-processing and
model-based techniques are particularly effective for brain
segmentation [1, 4, 19, 21]. The hybrid method [4] pre-
sented in this chapter starts with a thresholding step followed
by a morphological erosion to remove small connections
between the brain and surrounding tissue. It removes eyes and
other nonbrain structures with a model-based approach fol-
lowed by more image processing consisting of a morphological
dilation to recover some of the eliminated tissue. A final refine-
ment of the brain contour is achieved by an active contour
algorithm [20].

In our method, the threshold for an initial segmentation is
computed automatically by applying an anisotropic diffusion
filter to the image and using the resulting voxel intensity his-
togram. The method, which is based partly on 2D data and
partly on 3D data, operates best on routine axially displayed
multispectral dual-echo proton density (PD) and T2 (spin–spin
relaxation time) sequences. This method has been successfully
used to segment the brain in each slice of many head images
from many different MRI scanners (all 1.5 tesla), using several
different spin-echo images with different echo times. Examples
of brain segmentations obtained with this method are shown
in Figure 11.1.

This method also works well on axial and coronal 3D T1-
weighted SPGR (Spoiled Gradient) sequences. However, on
sagittally displayed 3D T1-weighted images, it cannot be used
in a fully automated manner because such images require
accurate localization of cortical convolutions. In these images

Copyright © 2008 by Elsevier, Inc.
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FIGURE 11.1 Automatic brain segmentation using our method.

parameters have to be adjusted to ensure that the thin dark brain
areas will be included and to keep the cerebellum attached to
the rest of the brain, which has to be separated from the back of
the neck tissue and the cheeks. Sagittally displayed images can
be segmented with other techniques such as those described in
[1, 10, 14, 16, 19].

11.2 Brain Segmentation Method

Segmentation is achieved in three stages as shown in Figure 11.2:
removal of the background using intensity histograms, gene-
ration of an initial mask that determines the intracranial
boundary with a nonlinear anisotropic diffusion filter, and
final segmentation with an active contour model [22]. The
use of a visual programming environment such as WiT [3]
makes prototype development more convenient by allowing
some exploration [5]. Preferably the T2-weighted image is used;
otherwise the PD-weighted or T1-weighted image may also be
used for segmentation. RF inhomogeneities are addressed by
the smoothing obtained with the nonlinear anisotropic diffu-
sion, which also reduces the intensity of regions that do not
belong to the brain.1 In the third stage, the relative insensitivity
of the active contours to partial volume effects provides consis-
tent edge tracking for the final segmentation. This sequence of
operations provides a relatively robust approach that results in
good segmentation even in the presence of RF inhomogeneity,
where simple thresholding techniques would be difficult to use.

Two types of prior knowledge are needed in the second
stage, wherease the first and third stages do not require prior
information. The first type of prior information relates to
tissues other than the brain, for example, the scalp and eyes.
Knowledge of the anatomic location of the different structures
indicates that the centroid of the brain has to be close to the
centroid of the entire slice image. The fact that the brain has
a relatively higher intensity than other tissue in MR images
constitutes the second type of prior information. Using the
anisotropic diffusion filter on T2 (or PD) images, the majority

1 Sled’s method can be used to correct severe inhomogeneities [28].
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FIGURE 11.2 A simplified data flow diagram representing automatic
intracranial boundary detection. Reprinted from M. S. Atkins and
B. Mackiewich. Fully automatic segmentation of the brain in MRI.
IEEE Transactions on Medical Imaging, 17(1):98–107, February, 1998.
© 1998 IEEE.

of the tissue other than the brain can be darkened, allowing a
simple threshold to be used subsequently for segmentation.
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11.2.1 Background Removal

Considering the fact that MR scanners typically generate nor-
mally distributed white noise [12], the best threshold for
separating background noise is determined with the technique
of Brummer et al. [7]. In reconstructed MR data, background
noise has a Rayleigh distribution [17] given by

pnoise( f ) = f

σ2
exp

(
− f 2

2σ2

)
, (11.1)

where f is the intensity and σ is the standard deviation of the
white noise. This distribution is observed in the lower intensi-
ties of the uncorrected histogram of MR volumes as illustrated
in Figure 11.3. A bimodal distribution g ( f ) is obtained if the
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FIGURE 11.3 A truncated histogram of a PD-weighted MR volume.
The background noise at the low end of the histogram is charac-
terized by a Rayleigh distribution. Reprinted from M. S. Atkins and
B. Mackiewich. Fully automatic segmentation of the brain in MRI.
IEEE Transactions on Medical Imaging, 17(1):98–107, February, 1998.
© 1998 IEEE.

best fit Rayleigh curve, r( f ), is subtracted from the volume
histogram, h( f ).

g ( f ) = h( f )− r( f ). (11.2)

We can obtain a minimum error threshold, τ, by minimizing
an error term εr given by

εr =
τ−1∑
f=0

g ( f )+
∞∑

f=τ
r( f ). (11.3)

Segmentation of the original image in Figure 11.4a with this
automatic threshold τ produces the head mask in Figure 11.4b,
where some misclassified pixels within the head region and
speckle outside the head region are apparent. Morphological
operations with a small structuring element such as a 5× 5
kernel can effectively remove such noise components [22], as
shown in Figure 11.4c.

11.2.2 Initial Brain Mask

The process that generates the initial brain mask has three
steps. First, it smooths the brain image using 2D nonlinear
anisotropic diffusion and attenuates narrow nonbrain regions.
Then, it sets an automated threshold to the diffused MR volume
and produces a binary mask. Third, it removes misclassified
nonbrain regions such as the eyes from the binary mask based
on morphology and spatial information obtained from the
head mask.

11.2.2.1 Nonlinear Anisotropic Diffusion

Nonlinear anisotropic diffusion filters introduced by Perona
and Malik [26] are tunable iterative filters that can be used to
enhance MR images [15]. Nonlinear anisotropic diffusion filters
can be used also to enhance and detect object edges [2, 24, 26].

(a) (b) (c)

FIGURE 11.4 A head mask produced using automatic thresholding and morphological filtering. (a) Original
image. (b) Initial head mask. (c) Head mask after morphological filtering.
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FIGURE 11.5 Intracranial boundary detection using 2D nonlinear anisotropic diffusion filtering. (a) Original T2-weighted image.
(b) 2D diffused image. Diffusion reduces nonbrain tissues, enabling a simple threshold to segment the brain. Reprinted from M. S. Atkins
and B. Mackiewich. Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging, 17(1):98–107, February,
1998. © 1998 IEEE.

The anisotropic diffusion filter is a diffusion process that
facilitates intraregion smoothing and inhibits interregion
smoothing:

∂

∂t
I (x , t ) = ∇ • (c (x , t )∇I (x , t )). (11.4)

Consider I (x , t ) to be the MR image where x represents the
image coordinates (i.e., x , y), t is the iteration step, and c(x , t ),
the diffusion function, is a monotonically decreasing func-
tion of the image gradient magnitude. Edges can be selectively
smoothed or enhanced according to the diffusion function. An
effective diffusion function is [26]

c(x , t ) = exp

(
−
( |∇I (x , t )|√

2K

)2
)

, (11.5)

where K is the diffusion or flow constant that dictates the
behavior of the filter. Good choices of parameters that produce
an appropriately blurred image for thresholding are K = 128
with 25 iterations and a time step value of just under 0.2.
Filtering can be fairly sensitive to these three parameters [22];
however, for all the PD-, T2-, and T1-weighted data sets dis-
played axially or coronally, the preceding parameter settings
provide a good initial brain segmentation. The discrete dif-
fusion updates each pixel by an amount equal to the flow

contributed by its four nearest neighbors. If the flow contri-
bution of the diagonal neighbors is scaled according to their
relative distance from the pixel of interest, then eight near-
est neighbors can also be used [15] for diffusion. With this
approach anisotropic data also can be addressed.

Once nonlinear anisotropic diffusion attenuates the intensity
of the skull and other nonbrain regions, a simple low threshold
can be used to segment the brain and the eyes as shown in
Figure 11.5. Simple thresholding would not be effective without
prior filtering with the diffusion technique.

11.2.2.2 Automated Threshold

After diffusion filtering, brain voxel distribution becomes close
to normal for T2-weighted and even PD images. Consequently,
the threshold can be determined by fitting a Gaussian curve
to the histogram of the diffused volume data. For PD- and
T2-weighted slices, a good threshold is set at two standard
deviations below the mean [7]. For T1-weighted axially dis-
played images, the minimum value in the brain histogram
plot is selected as the threshold. This value typically cor-
responds to about 0.5 standard deviations below the mean
of the fitted Gaussian. The voxel intensity histogram of a
diffused T2-weighted volume, the best fit Gaussian curve,
and the selected threshold are illustrated in Figure 11.6.
A binary mask produced by the threshold is shown in
Figure 11.7.
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11.2.2.3 Refinement of Mask

Misclassified regions, such as the eyes, that occur after automatic
thresholding (Figure 11.7b) are removed using morphological
filtering and spatial information provided by the head mask. In
each region of the binary mask, first holes are filled and then
binary erosion separates weakly connected regions. The erosion
operation uses a 10× 10 binary matrix of 1’s whose four cor-
ners have six symmetrically located 0’s providing a hexagonal
symmetric element with four pixels on each edge. The width
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FIGURE 11.6 A histogram of the diffused T2-weighted MR scan with
the best fit Gaussian curve and threshold levels overlaid. Reprinted
from M. S. Atkins and B. Mackiewich. Fully automatic segmentation of
the brain in MRI. IEEE Transactions on Medical Imaging, 17(1):98–107,
February, 1998. © 1998 IEEE.

of this element is sufficient to separate the brain from the eyes
in all axial slices we studied whose fields of view were between
200 and 260 mm. After the erosion operation, the algorithm
discards regions whose centroids are outside a bounding box
defined by the head mask illustrated in Figure 11.8. Dimensions
of the bounding box in Figure 11.8 yield good results for
data sets with the eyes up, for several fields of view. Different
parameters are needed for images with the eyes down, and for
coronally and sagittally displayed images. Two bounding boxes
will be required for sagitally displayed images where there is no
symmetry. The remaining regions are returned close to their
original size with binary dilation using the same 10× 10 ker-
nel. Since thresholding eliminates the darkest pixels at the brain
edge, this dilation step ensures that the mask is closer to the
required edge. The steps of mask refinement are illustrated in
Figure 11.9.

11.2.3 Final Brain Mask

The final boundary between the brain and the intracranial cav-
ity is obtained with an active contour model algorithm that uses
the initial brain mask as its initial condition. The active contour
model, extended from the “Snakes” algorithm introduced by
Kass et al. [20], gradually deforms the contour of the initial
brain mask to lock onto the edge of the brain. The active con-
tour, described in Chapter 8, is defined as an ordered collection
of n points in the image plane such that

V = {v1, . . . , vn}
vi = (xi , yi), i = {1, . . . , n}. (11.6)

An energy minimization criterion iteratively brings the points
of the contour closer to the intracranial boundary. For each

(a) (b)

FIGURE 11.7 A binary mask produced by automatic thresholding. (a) The diffused image
slice. (b) The corresponding binary mask.
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FIGURE 11.8 Spatial information from the head mask is used to
eliminate regions that are unlikely to correspond to brain tissue.
Features whose centroids fall outside the brain region bounding box
are discarded. Reprinted from M. S. Atkins and B. Mackiewich. Fully
automatic segmentation of the brain in MRI. IEEE Transactions on
Medical Imaging, 17(1):98–107, February, 1998. © 1998 IEEE.

point, vi , an energy matrix, E(vi), is computed:

E(vi) = αEcont (vi)+ βEbal(vi)+ γEint (vi)+ κEgrad(vi).

(11.7)

Here, Econt (vi) is a “continuity” energy function that forces the
contour to take a smooth shape, Ebal(vi) is an adaptive “bal-
loon” force used to push the contour outward until a strong
gradient is encountered [9], Eint (vi) is an “intensity” energy
function, computed from the PD-weighted MRI volume, that
tends to move the contour toward low-intensity regions, and
Egrad(vi) is a “gradient” energy function, computed from the
diffused MRI volume, that draws the contour toward regions
where the image gradient is high. Relative weights of the energy
terms are provided by the scalar constants α,β, γ , and κ. This
procedure moves each vi to the point of minimum energy in
its neighborhood. The active contour model algorithm finds
the intracranial boundary in all image slices using the same
relative energy weightings for the combination of energy func-
tions described earlier. The initial brain mask falls completely
within the brain owing to the diffusion filtering. When this
mask is poor, the adaptive balloon force aides the active con-
tour to reach the desired edges. When partial volume effects
are severe, the intensity energy term guides the active con-
tour and produces consistent results. The gradient energy term
computed on the diffused volume significantly stabilizes the

active contour algorithm because the gradient derivatives are
small in the diffused volume data [22]. Figure 11.10 illus-
trates the active contour model algorithm applied to the MR
slice shown in Figure 11.10. Good results were obtained with
α = l ,β = 2, γ = 1.5, and κ = 2 on all data sets mentioned
below [22].

11.2.4 Brain Studies and Validation

PD and T2 data sets were acquired axially on a GE 1.5 tesla MRI
scanner, with repetition time TR = 2000 ms, and echo times
of 35 and 70 ms, respectively. The slice thickness was 5 mm
and the pixel size was 0.781 mm2. Each data set had 22 slices
with 256× 256 pixels per slice and was scaled linearly from the
original 12-bit data to 8-bits. Figure 11.11 shows the intracranial
boundary determined by the algorithm on selected slices of
PD-weighted MR data where the boundary is accurate in all
slices, except in slices 6 and 7, where the pituitary gland and
basilar artery are included, and slice 5, where there is insufficient
exclusion of the petrous temporal bone. The inclusion of the
pituitary gland and the petrous temporal bone generally do not
affect subsequent analysis of the brain data. Particularly in the
high slices, the algorithm deals with the partial volume effects
consistently.

Comparable results are obtained with our algorithm on
more than 30 data sets from five scanners with fields of view
varying from 200 to 260 mm. The algorithm also works on
images acquired on a GE scanner with a SPRG sequence,
with TR 39 msec and Te 8 msec, pixel size 1.0156 mm2, and
slice thickness 2.5 mm. The computer processing time for
each study for all the stages was less than 5 min on a SUN
SPARC workstation—even the 120-slice 3D studies. In all cases,
our algorithm detects the intracranial boundary without user
interaction and without changing the parameters.

Tissue contours determined with a fully automated algo-
rithm have to be validated with a study that compares them
to contours traced manually by an expert. The similarity index
described by Zijdenbos et al. [36], derived from the kappa
statistic, can be used to compare an automated contour to one
drawn manually. Each binary segmentation can be considered
as a set A of pixels. The similarity between two segmenta-
tions A1 and A2 is computed with a real number S ∈ {0 . . . 1}
defined by

S = 2
|A1 ∩ A2|
|A1| + |A2| . (11.8)

This similarity index is sensitive to both size and location since
it depends on their intersection as well as the sum of their
sizes. Two regions with equal size that overlap with half of their
area have S = 1/2, whereas a region that completely covers a
smaller one of half its size yields S = 2/3. In this manner, two
regions where one fully encompasses the other are more sim-
ilar than two partially overlapping regions. According to [36],
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(a) (b) (c)

(d) (e) (f)

FIGURE 11.9 Elimination of misclassified regions from the initial brain mask. The mask (a) produced by thresholding, (b) after
regions have been filled, (c) after binary erosion, (d) after elimination of nonbrain regions, and (e) after binary dilation. (f) shows
the initial brain mask overlaid on the PD-weighted slice.

(a) (b)

FIGURE 11.10 Refinement of the intracranial contour. (a) The contour defined by the perimeter
of the initial brain mask. (b) The intracranial contour detected using the active contour model
algorithm.
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FIGURE 11.11 An automatically detected intracranial contour overlaid on selected slices of a PD-weighted scan. Reprinted
from M. S. Atkins and B. Mackiewich. Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging,
17(1):98–107, February, 1998. © 1998 IEEE.

good agreement is indicated by S > 0.7, but the absolute value
of S may be difficult to interpret. As an example, the simi-
larity index for the two images in Figures 11.12a and 11.12b
is 0.942.

In a validation study that we conducted, three volumes were
chosen and each volume was acquired using a different PD/T2-
weighted echo sequence, and a different field of view size. For
each volume, some axial slices were selected, such that the
entire range of the image volume from “low” to “high” slices
was covered. An expert radiologist traced the brain contour

manually on each slice and the manual contour was com-
pared with the automatically drawn contour using the similarity
index. Table 11.1 shows the number of pixels included inside the
manually drawn and automatically calculated brain contours as
well as the similarity index.

In axial slices containing the eyes, the algorithm usually
included the pituitary gland and basilar artery, and sometimes
the internal carotid artery, whereas the radiologist excluded
these structures (Figure 11.11, slices 6 and 7). Also, whereas
the radiologist drew carefully around the petrous temporal
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(a) (b)

FIGURE 11.12 Comparison of manual contour with automatic contour. (a) The intracra-
nial contour manually drawn by a radiologist. (b) The intracranial contour detected using
the active contour model algorithm. The similarity index of these two contours is 0.942.
Reprinted from M. S. Atkins and B. Mackiewich. Fully automatic segmentation of the brain
in MRI. IEEE Transactions on Medical Imaging, 17(1):98–107, February, 1998. © 1998 IEEE.

TABLE 11.1 Comparison of manual and automated brain segmentation

Area of manual Area of automated
Slice contour contour Similarity

Dataset number (pixels) (pixels) index

1 4 8,912 10,269 0.925
1 7 20,264 22,472 0.929
1 8 22,035 23,918 0.954
1 23 20,109 20,341 0.980
1 24 15,909 17,201 0.958
1 25 12,122 13,194 0.952
2 2 15,386 16,549 0.942
2 6 25,935 26,072 0.986
2 12 27,402 27,346 0.989
3 7 14,705 15,639 0.961
3 8 17,648 18,645 0.967
3 17 17,552 18,027 0.984

Reprinted from M. S. Atkins and B. Mackiewich. Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging, 17(1):
98–107, February, 1998. © 1998 IEEE.

bone, it was often included by the algorithm (Figure 11.10b).
Figure 11.12 illustrates one of these eye slices where the manual
contour is in Figure 11.12a and the automated contour is in
Figure 11.12b.

In the high slices, manual contours were comparable to the
automated ones except in the extreme case of the top slice of the
5 mm thick datasets where the partial volume effect was notice-
able. The sagittal sinus was usually included by the algorithm,
whereas it was always excluded by the radiologist (Figure 11.11,
slices 18, 20, and 22).

Overall, this algorithm provided a similarity index always
above 0.925, it was maximal 0.99 on middle slices, and dropped
to 0.95 on the highest slices. These results compare favorably
with those reported by others [1, 19] as the brain volumes are
within 4% in most cases.

11.3 Other Brain Segmentation
Techniques

Many useful techniques are presented in Clarke et al.’s survey of
segmentation methods for MR images [8] where the important
question of validation is also discussed. Techniques for seg-
menting the brain can be divided into three main groups: simple
threshold-based extraction of the brain followed by refinement
of brain contours; new atlas-based methods; and statistical and
region-growing methods. In the following we summarize some
examples by assuming that intensity inhomogeneity has been
corrected using a method such as that of Sled et al. [28] so that
thresholding techniques can be used. Semiautomatic methods
such as [35], where an automatic threshold is found to guide
the operator, are not considered here.
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11.3.1 Automated Thresholding for Brain
Extraction

Aboutanos and Dawant [1] use histogram analysis to set
the threshold for 3D T1-weighted MP-RAGE (magnetization-
prepared rapid gradient echo) images where the gray matter is
darker than the white. The peak intensity of the gray matter is
selected as a lower threshold, and an upper threshold is set in the
vicinity of the upper boundary of the white matter where the
brain lobe starts to flatten. These parameters can be set auto-
matically, but in some cases, the resulting brain segmentation
may underestimate the gray matter and may allow attachment
of the dura to the brain. This method for setting threshold val-
ues is unique to the MP-RAGE acquisition sequence. However,
we have incorporated their thresholds for 3D MP-RAGE volu-
mes in our algorithm with some success, although our results
have yet to be validated.

A fast hybrid automated technique suggested by Lemieux
et al. [21] for segmentation of the brain in T1-weighted volume
MRI data is similar to the one presented in this chapter, and it is
based on thresholding and 3D connectivity analysis. It requires
an accurate characterization of the gray matter and white matter
intensity histogram and also uses a model of the brain and
surrounding tissues in these images. The method is composed
of several image processing steps and has been validated on 20
normal scans. It is fast and appears to offer a useful complement
to our method for T1 sagitally displayed images.

11.3.2 Brain Contour Refinement

Many contour refinement algorithms are based on the active
contour model algorithm, or snakes [20, 23], described in
Chapter 8. Given an initial estimate of an object boundary,
active contours approach the actual boundary by solving an
energy minimization problem. Different enhancements are
required for different application domains. One enhancement
to the classic snakes algorithm for contouring the hippocampus

in MR images is described in [27]. For brain images, Vaillant
and Dzavatzikos propose the use of a new active contour algo-
rithm for modeling the brain cortex as thin convoluted ribbons
embedded in three dimensions, which is specifically designed
for mapping the human cortex [33]. Their results are promising,
particularly for tracking into cortical convolutions in high-
resolution MR images. However, all these methods require a
good initial contour.

Aboutanos and Dawant [1] describe a geometric deformable
model used to refine an initial brain mask. Their deformable
model uses the pixel intensity along lines that are placed
approximately perpendicular to the initial contour. A five-
term cost matrix is associated with transforming the image
to hug the contours; in addition, a sixth term is required to
repel the optimum curve from image locations such as eye
and skin locations in T1-weighted images. The authors have
found values for these parameters that perform well on sagit-
tally displayed brain contours of 3D T1-weighted MP-RAGE
volumes on many volunteers, although the method requires a
very good initial contour and excess fat can affect results. Two
iterations are applied, and the blurred image is used to reduce
the effect of noise. This method looks very promising for T1
images, but no results are presented for PD- and T2-weighted
images.

11.3.3 Atlas-Based Methods

A recent automatic approach for segmentation of sagittally
acquired spoiled gradient echo pulse sequence head images
has been reported by Hartmann et al. for the study of brain
atrophy in alcoholic patients [16], see Figure 11.13. This
method starts with a rigid registration to register an atlas vol-
ume with each patient volume and brings the volumes into
global correspondence. Then it uses a nonrigid transformation
based on Thirion’s method [30] to deform the volumes into
local correspondence. In this method, binary volumes of the
brain and cerebellum in the atlas are generated with manual

FIGURE 11.13 Atlas-based automatic brain segmentation results.
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segmentation. The deformation field that warps the atlas to the
patient is applied to these binary volumes to create intradural
and cerebellum masks in that patient volume. Contours have
to be drawn on the atlas once, and all subsequent segmenta-
tions are fully automatic. These automatic brain and cerebellum
segmentations are seen to be accurate enough for measuring
the brain volume. The threshold for the elimination of CSF
must be carefully chosen and is done automatically in this case.
This method has been shown to work well on several patients,
using an atlas volume acquired in the same manner as those
of the patients. Hartmann’s technique shows great promise
for future development and use with sagittal T1-weighted MR
images, and possibly for conventional spin-echo pulse sequence
images.

Another atlas-based method has been developed by Collins
et al. for automatic segmentation of gross anatomical structures
of the brain [10]. Their method uses a probabilistic atlas and is
particularly effective for isolating the gyri. It has been validated
on 20 MRI volumes.

11.3.4 Statistical Methods for Brain
Segmentation

The performance and limitations of many supervised and
unsupervised statistical methods for MR segmentation are
discussed in a review by Bezdek et al. [6].

Kapur et al. [19] segment the brain in 3D gradient-echo MR
images by combining the statistical classification of Wells et
al. [34] with image processing methods. A single channel, non-
parametric, multiclass implementation of Wells’ classifier based
on tissue type training points is used to classify brain tissues.
Further morphological processing is needed to remove con-
nected nonbrain components. The established brain contours
are refined using an algorithm based on snakes. The combi-
nation of statistical classification of brain tissue, followed by
morphological operators, is effective in segmenting the brain
from other structures such as orbits in a semiautomated fash-
ion. Furthermore, Wells’ statistical classification method also
reduces the effect of RF inhomogeneity. However, Kapur’s
method requires some interaction to provide tissue training
pixels, and in 10% of volumes studied interaction is needed
to remove nonconnected brain tissue. The method is com-
putationally intensive and has only been used on 3D T1
gradient-echo data with slice thickness of 1.5 mm. Its perfor-
mance on PD-T2 images with slice thickness of 5 mm remains
to be determined.

Stringham et al. use the gradient magnitude as well as voxel
intensity with a statistical relaxation method for brain seg-
mentation [29]. This segmentation algorithm is robust in the
presence of RF inhomogeneity, but may not be able to distin-
guish the brain form other tissues such as the eyes, as do most
Bayesian relaxation-based techniques [18]. User interaction is
required to seed the relaxation process.

Fuzzy-connectedness methods developed by Udupa and
Samarasekera [31] are based on knowledge of tissue intensities,
followed by statistical region-growing methods. This method
has been successfully used to segment the brain in 1000 multiple
sclerosis patients [32], but is rather computationally intensive.
Again, user interaction is required to seed the regions.

11.4 Summary

This chapter presented a fully automated hybrid intracranial
boundary detection algorithm that has proven effective on clin-
ical and research MR data sets acquired from several different
scanners using PD-T2 spin-echo sequences. The algorithm has
three sequential steps that provide first background removal,
then an initial brain mask, and then a final brain mask. In the
first step, the head is localized using histogram analysis, and a
region that completely surrounds the brain is generated. The
second step applies a nonlinear anisotropic diffusion filter and
sets an automated threshold to produce a mask that isolates the
brain within the head region of the first step. The third step uses
this mask as an initial position for an active contour algorithm
to determine the final intracranial boundary. This algorithm
was robust in the presence of RF inhomogeneities and partial
volume effects. It is in regular use for studies of multiple sclero-
sis lesions and MRI-PET registration studies. The chapter also
surveyed several other methods for segmenting the brain from
the head, including T1 MR images.
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12.1 Introduction

Accurate tissue classification is an important objective in many
medical imaging applications such as in the study of anatom-
ical structure, surgical planning, and computer integrated
surgery [1]. Tissue classification algorithms have been especially
useful in the segmentation of magnetic resonance (MR) brain
images, where the excellent soft tissue contrast allows for volu-
metric quantification of gray matter and white matter structures
in healthy and diseased brain anatomy. Methods for performing
tissue classification are hindered, however, by multiple imaging
artifacts such as noise, intensity inhomogeneities, and partial
volume effects. Noise in MR images can induce segmented
regions to become disconnected or possess holes. Intensity
inhomogeneities, which are caused by nonuniformities in the
RF field and other factors [2], produce a shading artifact over
the image that can confound intensity-based segmentation
methods. Partial volume effects occur where multiple tissues
contribute to a single voxel, resulting in a blurring of intensities
at tissue boundaries [3].

In this chapter, a general framework for unsupervised (i.e.,
requiring no training data) tissue classification is presented.
Methods derived from the proposed imaging model are robust
to both noise and intensity inhomogeneities. Under this frame-
work, we describe algorithms based on traditional pattern
recognition techniques: K -means clustering, Gaussian clus-
tering via the expectation-maximization (EM) algorithm, and
fuzzy clustering. Unlike the K -means algorithm, the latter two
approaches are capable of producing soft segmentations that
can better model partial volume effects. These robust algo-
rithms fully generalize their traditional counterparts. The per-
formance of the various algorithms is compared using both real

and simulated MR images of the brain. Software implementing
these tissue classification approaches has also been made freely
downloadable from the internet (http://medic.rad.jhu.edu).

This chapter is organized as follows. In Section 12.2, current
approaches in tissue classification of brain images are reviewed.
In Section 12.3, several tissue classification algorithms are
derived from a statistical image model. In Section 12.4, the
derived algorithms are compared and validated. Finally, in
Section 12.5, the properties of the different algorithms are
summarized.

12.2 Background

Most automated tissue classification methods in the MR brain
image segmentation literature are derived from traditional pat-
tern recognition techniques, particularly statistical supervised
and unsupervised classifiers [4, 5]. Supervised classifiers seek to
partition a feature space derived from the image using training
data with known labels. Unsupervised classifiers or cluster-
ing algorithms perform the same function without the need
for training data. Supervised methods are capable, in some
situations, of superior performance to unsupervised methods
because they incorporate additional knowledge from the train-
ing data, which can lead to more accurate models. However,
generating the training data for a large number of scans can be
laborious. In addition, use of the same training set for different
populations may lead to biased results that do not fully capture
the variability between different subjects. Unsupervised classi-
fiers, on the other hand, generally must employ simpler data
models and iteratively fit the model to the data. The algorithms
are therefore slower, but the step for obtaining labels for the
training data is obviated.

Copyright © 2008 by Elsevier, Inc.
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In order to make classifiers more robust to noise in images,
a smoothness constraint is typically employed within the seg-
mentation model. In statistical classifiers, a Markov random
field (MRF) model that models spatial interactions between
neighboring or nearby pixels is frequently used [6]. Such models
penalize unlikely configurations from occurring in the segmen-
tation, such as an anatomical structure consisting of a single
pixel or voxel. MRFs may be incorporated under a Bayesian
prior model within supervised classifiers [7, 8], as well as unsu-
pervised classifiers such as the K-means algorithm [9, 10] and
EM algorithm [11–13]. Other classification approaches incor-
porating MRF models for tissue classification in MR images
have also been proposed [14, 15]. Enforcing smoothness within
fuzzy classifiers is also possible [16–18].

Numerous approaches have been proposed in the literature
for applying classifiers in the presence of intensity inhomogene-
ity artifacts. Some methods suggest a prefiltering operation that
attempts to remove the inhomogeneity prior to actual segmen-
tation [19–26]. While these methods are flexible in that they
make no assumptions on the number of tissue classes, meth-
ods that simultaneously segment the image while estimating the
inhomogeneity offer the advantage of being able to use inter-
mediate information gleaned from the classification process.
There are two prevailing approaches for modeling inhomo-
geneities in methods that perform simultaneous correction and
classification. The first approach assumes that the mean tissue
intensity for each tissue class is spatially varying and indepen-
dent of one another [9, 14, 27]. The second approach models
the inhomogeneities as a multiplicative gain field [12, 28] or
additive bias field of the image logarithm [7, 11, 13, 29]. The
latter approach has the advantage of being computationally less
expensive and may also be used for removing inhomogeneities
by simple multiplication of the acquired image by the reciprocal
of the estimated gain field (or by subtracting the additive bias
field). On the other hand, it has been suggested that RF inho-
mogeneities may be a tissue-dependent effect [2] and different
tissue classes may have some inherent variability, in which case
the former model would be more appropriate.

Because of partial volume effects, it is often desirable to
allow for some uncertainty in tissue classification. So-called
soft segmentations allow multiple tissues to exist at a particu-
lar location with different levels of membership or probability.
Methods based on the EM algorithm are able to obtain a soft
segmentation by computing a posterior probability at each
pixel [7, 11, 29]. Fuzzy clustering algorithms are also capa-
ble of computing soft segmentations [18, 30]. Partial volume
effects may also be explicitly incorporated into the classifier
model either by considering separate partial volume tissue
classes [3, 26, 31, 32], or by directly estimating partial vol-
ume fractions [26, 32–37]. Partial volume segmentation is also
addressed in Chapter 13 in this Handbook.

Spatially varying prior probability functions may also be
used to enhance the tissue classification algorithm [8, 11].

These methods use training data to encode the probability of
a tissue class occurring at a particular spatial location within
the image. A registration algorithm is required to align the spa-
tial priors to the image. Efforts to integrate the registration and
classification process have also been promising [38–42]. When
combined with more detailed spatial priors, these approaches
have the ability to segment beyond standard gray matter, white
matter, and cerebrospinal fluid (CSF) tissue classes [39, 41].
A somewhat less restrictive constraint than the use of spa-
tial priors is to enforce topological consistency in the resulting
classification [43–45].

The framework presented in this chapter shares many
similarities with a number of these aforementioned tissue
classification approaches, particularly those based on unsu-
pervised classifiers. Although the basic model used is fairly
straightforward, it easily extends to incorporate spatial pri-
ors, topological constraints, or simultaneous registration. In
addition, the described approach may also be used to form the
basis for classifying diseased anatomy by considering additional
classes or outlier classes (cf. [46]).

12.3 Methods

In this section, we describe the underlying model that will
be used for performing tissue classification. The observation
model assumes the image is a piecewise constant image that
is corrupted by intensity inhomogeneities and noise. A prior
probability model is placed on the tissue classes to enforce
smoothness in the segmentation. Throughout, the total num-
ber of classes is assumed to be known. For notational simplicity,
only scalar images are considered, although all the mathematics
straightforwardly generalizes to multichannel image data [47].

The true image is assumed to be composed of K tissue
classes, with each class having a distinct, unknown, intensity
value called the class mean, denoted vk , k = 1, . . . , K . Because
of intensity inhomogeneities or variability in the tissue itself,
the class means may be spatially varying in the image domain
�. Two cases are considered in regard to this variation. In
the more general case, each mean can be considered to vary
independently:

yj =
K∑

k=1

zjkvjk + ηj , j ∈ �, (12.1)

where yj is the observed intensity at pixel j, and ηj is white
Gaussian noise with unknown variance σ2. In the second case,
which is the focus of this work, each mean varies according to
a multiplicative gain field, gj .

yj = gj

K∑
k=1

zjkvjk + ηj , j ∈ �. (12.2)
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We define zjk to be indicator functions that satisfy

zjk =
{

1, if pixel j is in tissue class k
0, otherwise,

(12.3)

and
∑K

k=1 zjk = 1 (i.e., classes do not overlap). Thus, a segmen-
tation can be obtained by estimating the indicator functions.
This model for the true image appears similar to models used
in partial volume estimation [3, 31, 33]. The primary difference
in the partial volume estimation models is that they allow the
indicator functions to take on values between 0 and 1, while
here, the indicator functions are binary-valued. However, in
Section 12.3.2, it will be shown that if the problem is posed in
an EM framework, expectations of zjk are computed, allowing
it to take on values between 0 and 1. These estimates of zjk

can be interpreted as measures of partial volume. Furthermore,
a fuzzy clustering interpretation will also allow modeling of
partial volume effects.

Given the observation model of Equation 12.2, the likelihood
function can be expressed as

f (y ; z , θ) =
∏
j∈�

1√
2πσ2

exp(−(yj − gj

K∑
i=1

zjkvk)
2/2σ2),

(12.4)

where represent stacked vectors, and θ is the parameter vector
consisting of the means, variance, and gain field. In order to
make our model more robust to noise and intensity inhomo-
geneities, we employ a Bayesian estimation framework: given
the observed image y, determine the most probable indica-
tor functions and parameters. Prior probability functions are
placed on the indicator functions so that the tissue classes form
connected regions. In addition, a prior may also be placed on
the spatially varying means or the gain field, to enforce the
assumption that the inhomogeneity effects are smooth and
slowly varying [7, 30, 48]. Alternatively, these properties can
also be enforced by representing the gain field as a summation
of smooth basis functions (e.g., splines, polynomials) [11, 26].

A Markov random field prior model is used for the indicator
functions zjk [49] that discourages the formation of regions
consisting of disconnected pixels and is given by

f (z) = 1

Zz

∏
j∈�

exp(−β
∑
i∈Nj

zT
j Vzi), (12.5)

where β is a parameter controlling the strength of the prior
and is determined empirically, Nj is the set of the four nearest
neighbors of j for 2D images and six nearest neighbors for 3D
images,and Zz is a normalizing constant. The matrix V is K × K
and is used to penalize the classification of pixel j based on its
neighbors. In this work, V = [1, . . . , 1][1, . . . , 1]T − I , where
I is the K × K identity matrix. Thus, a pixel belonging to the
same tissue class as its neighbors is favored over configurations
consisting of different classes.

12.3.1 K -means Approach

One approach for estimating an optimal segmentation under
the given model is closely related to the K -means (or ISODATA)
algorithm [4]. Maximization of the joint posterior probability
function is equivalent to minimizing the following sum of two
energy functions:

E = 1

2σ2
E1 + βE2. (12.6)

The first term represents a data term:

E1 =
∑
j∈�

K∑
k=1

zjk(yj − gj vk)
2.

The second term is a Markov random field term that enforces
continuity within the indicator functions:

E2 =
∑
j∈�

∑
i∈Nj

zT
j Vzi .

The equation for E1 follows from the properties that z2
jk =

zjk
∑K

k=1 zjk = 1. Except for the gain field term, E1 is
exactly the K -means clustering algorithm objective function.
Minimization of E is therefore equivalent to a penalized
K -means algorithm and can be solved using an iterative
approach. Without loss of generality, we ignore the effects of
σ2, since its value merely influences the balance of the different
energy functions.

Similar to the standard K -means algorithm, a coordinate
descent optimization is used that first estimates the indicator
functions, then the means of each class, then the gain field,
and iterates between these three steps. To estimate the indicator
functions, we perform the following computation for each pixel
j ∈ �:

zj = arg min
zj

⎡
⎣(yj − gj

K∑
k=1

zjkvk)
2 + λ

∑
i∈Nj

zT
j Vzi

⎤
⎦. (12.7)

This step is similar to the iterated conditional modes algo-
rithm [49]. The estimation of the means can be derived by
solving for a zero gradient of Equation 12.6 with respect to
each mean:

vk =

∑
j∈�

zjkgj yj∑
j∈�

zjk(g 2
j )

. (12.8)

When gj is unity, Equation 12.8 is identical to the computation
of the means in the standard K -means algorithm.

We make the simplifying assumption that the gain field g
can be represented by a low-degree three-dimensional poly-
nomial function. Although this assumption is somewhat more
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restrictive than that of [30], it is usually sufficient to model
the intensity variations (cf. [11]), is computationally more effi-
cient, and requires fewer initial parameters to be specified.
Mathematically, the gain field can be expressed as

gj =
N∑

n=1

fnPn(j),

where Pn are polynomial basis functions and fn are the coeffi-
cients. We use Chebyshev polynomial basis functions for their
numerical stability and other advantageous properties for func-
tion approximation [50]. The number of Chebyshev coefficients
are 20 for the 3rd degree case, and 35 for 4th degree polyno-
mial fields. Because the gain field is assumed to be smooth and
the equations are overdetermined, we subsample the images
by a factor of 3 along each dimension when computing the
coefficients fn to increase the computational efficiency.

The complete iterative algorithm, which we call the robust
K -means algorithm, can be stated as follows:

Algorithm: Inhomogeneity and Noise Robust K -means

1. Obtain initial estimates of the centroids, vk , and assume
gj = 1.

2. Solve for indicator functions using Equation 12.7.
3. Solve for means using Equation 12.8.
4. Solve for gain field by solving the following matrix

equation for the coefficients fn :

[
zjkvkPn(j)

] · [fn

] = [zjkyj

]
. (12.9)

5. Go to step 2 and repeat until convergence.

Initial estimates of the means may be obtained by using
random guesses, partioning the intensity space, or by deter-
mining the modes of the histogram [12]. Convergence is
typically assumed to be achieved either when the classifica-
tion has minimal changes between iterations or when the
changes in the cost function between iterations are below some
threshold.

Figure 12.1 shows the results of applying the robust K -means
algorithm to a T1-weighted magnetic resonance image of the
brain. The image was acquired on a General Electric 1.5T scan-
ner using a Spoiled Gradient Recall (SPGR) protocol. The brain
image was preprocessed to extract the cerebral tissue. A slice of
the image is shown in Figure 12.1a. Three tissue classes, corre-
sponding to gray matter (GM), white matter (WM), and CSF
were assumed to be present within the image. Background pix-
els were ignored. The algorithm outputs indicator functions
for each tissue class, shown in Figures 12.1c–e, as well the
estimated inhomogeneity field shown in Figure 12.1f. The indi-
cator functions are summarized in Figure 12.1b where dark
gray represents CSF, medium gray represents GM, and white
represents WM.

(a)

(c)

(e)

(b)

(d)

(f)

FIGURE 12.1 Robust K -means example: (a) T1-weighted MR image,
(b) final classification, (c) CSF indicator function, (d) GM indicator
function, (e) WM indicator function, (f) estimated inhomogeneity
field.

12.3.2 EM Approach

A disadvantage of the K -means approach is that it directly esti-
mates the binary indicator functions and therefore does not
permit modeling of any uncertainty within the classification.
An alternative approach to the optimization of Equation 12.6 is
to use an EM algorithm [52]. The EM algorithm places the esti-
mation problem within a complete/incomplete data framework
and utilizes two main steps, the Expectation step (E-step) and
the Maximization step (M-step), to optimize the cost function.
In the case of the model described in Equation 12.2, the E-step
computes a conditional expectation of the indicator function,
yielding the posterior probability of each pixel belonging to a
tissue class given the data. Although Equation 12.2 is an ide-
alized case that does not explicitly account for partial volume
effects, the posterior probabilities computed by the algorithm
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are no longer binary and can be used as a measure of partial
volume effects. The M-step consists of estimating the mean,
variance, and gain field parameters.

Using the EM approach results in several differences from
the K -means approach. The full derivation is similar to that
presented in [12, 47] and is omitted here. First, the classifica-
tion step of Equation 12.7 is replaced by the E-step. Because of
the Markov random field assumption, a mean-field approx-
imation [53] is used to estimate the posterior probabilities
wjk = P(zjk = 1|y; θ). The resulting equation is

wjk =
exp(−(yj − gj vk)

2/2σ2 − β ∑
i∈Nj

∑
m �=k

wjm)

K∑
l=1

exp(−(yj − gj vl)2/2σ2 − β ∑
i∈Nj

∑
m �=k

wjm)

. (12.10)

Because the variance parameter now plays an important role in
the E-step, it must be estimated during the parameter estimation
step [47] using the following equation:

σ2 = 1

N

∑
j∈�

K∑
k=1

wjk(yj − gj vk)
2. (12.11)

The equations for estimating the class means and gain field are
nearly identical to the K -means equations. The difference lies
simply in replacing the indicator functions zjk with the posterior
probabilities wjk .

Figure 12.2 shows the results of applying this robust EM algo-
rithm to the same MR image described in Section 12.3.1. Unlike
the K -means algorithm, the EM algorithm generates continu-
ously valued indicators of each class rather than binary indicator
functions, as shown in Figures 12.2c–e. The final classification,
shown in Figure 12.2b, was created by assigning each pixel to
the class associated with the highest probability at that location.
Not surprisingly, the overall classification is quite similar to the
K -means approach, since both algorithms are derived from the
same objective function.

Note that one can interpret this algorithm as a noise-
robust, inhomogeneity-adaptive version of clustering using
finite Gaussian mixture models (FGMM) [52, 54]. A finite mix-
ture model assumes that the image is composed of a mixture
of observations sampled from K different probability densi-
ties fk(y; θk). Each observation has a probability αk of being
drawn from density k. The probability density function of a
finite mixture model is given by

f (y ; θ) =
K∑

k=1

αk fk(y ; θk). (12.12)

The variables αk are called mixing coefficients or prior
probabilities. In the case of an FGMM, each fk is Gaussian,
parameterized by a mean and variance. The model described
in this chapter is equivalent to the FGMM where the means and

(a)

(c)

(e)

(b)

(d)

(f)

FIGURE 12.2 Robust EM algorithm example: (a) T1-weighted MR
image, (b) final classification, (c) CSF posterior probability function,
(d) GM posterior probability function, (e) WM posterior probability
function, (f) estimated inhomogeneity field.

variances are equal for each class [47]. It is possible to allow these
parameters to vary according to different classes while incorpo-
rating the gain field estimation and Markov random field prior.
In theory, this should permit the model to possess greater flex-
ibility and allow particular classes to exhibit greater intensity
variations than others. However, in Section 12.4, it is shown
that for the segmentation of single channel MR images, the
equal mixing coefficients and variances model typically perform
more accurately.

12.3.3 Fuzzy Clustering Approach

Another alternative to extending the K -means algorithm to
provide soft segmentations is to use a fuzzy clustering approach.
This leads to a robust version of the fuzzy K -means algorithm
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(a)

(c)

(e)

(b)

(d)

(f)

FIGURE 12.3 Robust fuzzy clustering example: (a) T1-weighted MR
image, (b) final classification, (c) CSF membership function, (d) GM
membership function, (e) WM membership function, (f) estimated
inhomogeneity field.

[55]. Although fuzzy clustering does not have an explicit
statistical interpretation, it can be derived through a direct gen-
eralization of the energy equation, Equation 12.6, by allowing
the indicator function to be continuously valued between 0
and 1, and placing an exponent parameter within the objective
function [55, 56]. In this case, the following fuzzy clustering
replacement for E1 is obtained:

E (FC)
1 =

∑
j∈�

K∑
i=1

u
q
jk(yj − gj vk)

2, (12.13)

where ujk are now called membership functions. When q= 1, it
has been shown that the membership functions will behave like
binary indicator functions [55]. As q increases, the member-
ship functions become increasingly “fuzzy,” allowing for more

uncertainty in the final classification. A commonly used value
of q is 2.

To enforce spatial continuity within the membership func-
tions, the neighborhood interaction energy can be generalized
in a similar manner [16]:

E(FC)
2 =

∑
j∈�

∑
i∈Nj

(u
q
j )

T Vu
q
i ,

where uq
j =[uq

j1, . . . , u
q
jK ]T . Using this new energy function, the

classification step now becomes

ujk =

(
(yj − gj vk)

2 + 2β
∑

i∈Nj

∑
m �=k

u
q
im

)−1/(q−1)

K∑
l=1

(
(yj − gj vlk)2 + 2β

∑
i∈Nj

∑
m �=i

u
q
im

)−1/(q−1) . (12.14)

Note the similarities between Equation 12.14 and Equation
12.10, particularly for q= 2, where the fuzzy clustering ver-
sion simply lacks the exponential and variance. The gain field
and mean estimation for the fuzzy clustering approach can be
obtained simply by substituting u

q
jk for zjk within the K -means

equations.
Figure 12.3 shows the results of the robust fuzzy clustering

algorithm when applied to the same MR image previously
described in Section 12.3.1. Although the overall classification,
shown in Figure 12.3b, is quite similar to both the K -means
and EM results, the membership functions, shown in Figures
12.3c–e, preserve more details from the original image than the
indicator functions or posterior probabilities computed by the
other approaches.

12.4 Results

In this section, the different approaches are compared using
simulated and real MR images of the brain. All brain ima-
ges were preprocessed to remove extracranial tissue. For the
K -means approaches, convergence was assumed to occur when
less than 0.01% of pixels changed their classification between
iterations. For all other algorithms, convergence was assumed to
occur when the maximum change in the posterior probability
or membership functions was less than 0.01 between iterations.

All three algorithms were implemented in Java as a plug-in
for the Medical Image Processing, Analysis, and Visualization
(MIPAV) software package [57]. Developed at the National
Institutes of Health, MIPAV enables quantitative analysis and
visualization of medical images from multiple modalities such
as PET, MRI, CT, and microscopy. It includes basic and
advanced computational methods to analyze and quantify
biomedical data, supports all major medical image formats,
and provides many visualization and data manipulation tools.
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FIGURE 12.4 The MIPAV graphical user interface running the freely available Tissue Segmentation plug-in.

Because MIPAV is Java-based, it can be utilized on nearly any
operating system, such as Windows, Unix, Linux, and Mac
OS. MIPAV also provides an intuitive graphical user interface,
providing researchers a user-friendly tool to visualize and ana-
lyze their imaging data. The entire MIPAV software package
and documentation is freely downloadable from the Internet
(http://mipav.cit.nih.gov).

Figure 12.4 shows the MIPAV interface running the Tissue
Segmentation plug-in. The plug-in allows selection of one of
five basic algorithms: the K -means approach; the EM approach;
the fuzzy clustering approach (called FANTASM [58]); the EM
approach, where the variances of each class are estimated sep-
arately; and the EM approach, where both the variances and
mixing coefficients of each class are estimated separately. The
user has the option to enable inhomogeneity correction and,
under the parameter tab, may also specify smoothness, stopping
criteria, and other more advanced settings. Thus, the stan-
dard versions of each of these approaches may be selected by
disabling inhomogeneity correction and setting the smooth-
ing parameter to 0. Execution times on a 3 GHz Pentium IV
workstation running Linux vary depending on the parame-
ter settings and dataset but were typically less than 90 seconds
for both the robust K -means and fuzzy clustering approaches,
and 3–5 minutes for the robust EM approach. Like MIPAV, the
Tissue Segmentation plug-in is also freely downloadable from
the Internet (http://medic.rad.jhu.edu).

12.4.1 Brainweb Dataset
The different variants of the classification algorithms were
validated using the Brainweb simulated brain phantom [59]
(http://www.bic.mni.mcgill.ca/brainweb/). The T1–weighted
images were used with cubic voxel resolution and varying levels
of noise and intensity inhomogeneity. Because the images are
simulated, a truth model for both the classification and par-
tial volumes within the images is available to compare against
computed segmentations.

Figure 12.5 shows the results of applying the robust K -means
(KM), robust EM, and robust fuzzy clustering (FC) algorithms
to the Brainweb phantom with 3% noise and 40% inhomo-
geneity. All three approaches generate classifications that are
visually quite comparable and are close to the true classifica-
tion. In terms of estimating partial volumes, the membership
function computed by the robust FC algorithm most closely
resembles the truth model.

Table 12.1 shows the results of applying the different algo-
rithms to the Brainweb phantom. The different columns
represent the phantom simulated with different levels of noise
(%N) and inhomogeneity (%I). The rows of the table represent
the different methods, where an “R” denotes the robust version
of the algorithm with inhomogeneity correction and smooth-
ness constraints. “EMV” denotes the EM algorithm where a
separate variance is estimated for each tissue class, and “EMPV”
denotes where both separate mixing coefficients and variances
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FIGURE 12.5 Robust tissue classification algorithms applied to the Brainweb phantom: (a) one slice of simulated image, (b) true classification,
(c) robust KM classification, (d) robust EM classification, (e) robust FC classification, (f) true WM partial volumes, (g) robust K -means indicator
function, (h) robust EM posterior probability function, (i) robust FC membership function.
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TABLE 12.1 Brainweb classification errors (MCR is the percentage of misclassified pixels; RMS is the root mean squared difference between
the true partial volume and the algorithm estimate).

Method 3%N, 0%I 3%N, 20%I 3%N, 40%I 5%N, 0%I 5%N, 20%I 5%N, 40%I 7%N, 20%I

KM-MCR 4.17% 5.57% 9.20% 6.72% 7.68% 11.04% 10.61%

KM-RMS 0.24 0.25 0.30 0.27 0.28 0.32 0.31

RKM-MCR 4.26% 4.21% 4.19% 5.70% 5.57% 5.46% 7.52%

RKM-RMS 0.24 0.24 0.23 0.25 0.25 0.25 0.28

EM-MCR 4.33% 5.73% 9.47% 7.12% 7.98% 11.44% 11.31%

EM-RMS 0.18 0.19 0.22 0.20 0.21 0.24 0.24

EMV-MCR 8.66% 9.81% 14.46% 10.59% 11.54% 15.95% 15.15%

EMV-RMS 0.25 0.25 0.28 0.26 0.26 0.29 0.29

EMPV-MCR 5.43% 6.95% 13.02% 6.54% 7.72% 10.87% 10.68%

EMPV-RMS 0.19 0.21 0.28 0.20 0.21 0.24 0.24

REM-MCR 4.26% 4.21% 4.19% 5.70% 5.57% 5.46% 7.52%

REM-RMS 0.20 0.20 0.20 0.21 0.21 0.21 0.22

FC-MCR 4.11% 5.51% 9.08% 6.70% 7.61% 10.87% 10.73%

FC-RMS 0.13 0.15 0.21 0.18 0.19 0.23 0.23

RFC-MCR 4.14% 4.10% 4.17% 5.55% 5.43% 5.39% 7.27%

RFC-RMS 0.13 0.12 0.13 0.15 0.15 0.15 0.17

are estimated. Two different measures were computed based on
the results. The misclassification rate (MCR) was computed as

MCR = number of pixels misclassified

total number of pixels
.

Background pixels were ignored in the MCR computation.
The other measure used was the root mean squared (RMS)
difference between the indicator, posterior probability, or mem-
bership function and the true partial volumes. The RMS error
was averaged over all three tissue classes. The smoothing param-
eters were set to 0.03, 0.05, and 6.0 for the RKM, RFC, and REM
algorithms, respectively.

All algorithms have increasing errors with increasing levels
of noise. However, the robust algorithms are affected substan-
tially less than the standard algorithms. Furthermore, increasing
inhomogeneity greatly affects the standard algorithms, but
the estimation of the gain field within the robust algorithms
fully compensates for the artifact. The three robust algorithms
produced similar misclassification rates but, as indicated in
Figure 12.5, the fuzzy clustering approaches produce the lowest
RMS error.

Note also that the simplest model of the different EM algo-
rithm variations performed the best overall. To illustrate the
differences, the results of EM, EMV, and EMPV are shown in
Figure 12.6 when applied to the phantom with 3% noise and
0% inhomogeneity. The model where separate variances are
estimated for each class (EMV) overestimated CSF, while the
model with separate variances and mixing coefficients (EMPV)
produced an excess of gray matter.

12.4.2 IBSR Datasets

The different robust algorithms were applied to 18 volumetric
T1–weighted MR datasets with expert segmentations obtained
from the Internet Brain Segmentation Repository (avail-
able from http://www.cma.mgh.harvard.edu/ibsr/). Figure 12.7
shows the results of applying the robust fuzzy clustering algo-
rithm to image 2 of the IBSR dataset. Figure 12.8 plots the
resulting Dice coefficient computed from the classifications of
the three robust algorithms on each dataset. The Dice coefficient
is a value between 0 and 1 and defined as

Dice = 2|S ∩ T |
|S| + |T |

where S is the set of pixels corresponding to the estimated tissue
class, T is the set of pixels corresponding to the true class, and
| · | denotes the number of pixels in the class. The CSF results
are not shown but are generally low (averaging around 0.13),
since the expert segmentations have very small levels of sulcal
CSF. Overall, the performance of all three algorithms was very
similar.

12.4.3 Sensitivity to Scan Protocol

Even though the described methods are unsupervised, they are
still sensitive to the contrast properties of the scan protocol.
Figure 12.9 shows the results of the robust fuzzy clustering clas-
sification for two different T1–weighted scans acquired from
the same subject. One scan is an SPGR acquired on a GE
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(a) (b) (c)

(d) (e)

FIGURE 12.6 Comparison of EM algorithms applied to the Brainweb phantom: (a) one slice of original image, (b) true classification, (c) EM
with equal mixing coefficients and variances, (d) EM with separate variances, (e) EM with separate variances and mixing coefficients.

scanner, shown in Figure 12.9a, and the other is a Magnetization
Prepared Rapid Gradient Echo (MPRAGE) acquired on a
Philips scanner. Approximately the same slice is shown from the
subject. Although both images are T1–weighted, they have dif-
ferent characteristics, thereby resulting in substantially different
classifications. The MPRAGE classification shows increased sul-
cal CSF, decreased cortical thickness, and increased subcortical
gray matter, relative to the SPGR.

12.5 Conclusions

From a fairly simple statistical image model, three different
algorithms were derived for obtaining noise and inhomogene-
ity robust tissue classifications. The algorithms generalize the
standard pattern recognition techniques of K -means cluster-
ing, fuzzy clustering, and Gaussian clustering with the EM

algorithm. Because they are derived from the same model, the
classification results from each are quite similar. However, the
fuzzy clustering approach produces better modeling of partial
volume effects. If only a classification is required, then the K -
means algorithm may be preferable to the EM approach, since
it is computationally faster. The more flexible EM models that
allow separate variances and mixing coefficients for each class
surprisingly did not produce as accurate segmentations as the
simpler model in these validation studies. This may be because
these models have greater degrees of freedom and are more
susceptible to local optima. Care must be taken when applying
these algorithms to datasets consisting of scans from differ-
ent scanners or protocols, since contrast changes in the images
may significantly alter the classification results. Further exten-
sions of these algorithms to incorporate spatial priors and other
constraints would likely ameliorate this issue.
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(a)

(b)

(c)

FIGURE 12.7 IBSR dataset: (a) Triplanar view of a dataset, (b) expert classification, (c) robust fuzzy clustering classification.
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FIGURE 12.8 Robust tissue classification algorithms applied to IBSR data: (a) Dice coefficients for gray matter, (b) Dice coefficients for white
matter.

(b) (d)(a) (c)

FIGURE 12.9 Approximately the same slice from the same subject acquired with two different scan protocols: (a) SPGR scan, (b) robust fuzzy
clustering classification of SPGR scan, (c) MPRAGE scan, (d) robust fuzzy clustering classification of MPRAGE scan.
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The distribution of different material types can be identified
in volumetric datasets such as those produced with mag-
netic resonance imaging (MRI) or computed tomography
(CT). By allowing mixtures of materials and treating voxels as
regions, the technique presented in this chapter reduces errors
that other classification techniques can yield along bound-
aries between materials and is particularly useful for creating

accurate geometric models and renderings from volume data.
It also has the potential to make more accurate volume
measurements and to segment noisy, low-resolution data well.
With minor modifications, the classification technique can esti-
mate the distance from surface boundaries between materials.
These boundaries are generally boundaries between parts of
objects or between objects and their surroundings. One use of
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the boundary-distance information is to improve the accuracy
and robustness of registration techniques.

There are two unusual aspects to the approach. First, it uses
the assumption that, because of partial-volume effects or blur-
ring, voxels can contain more than one material, e.g., both
muscle and fat; it computes the relative proportion of each
material in the voxels. Second, the approach incorporates infor-
mation from neighboring voxels into the classification process
by reconstructing a continuous function, ρ(x), from the sam-
ples and then looking at the distribution of values that ρ(x)
takes on within the region of a voxel. This distribution of values
is represented by a histogram taken over the region of the voxel;
the mixture of materials that those values measure is identi-
fied within the voxel using a probabilistic Bayesian approach
that matches the histogram by finding the mixture of materials
within each voxel most likely to have created the histogram. The

size of regions that are classified is chosen to match the spac-
ing of the samples because the spacing is intrinsically related

to the minimum feature size that the reconstructed continuous

function can represent.

13.1 Introduction

Identifying different materials within sampled datasets can be
an important step in understanding the geometry, anatomy, or
pathology of a subject. When one accurately locates different
materials, individual parts can be identified and their size and
shape measured. The spatial location of materials can also be
used to selectively visualize parts of the data, thus better con-
trolling a volume-rendered image [1], a surface model [2], or a
volume model created from the data, and making visible oth-
erwise obscured or subtle features. Classification is a key step
toward understanding such geometry, as shown in Figure 13.1.
Figure 13.2 shows an example of classified MRI data; each color
represents a single material identified within the data.

Applications of classified images and geometric models der-
ived from them include surgical planning and assistance, diag-
nostic medical imaging, conventional computer animation,
anatomical studies, and predictive modeling of complex biolog-
ical shapes and behavior. Boundary distances generated through
tissue classification can improve the accuracy of registration
techniques.

Real-world objects

Data collection

Sampled volume data (MR, CT)

Identified materials

Geometric/dynamic models Images/animation

Analysis

Insight into objects and phenomena

Model
building

Volume rendering/
visualization

Classification

FIGURE 13.1 Classification is a key step in the process of visualizing and extracting geometric information from sampled volume data. For
accurate geometric results, some constraints on the classification accuracy must be met.
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(c)

(a)

(b)

FIGURE 13.2 One slice of data from a human brain. (a) The
original two-valued MRI data. (b) Four of the identified materials—
white matter, gray matter, cerebrospinal fluid, and muscle—separated
into individual images. (c) Overlaid results of the new classification
mapped to different color. Note the smooth boundaries where materi-
als meet and the much lower incidence of misclassified samples than in
Figure 13.5. (See also color insert).

13.1.1 A Partial-Volume Classification Approach
Using Voxel Histograms

Bayesian probability theory can be used to estimate the highest-
probability combination of materials within each voxel-sized
region. The estimation is based on the histogram of data values
within the region. The posterior probability, which is maxi-
mized, is based on conditional and prior probabilities derived
from the assumptions about what is being measured and how
the measurement process works [3]. With this information, the
materials contained within each voxel can be identified based
on the sample values for the voxel and its neighbors. Each
voxel is treated as a region, (see Figure 13.3) not as a single
point. The sampling theorem [4] allows the reconstruction of
a continuous function, ρ(x), from the samples. All of the val-
ues that ρ(x) takes on within a voxel are then represented by
a histogram of ρ(x) taken over the voxel. Figure 13.4a shows
samples; Figure 13.4b shows the function ρ(x) reconstructed
from the samples; and Figure 13.4c shows a continuous
histogram calculated from ρ(x).

Each voxel is assumed to be a mixture of materials, with mix-
tures occurring where partial-volume effects occur, i.e., where
the band-limiting process blurs measurements of pure materials

Sample

Voxel

Slice of
volume dataset

FIGURE 13.3 Definitions: A sample is a scalar- or vector-valued
element of a 2D or 3D dataset; a voxel is the region surrounding a
sample.

(a) Sampled data

x x h(f)
(b) Continuous
     reconstruction

(c) Histogram

“Feature space”

A

A & B
B

n n n

nA

nB

FIGURE 13.4 Continuous histograms. The scalar data in (a) and
(b) represent measurements from a dataset containing two materials,
A and B, as shown in Figure 13.6. One material has measurement val-
ues near vA and the other near vB . These values correspond to the
Gaussian-shaped peaks centered around vA and vB in the histograms,
which are shown on their sides to emphasize the axis that they share.
This shared axis is “feature space”. (c) Shows the mixture histogram.
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together. From this assumption, basis functions are derived that
model histograms of voxels containing a pure material and of
voxels containing a mixture of two materials. Linear combina-
tions of these basis histograms are fit to each voxel, and the most
likely combination of materials is chosen probabilistically.

The technique for generating boundary distances is similar to
tissue classification; as before, the voxel-information consists of
histograms taken over voxel regions. The significant differences
between the techniques are that we use new histogram basis
functions and that the dataset parameters are estimated using a
different algorithm.

The new histogram basis functions model voxels near bound-
aries between two materials. The histogram model has two
parameters: the distance from the center of the voxel to the
boundary and the width of the sampling kernel used to create
the samples.

The regions that are classified could be smaller or larger
than voxels. Smaller regions would include less information,
and so the context for the classification would be reduced
and accuracy would suffer. Larger regions would contain more
complicated geometry because the features that could be rep-
resented would be smaller than the region. Again, accuracy
would suffer. Because the spacing of sample values is intrinsi-
cally related to the minimum feature size that the reconstructed
continuous function, ρ(x), can represent, that spacing is a
natural choice for the size of regions to be classified.

13.1.2 Related Work

Many researchers have worked on identifying the locations of
materials in sampled datasets [5–8]. Clarke et al. [9] give an
extensive review of the segmentation of MRI data. However,
existing algorithms still do not take full advantage of all
the information in sampled images; there remains room for
improvement. Many of these algorithms generate artifacts like
those shown in Figure 13.5, an example of data classified with a
maximum-likelihood technique based on sample values. These
techniques work well in regions where a voxel contains only a
single material, but tend to break down at boundaries between
materials. In Figure 13.5, note the introduction of both stair-
step artifacts, as shown between gray matter and white matter
within the brain,and thin layers of misclassified voxels, as shown
by the white matter between the skull and the skin. Both types of
artifacts can be ascribed to the partial-volume effects ignored by
the segmentation algorithms and to the assignment of discrete
material types to each voxel.

Joliot and Mazoyer [10] present a technique that uses a priori
information about brain anatomy to avoid the layers of misclas-
sified voxels. However, this work still produces a classification
where each voxel is assigned to a single, discrete material; results
continue to exhibit stair-step artifacts. It is also very depen-
dent on brain anatomy information for its accuracy; broader
applicability is not clear.

FIGURE 13.5 Discrete, maximum-likelihood (DML) classification of
the same brain data shown in Figure 13.2. This existing method assigns
each voxel to a single material class. The class is identified here by its
color: gray for gray matter, blue for CSF/fluid, white for white matter,
red for muscle. Note the jagged boundaries between materials within
the brain and the layer of misclassified white matter outside the skull.
See Section 13.7 for more detail. (See also color insert).

Drebin et al. [11] demonstrate that taking into account mix-
tures of materials within a voxel can reduce both types of
artifacts and approximate the relative volume of each mate-
rial represented by a sample as the probability that the sample
is that material. Their technique works well for differentiating
air, soft tissue, and bone in CT data, but not for differentiating
materials in MR data, where the measured data value for one
material is often identical to the measured value for a mixture
of two other materials.

Windham et al. [12] and Kao et al. [13] avoid partial-volume
artifacts by taking linear combinations of components of vec-
tor measurements. An advantage of their techniques is that
the linear operations they perform preserve the partial-volume
mixtures within each sample value, and so partial-volume arti-
facts are not created. A disadvantage is that the linear operations
are not as flexible as nonlinear operations, and so either more
data must be acquired, or classification results will not be as
accurate.

Choi et al. [14] and Ney et al. [15] address the partial-volume
issue by identifying combinations of materials for each sample
value. As with many other approaches to identifying mixtures,
these techniques use only a single measurement taken within
a voxel to represent its contents. Without the additional infor-
mation available within each voxel region, these classification
algorithms are limited in their accuracy.

Santago and Gage [16] derive a distribution of data values
taken on for partial-volume mixtures of two materials. The tec-
hnique described here shares the distribution that they derive.
Their application of the distribution, however, fits a histogram
of an entire dataset and then quantifies material amounts over
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the entire volume. In contrast with this work, they represent
each voxel with a single measurement for classification purposes
and do not calculate histograms over single voxels.

Wu et al. [17] present an interesting approach to partial-
volume imaging that makes similar assumptions about the
underlying geometry being measured and about the measure-
ment process. The results of their algorithm are a material
assignment for each subvoxel of the dataset. Taken collec-
tively, these multiple subvoxel results provide a measure of the
mixtures of materials within a voxel but arrive at it in a very
different manner than is done here. This work has been applied
to satellite imaging data, and so their results are difficult to
compare with medical imaging results, but aspects of both may
combine well.

Bonnell et al. [18] present an algorithm for material interface
reconstruction for datasets where fractional material informa-
tion is given as a percentage for each element of the underlying
grid. Material boundaries are constructed by analyzing the
barycentric coordinate tuples of a tetrahedron in material and
calculating intersections with Voronoi cells that represent the
regions where one material dominates. The material boundary
is created by triangulating these intersection points. The algo-
rithm is less computationally expensive than the approach in
this chapter, but the error analysis on volume-fraction preserva-
tion reported by Bonnell et al. indicates results are less accurate
than results generated through the method described in this
chapter.

Whitaker et al. [19] extract surface models from volumet-
ric datasets through a level-set approach. Their method creates
a new volume from the input data by solving an initial-value
partial differential equation with user-defined feature extract-
ing terms. A number of parameters must be tuned, potentially
through trial and error, and the parameter settings affect
the final solution. Furthermore, the level-set method requires
suitable initialization in order to produce successful segmenta-
tions. This initialization can be improved, however, using the
tissue-classification technique described in this chapter.

Van Leemput et al. [20] introduce a statistical framework for
partial volume segmentation that, in a certain sense, contains
and extends our partial volume technique. In their approach, a
partial volume image is considered a downsampled version of
a fictive higher-resolution image that does not contain partial
volume information, and the model parameters of this under-
lying image are estimated using an Expectation-Maximization
algorithm. This leads to an iterative approach that interleaves a
statistical classification of the image voxels using spatial infor-
mation and an according update of the model parameters. The
framework optimizes the likelihood of individual voxels, rather
than the distance to the histogram, and thus more complex
spatial models that do not assume content independence
between voxels (such as Markov Random Fields) can be used
during the model fitting. In contrast, the technique described
in this chapter first estimates the model parameters purely
based on the histogram, and only subsequently introduces

spatial information to classify the images. However, experi-
ments described in [20] show that, depending on the data
classified and the required model complexity, model parameters
are sometimes estimated equally well using only the histogram.
Although the approach assumes that there are at most two tis-
sue types within each voxel, Li et al. [21] expand the approach
to multiple tissues per voxel by augmenting the segmentation
with a statistical model. We note, however, that this statisti-
cal framework does not extend naturally to boundary distance
estimation.

Boundary distances can be computed through a level-set
approach, but only after closed geometric models have been
extracted [22]. In the boundary-distance approach of this
chapter, no feature points need to be presegmented, nor a
continuous boundary explicitly reconstructed. The boundary
distance information we generate has subvoxel accuracy. We
are not aware of other work in generating subvoxel-accurate
boundary distances directly from sampled datasets.

Our earlier work gives an overview of the technique pre-
sented in following sections in the context of the Human Brain
Project [23], presents a complete description [24], describes
an imaging protocol for acquiring MRI data from solids,
and applies the classification technique to the extraction of
a geometric model from MRI data of a human tooth [25]
(see Figure 13.12). More recently, we used tissue-classified
boundary distances to improve the stability and accuracy of
intra-modality registration [26].

13.2 Overview

This section describes the classification problem, defines terms,
states assumptions made about the imaging data to be classified,
and sketches the algorithm and its derivation. Sections 13.3–
13.6 give more information on each part of the process, with
detailed derivations in Sections 13.8 and 13.9. Section 13.7
shows results of the application of the algorithm to simulated
MR data and to real MR data of a human brain, hand, and
tooth. Some limitations and future extensions are discussed
in Section 13.10 and a summary and conclusion are given in
Section 13.11.

13.2.1 Problem Statement

The input to the classification process is sampled measure-
ment data, from which a continuous band-limited function,
ρ(x), can be reconstructed. ρ(x)measures distinguishing prop-
erties of the underlying materials. When tissues are classified,
the output is sampled data measuring the relative volume of
each material in each voxel. When boundary distances are gen-
erated, the output is sampled data measuring the distance to the
nearest boundary. This distance is calculated only near material
boundaries.
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13.2.2 Definitions

The coordinate system of the space containing the object to be
measured is referred to as “spatial coordinates,” and points are
generally labeled x ∈ X . This space is n-dimensional, where n is
3 for volume data, can be 2 for slices, and is 1 for the example in
Figure 13.4. Each measurement, which may be a scalar or vector,
lies in “feature space” (see Figure 13.4), with points frequently
denoted as v ∈ V. Feature space is nv -dimensional, where nv

is 1 for scalar-valued data, 2 for two-valued vector data, etc.
Tables 13.5 and 13.6 in Section 13.9 contain these and other
definitions.

13.2.3 Assumptions

The following assumptions are made about the measured
objects and the measurement process:

1. Discrete materials. The first assumption is that materials
within the objects to be measured are discrete at the sam-
pling resolution. Boundaries need not be aligned with
the sampling grid. Figure 13.6a shows an object with two
materials. This assumption is made because the technique
is geared toward finding boundaries between materi-
als, and because its input is sampled data, where infor-
mation about detail finer than the sampling rate is
blurred.

This assumption does not preclude homogeneous
combinations of submaterials that can be treated as a
single material at the sampling resolution. For example,
muscle may contain some water and yet be treated as
a material separate from water. This assumption is not
satisfied where materials gradually transition from one
to another over many samples or are not relatively uni-
formly mixed; however, the algorithm appears to degrade
gracefully even in these cases.

2. Normally distributed noise. The second assumption is that
noise from the measurement process is added to each dis-
crete sample and that the noise is normally distributed.
A different variance in the noise for each material is
assumed. This assumption is not strictly satisfied for MRI
data, but seems to be satisfied sufficiently to classify data
well. Note that the sample values with noise added are
interpolated to reconstruct the continuous function,ρ(x).
The effect of this band-limited noise is discussed further
in Section 13.6.

3. Sampling theorem is satisfied. The third assumption is
that the sampled datasets satisfy the sampling theorem
[4]. The sampling theorem states that if a sufficiently
band-limited function is point sampled, the function
can be exactly reconstructed from the samples, as
demonstrated in Figure 13.4b. The band-limiting creates
smooth transitions in ρ(x) as it traverses boundaries
where otherwise ρ(x) would be discontinuous. The
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P3

P2

A&B

A

B

P2

P1
P3

(a)

(b)

FIGURE 13.6 Partial-volume effects. The derivation of the classifica-
tion technique starts from the assumption that in a real-world object
each point is exactly one material, as in (a). The measurement process
creates samples that mix materials together; from the samples a con-
tinuous band-limited measurement function, ρ(x), is reconstructed.
Points P1 and P2 lie inside regions of a single material. Point P3 lies
near a boundary between materials, and so in (b) lies in the A&B region
where materials A and B are mixed. The grid lines show sample spacing
and illustrate how the regions may span voxels.

intermediate region of Figure 13.6b shows a sampling
grid and the effect of sampling that satisfies the sampling
theorem. Partial-volume mixing of measurements occurs
in the region labeled “A&B.” Multislice MRI acquisitions
do not satisfy this assumption in the through-plane
direction. For these datasets the data can be interpolated
only within each plane.

4. Linear mixtures. Each voxel measurement is a linear
combination of pure material measurements and
measurements of their pairwise mixtures created by band
limiting, (see Figure 13.6).

5. Uniform tissue measurements. Measurements of the same
material have the same expected value and variance
throughout a dataset.

6. Box filtering for voxel histograms. The spatial measurement
kernel, or point-spread function, can be approximated
by a box filter for the purpose of deriving histogram basis
functions.
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7. Materials identifiable in histogram of entire dataset.
The signatures for each material and mixture must be
identifiable in a histogram of the entire dataset.

To generate boundary distances, we modify only
assumptions 4, 6, and 7:

4′. Pair-wise mixtures. Each voxel consists of either a pure
material or of two pure materials separated by a boundary
(i.e., “pair-wise mixtures”).

6′. Gaussian filtering. The sampling filter kernel is approx-
imately Gaussian. This modified assumption helps us
derive a tractable calculation for the new histogram
model and also models the actual collection process
better than a box filtering assumption.

7′. Known materials. The number of materials present in the
data is known, and we can identify samples from each
material and mixture within the data.

For many types of medical imaging data, including MRI and
CT, these assumptions hold reasonably well, or can be satisfied
sufficiently with preprocessing [27]. Other types of sampled
data, e.g., ultrasound and video or film images with lighting
and shading, violate these assumptions; thus, the technique
described here does not apply directly to them.

13.2.4 Sketch of Derivation

Histograms represent the values taken on by ρ(x) over various
spatial regions. Section 13.3 describes the histogram equation
for a normalized histogram of data values within a region.
Section 13.4 describes how the histogram equation can be used
to create basis functions that model histograms taken over small,
voxel-sized regions. These basis functions model histograms for
regions consisting of single materials and for regions consist-
ing of mixtures of two materials. Using Bayes’ theorem, the
histogram of an entire dataset, the histogram model basis func-
tions, and a series of approximations, Section 13.5 derives an
estimate of the most likely set of materials within an entire
dataset. Similarly, given the histogram of a voxel-sized region,
Section 13.6 derives an estimate of the most likely density
for each material in that voxel. The classification process is
illustrated in Figure 13.7.

In the boundary distance technique, mixture basis functions
have two additional parameters d and kw , that describe the
distance from the center of the voxel to the boundary between
materials, and the width of the sampling kernel, respectively. As
the distance parameter changes, the shape of the basis function
changes (Figure 13.8). The basis-function shape that best fits
each mixture voxel histogram is chosen through a maximum
likelihood process. The derivation of the distance basis-function
formulas and the description of the optimization process are
presented in detail in [22].

Real-world object

Whole data set
    histogram, h all (n)

Sampled MR data

Fitted histogram

A
B

A&B
B
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Mostly B

Mixture
A&B AB

Material densities
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A&B A&B

A

Histograms of
voxel-sized

regions, hvox (n)

Fitted
histograms

FIGURE 13.7 The classification process. MR data are collected, and
a histogram of the entire dataset, hall(v), is calculated and used to
determine parameters of histogram-fitting basis functions. One basis
function represents each pure material, and one represents each mix-
ture in the dataset. Histograms are then calculated for each voxel-sized
region, hvox(v), and used to identify the most likely mixture of materi-
als for that region. The result is a sampled dataset of material densities
within each voxel.

13.3 Normalized Histograms

This section presents the equation for a normalized histogram
of a sampled dataset over a region. This equation will be used as
a building block in several later sections, with regions that vary
from the size of a single voxel to the size of the entire dataset. It
will also be used to derive basis functions that model histograms
over regions containing single materials and regions containing
mixtures of materials.

For a given region in spatial coordinates, specified by R, the
histogram hR(v) specifies the relative portion of that region
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FIGURE 13.8 The classification algorithm computes distances from sample points to material boundaries. Points P1 and P2 lie inside regions
of a single material, either A or B. Point P3 lies near the boundary between A and B. We treat each voxel as a region by subdividing it into eight
subvoxels, and taking into account information from neighboring voxels. We evaluate the image intensity and its derivative at the center of each
subvoxel. The resulting voxel histogram is then fit to a family of basis functions (f _boundary), whose shapes reflect the estimated distance d to
the material boundary. The best-fit basis instance is selected through a maximum likelihood process (d = 0.6 fits best the histogram of point
P3). The result is a localized distance field that specifies, at each point, the signed distance from the point to the material boundary.

where ρ(x) = v , as shown in Figure 13.4. Because a dataset
can be treated as a continuous function over space, histograms
hR(v) : Rnv → R, are also continuous functions:

hR(v) = ∫R(x)δ(ρ(x)− v)dx . (13.1)

Equation 13.1 is the continuous analogue of a discrete his-
togram. R(x) is nonzero within the region of interest and
integrates to 1. R(x) is set constant in the region of interest,
making every spatial point contribute equally to the histogram
hR(v), but R(x) can be considered a weighting function that
takes on values other than 0 and 1 to transition more smoothly
between adjacent regions. Note also that hR(v) integrates to
1, which means that it can be treated as a probability density
function or PDF. δ is the Dirac delta function.

13.3.1 Computing Voxel Histograms

Histograms can be calculated in constant-sized rectangular
“bins,” sized such that the width of a bin is smaller than the
standard deviation of the noise within the dataset. This ensures
that significant features are not lost in the histogram.

The bins are first initialized to zero. Each voxel is subdivided
into subvoxels, usually four for 2D data or eight for 3D data,
and ρ(x) and its derivative evaluated at the center of each sub-
voxel.ρ(x) is interpolated from the discrete data using a tricubic
B-spline basis [28] that approximates a Gaussian. Thus, func-
tion and derivative evaluations can be made not only at sample
locations, but anywhere between samples as well. From the
function value and the derivative, Equation 13.1 is used to calcu-
late the contribution of a linear approximation of ρ(x) over the
subvoxel to each histogram bin, accumulating the contributions
from all subvoxels. This provides a more accurate histogram
than would be obtained by evaluating only the function values
at the same number of points.

13.4 Histogram Basis Functions for Pure
Materials and Mixtures

In this section we describe the basis functions that we use to
model histograms over regions containing single materials and
regions containing mixtures of materials. Subsection 13.4.1
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introduces basis functions for the partial volume approach;
subsection 13.4.2 describes the basis functions we use to
estimate boundary distances.

13.4.1 Partial Volume Basis Functions

This subsection describes basis functions that model histograms
of regions consisting of pure materials and regions consisting
of pairwise mixtures of materials. Other voxel contents are also
possible and are discussed in Section 13.10. The parameters of
the basis functions specify the expected value, c , and standard
deviation, s, of each material’s measurements (see Figure 13.9).

Equation 13.1 can be used to derive these basis functions,
which are subsequently fitted to histograms of the data. The
equations provide reasonable fits to typical MR data, which
gives confidence that the assumptions about the measurement
function,ρ(x), are reasonable. The details of the derivations are
in Section 13.8.

For a single material, the histogram basis function is a
Gaussian distribution:

fsingle(v ; c , s) =
(

nv∏
i=1

1

si

√
2π

)
exp

(
−1

2

nv∑
i=1

(
vi − ci

si

)2
)

,

(13.2)

where c is the vector-valued mean; s is the vector-valued stan-
dard deviation; and vi , ci , and si , are scalar components of v , c ,
and s, respectively. This equation is derived by manipulating
Equation 13.1 evaluated over a region of constant material,
where the measurement function, ρ(x), is a constant value plus
additive, normally distributed noise. Because the noise in dif-
ferent channels of multivalued MRI images is not correlated,
the general vector-valued normal distribution reduces to this
equation with zero covariances.

c

(a) (b)

s

s0

c0 c1

s1

FIGURE 13.9 Parameters for histogram basis function. (a) Single-
material histogram parameters include c , the mean value for the
material, and s, which measures the standard deviation of mea-
surements (see Equation 13.2). (b) Corresponding parameters for
a two-material mixture basis function. s0 and s1 affect the slopes
of the two-material histogram basis function at either end. For
vector-valued data, c and s are vectors and are the mean values and
standard deviations of the noise for the two constituent materials (see
Equation 13.3).

For mixtures along a boundary between two materials,
another equation can be derived similarly:

fdouble(v ; c , s) =
∫ 1

0
kn((1− t )c1 + tc2 − v ; s)dt . (13.3)

As with the single-material case, this derivation follows from
Equation 13.1 evaluated over a region where two materials mix.
In this case, the band-limiting filter that causes partial-volume
effects is approximated with a box filter, and an assumption is
made that the variance of the additive noise is constant across
the region. This basis function is a superposition of normal
distributions representing different amounts of the two con-
stituent pure materials. kn is the normal distribution, centered
at zero; t is the relative quantity of the second material; c (com-
prising c1 and c2) is the expected values of the two materials;
and s is the standard deviation of measurements.

The assumption of a box filter affects the shape of the
resulting histogram basis function. Similar equations for dif-
ferent filters (triangle, Gaussian, and Hamming) can also be
derived, but a box filter is sufficiently accurate in practice and
is numerically more efficient.

13.4.2 Boundary Distance Basis Functions

We use two types of histogram basis functions: one for pure
materials and one for mixtures of materials. The basis function
for pure materials remains a normal distribution. The basis
function for a mixture has an additional parameter that defines
the distance from the center of a voxel to a boundary between
materials.

From the assumptions and Equation 13.1, we derive the
equation for a pure-material basis function. Because the data
collection process band-limits the noise, and because we are
looking at histograms over very small regions, the noise is not
normally distributed. We divide the noise into two components:
one that is constant over a voxel (with mean c and standard
deviation σ over the dataset) and one that is normally dis-
tributed around the constant component (with mean 0 and
standard deviation s over a voxel). The equation for a single
material, then, is a normal distribution with center c + N and
variance σ2:

fsingle(v ; N , c , s) =
nv∏

i=1

1

si

√
2π

exp

⎛
⎝−1

2

nv∑
i=1

(
v − (c + N

)
si

)2
⎞
⎠ .

(13.4)

Dataset parameters for this basis function are c , s, and σ.
Because N is constant within a voxel but varies over the
dataset with a normal distribution, σ also becomes a dataset
parameter.

From the assumptions and Equation 13.1, we derive the equa-
tion for a mixture basis function. We define the region R(x)
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as a rectangular solid kh on a side and distance d from the
boundary at 0. The function uses the same parameters for its
pure materials components and adds two additional parameters
d and kw :

fboundary(v ; d , N , c , s, kw) = kn(v ; s) ∗
((

H (d + kh

2
− ke(v)

kw
)

−H (d − kh

2
− ke(v)

kw
)

) ∣∣∣∣ eke (v)
√
π

(c2 − c1)kw

∣∣∣∣
)

,

(13.5)

where ke(v) = erf −1
(

c1+c2−2v
c1−c2

)
and H(x) is the Heaviside, or

step, function. The derivation follows from Equation 13.1 eval-
uated over a region centered at distance d from a boundary
between two materials. The boundary is assumed to be planar
and the function low-pass filtered uniformly in all directions so
that the sampling theorem is satisfied. kw depends on the width
of the sampling kernel used to create the samples.

The parameter d is estimated individually for each voxel we
classify, as described in Section 13.6.1. kw is estimated once for
an entire dataset, as described in Section 13.5.1.

13.5 Estimating Histogram Basis Function
Parameters

This section describes the process through which we estimate
model parameters. Subsection 13.5.1 introduces the estimation
procedure we use in the partial-volume approach for fitting
histogram basis functions to a histogram of an entire dataset.
Subsection 13.5.2 shows how to estimate material parameters
that are constant throughout a dataset in the boundary distance
approach.

13.5.1 Partial Volume Basis Function Parameters

This subsection describes parameter-estimation procedures for
fitting histogram basis functions to a histogram of an entire
dataset. For a given dataset the histogram, hall(v), is first cal-
culated over the entire dataset. The second step combines an
interactive process of specifying the number of materials and
approximate feature-space locations for them with an auto-
mated optimization [27] to refine the parameter estimates.
Under some circumstances, users may wish to group materials
with similar measurements into a single “material,” whereas in
other cases they may wish the materials to be separate. The result
of this process is a set of parameterized histogram basis func-
tions, together with values for their parameters. The parameters
describe the various materials and mixtures of interest in
the dataset. Figure 13.10 shows the results of fitting a his-
togram. Each colored region represents one distribution, with
the labeled spot-shaped regions representing pure materials and
connecting shapes representing mixtures.

n1

n0

FIGURE 13.10 Basis functions fit to histogram of entire dataset. This
figure illustrates the results of fitting basis functions to the histogram
of the hand dataset. The five labeled circular regions represent the
distribution of data values for pure materials, while the colored regions
connecting them represent the distribution of data values for mixtures.
The mixture of muscle (red) and fat (white), for example, is a salmon-
colored streak. The green streak between the red and yellow dots is a
mixture of skin and muscle. These fitted basis functions were used to
produce the classified data used in Figure 13.13. (See also color insert).

To fit a group of histogram basis functions to a histogram, as
in Figure 13.10, the optimization process estimates the relative
volume of each pure material or mixture (vector αall) and the
mean value (vector c) and standard deviation (vector s) of mea-
surements of each material. The process is derived from the
assumption that all values were produced by pure materials
and two-material mixtures. nm is the number of pure materials
in a dataset, and nf the number of histogram basis functions.
Note that nf ≥ nm , since nf includes any basis functions for
mixtures, as well as those for pure materials.

The optimization minimizes the function

E(αall, c , s) = 1

2

∫ (
q(v ;αall, c , s)

w(v)

)2

dv , (13.6)

with respect to αall, c , and s, where

q(v ;αall, c , s) = hall(v)−
nf∑

j=1

αall
j fj(v ; cj , sj). (13.7)

Note that fj may be a pure or a mixture basis function and that
its parameter cj will be a single feature-space point for a pure
material or a pair for a mixture. The function w(v) is analogous
to a standard deviation at each point, v , in feature space and
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gives the expected value of |q(v)|. w(v) can be approximated as
a constant; it is discussed further in Section 13.10.

Equations 13.6 and 13.7 are derived in Section 13.9 using
Bayesian probability theory with estimates of prior and
conditional probabilities.

13.5.2 Boundary Distance Dataset Parameters

In this subsection we describe the process of estimating the
material parameters that are constant throughout a dataset. For
each pure material the dataset parameters include the expected
center value of the voxel, c , the expected deviation of c from
voxel to voxel, s, and the expected deviation from c of values
within a voxel, σ, and w(v). For material mixtures the dataset
parameters also include kw , the sampling kernel width. w(v) is
an analogue of the standard deviation of a histogram from the
expected value of the histogram. We discuss this further in the
following paragraphs.

We estimate these parameters from several interactively
selected sets of voxels. Each set consists of voxels containing
a single pure material or of voxels near a boundary between
two known pure materials.

For each voxel in a set representing one pure material, we cal-
culate a mean and deviation of the values within the voxel. The
mean value of all the voxel means is c . The deviation of all the
voxel mean values is s. The mean of all the voxel deviations is σ.

For each voxel in a set representing a mixture, we fit the
mixture basis function to the histogram over the voxel, allowing
d and kw to vary. This gives us a value for kw . We use the mean
value of these voxel kw values for classifying voxels over the
entire dataset.

13.6 Classification

13.6.1 Partial Volume Voxel Parameters

This subsection describes the process of classifying each voxel.
This process is similar to that described in Section 13.5 for fitting
the histogram basis functions to the entire dataset histogram,
but now histograms taken over small, voxel-sized regions are
being fitted. The previously computed histogram basis func-
tions calculated from the entire dataset histogram are used. The
mean vector c and standard deviation s are no longer varied.
The only parameters allowed to vary are the relative material
volumes (vector αvox) and an estimate of the local noise in the
local region (vector N ) (see Equations 13.8 and 13.9).

Over large regions including many voxels, the noise in ρ(x)
is normally distributed, with zero mean; however, for voxel
regions the noise mean is generally nonzero. The reason is that
normally distributed noise is added to each sample value, not to
each point of ρ(x). When the samples are used to reconstruct
ρ(x), the values ρ(x) takes on near a particular sample tend to
be similar and so have a nonzero mean. The local mean voxel

noise value is labeled N . As derived in Section 13.9, the equation
that is minimized, with respect to αvox and N , is

E(αvox, N ) = 1

2

nv∑
i=1

(
N i

σi

)2

+ 1

2

∫ (
q(v ;αvox, N )

w(v)

)2

dv ,

(13.8)
where

q(v ;αvox, N ) = hvox(v − N )−
nf∑

j=1

αvox
j fj(v), (13.9)

the minimization is subject to the constraints

0 ≤ αvox
j ≤ 1 and

nf∑
j=1

αvox
j = 1,

and vectorσ is the standard deviation of the noise over the entire
dataset. For MR data the standard deviations in the signals for
different materials are reasonably similar, and σ is estimated to
be an average of the standard deviations of the histogram basis
functions.

With optimal vector αvox for a given voxel-sized region and
the mean value, vector v̄ , within that region, the amount of
each pure material contributed by each mixture to the voxel is
estimated. This is the output, estimates of the amount of each
pure material in the voxel-sized region:

v̄ =
∫ (

hvox(v)−
nm∑
i=1

αi fsingle(v)

)
dv . (13.10)

v̄ contains the mean signature of the portion of the histogram
that arises only from regions with partial-volume effects. The
algorithm determines how much of each pure component of
pairwise mixture materials would be needed to generate v̄ , given
the amount of each mixture that αvox indicates is in the voxel; tk

represents this relative amount for mixture k, with tk = 0 indi-
cating that the mixture contains only the first pure component,
tk = 1 indicating that it contains only its second component,
and intermediate values of tk indicating intermediate mixtures.
The tk values are calculated by minimizing the following equa-
tion with respect to t , subject to the constraint 0 ≤ tk ≤ 1:

Ev̄(t ) =
⎛
⎝v̄ −

nf∑
k=nm+1

αk(tkcka + (1− tk)ckb)

⎞
⎠

2

. (13.11)

Vector cka is the mean value for the first pure material com-
ponent of mixture k, and vector ckb is the mean value for the
second component. The total amount of each material is the
amount of pure material added to the tk-weighted portion of
each mixture.
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13.6.2 Boundary Distance Voxel Parameters

With estimates for dataset parameters, we can estimate the voxel
parameters for each voxel in a dataset. One voxel parameter, σb ,
is discrete and determines which material or pair of materials a
voxel contains. We break up the classification process into one
optimization over a continuous domain for each material or
pair. We then choose the one that fits best (see [24] for details).

13.7 Results

This section shows the results of voxel-histogram classifica-
tion applied to both simulated and collected MRI datasets.
When results can be verified and conditions are controlled, as
shown with the classification of simulated data, the algorithm
comes very close to “ground truth,” or perfect classification.
The results based on collected data illustrate that the algorithm
works well on real data, with a geometric model of a tooth
showing boundaries between materials, a section of a human
brain showing classification results mapped onto colors, and
a volume-rendered image of a human hand showing complex
geometric relationships among different tissues.

The partial volume Bayesian (PVB) algorithm described in
this chapter is compared with four other algorithms. The first,
discrete maximum likelihood, or DML, assigns each voxel or
sample to a single material using a maximum likelihood algo-
rithm. The second, probabilistic partial volume classifier, or
PPVC, is described in [29]. The third is a Mixel classifier [14],
and the fourth is eigenimage filtering (Eigen) [12].

PVB significantly reduces artifacts introduced by the other
techniques at boundaries between materials. Figure 13.11 com-
pares performance of PVB, DML, and PPVC on simulated data.
PVB produces many fewer misclassified voxels, particularly in
regions where materials are mixed because of partial-volume
effects. In Figures 13.11b and 13.11d the difference is partic-
ularly noticeable where an incorrect layer of dark background
material has been introduced between the two lighter regions,
and where jagged boundaries occur between each pair of
materials. In both cases this is caused by partial-volume effects,
where multiple materials are present in the same voxel.

TABLE 13.1 Comparative RMS error for the four algorithms: PVB,
PPVC, Mixel, and Eigena

RMS error Improvement ratio
PPVC(%) Eigen(%) PVB(%) PPVC/PVB

Background 20 11.7 6.5 3.09
Outer 25 24.1 4.3 5.79
Inner 20 9.8 6.5 3.04

PPVC(%) Mixel(%) PPVC/Mixel

Background 16 9.5 1.68
Tumor 21 13.5 1.56
White matter 37 16.0 2.31
Gray matter 36 17.0 2.11
CSF 18 13.0 1.38
All other 20 10.0 2.00

a The PPVC/Eigen/PVB comparison is from the simulated data test case illustrated in
Figure 13.11, SNR = 14.2. The PPVC/Mixel comparison is taken from Figures 13.7 and
13.8 in [14], SNR = 21.6. PVB, in the presence of more noise, reduces the PPVC RMS
error to approximately half that of the Mixel algorithm.

Table 13.1 shows comparative RMS error results for the
PPVC, Eigen, and PVB simulated data results and also com-
pares PPVC with the Mixel algorithm. Signal-to-noise ratio
(SNR) for the data used in PPVC/Eigen/PVB comparison was
14.2. SNR for the data used in PPVC/Mixel comparison was
21.6. Despite lower SNR, PPVC/PVB RMS error improvement
is approximately double that of the PPVC/Mixel improvement.
RMS error is defined as

1

n

√∑
x

(α(x)− p(x))2,

where α(x) is classified data and p(x) is ground truth. The sum
is made only over voxels that contain multiple materials. n is
the number of voxels summed.

Table 13.2 shows similar comparative results for volume mea-
surements made between PPVC and PVB on simulated data,
and between PPVC and Mixel on real data. Volume measure-
ments made with PVB are significantly more accurate than
those made with PPVC, and the PPVC to PVB improvement
is better than the PPVC to Mixel improvement. Table 13.3

(a) Ground truth (b) DML (c) PVB (d) PPVC (e) Slice geometry

FIGURE 13.11 Comparison of DML classification (b), the PVB classification (c), and PPVC classification (d). (a) is a reference for what “ideal”
classification should produce. Note the band of dark background material in (b) and (d) between the two curved regions. This band is incorrectly
classified and could lead to errors in models or images produced from the classified data. The original dataset is simulated, two-valued data of
two concentric shells, as shown in (e), with SNR of 14.2.
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TABLE 13.2 Comparative volume measurement error for four
algorithms: PVB, PPVC, Mixel, and Eigena

PPVC(%) Eigen(%) PVB(%) PPVC(%) Mixel(%)
2.2 −0.021 0.004 5.6 1.6
−5.3 0.266 −0.452 44.1 7.0

0.3 −0.164 0.146

a The PPVC/Eigen/PVB comparison is from the simulated data test case illustrated in
Figure 13.11, SNR = 14.2. Note that the Eigen results are based on 3-valued data, whereas
the other algorithms used 2-valued data. The PPVC/ Mixel comparison is taken from Figure
13.9 and Table V in [14], SNR = 21.6.

TABLE 13.3 Comparison of voxel histogram classification (PVB)
with eigenimage filtering (Eigen) for voxels having no partial-volume
effectsa

Eigen (3-valued data) PVB (2-valued data)

Mean Std. dev. Mean Std. dev.

Desired signatures
Material 1 1.0113 0.241 0.9946 0.064
Material 2 0.9989 0.124 0.9926 0.077
Background 0.9986 0.113 0.9976 0.038

Undesired signatures
Material 1 −0.0039 0.240 0.0013 0.017
Material 2 −0.0006 0.100 0.0002 0.004
Background 0.0016 0.117 0.0065 0.027

a Desired signatures should be mapped to 1.0 and undesired signatures to 0.0. Note that
the PVB classification has consistently smaller standard deviations—the Eigen results
have noise levels 2–4 times higher despite having 3-valued data to work with instead of
the 2-valued data PVB was given.

compares noise levels in PVB results and Eigen results. The
noise level for the PVB results is about 25% of the level for the
Eigen results.

Figures 13.2 and 13.5 also show comparative results
between PVB and DML. Note that the same artifacts shown
in Figure 13.11 occur with real data and are reduced by the
technique described here.

Models and volume-rendered images, as shown in
Figures 13.12 and 13.13, benefit from the PVB technique
because less incorrect information is introduced into the clas-
sified datasets, and so the images and models more accurately
depict the objects they are representing. Models and images
such as these are particularly sensitive to errors at geometric
boundaries because they illustrate the underlying geometries.

We have classified simulated MRI data with the boundary-
distance algorithm and compared them with results from
several other algorithms in Figure 13.14. The simulated data
that we classified is shown in Figure 13.14 (ii) with Figure 13.14
(iii) illustrating what an ideal classification algorithm would
produce. Discrete classification, using vector data, but only a
single measurement point per voxel and assuming only pure
materials, produces the results in Figure 13.14 (iv). Note the
jaggy edges and the band of misclassified data for material 3
along the boundary between materials 1 and 2. Figure 13.14 (v)
and (vi) show the partial volume mixtures algorithm and the
distance field algorithm results. Note that even with scalar data,

FIGURE 13.12 A geometric model of tooth dentine and enamel cre-
ated by collecting MRI data samples using a technique that images
hard solid materials [20] and classifying dentine, enamel, and air
in the volume data with the PVB algorithm. Polygonal isosurfaces
define the bounding surfaces of the dentine and enamel. The enamel-
dentine boundary, shown in the left images, is difficult to examine
noninvasively using any other technique.

FIGURE 13.13 A volume-rendering image of a human hand dataset.
The opacity of different materials is decreased above cutting planes to
show details of the classification process within the hand. (See also
color insert).
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(i) Geometry of slices

Mat. 1:

Mat. 2:

Mat. 3:

(iii) “Ideal”
classification

(iv) Discrete
classification

(vector)

(v) Partial volume
mixture

classification
(vector)

(vi) Boundary
distance

classification
(scalar)

(ii) Raw data

FIGURE 13.14 Classification results on simulated data. The boundary distance algorithm is compared to other algorithms in classifying
simulated MRI data. (ii) shows the simulated data, which contains three different materials. The geometry that the data measures is shown in
(i). (iii) shows what an “ideal” classification algorithm should produce and (iv)–(vi) show results from different algorithms. Note that the new
algorithms (v) and (vi) produce results most similar to the ideal case and that (vi) does so even with scalar data.

TABLE 13.4 MRI dataset sources, acquisition parameters, and figure
references

Object Machine Voxel Size (mm) TR/TE1/TE2 (s/ms/ms) Figures

Shells Simulated 1.92 × 3 N/A 11
Brain GE 0.942 × 3 2/25/50 2, 5
Hand GE 0.72 × 3 2/23/50 13
Tooth Bruker 0.3 123 15/0.080 12

the boundary distance algorithm achieves results very close to
the ideal case.

Table 13.4 lists the datasets, the MRI machine they were col-
lected on, some collection parameters, the voxel size, and the
figures in which each dataset appears. The GE machine was
a 1.5T Signa. The Bruker machine was an 11.7T AMX500.
Acquired data were collected with a spin-echo or fast spin-
echo protocol, with one proton-weighted and one T2-weighted

acquisition. The tooth was acquired with a technique described
in Ghosh et al. [25]. Preprocessing was performed only on
data used for the hand example (Figure 13.13). For this case
each axial slice was multiplied by a constant and then offset by
another to compensate for intensity falloff as a function of the
distance from the center of the RF coil. The constants were cho-
sen to make the mean values of user-identified material regions
consistent from slice to slice.

13.8 Derivation of Histogram Basis
Functions

This section derives parameterized model histograms that are
used as basis functions, fi , for fitting histograms of data.
Two forms of basis functions are derived: one for single,
pure materials; another for two-material mixtures that arise
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due to partial-volume effects in sampling. Equation 13.1, the
histogram equation, is

hR (v) = ∫R(x)δ(ρ(x)− v)dx

and measures a histogram of the function ρ(x) over a region
defined by R(x). x ranges over spatial locations, and v over fea-
ture space. Note that if ρ(x) contains additive noise, n(x ; s), with
a particular distribution, kn(v ; s), then the histogram of ρ with
noise is the convolution of kn(v ; s)with ρ(x) – n(x ; s) (i.e.,ρ(x)
without noise). kn(v ; s) is, in general, a normal distribution.
Thus,

hR(v) = kn(v ; s) ∗ ∫R(x)δ((ρ(x)− n(x ; s))− v)dx .
(13.12)

13.8.1 Pure Materials

For a single pure material, it is assumed that the measurement
function has the form

ρsingle(x ; c , s) = c + n(x ; s), (13.13)

where c is the constant expected value of a measurement of
the pure material, and s is the standard deviation of additive,
normally distributed noise.

The basis function used to fit the histogram of the measure-
ments of a pure material is

fsingle(v ; c , s) =
∫

R(x)δ(ρsingle(x ; c , s)− v)dx

=
∫

R(x)δ(c + n(x ; s)− v)dx

= kn(v ; s) ∗
∫

R(x)δ(c − v)dx

= kn(v ; s) ∗
(
δ(c − v)

∫
R(x)dx

)

= kn(v ; s) ∗ δ(c − v)

= kn(v − c ; s)

=
(

nv∏
i=1

1

si

√
2π

)
exp

(
−1

2

n∑
i=1

(
vi − ci

si

)2
)

.

(13.14)

Thus, fsingle (v ; c , s) is a Gaussian distribution with mean c and
standard deviation s; vi , ci , and si are scalar components of
v , c , and s. The noise is assumed to be independent in each
element of vector-valued data, which for MRI appears to be
reasonable.

13.8.2 Mixtures

For a mixture of two pure materials, the measurement function
is assumed to have the form

ρdouble(x ; c , s) = ldouble(x ; c1, c2)+ n(x ; s), (13.15)

where ldouble approximates the band-limiting filtering process, a
convolution with a box filter, by interpolating the values within
the region of mixtures linearly between c1 and c2, the mean
values for the two materials:

�double = (1− t )c1 + tc2 (13.16)

fdouble(v ; c , s) =
∫

R(x)δ(ρdouble(x ; c , s)− v)dx

=
∫

R(x)δ(ldouble(x ; c1, c2)+ n(x ; s)− v)dx

= kn(v ; s) ∗
∫

R(x)δ(ldouble(x ; c1, c2)− v)dx

=
∫ 1

0
kn(v ; s) ∗ δ((1− t )c1 + tc2 − v)dt

=
∫ 1

0
kn((1− t )c1 + tc2 − v ; s)dt . (13.17)

13.9 Derivation of Classification
Parameter Estimation

The following two sections can be safely skipped on a first
reading. They present detailed derivations and information
helpful for implementing the algorithm or for creating an
analogous one.

This section contains a derivation of the equations that are
used to find model histogram parameters and to classify voxel-
sized regions. Bayesian probability theory [3] is employed to
derive an expression for the probability that a given histogram
was produced by a particular set of parameter values in the
model. This “posterior probability” is maximized to estimate
the best-fit parameters:

maximize P(parameters | histogram). (13.18)

The optimization procedure is used for two purposes:

• Find model histogram parameters. Initially, it is used to
estimate parameters of basis functions to fit histograms of
the entire dataset hall. This results in a set of basis func-
tions that describe histograms of voxels containing pure
materials or pairwise mixtures.
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• Classify voxel-sized regions. Subsequently, the optimiza-
tion procedure is used to fit a weighted sum of the basis
functions to the histogram of a voxel-sized region hvox.
This produces the classification results (in terms of the
weights α).

The posterior probabilities Pall and Pvox share many common
terms. In the following derivation they are distinguished only
where necessary, using P where their definitions coincide.

13.9.1 Definitions

Table 13.5 lists Bayesian probability terminology as used in [3]
and in the derivations. Table 13.6 defines additional terms used
in this section.

13.9.2 Optimization

The following optimization is performed to find the best-fit
parameters:

maximize P(α, c , s, N |h). (13.19)

With P≡ Pall, the histogram basis function parameters c , s, αall

are fitted to the histogram of an entire dataset, hall(v). With P ≡
Pvox, the parameters αvox, N are fitted to classify the histogram
of a voxel-sized region, hvox(v).

13.9.3 Derivation of the Posterior Probability,
P(α, c, s, N|h)

The derivation begins with Bayes’ theorem expressing the poste-
rior probability in terms of the likelihood, the prior probability,

TABLE 13.5 Probabilities, using Bayesian terminology from [3]

P(α, c , s, N |h) Posterior probability (maximized)
P(α, c , s, N ) Prior probability
P(h| α, c , s, N ) Likelihood
P(h) Global likelihood

and the global likelihood:

P(α, c , s, N |h) = P(α, c , s, N )P(h|α, c , s, N )

P(h)
. (13.20)

Each of the terms on the right side is approximated in what
follows, using p1–6 to denote positive constants (which can be
ignored during the optimization process).

13.9.3.1 Prior Probabilities

It is assumed that α, c , s, and N are independent, so

P(α, c , s, N ) = P(α)P(c , s)P(N ). (13.21)

Because the elements of α represent relative volumes, they
are constrained to sum to 1 and are all positive:

P(α) =
⎧⎨
⎩

0 if
∑nf

j=1 αj �= 1
0 if αj < 0 or αj > 1
p1 (constant) otherwise

. (13.22)

A different assumption is used for P(c , s) depending on which
fit is being done (ha11 or hvox). For fitting hall(v), all values of
c , s are considered equally likely:

Pall(c , s) = p6. (13.23)

For fitting hvox, the means and standard deviations, c , s, are fixed
at c0, s0 (the values determined by the earlier fit to the entire
dataset):

Pvox(c , s) = δ(c − c0, s − s0). (13.24)

For a small region, it is assumed that the mean noise vector, N ,
has normal distribution with standard deviation α:

Pvox(N ) = p 2e
− 1

2
∑nv

i=1

(
N i
σi

)2

. (13.25)

For a large region, the mean noise vector, N , should be very
close to zero; hence, Pall(N ) will be a delta function centered at
N = 0.

TABLE 13.6 Definitions of terms used in the derivations

Term Dimension Definition

nm Scalar Number of pure materials
nf Scalar Number of pure materials and mixtures
nv Scalar Dimension of measurement (feature space)
α nf Relative volume of each mixture and material within the region
c nf × nv Mean of material measurements for each material
s nf × nv Standard deviation of material measurements (chosen by procedure discussed in Section 13.5) for each material
N nv Mean value of noise over the region
P1–6 Scalars Arbitrary constants
hall(v) Rn

v → R Histogram of an entire dataset
hvox(v) Rn

v → R Histogram of a tiny, voxel-sized region
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13.9.3.2 Likelihood

The likelihood, P(h|α, c , s, N ), is approximated by analogy to
a discrete normal distribution. q(v) is defined as the difference
between the “expected” or “mean” histogram for particular α,
c , s, N and a given histogram h(v):

q(v ;α, c , s, N ) = h(v − N )−
nf∑

j=1

αj fj(v ; c , s). (13.26)

Now a normal-distribution-like function is created. w(v) is
analogous to the standard deviation of q at each point of feature
space:

P(h|α, c , s, N ) = p3e
− 1

2

∫ ( v ;α,c ,s,N
w(v)

)2
dv

. (13.27)

13.9.3.3 Global Likelihood

Note that the denominator of Equation 13.20 is a constant
normalization of the numerator:

P(h) =
∫

P(α̂, ĉ , ŝ, N̂ )P(h|α̂, ĉ , ŝ, N̂ )dα̂dĉdŝdN̂ (13.28)

= p4. (13.29)

13.9.3.4 Assembly

Using the approximations just discussed, we can calculate the
following expression for the posterior probability:

P(α, c , s, N |h)
= p5P(α)P(c , s)exp

(
−1

2

nv∑
i=1

(
N i

σi

)2
)

exp

(
−1

2

∫ (
q(v ;α, c , s, N )

w(v)

)2

dv

)
. (13.30)

For fitting hall, the mean noise is assumed to be 0, so maximizing
Equation 13.30 is equivalent to minimizing Eall to find the free
parameters (αall, c , s),

Eall(αall, c , s) = 1

2

∫ (
q(v ;αall, c , s)

w(v)

)2

dv , (13.31)

subject to P(αa11) �= 0. Because both P(αa11) and Pall(c , s) are
constant valued in that region, they are not included.

For fitting hvox, the parameters c and s are fixed, so maximiz-
ing Equation 13.30 is equivalent to minimizing Evox to find the
free parameters (αvox, N ):

Evox(αvox, N ) = 1

2

nv∑
i=1

(
N i

σi

)2

+ 1

2

∫ (
q(v ;αvox, N )

w(v)

)2

dv ,

(13.32)

subject to P(αvox) �= 0.

As stated in Equation 13.8, Equation 13.32 is minimized to
estimate relative material volumes, αvox, and the mean noise
vector, N .

13.10 Discussion

Several assumptions and approximations were made while
developing and implementing this algorithm. This section will
discuss some of the trade-offs, suggest some possible directions
for further work, and consider some related issues.

13.10.1 Mixtures of Three or More Materials

It was assumed that each measurement contains values from
at most two materials. Two-material mixtures were chosen
based on a dimensionality argument. In an object that consists
of regions of pure materials, as shown in Figure 13.6, vox-
els containing one material will be most prevalent because
they correspond to volumes. Voxels containing two materials
will be next most prevalent because they correspond to sur-
faces where two materials meet. As such, they are the first
choice to model after those containing a single material. The
approach can be extended in a straightforward manner to han-
dle the three-material case as well as cases with other less
frequent geometries, such as skin, tubes, or points where four
materials meet. This extension could be useful for identifying
subvoxel-sized geometry within sampled data, thus extending
the resolution.

13.10.2 Mixtures of Materials Within an Object

Based on the assumptions, voxels contain mixtures of materials
only when those mixtures are caused by partial-volume effects.
These assumptions are not true in many cases. By relaxing them
and then introducing varying concentrations of given materi-
als within an object, one could derive histogram basis functions
parameterized by the concentrations and could fit them to mea-
sured data. The derivation would be substantially similar to that
presented here.

13.10.3 Benefits of Vector-Valued Data

As with many other techniques, what is described here works
on vector-valued volume data, in which each material has a
characteristic vector value rather than a characteristic scalar
value. Vector-valued datasets have a number of advantages and
generally give better classification results. Such datasets have
improved SNR and frequently distinguish similar materials
more effectively (see Figure 13.15).

13.10.4 Partial Mixtures

Note that the histograms, hvox(v), for some voxel-sized regions
are not ideally matched by a linear sum of basis functions. There
are two possible sources of this mismatch.
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FIGURE 13.15 Benefits of histograms of vector-valued data. These
figures show histograms of an object consisting of three materials.
(a) This histogram of scalar data shows that material mean values
are collinear. Distinguishing among more than two materials is often
ambiguous. (b) and (c) are two representations of histograms of
vector-valued data and show that mean values often move away from
collinearity in higher dimensions, and so materials are easier to dis-
tinguish. High/bright locations indicate more common (v0, v1) data
values. While less likely, (d) shows that the collinearity problem can
exist with vector-valued data.

The first source is the assumption that within a small region
there is still normally distributed noise. N models the fact that
the noise no longer averages to zero, but there is no attempt to
model the change in shape of the distribution as the region size
shrinks.

The second source is related. A small region may not con-
tain the full range of values that the mixture of materials can
produce. The range of values is dependent on the bandwidth
of the sampling kernel function. As a result, the histogram over

that small region is not modeled ideally by a linear combination
of pure material and mixture distributions. Other model his-
togram basis functions with additional parameters can better
match histograms [23, 24]. Modeling the histogram shape as a
function of the distance of a voxel from a boundary between
materials is likely to address both of these effects and give a
result with a physical interpretation that will make geomet-
ric model extraction more justifiable and the resulting models
more accurate.

These two effects weight the optimization process so that
it tends to make N much larger than expected. As a result,
experience shows that setting w(v) to approximately 30 times
the maximum value in hvox(v) gives good classification results.
Smaller values tend to allow N to move too much, and larger
values hold it constant. Without these problems w(v) should
take on values equal to some small percentage of the maximum
of hvox(v).

13.10.5 Nonuniform Spatial Intensities

Spatial intensity in MRI datasets can vary because of inhomo-
geneities in the RF or gradient fields. It is assumed that they are
small enough to be negligible for this algorithm, but it would be
possible to incorporate them into the histogram basis functions
by making the parameter c vary spatially.

13.10.6 Boundary Distance Ambiguous
Classification

For a voxel that is well within a region of pure material A, the
algorithm sometimes correctly classifies the voxel as pure mate-
rial A, and sometimes classifies it as a mixture of A and a very
small amount of some other material. Both solutions are phys-
ically reasonable because the mixture basis functions approach
a normal distribution as the boundary distance parameter d
moves away from zero.

Similarly, two different mixtures, each containing material A,
can match a voxel that is within a region of pure material A.
Again, the choice is not critical.

13.10.7 Sensitivity to Interactively Selected
Material Classes

The results of the boundary-distance algorithm are highly
dependent on the material points selected interactively to rep-
resent each pure material and each pair of materials. These
points must be selected carefully and should come from a set
of points that represent a single consistent material. Repres-
enting points from two materials as one material can create a
situation in which the distributions of the sample values do not
match a normal distribution, and the classification results are
less accurate.
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13.10.8 Sensitivity to Contrast Between Materials

The boundary-distance classification is sensitive to the contrast-
to-noise ratio between different materials. If this ratio is too
small, materials cannot be distinguished. This requirement is
fed back to the data-collection process.

13.10.9 Quantitative Comparison with Other
Algorithms

Because of the lack of a “gold standard” against which classifi-
cation algorithms can be measured, it is difficult to compare the
technique described here with others. Each technique presents
a set of results from some application area, and so anecdo-
tal comparisons can be made, but quantitative comparisons
require reimplementing other algorithms. Work in generating a
standard would greatly assist in the search for effective and accu-
rate classification techniques. The voxel histogram technique
appears to achieve a given level of accuracy with fewer vector
elements than the eigenimages of Windham et al. [12] or the
classification results of Choi et al. [14], which use three-valued
data. Their results are visually similar to the voxel histogram
results and underscore the need for quantitative comparison.
Because neighboring sample values are interpolated, a given
accuracy can be achieved with two-valued or even scalar data,
while their technique is likely to require more vector compo-
nents. Our quantitative comparison shows that voxel histogram
classification produces results with lower noise levels, lower
RMS error, and comparable volume measurement accuracy
compared to the results produced by eigenimage filtering. Kao
et al. [13] show good results for a human brain dataset, but
their technique may be less robust in the presence of material
mixture signatures that overlap, a situation their examples do
not include.

13.10.10 Implementation

The examples were calculated using an implementation in C
and C++ on Unix workstations. It uses a sequential quadratic
programming (SQP) constrained optimization algorithm [30]
to fit hvox for each voxel-sized region, and a quasi-Newton
optimization algorithm for fitting hall. The algorithm classi-
fies approximately 104 voxels per second on a multinode i686
cluster running Linux (AMD XP 2700+). We emphasize, how-
ever, that the focus of our work is boosting accuracy, and not
minimizing running time.

13.11 Conclusions

The algorithm described in this chapter for classifying scalar-
and vector-valued volume data produces more accurate results
than existing techniques in many cases, particularly at bound-
aries between materials. The improvements arise because (1)

a continuous function is reconstructed from the samples, (2)
histograms taken over voxel-sized regions are used to repre-
sent the contents of the voxels, (3) subvoxel partial-volume
effects caused by the band-limiting nature of the acquisition
process are incorporated into the model, and (4) a Bayesian
classification approach is used. The technique correctly classi-
fies many voxels containing multiple materials in the examples
of both simulated and real data. It also enables the creation
of more accurate geometric models and images. Because the
technique correctly classifies voxels containing multiple mate-
rials, it works well on low-resolution data, where such voxels are
more prevalent. The examples also illustrate that it works well
on noisy data (SNR <15). The boundary distance algorithm is
based on a more accurate model, using different assumptions
of the MRI process than the partial volume algorithm, and so
produces better results in certain cases, but is computationally
more expensive. In other cases—such as boundaries between
more than two materials within the same voxel—the partial
volume model assumptions may be more appropriate.

The construction of a continuous function is based on the
sampling theorem, and although it does not introduce new
information, it provides classification algorithms with a richer
context for the information. It incorporates neighbor infor-
mation into the classification process for a voxel in a natural
and mathematically rigorous way and thereby greatly increases
classification accuracy. In addition, because the operations that
can be safely performed directly on sampled data are so lim-
ited, treating the data as a continuous function helps to avoid
introducing artifacts.

Histograms are a natural choice for representing voxel con-
tents for a number of reasons. First, they generalize single
measurements to measurements over a region, allowing classi-
fication concepts that apply to single measurements to be gen-
eralized. Second, the histograms can be calculated easily. Third,
the histograms capture information about neighboring voxels;
this increases the information content over single measure-
ments and improves classification results. Fourth, histograms
are orientation independent; orientation independence reduces
the number of parameters in the classification process, hence
simplifying and accelerating it.

Partial-volume effects are a nemesis of classification algo-
rithms, which traditionally have drawn from techniques that
classify isolated measurements. These techniques do not take
into account the related nature of spatially correlated measure-
ments. Many attempts have been made to model partial-volume
effects, and this work continues that trend; our results suggest
that continued study is warranted.

The Bayesian approach described is a useful formalism
for capturing the assumptions and information gleaned from
the continuous representation of the sample values, the his-
tograms calculated from them, and the partial-volume effects
of imaging. Together, these allow a generalization of many
sample-based classification techniques.
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14.1 Introduction

Linear edge detectors are based on smoothing followed by
differentiation where either the first or the second order deriva-
tive of the signal is computed [9]. In either case, the edges
detected identify the places where the mean value of the signal
changes significantly. Edge detectors designed to detect bound-
aries when the spatial statistics of the data change are known
as texture segmentation algorithms (e.g., [8, 18]). We are not
interested here in texture in the commonly understood sense
of the word, i.e. in spatial patterns. We are interested in detect-
ing boundaries between regions which do not form coherent
spatial patterns, but rather look random, their only difference
being the underlying probability density function from which
the observed values are drawn. In particular, we are interested in
detecting boundaries where the higher order moments of the
probability density function, from which the observed values
are drawn, change.

The motivation of our work stems from a medical appli-
cation, and the fact that the boundaries of some malignant

tumours are diffuse and invisible to the naked eye. A com-
monly accepted model for an idealised solid tumour consists
of a spherical body made up from several concentric shells:
(i) inner core composed of apoptotic cells and necrotic tissue,
(ii) a quiescent region composed of cells which are alive but
non-proliferative, and (iii) a proliferative rim with access to
a nutrient concentration sufficient to maintain active cellular
division, thus increasing the overall tumour size by prolifer-
ation. Therefore, we believe that there should be a boundary
between tumorous and healthy tissue which may or may not be
seen by conventional standard MRI methods, but which nev-
ertheless exists on a cellular level. Ordinary mean value-based
edge detectors [9] are only appropriate for detecting the bound-
ary of the main body of the tumour which is clearly distinct from
its surroundings in MRI images, due to its smooth and distinct
grey value. The true tumour boundary lies outside that region,
and it is neither a texture boundary nor a grey level boundary.

From psychophysical experiments it is known that the human
eye can distinguish borders between regions that differ in the
first or second order statistics only (e.g., [4, 5]). Figure 14.1

Copyright © 2008 by Elsevier, Inc.
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FIGURE 14.1 Pairs of regions which differ in their first, second, and third order statistics. The graphs show the normalised histograms of
the two regions of each image. As can be seen, differences in the first (μj ) and second (σj ) order statistics are visible but the difference in the
third order statistics is hardly discernible. In all three cases the signal strength is the same: top: |μ1 − μ2|/σ = 1.0; middle: |σ1 − σ2|/σ1 = 1.0;
bottom: |γ11 − γ12|/γ11 = 1.0, with γ1j referring to the third moment of the jth probability density function. Reprinted with permission
from IEEE.
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FIGURE 14.2 The cube and the sphere only differ from their surroundings in the skewness of the distribution of their grey values (first
column). Humans cannot see their boundaries in the corresponding central slices (second column). These boundaries, however, may be detected
using skewness gradient filters of various sizes (radius of spherical filter used is 5, 10 and 15, in the three right-most columns, respectively;
see explanations later in association with Figure 14.5).

shows examples of pairs of regions which differ in the first,
second and third order grey value statistics, separated by a
horizontal edge. The boundary in the third panel, where the
probability density functions differ in their third order statis-
tics only (having the same mean and standard deviation), is
hidden. Figure 14.2 demonstrates what this chapter is about,
using 3D simulated data. We created two volume grids of size
200× 200× 200, and placed in the middle of one of them a
cube of size 100× 100× 100 voxels and in the middle of the
other a sphere of radius 50 voxels. The voxels were given ran-
dom values drawn from two distributions that differed only
in the skewness. The skewness of the background pixels was
1 and the skewness of the object pixels was 2. No object can
be identified by the naked eye in the central slices of these data
shown in the second column of Figure 14.2. However, using
the skewness gradient filter, described later in this chapter, the
boundaries of both objects become visible, as shown in the last
three columns of the same figure.

Figure 14.3 shows for two patients suffering from glioblas-
toma multiforme the normalised histograms of the grey values
of the voxels around the visible part of the tumour, fitted with
Pearson distributions. It is evident from all cases that these
histograms are not symmetric or Gaussian-like. They clearly
indicate a probability density function which exhibits non-zero
high order moments. It is therefore plausible, although not
certain, that a hidden boundary may manifest itself as a third
moment gradient.

These examples demonstrate that the human vision sys-
tem cannot discriminate easily between regions that differ in
their third and higher order statistics, and that such statistical
gradients may be relevant to medical data.

For all the above reasons, we choose to investigate non-
linear edge detection algorithms [2, 12] that can identify third
or fourth order grey level statistical differences. However, it
is known that the higher the order of the statistic one wants
to compute, the more samples one needs. In the next section
we examine the minimum number of samples needed for the
reliable calculation of third and fourth order statistics, using
simulated data. In Section 14.3 we present the overview of the
scheme we use to extract skewness gradients. In Section 14.4 we
present some results of detecting skewness gradients in 3D MRI
scans for characterising the tissue of : 1) malignant tumours and
2) brains of schizophrenic patients and normal controls. We
conclude in Section 14.5.

14.2 Requirements for Using 3rd and 4th
Order Statistics

To create simulated data that differ in their 3rd or higher order
moments we need a probability density function that depends
on at least 3 parameters. Such a function is the Pearson distri-
bution. The probability density function of Pearson type III is
given by

p(x) = 1

β �(p)

(
x − α
β

)p−1

e−
x−α
β , (14.1)

where α ∈ (−∞,∞), β and p ∈ (0,∞), x ∈ [α,∞) and �(p)
is the Gamma function of parameter p. In Pearson type III, the
mean μ (first moment), variance σ2 (second moment), skew-
ness γ1 (third moment), and kurtosis γ2 (fourth moment) are
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FIGURE 14.3 Histograms of the grey values in T1-weighted (left) and T2-weighted (right) data around the tumour of two different patients,
with Pearson distributions fitted to them. The value of the skewness in each case is (a) 1.48; (b) 0.90; (c) 1.49 and (d) 0.88. Reprinted with
permission from IEEE.

given by the following formulae in terms of the parameters of
the distribution [1]:

μ = α+ pβ σ2 = pβ2

γ1 = 2√
p

γ2 = 6

p
. (14.2)

Sets of random numbers were created according to this prob-
ability density function, using a look-up table of the values of
the corresponding distribution of p(x) with 25,600 entries:

Px(x1) = 1

�(p)

∫ x1−α
β

0
yp−1e−y dy . (14.3)

Px(x1) was computed by implementing the relevant routine
from [13]. Figure 14.4 shows histograms of such numbers with
the corresponding theoretical curve superimposed.

A study was performed on the accuracy with which the 3rd
and 4th order statistics could be computed from such data.
The results of such experiments for three Pearson distributions,
which correspond to typical minimum and maximum values
of the third moment γ1 encountered in the real data we use in
Section 14.4.1, are reported in Table 14.1. Each experiment was
repeated 100 times with different seeds for the random number
generator, so that the mean and standard deviation of the rela-
tive errors with which γ1 andγ2 can be estimated were extracted.
It can be seen that for typical values of the third order moment
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FIGURE 14.4 The histograms of random numbers drawn from a Pearson distribution super-imposed on the theoretical frequency curves used
to draw them. Reprinted with permission from IEEE.

TABLE 14.1 Results of average and standard deviation of the distribution of percentage errors in the computation of the 3rd and 4th moments
of sets of points drawn from a Pearson distribution with (from left to right): typical values encountered in the real data we use in Section 14.1,
α = 106.7, β = 7.5 and p = 1.778; values which correspond to the minimum skewness observed in the real data α = 62.86, β = 1.75 and
p = 32.65; and values which correspond to the maximum skewness observed in the real data α = 113.1, β = 14.5 and p = 0.476. The correct
values of γ1 and γ2 are: 1.5 and 3.375, 0.35 and 0.188, and 2.9 and 12.62, respectively. μγi

and σγi
are the mean and standard deviation

respectively of the relative absolute error of estimating γi(i = 1, 2). “Num pts” is the total number of points used for each experiment. The
numbers presented are statistics computed over 100 repetitions of each experiment using different seeds for the random number generator.
Reprinted with permission from IEEE.

γ1 γ2 γ1 γ2 γ1 γ2
Num
pts μγ1 σγ1 μγ2 σγ2 μγ1 σγ1 μγ1 σγ1 μγ1 σγ1 μγ2 σγ2

100 22.6 28.5 60.3 76.7 54.76 72.15 239.6 350.8 19.90 24.41 47.33 54.33
200 17.6 22.1 49.2 63.5 39.31 48.16 198.6 241.0 17.58 21.41 43.54 50.46
300 15.8 19.5 45.6 57.3 37.15 44.84 176.0 211.2 14.31 17.32 33.33 39.59
400 15.0 18.7 45.2 58.8 29.51 36.07 163.3 217.3 14.57 20.16 38.07 54.17
500 12.3 15.5 37.5 55.0 26.27 32.44 117.4 145.1 10.78 14.26 29.62 38.16
600 12.7 16.2 40.7 61.7 24.99 31.33 128.9 160.7 12.72 15.99 33.20 43.35
700 10.4 12.6 31.3 38.3 20.12 24.67 123.1 158.8 11.56 14.74 29.20 37.61
800 9.3 14.0 34.2 52.8 22.26 27.61 110.8 137.7 11.36 14.57 30.77 40.28
900 9.9 14.0 34.2 52.8 19.63 24.58 103.7 129.0 10.48 13.76 27.12 35.12

1000 9.8 12.8 32.9 50.1 21.78 26.47 102.2 123.9 9.59 12.51 25.53 33.51

a minimum of 700 points are needed for the errors to stabilise
around 10%. It is very difficult to have such a number of points
in a local filter. The errors are much higher for a fixed num-
ber of points when the third moment is weak and lower when
it is strong. Filters of minimum size 9× 9× 9 should be used.
However, even with 100 points, the third moment may be com-
puted with an accuracy of about 20%, so we shall investigate
this moment as a possible boundary indicator. The fourth
moment appears to be very unreliable for use with local win-
dows. In fact our experiments showed that we needed at
least 2000 points to stabilise the error of its estimation to
around 20%.

There are two points worth discussing here:
First, the use of such filters for local boundary detection

may preferably be performed in conjunction with 3D data.

For fixed resolution imagery, in 2D one must use much
larger filters in order to achieve the same statistical reliabil-
ity as a smaller filter in 3D. For example, one must use a
33× 33 rectangular image patch in order to achieve the same
accuracy as with a 10× 10× 10 cubic patch. This makes the
usefulness of such filters particularly relevant to the analysis of
3D data.

Second, one may try to detect hidden edges by looking
for changes in the full distribution of grey values. However,
calculating the third moment, instead of using the whole his-
togram, has the advantage that it makes explicit a characteristic
of the distribution, that is only implicit in it when the whole
distribution is used. As such, the third moment is expected
to be a more sensitive measure of change than the whole
histogram.



250 Handbook of Medical Image Processing and Analysis

!wwwwww

!wwwwww

�x1

�y1

�y2

�y2

μz1

�z2

D�y 5 �y2 2 �y1D�x 5 �x2 2 �x1

D�x 5 �x2 2 �x1

D�x 5 �x1 2 �x2 D�y 5 �y1 2 �y2 D�z 5 �z1 2 �z2

D�y 5 �y2 2 �y1 D�z 5 �z2 2 �z1

D�z 5 �z2 2 �z1

�x2

�x1 �x2

Difference in mean

Difference in variance

Difference in skewness

D� 5 D�x
2 1 D�y

2 1 D�z
2 

D� 5 D�x
2 1 D�y

2 1D�z
2 

D� 5 D�x
2 1 D�y

2 1D�z
2 !wwwwww

�y1

�y2 �z1

�z2�y1

�z1

�z2 

Spherical
sliding window

Skewness
gradient map

D�

(D� < 0)  &

(D� < 0)  &

(D� . 0)  then

Central voxel 5 D�

if

�x1 �x2

FIGURE 14.5 Schematic representation of the procedure for calculating skewness gradients distinct from gradients perceivable by the human
eye. Reprinted with permission from IEEE.

14.3 3D Non-linear Edge Detectors

A non-linear edge detector consists of a sliding window perpen-
dicular to the direction of the hypothesised boundary [2]. In
each half of the window some statistic of the data is computed.
The difference of the values computed in the two halves of the
window is assigned to the central point of the window as the
filter response at that point. The edge along a particular sliding
direction is marked at the point where this difference has the
maximum absolute value.

If we do not have prior information about the direction of
the possible edge, we have to scan the data in three orthogonal
directions to infer the three components of the gradient vector
at each location. To ensure that all voxels used to compute the
gradient vector associated with a voxel are within the same limi-
ting distance from it, we use for these experiments a spherical
scanning window. The scheme we use is schematically shown
in Figure 14.5. At each location we split the window in three dif-
ferent ways into two halves using the three orthogonal planes
defined by the co-ordinate axes, and we compute the statistic
we are interested in each half. We compute the difference of the

values of the statistic in two adjacent hemispheres in order to
identify the corresponding component of the gradient vector.
At the end, the magnitude of the gradient vector is computed
for each voxel. As we are interested in gradients not visible to
the human eye, we compute also gradients in the mean and
the standard deviation at each location, and flag only the voxels
where the mean and standard deviation gradient is below a cer-
tain threshold, while the third order gradient is above another
threshold. Finally, we count the number of voxels which satisfy
these conditions, and produce a single number per subject.

In this chapter we concentrate on the calculation of skewness
gradients only. Other high order statistics useful for the task of
invisible boundary detection can be found in [10].

14.4 Experiments with Real Data

There are two modes of operation that the methodology
described in Section 14.3 may be used for: a model driven app-
roach, where prior information is available for the existence of
a boundary, and a “blind” approach, where we have no prior



14 High Order Statistics for Tissue Segmentation 251

knowledge about the existence of such boundaries and we are
simply trying to assess whether any exist.

We present here experiments for both cases. All images
used are 8-bit images. The images used in Section 14.4.2 were
256× 256× 38 in size, while the images used in Section 14.4.1
were of different sizes for different patients, varying from
512× 512× 20 up to 512× 512× 50.

14.4.1 Prior Knowledge is Available: Invisible
Tumour Boundary Detection

For this experiment we use T1-weighted and T2-weighted 3D
MRI data concerning six patients with glioblastomas multi-
forme, before they undergo any surgery. In all cases radiol-
ogists marked the visible boundary of the tumour and an
outer boundary inside which the true tumour boundary was
suspected to be.

Figure 14.6 shows some slices of these data with superim-
posed points identified as possible tumour boundaries. It must
be emphasised that there is no ground truth against which these
results may be compared. In addition, these boundaries are
forced, in the sense that we scan the data along rays emanat-
ing from inside the visible tumour boundary until we reach the
outer boundary marked by the radiologist. We then force the
system to choose the position where the 3rd order gradient is
locally maximal between the two boundaries of the tumour.
Thus, we identify a possible boundary point in all cases. The
only way to check whether what we find corresponds to a
physical boundary is to check for consistency between the
boundary identified in the T1-weighted image and that in the
T2-weighted image. For only two of the patients these two data
sets had been collected at the same session, and the examples
shown in Figure 14.6 concern these two patients. Figure 14.7
shows some typical profiles of the filtering process along four of
the rays for these two patients. One can clearly see that in spite of
their noisy nature, the two curves in each panel show remarkable
correlation of the positions of their peaks. This is an indication
that these peaks probably occur at places where some physical
boundaries exist. In each panel we show the correlation coeffi-
cient of the two curves. We can see that this is low even for cases
where we can clearly see the presence of very similar structure in
terms of local peaks. This is because the correlation coefficient
takes into consideration the actual values of each curve, while
we are actually interested in the local peaks of the values. If
we identify the local peaks in each sequence, we may define two
measures of coincidence of the local peaks: The fraction of peaks
in T1 which coincide with a peak±1 sample location in T2, and
the fraction of peaks in T2 which coincide with a peak±1 sam-
ple location in T1. We call these measures Coincidence_T1_T2
and Coincidence_T2_T1. The histograms of the values of these
two measures over all rays we used for these two patients are
shown in Figure 14.8. We can see that we have quite high values
of coincidence of the peaks in the paired sequences.

14.4.2 Prior Knowledge is Not Available:
Structural Differences in the Brains of
Schizophrenics and Normal Controls

In this case we have no prior reason to believe that a boundary
is present in the data. Instead, we are searching for third
order invisible gradients. So, we use the scheme presented in
Figure 14.5. The radius of the spherical window we chose to
use was 5 voxels. This implies that we perform the calculations
using approximately 500 points, which according to Table 14.1
implies a typical accuracy of about 12%. The low threshold
used to discard gradients in the first and second order moments
was 3% of the maximum value, while the threshold we used
to identify voxels with significant third order gradients was
10% the maximum value. The choice of these thresholds was
based on our experience from other studies in dealing with
such data, where the low threshold is roughly chosen to discard
approximately the weakest 2–3% of the values, and the second
threshold is chosen 2–3 times higher to allow a margin of
fuzziness between the two thresholds. We also experimented
with windows of other sizes. The results did not change
noticeably for window radii 4–7.

The method was applied to data concerning 21 schizophrenic
patients and 19 normal controls. These data have been used for
previous studies reported elsewhere [6, 14]. We repeat here their
description for the sake of completeness: “The two groups of
subjects were matched for age and social class as defined by
the occupation of the head of the household at the time of
birth. (Mean age for controls 31.5, with a standard deviation
of 5.9. Mean age for patients 33.7 with a standard deviation of
6.9. Social class 1–3, controls 18/21 and patients 16/19). The
mean premorbid IQs for both groups were estimated by the
National Adult Reading Test with the normal controls having
slightly higher IQ. (Mean IQ of schizophrenics 101.5 with a
standard deviation 11.3 and mean IQ for normal controls 107.4
with a standard deviation 9.6). The schizophrenics had an aver-
age of 13.1 education years with standard deviation 6.0, while
the normal controls had an average of 14.3 education years with
standard deviation 2.5. All patients had been taking typical anti-
psychotic medication for more than 10 years. All subjects were
male and right-handed. All subjects satisfied the following cri-
teria: no history of alcohol or drug dependence, no history of
head injury causing loss of consciousness for one hour or more
and no history of neurological or systemic illness. The normal
controls in addition satisfied the criterion of having no DSM-IV
axis I disorder.

All subjects were scanned with a 1.5-T GE Signa (GE med-
ical systems Milwaukee) at the Maudsley Hospital, London.
Proton density and T2-weighted images were acquired with
a dual-echo fast spin-echo sequence (TR= 4000 ms, TE1= 20,
TE2= 85 ms). Contiguous interleaved images were calculated
with 3 mm slice thickness and 0.856 mm× 0.856 mm in plane
pixel size in the axial plane parallel to the intercommissural
line. The dual-echo sequence used for image acquisition is that
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(a) (b)

(c) (d)

FIGURE 14.6 Examples of detected tumour boundaries (indicated by the white dots) in the T1-weighted (left) and T2-weighted (right) scans
of two different patients. The closed curves indicate the limits within which the radiologist considered that the true boundary of the tumour
is. Lines 1 and 2 in the top two panels show the rays to which the profiles shown in Figures 14.7a and 14.7c correspond, respectively. Reprinted
with permission from IEEE.

commonly acquired as part of neurological examinations at
the Maudsley Hospital, London, UK. The sequence parameters
were optimised to achieve maximum separation of clusters rep-
resenting the tissues of the brain and the feature space formed
by the voxel intensities of the two echoes [15].” In all cases the
images were preprocessed so that only the brain parenchyma
was extracted for further analysis [16].

Figure 14.9 shows some typical results concerning the two
groups of subjects when the T2-weighted data were used. It
is evident from these figures that the regions over which high
third order gradients are observed are much more extensive in
normals than in schizophrenics. Figure 14.10 shows the statis-
tical significance of the number of voxels with such high third
order gradients as a feature characterising the two groups of
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FIGURE 14.7 Typical response profiles along scanning rays of the difference of skewness filter when T2-weighted (dashed lines) and
T1-weighted (continuous lines) modalities acquired at the same time are used. (a)–(d) one patient and (e)–(h) another patient. The numbers
in each panel are the correlation coefficients for the pairs of plotted curves. Reprinted with permission from IEEE.

subjects. The t -test in this case was performed on the fraction
of the total brain volume occupied by voxels with skewness
gradients above the threshold. On average, this percentage was
2.85% in schizophrenics and 3.73% in the normals. The t value
of the test was 3.34 with p< 0.019. There was no statistically
significant difference in the observed strengths of the skewness
gradients between the two groups. The mean value of the skew-
ness gradient in the schizophrenics was 1.69 and in the controls

1.68. No difference between the two groups was identified when
the proton density data were used for a similar analysis.

14.5 Discussion and Conclusions

We demonstrated here that the availability of 3D data allows the
use of high order grey level statistics to make explicit gradients
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FIGURE 14.9 Some slices of schizophrenic and normal subjects with the regions of skewness gradients marked in red. Reprinted with permission
from IEEE. (See also color insert).

in the data invisible to the human eye. First of all we showed
that the grey level values in MRI data are not Gaussianly dis-
tributed and they clearly show the presence of third order
moments. Gradients in these moments are not easy to com-
pute because of the high number of samples required for their
reliable estimation. We showed that for 10% accuracy in their
estimation, one requires local windows of size at least 9× 9× 9.
If the resolution of the data is about 1 mm in each direction,
such a window refers to volumes of about 1 cm3. This is now

within the limits of clinical practice. There are even recent
reports in the literature of data with resolution of 0.125 mm
[19–21].

In order to understand the significance of such gradients in
the data, we have to think in terms of the significance of the
recorded grey values. In MRI, image intensity I is a multipa-
rameter function of the spin density ρ, relaxation times T1, T2,
T ∗2 , diffusion coefficient D, and so on. Therefore, image contrast
CAB , which is defined in terms of differences in image intensity,
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ness gradients in the schizophrenics and normals. Reprinted with
permission from IEEE.

may be expressed as

CAB = f (ρ, T1, T2, T ∗2 , D, . . .), (14.4)

where the functional form depends on the exact data acquisition
protocol. If the data acquisition parameters are chosen – as in
the present case – so that the T2 effect is dominant, then

CAB � f (T2). (14.5)

Now, T1 and T2 relaxation times of water or lipid protons vary
between different tissues and pathologies, making them major
factors in determining contrast within the MR image. Since
many disease states are characterised by a change of the tissue
T2 value, T2-weighted imaging is a sensitive method for disease
detection.

One may argue that the use of a sliding window inside which
statistics of the data are computed may be affected by the
presence of mixed tissue inside the window. This is a classi-
cal problem in image processing. However, it is expected that
it will affect all statistics computed from the data, not just the
skewness. Further, in the case of schizophrenics, for whom it
is known that they have smoother sulci surfaces than normals,
one would expect to find lower gradients than in the normals
where the sulci surfaces are more ragged and thus more likely
for one half of the window to contain bimodal distribution
than the other, something which may cause excessive skewness
gradients. However, we do not observe excessive skewness gra-
dients in the normals in the region of the sulci (grey matter)
but in the region of the white matter. Perhaps this is an indica-
tion that the over-smoothness observed in the sulci regions of
the schizophrenics is a much more widespread property of the
structure of the schizophrenic brain than originally thought,
dominating the structure of the tissue itself.

Interestingly, in both examples of pathology presented
here, the higher frequency of high values of skewness in the
T2-weighted data was associated with the healthy tissue. In
fact in the case of glioblastomas, when we considered all cases
of skewness gradient we detected, the higher skewness value
was associated with the interior of the tumour with a t -value
−16.9839 and p< 10−6. The two sets of compared distribu-
tions had standard deviations 1.220 and 1.133, justifying the
use of the t -statistic. The opposite was observed in the cases
of skewness gradients detected in the T1-weighted data of the
glioblastomas: The skewness was higher outside the detected
boundary, with a t -value 15.16495 and a p value again < 10−6.
The two sets of compared distributions had standard devia-
tions 1.449 and 1.390 this time, again justifying the use of the
t -statistic.

Certainly more work needs to be done to validate the detec-
tion of “invisible boundaries” in medical applications. With
respect to brain tumours one interesting approach in the future
may be to combine spectroscopic imaging with conventional
MRI and to correlate the different borders seen with each
method using the proposed statistical approach. Changes in
the skewness of the distribution of grey values in the case of
glioblastomas have been reported in [3] where the authors
reported that although the mean of the intensity distribution
was insensitive to tumour grade, measurements of skewness of
the pixel distribution of blood recirculation images demon-
strated a clear distinction between grade III and grade IV
tumours.

With respect to our investigation on schizophrenic patients,
there have been reports on in vivo diffusion brain imaging stud-
ies which revealed micro-structural abnormalities with lower
diffusion anisotropy [7, 17]. Since conditions that increase
self-diffusion, such as oedema, may also alter the longitudi-
nal and transverse relaxation time of protons, it is possible that
such changes could explain the observed diffusion anisotropy
diminution seen in schizophrenia [11]. Pfefferbaum et al. [11]
measured transverse relaxation time (T2) and proton density
(PD) maps for gray matter and white matter in 10 control men
and 10 men with schizophrenia and found that schizophren-
ics had significantly longer mean white matter T2 (84.0 versus
81.9 ms, p< 0.03) and gray matter T 2 (95.1 versus 92.2 ms,
p= 0.003) whereas their mean white and gray matter PD val-
ues were not significantly different from those of controls.
These findings are in accordance to our results that the T2-
weighted data were more skewed in the controls and that no
difference between the two groups was identified when the
proton density weighted data were used.

We further wish to remark that the non-zero third order
gradients were observed at the white matter of the brain
parenchyma. These regions, which appear to be different in
normals and schizophrenics, are different from the regions
identified as structurally distinct between these two groups
in previous studies which were mainly associated with the
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grey matter [4]. However, one should be careful in exclud-
ing the presence of third order gradients in the grey matter:
Grey matter contains several gradients visible to the human
eye. Our analysis deliberately excluded the inclusion of those
regions. In addition, the use of a filter of radius 5 auto-
matically excluded from the analysis a layer of tissue of the
same thickness all around the external boundary of the brain
parenchyma.

Finally, a point on the methodology used. The responses
along the scanning rays shown in Figure 14.7 show clear
correlation between the T1-weighted and T2-weighted pro-
files. However, when we pick the largest value in each profile,
this correlation may be lost, and phenomenologically the two
modalities may appear to identify totally different bound-
aries. This point is demonstrated in panel (a) of this figure.
So, a more sophisticated approach in handling the profiles
along the scanning rays has to be developed, perhaps one that
makes use of both T1-weighted and T2-weighted data simul-
taneously, using coincidence measures of their peaks along
the same scanning line, as well as information about peaks
in neighbouring lines and perhaps some criteria of lateral
continuity.
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III
Quantification

Isaac N. Bankman
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Medical image analysis benefits significantly from the precise, fast, repeatable, and objective measurements made by computational
resources. These quantitative measurements contribute to the analysis of structure and function in normal and abnormal cases by
addressing many aspects of the data, such as tissue shape, size, texture, and density; musculoskeletal angle, kinematics, and stress; as
well as ventricular motion, myocardial strain, blood flow, tumor growth, and cytometric features. The shape of tissue structures or
organs is of particular interest in visual interpretation of images, and automated techniques provide many quantitative measures
that can contribute to the examination. The smoothness or homogeneity of the tissue is also often used in visual examination to
assess the state of the tissue. Chapter 15 presents fundamental techniques for shape and texture quantification in two-dimensional
images, including spatial, statistical, and spectral methods. In the second edition, two new sections on Gabor filters and Laws
texture energy measures illustrate the use of specialized image filters for texture analysis. Texture information is also present
in volumetric data and can be quantified by setting an appropriate framework for three-dimensional tessellation. Chapter 16
describes relatively new concepts and methods for three-dimensional texture analysis based on gradient estimation as well as a
generalization of cooccurrence matrices introduced in Chapter 15. In the second edition, Chapter 16 has been updated with results
from recent applications on imaging brains of schizophrenic patients and effects of age and gender on white matter anisotropy.
In some cases, the shape of a structure can be characterized by comparing it to a preset template. In such cases, shape is quantified
with the parameters of a transformation function that needs to be applied to the template in order to match it to the image
structure’s shape. Shape quantification with deformable template transformations can be used on anatomical as well as functional
data. Concepts and techniques used for shape transformation are explained in Chapter 17, in the context of brain imaging, where
this approach is of particular interest.

Image quantification is also used in oncological image analysis where brain tumors are of particular interest. While shape and
texture quantification may provide insight in tumor analysis, another aspect of tumors, their growth, requires special attention
for many clinical and research applications. Mathematical models have been developed to describe the internal dynamics of
tumor cells, interactions among these cells and with their surrounding tissue, the dynamics of chemical substances and other
related phenomena. A new chapter in the second edition, Chapter 18, presents a review of recent macroscopic growth models and
describes different approaches. This chapter also includes sections on tools proposed for therapy planning, application of tumor
growth modeling to image registration and segmentation, and future challenges and perspectives.

Some applications in medical imaging require a specialized approach that addresses the unique structure and properties of
the data. One example is the analysis of branching structures such as the arterial tree. Both segmentation and quantification
techniques for analyzing arterial trees have to relate to the tubular bifurcating shapes. Chapter 19 reviews techniques used for
arterial tree morphometry and presents quantitative measures obtained from three-dimensional images. Quantitative image
analysis also contributes to the study of the musculoskeletal system using biomechanical models that yield static, dynamic, and
stress parameters. Chapter 20 introduces biomechanical models derived from three-dimensional images, presents techniques for
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quantifying bone structure and material properties, and provides illustrative applications. Quantification of angles between bone
structures is of interest in the study of the musculoskeletal system for diagnosis as well as planning of treatment. Chapter 21
presents a technique for bone angle quantification using three-dimensional data.

Quantitative measures obtained from medical images are typically used for making decisions regarding the structure or function
of tissue. When automated techniques are used to assist such decisions, an additional layer of decisions is imposed. The user must
select images for training pattern recognition algorithms and determine the measurements, often called features, that have
appropriate discrimination power. These decisions also can be guided by automated techniques described in Chapter 22, which
discusses database selection criteria and feature evaluation methods. This chapter also introduces two commonly used pattern
recognition techniques: the feed-forward neural network and the Bayesian network. In this edition, the section on validation
methods has been expanded and references that reflect recent developments and results have been added.

Interpretation of mammograms is an area where detailed analysis of both shape and texture is of particular interest. Risk
of breast cancer has been correlated to the density of mammograms, quantified with brightness as well as texture. Chapter 23
reviews the physical foundations of radiographic imaging in mammography, establishes the factors that dictate the optical
density of mammograms, and describes techniques for characterizing their brightness and texture. A section on the analysis of
digital mammograms and new references has been added to Chapter 23. Chapter 24 presents a review of lesion classification in
mammograms using shape and texture quantification and discusses the evaluation of classification techniques. The contribution
of automated techniques to the visual interpretation of radiologists is also addressed in Chapter 24. In the second edition, this
chapter has been expanded with an overview of methods for presenting computer analysis results to radiologists.

Many techniques for quantification of volume, motion, and flow are available for analyzing cardiovascular images. The main
parameters of interest are ventricular volume and ejection ratio, blood flow, and ventricular wall motion. Chapter 25 describes
techniques for quantifying these parameters using geometric, densitometric, and spectral methods. The delineation of the left
ventricular wall can be accomplished using segmentation techniques described in the previous section, and parts of the cardio-
vascular system can be inspected visually using visualization techniques described in the next section. The performance of the
heart, especially myocardial strain, is also addressed with the tagged MRI technique that led to new computational methods for
quantification of cardiac function. Chapter 26 first establishes the analytical framework for representing three-dimensional tissue
motion and strain, and also describes the fundamentals of tagged MRI in the same framework. It then reviews image processing
techniques for deriving motion measurements in two-dimensional images and describes the combination of these measurements
to estimate the three-dimensional motion and strain of material points inside the left ventricle. Sections that address direct
encoding methods, 3D tracking and direct strain encoding have been added to Chapter 26.

Quantification of cell nucleus images can contribute to cell and tissue classification for clinical diagnostics as well as pharma-
ceutical and medical research. Chapter 27, a new chapter in the second edition, presents automated analysis techniques that have
been developed to increase the efficiency and decrease the subjectivity of cytology outcomes, using nuclear features extracted
from fluorescently labeled images. These techniques are applicable also to screening in drug discovery, functional genomics,
and cytomics as they can characterize cell monolayer population responses to stimuli by performing classification based on the
cell-by-cell data.

The last chapter in this section is a comprehensive survey of techniques used for an essential image processing function
that has universal applicability. Interpolation and resampling, addressed in Chapter 28, are used in many applications where
estimates of image values at points other than the original grid are required. Applications include zooming and coordinate
transformations in two-dimensional data, rescaling, reslicing, and rendering in volumetric data, tomographic reconstructions,
and image registration. Selection of a technique is often difficult because of assumptions, possible approaches, and the diversity
of models involved. Chapter 28 clarifies the terminology and fundamental concepts, sets the analytical foundation of generalized
linear interpolation, establishes the desirable properties that interpolation and resampling should have, describes several types of
interpolation functions, and illustrates their performance. In this edition, Chapter 28 has been expanded with a new section that
presents a unified formulation for piecewise-polynomial synthesis functions.
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Two of the most informative visual cues in medical image inter-
pretation, shape, and texture can be quantified with numerous
automated techniques that address different aspects of the
data. This chapter describes relatively established techniques for
two-dimensional (2D) shape and texture quantification, which
contribute to many clinical and research applications.

Section 15.1 presents shape quantification techniques, which
operate on the segmented image in three different ways.
Compactness and spatial moments provide quantitative shape
measures by applying geometric and statistical computations to
all pixels within a segmented region. Radial distance measures,
chain codes, and Fourier descriptors operate only on boundary
pixels by using geometric, statistical, and spectral computa-
tions to provide mechanisms for encoding and representing
a closed contour. When structures of interest are elongated
or branching, the essential shape information is contained in
the medial lines that can be obtained by thinning algorithms.
Quantitative shape measures such as length, angle, curvature, or
orientation can be computed subsequently on the skeletonized
representation.

Examination of medical images often requires interpreta-
tion of tissue appearance, which is generally described with
terms such as smoothness, grain, regularity, or homogeneity. This
attribute relates to the local intensity variations and can be
quantified by using texture metrics discussed in Section 15.2.
Statistical moments are derived directly from the intensity
histogram of the image. Co-occurrence matrix measures are
computed from a 2D histogram, which preserves spatial infor-
mation. Spectral measures obtained from the Fourier transform
of the image can quantify texture, particularly when repetitive

patterns are present. The field of fractals provides the fractal
dimension, which can be used as a texture metric based on anal-
ysis at multiple scales. The run-length statistics quantify texture
by analyzing linear pixel strands that have the same value in the
image. Texture can also be quantified using image convolution
with specialized filters such as Gabor filters and the masks of
Laws texture energy measures.

Unlike shape, texture is a representation of a selected region.
It can be assigned to a small local area as well as to a rela-
tively large image section, within a segmented region, or inside
a preset region of interest. A local texture measure can be asso-
ciated with each pixel of the entire image, and the resulting
texture image may be used for segmentation when the distinct
structures of interest have similar intensity levels but differ in
smoothness.

15.1 Shape Quantification

15.1.1 Compactness

A common shape measure is compactness, computed by using
the perimeter P and area A of a segmented region with

C = P2/A, (15.1)

which quantifies how close an object is to the smoothest shape,
the circle. The value of this unitless metric is minimal (4π) for
a perfect circle because it is the shape that encloses a given area
with the shortest perimeter. For spatially quantized circles, C
can be slightly higher than 4π, such as in Figure 15.1a where

Copyright © 2008 by Elsevier, Inc.
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C = 13.6. The value of compactness increases with increasing
shape complexity; for example, the region in Figure 15.1b has
C = 15.4. Due to this property, visual shape roughness per-
ception often may have a good correlation with C ; however,
this common metric is not always a robust estimator of shape
complexity. Although the elongated region in Figure 15.1c is not
perceived as rougher than that in Figure 15.1b, it has a compact-
ness of C = 27.6. Compactness should be used cautiously, by
considering that it is simply a measure of similarity to a circle. Its
advantages are computational simplicity as well as translation,
rotation, and scale invariance within limits introduced by sam-
pling and segmentation. A normalized variant C ′ = 1− 4π/C
ranging between 0 and 1 also is commonly used. The values
of C ′ for benign and malignant calcifications in mammograms
are illustrated in Figures 15.2 and 15.3. Compactness has been
used, for example, for quantifying calcifications [1] and breast
tumors [2–4].

a b c

FIGURE 15.1 Three binary regions for which compactness is (a) 13.6,
(b) 15.4, and (c) 27.6.
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FIGURE 15.3 Distributions of normalized compactness C ′ defined
in Section 15.1.1, the radial distance metric f21 defined in Section
15.1.3, and normalized Fourier descriptor FF defined in Section
15.1.5, for 64 benign and 79 malignant microcalcifications in mam-
mograms. C ′ (a) and (d), f21 (b) and (e), and FF (c) and (f) for
benign and malignant microcalcifications respectively. Courtesy of L.
Shen, Array Systems Computing Inc. and R. Rangayyan, University of
Calgary.

15.1.2 Spatial Moments

The concept of moments used to analyze statistical distributions
can also be used to represent the spatial distribution of values

(a) (b)

FIGURE 15.2 Examples of benign (a) and malignant (b) microcalcifications in mammograms. The side of each frame is 17mm.
Courtesy of L. Shen, Array Systems Computing Inc. and R. Rangayyan, University of Calgary.
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in a 2D function [5]. Moments of a digital M by N image f (i, j)
are given by

mpq =
M−1∑
i=0

N−1∑
j=0

ip jq f
(
i, j

)
p, q = 0, 1, 2, 3 . . . , (15.2)

where p + q is the moment order in two dimensions. Note that
moments can be computed for binary images as well as grayscale
images. In binary images,moments quantify strictly the shape of
the segmented region; in contrast, moments applied to grayscale
images include information regarding the intensity distribution
in addition to shape. Moments constitute an infinite set of trans-
form coefficients from which f(i, j) can be uniquely recovered.
The finite number of moments used in practice do not retain
all the image information, but they can provide an effective set
of shape descriptors and can contribute to classification.

Translation invariance can be obtained by using central
moments

μpq =
M−1∑
i=0

N−1∑
j=0

(
i − i

)p (
j − j

)q
f
(
i, j

)
p, q = 0, 1, 2, 3 . . . ,

(15.3)

where

i = m10/m00 and j = m01/m00. (15.4)

This definition yields μ10 = μ01 = 0. Central moments can be
obtained in terms of noncentral moments. Some examples are
as follows:

μ00 =m00

μ11 =m11 − m10m01

m00

μ20 =m20 − i m10

μ02 =m02 − j m01

μ12 =m12 − 2j m11 − i m02 + 2j
2
m10

μ21 =m21 − 2i m11 − j m20 + 2i
2
m01

μ30 =m30 − 3i m20 + 2i
2
m10

μ03 =m03 − 3j m02 + 2j
2
m01. (15.5)

If an image is scaled up by a coefficient s larger than 1 so that
the scaled image is

f ′(i, j) = f(i/s, j/s), (15.6)

its moments will be

μ′pq = sp+q+2μpq . (15.7)

One way of achieving scale invariant quantification is to scale
images first to a standard size by using a scale coefficient com-
mensurate with the size of the object. The area of the object is
given by μ00, and the object could be conceptually reduced to
unit area by scaling down each axis with

√
μ00; that is f (i

√
μ00,

j
√
μ00). This transformation is equivalent to defining the scale

invariant central moment

ηpq = μpq/μ
(p+q+2)/2
00 p + q = 2, 3, . . . , (15.8)

which can be used to quantify shape independently from
location and size.

In applications where the shape of a segmented region must
be quantified in a manner that is insensitive to its orientation,
rotation invariant metrics are used. The scale invariant central
moments given in Equation 15.8 can be combined further to
obtain translation, scale, and rotation invariant descriptors [5]:

φ1 = η20 + η02 (15.9)

φ2 = (η20 − η02)
2 + 4η2

11 (15.10)

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (15.11)

φ4 = (η30 + η12)
2 + (η21 + η03)

2 (15.12)

φ5 = (η30−3η12)(η12 + η30)[(η12 + η30)
2 − 3(η21 + η03)

2]
+ (3η21 − η03)(η21 + η03)

− [3(η12 + η30)
2(η21 + η03)

2] (15.13)

φ6 = (η20 − η02)[(η12 + η30)
2 − (η21 + η03)

2]
+ 4η11(η12 + η30)(η21 + η03) (15.14)

φ7 = (3η21 − η03)(η12 + η30)[(η12 + η30)
2

− 3(η21 + η03)
2] + (3η12 − η30)(η21 + η03)

[3(η12 + η30)
2 − (η21 + η03)

2]. (15.15)

The first row of Figure 15.4 shows three shapes with increasing
roughness. The shapes are scaled by a factor of two in the sec-
ond row and rotated 60◦ counterclockwise in the third row of
Figure 15.4. The values of φ1 for these nine shapes are

φ1 =
⎡
⎢⎣

0.16766 0.17150 0.17601

0.16796 0.17189 0.17618

0.16792 0.17185 0.17616

⎤
⎥⎦ ,

where each value is shown in the position of the corresponding
shape in Figure 15.4. Each column corresponds to one shape
and exhibits a noteworthy level of invariance. A monotonous
increase in the value of φ1 is also observed with increasing
shape roughness. The other invariant descriptors also have
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FIGURE 15.4 Top row: Three shapes with increasing roughness.
Middle row: Same shapes scaled up by two. Bottom row: Shapes
rotated counterclockwise by 60˚.

similar trends; for example, the values of φ3 for shapes of
Figure 15.4 are

φ3 =
⎡
⎣ 1.5608 10−4 2.6099 10−4 8.6513 10−4

1.6021 10−4 2.4246 10−4 8.7308 10−4

1.6022 10−4 2.5167 10−4 8.5768 10−4

⎤
⎦ .

The orientation of an object, defined as the direction along
which the object is most elongated, can be obtained with the
angle θ:

θ = 1

2
tan−1 2μ11

μ20 − μ02
. (15.16)

This orientation and the one orthogonal to it are the principal
axes of the object. The eccentricity of an object is given by

ε = (μ20 − μ02)
2 + 4μ2

11

(μ20 − μ02)
2 (15.17)

that ranges from 0 for a perfect circle to 1 for a straight line.
Spatial moments have been used to quantify breast tumors [2,

4], mammographic calcifications [1], and blood cells [6]. The
effectiveness of spatial moments has been shown to deteriorate
when the object is less than about 15 pixels wide or when parts
of the objects are relatively small [7]. A modified set of invariant
spatial moments normalized with respect to standard deviation
[8] has been reported to improve classification and sensitivity
to noise.

15.1.3 Radial Distance Measures

The shape of a structure of interest can be determined by
analyzing its boundary, the variations and curvature of which
constitute the information to be quantified. This is achieved
by transforming the boundary into a 1D signal and analyz-
ing its structure. A common technique is based on the radial
distance measured from a central point in the region to each
pixel (x(n), y(n)) on the boundary. Generally, the centroid
(xc , yc) is used as the central point and the radial distance
sequence

d(n) =
√

[x (n)− xc ]2 + [
y (n)− yc

]2
n = 0, 1, . . . , N − 1

(15.18)

is obtained by tracing all N pixels of the boundary. To achieve
scale invariance, one obtains the normalized radial distance
sequence r(n) by normalizing d(n) with the maximal distance.
The sequence r(n) is analyzed further to extract shape metrics
such as the entropy

E = −
K∑

k=1

hk log hk , (15.19)

where hk is the K-bin probability histogram that represents the
distribution of r(n), as well as statistical moments

mp = 1

N

N−1∑
n=0

[r(n)]p (15.20)

and

μp = 1

N

N−1∑
n=0

[r(n)−m1]p , (15.21)

where the latter is the central moment and p is the moment
order. Normalized moments invariant to translation, rotation,
and scaling [1, 9] are obtained with

mp = mp

μ
p/2
2

(15.22)

and

μp =
μp

μ
p/2
2

p �= 2. (15.23)

Typically, moment orders larger than 4 are not used because
such high-order moments have a large dynamic range and high
sensitivity to noise. For the shapes shown in Figure 15.4, the
values of m2, m4, and μ4 are
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m2 =

⎡
⎢⎢⎣

76.074 50.080 37.882

75.754 49.098 38.174

71.739 50.435 39.541

⎤
⎥⎥⎦

m4 =

⎡
⎢⎢⎣

6084.93 2714.65 1594.94

6035.35 2614.59 1620.81

5428.31 2752.00 1731.75

⎤
⎥⎥⎦

μ4 =

⎡
⎢⎢⎣

1.9935 2.6930 2.8414

1.9485 2.6972 2.8653

1.8845 2.7425 2.8427

⎤
⎥⎥⎦.

Two features

f1 = μ
1/2
2

m1
(15.24)

f2 = μ
1/4
4

m1
(15.25)

and their difference f21 = f2 − f1 have been reported to have
good invariance properties and monotonic increase with shape
complexity [1]. The distributions of f21 are illustrated in
Figures 15.2 and 15.3 for benign and malignant microcalcifi-
cations in mammograms.

The number of times the signal r(n) crosses its mean and
other similar metrics can be used as a measure of boundary
roughness [10]. The information in the r(n) signal can be ana-
lyzed in the spectral domain with the discrete Fourier transform
(DFT)

a(u) = 1
N

N−1∑
n=0

r (n) e−j2πnu/N u = 0, 1, . . . , N − 1,

(15.26)

whose coefficients with highest values convey the essential
shape information. It is also possible to quantify the shape of
the boundary with the discrete Wavelet transform (DWT) of the
r(n) signal by using a selected wavelet [11–13]. Radial distance
measures have been used to quantify the shape of breast tumors
[2, 3, 10] and calcifications [1].

15.1.4 Chain Codes

The shape of a region can be represented by quantifying the rel-
ative position of consecutive points on its boundary. The chain
code technique achieves this representation by analyzing each
point on the boundary in sequence (e.g., counterclockwise) and

assigning a code digit to the transition from each point to the
next. The term point rather than pixel was deliberately used
because, depending on the image resolution and object size, a
chain code that addresses each boundary pixel may be too large.
Furthermore, using each pixel causes all minor boundary devi-
ations related to noise or segmentation pitfalls to be considered
part of the object shape. Therefore, a boundary is typically pre-
pared for chain codes by reducing the spatial resolution with
a new x − y grid. Figure 15.5a illustrates segmented boundary
pixels on a vertebral contour, the lower resolution grid, and the
points used for the chain code. The transition from one point
to the next can be coded with 4-connectivity, considering the
4 nearest neighbors, or 8-connectivity, where transitions to all
adjacent points are coded. Here, we consider the chain code
based on 8-connectivity, as defined in Figure 15.6. For example,
when the boundary passes from a point to the one located to its
right, the code for the transition is 0; when the boundary goes
from a point to its upper left, the code is 3. Figure 15.5b shows
the chain code points and the directional digit associated with
each transition. In this example, the chain code starting from
the point labeled with an S and progressing counterclockwise is
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FIGURE 15.5 (a) Vertebral contour and grid for chain code, (b) Chain
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FIGURE 15.6 Transition label definitions for the 8-connected chain
code.
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FIGURE 15.7 (a) Chain code of boundary in Figure 15.5. (b) Corresponding differential chain code.

shown in Figure 15.7a. The chain code can be analyzed further
to extract metrics that quantify the boundary shape.

Before we discuss shape quantification, we have to address
some normalization issues. Because the chain code changes
with the selected starting point, it is clear that a given boundary
can be represented with as many chain codes as the number of
points that it has. To eliminate this ambiguity, we select the start-
ing point that produces the chain code with minimal numerical
value. In this manner, only one chain code is associated with
the boundary.

A rotation invariant code sequence also can be obtained
by using the first difference of the chain code; the differ-
ence between two consecutive digits is defined as the number
of directions between them, which is taken to be positive
when counterclockwise. For example, in the chain code of
Figure 15.7a, passage from the first digit to the second entails a
direction change of one clockwise step; referring to Figure 15.6,
the first element of the differential chain code is −1. On the
other hand, passage from the 5th element (15.2) to the next
(15.3) occurs with a counterclockwise change of 1 digit, pro-
ducing a difference of 1. The differential chain code shown
in Figure 15.7b, considered a circular sequence, is a unique,
rotation-invariant representation of the boundary obtained for
all its topologically homologous rotations in the image plane.

Note that, generally, when the same object is imaged at two
different orientations, pixels on the segmented boundary in
one orientation are not homologous to those of the other
orientation. If one wants to ensure a rotation-invariant rep-
resentation with the differential code described previously, the
new grid cell size has to be large enough to become insen-
sitive to imaging and segmentation variations due to object
rotation.

The differential chain code is different for different bound-
aries, and it can be used to distinguish shapes, but it cannot
be used directly to quantify a given aspect of a shape or to
compare shapes with a scale. The differential chain code is a
rotation and translation-invariant encoding of the boundary,
but it is not a measure of any shape attribute. However, because
it contains all the essential shape information, several metrics
can be extracted from it. For example, boundary smoothness is
related to the local curvature of the boundary and can be quan-
tified directly from the differential chain code. If the boundary
is relatively smooth, the transitions between adjacent points in
a local section of the boundary tend to be in either the same
direction or closely spaced directions. Consequently, the differ-
ences between consecutive digits of the original chain code are
small, and the differential sequence has relatively small digits.
The mean of the absolute value of all digits in the differential
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chain code can be used as a smoothness measure that takes a
low value for smooth boundaries.

Boundary symmetry also manifests itself in the differential
chain code. If the starting point is on the axis of symmetry, the
differential chain code is also symmetric around its middle. If
the starting point is arbitrary, the differential chain code gener-
ally has two parts that are symmetric around their own middles,
as in Figure 15.7b. Such symmetric sections can be determined
by parsing the differential chain code, and the axis of symmetry
of the boundary can be inferred by further analysis.

The presence of concave sections in the boundary also can
be determined from the differential chain code. With the chain
code and difference definitions as stated previously, a convex
boundary has a differential chain code made of only positive
digits. Any point that lies on a concave turn produces a nega-
tive digit. The number of convex and concave sections can be
quantified by analyzing the positive and negative runs of the
differential chain code.

Chain codes have been used for autoradiographic brain and
neural tissue analysis [14], quantification of the nuclear contour
of cervical cells [15], analysis of single and overlapping lym-
phocytes [16], quantification of nerve fibers [17], recognition
of abnormal pap smear cells [18], region coding in volumetric
data [19], and quantification of left ventricular boundary in
echocardiograms [20].

15.1.5 Fourier Descriptors

Each pixel on the contour c of a binary region can be repre-
sented by a complex number, the real and imaginary parts of
which are the x and y coordinates of the pixel. This allows the
contour to be expressed as an 1D complex sequence obtained
by tracing around the contour in a selected direction, starting
from a selected pixel

c(n) = x(n)+ jy (n) n = 0, 1, . . . , N − 1, (15.27)

where n is the pixel index and N is the number of pixels on the
contour, and j here is the imaginary unit number. The DFT of
this sequence

d (u) = 1
N

N−1∑
n=0

c (n) e−j2πnu/N u = 0, 1, . . . , N − 1

(15.28)

contains all the shape information of the contour that can be
recovered with the inverse transform

c(n) =
N−1∑
u=0

d(u)ej2πun/N n = 0, 1, . . . , N − 1. (15.29)

The essential shape information is typically contained in the
low-order coefficients of d(u), which constitute the Fourier
shape descriptors.

The first coefficient d(0) is the centroid of the contour and
varies with translation, while the remaining coefficients are all
translation-invariant. All coefficients, however, depend on the
pixel selected as the starting point. Consider d0(u) to be the
Fourier coefficients obtained by starting the sequence c(n) from
pixel p0. If the sequence is started ns pixels further than p0, the
coefficients will be

ds(u) = d0(u)e
−j2πns u/N (15.30)

due to the shift property of the Fourier transform. If the contour
is scaled by a factor a, the coefficients are also scaled by the same
factor. Rotating the contour around the origin by an angle θ
imparts a multiplicative factor of ejθ to the Fourier coefficients.
Therefore, the effects of starting point, scaling, and rotation can
be summarized with

dsaθ(u) = d0(u)ae−j2πns u/N ejθ . (15.31)

Fourier descriptors that are invariant to starting point, transla-
tion, scale, and rotation [21] are obtained with

dinv(u) = d(1+ u)d(1− u)

d2(1)
. (15.32)

The coefficient d(1) relates to the radius of the circle that
approximates the shape, and its value is typically nonzero. The
magnitudes of the normalized descriptors

ds(u) = d(u)

d(1)
u �= 0 (15.33)

can be used as scale invariant metrics.
A shape factor [4] based on the magnitudes of the coefficients

FF = 1−

N/2∑
u=−N/2+1

||d (u) ||/||u||
N/2∑

u=−N/2+1
||d (u) ||

u �= 0 (15.34)

has been reported to have low sensitivity to noise as well as
invariance to translation, rotation, scale, and starting point.
The value of FF varies between 0 and 1, and it increases with
increasing object shape complexity and roughness. Figures 15.2
and 15.3 show the distributions of FF for benign and malignant
microcalcifications in mammograms.

The formulation of Equation 15.28 is based on the assump-
tion that the elements of the sequence c(n) are equidistant on
the path of the contour. If adjacent boundary pixels must be
used, this uniform sampling can be achieved using 4-connected
pixels. However, this sampling can significantly overestimate the
length of contour segments that have an orientation around
diagonals. Consequently, when adjacent pixels are used, both
4-connected and 8-connected contours have advantages and
pitfalls for the computation of Fourier descriptors. If the region
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is large enough, an alternative is to select equidistant points
along the contour to form c(n). If the fast Fourier transform
(FFT) algorithm is used, the appropriate step size is computed
with pc/2k , where pc is the contour perimeter in pixels com-
puted with a step of

√
2 for diagonally connected pixels, and

where k is the lowest integer power that yields 2k > pc . After
points are selected with this step size, the sequence is zero
padded to 2k to obtain c(n).

Among many applications, Fourier descriptors have been
used to represent motion profiles for the diagnosis of low
back disorders [22], to recognize human corneal endothe-
lial cells [23], to represent the shape of prostate glands in
magnetic resonance images [24], to quantify the shape of
calcifications [1] and tumors [4] in mammograms, and to ana-
lyze chromosomes [25]. Fourier descriptors also have been
extended to 3D and applied to magnetic resonance image
data [26].

15.1.6 Thinning

In many applications, the essential shape information of a struc-
ture is obtained by representing it with its skeleton made of
the medial lines along the main components of the structure.
Thinning algorithms produce the skeleton by using criteria
that search for the medial lines. The medial axis transform
(MAT) [27–29] determines the medial line by computing the
distance d(i, j) from each interior pixel i of a binary struc-
ture to each boundary pixel j . When the minimal distance
of an interior pixel i0 occurs for two boundary pixels j1
and j2,

min {d(i0, j)} = d(i0, j1) = d(i0, j2), (15.35)

the pixel i0 is labeled as an MAT skeleton pixel. To account for
the effects of spatial quantization in pixels, one may need to
address the equalities in Equation 15.35 with a small tolerance
level. In some cases, more than two boundary pixels may yield
the minimal distance. The result of the MAT skeleton depends
on the selected distance measure, but typically the Euclidean
distance is used. The example shown in Figure 15.8a is obtained
with the Euclidean distance. The computational complexity of
the MAT is high because it requires computation of a large
number of distances. Consequently, many iterative algorithms
have been developed to determine the medial lines with fewer
computations [28, 29]. Among them, the algorithm by Zhang
and Suen is particularly effective [30].

The Zhang and Suen algorithm is an iterative method
whereby a border pixel is removed from the contour of the
binary region only if it meets a set of conditions based on its
neighborhood. The conditions are designed to ensure that the
removal of the border pixel will not lead to splitting the region to
be thinned. Consider a binary region to be thinned where pixels
have a value of 1, while background pixels are represented with

FIGURE 15.8 (a) Thinning with the MAT. (b) Thinning with the
Zhang and Suen algorithm.
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FIGURE 15.9 (a) Neighborhood pixel labels. (b) Sample neighbor-
hood.

0. For each pixel in the binary region, the algorithm computes
two sums defined by using the labels in Figure 15.9a where the
considered pixel is p1 and neighbor pixels can take a value of
0 or 1. The sum, n(p1), is defined as the number of nonzero
neighbors or

n
(
p1

) = 9∑
i=2

pi . (15.36)

In the example of Figure 15.9b, the sum is 5. The second
sum, s(p1), is the sum of 0-to-1 transitions in the sequence
of neighbor pixels, computed by considering all nine transi-
tions around the pixel p1, starting with p2 to p3 and ending
with p9 to p2. The value of s(p1) is 2 for the example in
Figure 15.9b.

The algorithm has two steps in each iteration. In step 1,
the algorithm first checks the entire image and determines
border pixels, which are defined as pixels that have a value
of 1 and at least one 8-connected pixel equal to 0. In this
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step, a border pixel is deleted if four conditions are satisfied
simultaneously:

Condition 1: 2 ≤ n(p1) ≤ 6
If p1 has only one neighbor, it is the end of a pixel strand and
should not be deleted. If p1 has 7 neighbors, deleting it may
deplete the region and lead to splitting.

Condition 2: s(p1) = 1
If the neighborhood has more than one 0-to-1 transition,
deleting p1 may lead to splitting the region.

Condition 3: p2 · p4 · p6 = 0

Condition 4: p4 · p6 · p8 = 0
These two conditions are satisfied simultaneously if p4 = 0,
or p6 = 0, or p2 = p8 = 0. When conditions 1 and 2 are met,
these three possibilities refer to the three cases illustrated in
Figure 15.10, which correspond to an east border, south border,
and northwest corner, respectively. In each of these three cases,
the pixel p1 should be deleted for thinning.

If all four conditions are met, then pixel p1 is marked for
deletion but not deleted until all the pixels in the image are
evaluated. After the complete evaluation, all marked pixels are
deleted.

Step 2 of the algorithm is applied to the result of step 1, also
using four conditions. The first two conditions are the same as
those of step 1, but the other two are modified as

Condition 3: p2 · p4 · p8 = 0

Condition 4: p2 · p6 · p8 = 0
These two conditions address the cases of north border, west
border, and southeast corner in a manner similar to step 1.

In step 2 also, a pixel is marked for deletion if all four condi-
tions are met; all marked pixels are deleted after each pixel in the
image is visited. When step 2 is completed, the algorithm starts
another iteration by applying step 1 to the outcome of step 2.
This iterative process is terminated when no pixel is marked in
step 1 and step 2. This algorithm yields a skeleton made of a
strand of 8-connected pixels. Figure 15.11 shows the result of
thinning a small section of an image with the Zhang and Suen

algorithm. Figure 15.8 compares this algorithm with the MAT
on a femur image. The two produce similar results with a few
differences. Although the Zhang and Suen algorithm does not
reproduce all details that are obtained with the more rigorous
MAT, in many applications it provides a very good approxi-
mation that requires considerably fewer computations. In an
application where the location of the central axis of the bone
is sought, for example, both algorithms would lead to almost
the same result. When the length of an elongated structure has
to be measured, thinning can be used to determine the medial
axis; distances between consecutive pairs of pixels can be added
to obtain an estimate of length. Although the distance between
two pixels that share a side is the width of one pixel, the dis-
tance between two pixels connected at their corners is

√
2 times

longer. Figure 15.12 illustrates the use of thinning to quantify
the length of DNA fragments [31]. The atomic force micro-
scope image of DNA fragments in Figure 15.12a is segmented
in Figure 15.12b. The image in Figure 15.12c shows the out-
come of thinning where objects that are too short and those
that touch the image edge are removed.

Thinning is used in numerous applications, including coro-
nary arterial tree analysis [32], gastrointestinal endoscopic
imaging [33], atomic force microscopy images of DNA frag-
ments [31], ocular fundus imaging [34], and quantification of

(a) (b)

FIGURE 15.11 A pixel representation of the Zhang and Suen thinning
process. (a) Small section of an image. (b) Outcome of thinning with
the algorithm, black pixels remain, and gray pixels are removed.
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FIGURE 15.10 East border (a), south border (b), and northwest corner (c) in Zhang
and Suen algorithm.
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(a) (b) (c)

FIGURE 15.12 Application of thinning for sifting out objects of different lengths. (a) An atomic force microscope image of DNA fragments.
(b) Image after thresholding. (c) Image after thinning with Zhang and Suen algorithm, and removing objects that are too short or touching the
edge of the image.

chromosome shapes [35]. Thinning algorithms that have only
one step per iteration [36], and others that operate directly on
the grayscale image [37–39] are also available. Since the use of
medial lines is particularly important in volumetric informa-
tion, thinning algorithms for 3D data also have been suggested,
using various approaches such as a 3D generalization of the
Vornoi skeleton concept [40], hybrid thinning techniques [41],
and voxel-coding [42].

15.2 Texture Quantification

15.2.1 Statistical Moments

Since a smooth region contains pixels with values close to each
other and a rough region has wide variability in pixel values,
statistical moments of the region histogram can be used as tex-
ture metrics. In an image with K gray levels, consider a region
with mean value μ, and histogram h(k) with k ranging from 0
to K − 1. The nth moment about the mean for this histogram
is given by

mn = 1

K

K−1∑
k=0

(k − μ)n h (k). (15.37)

The second moment, m2 or variance, is a common texture mea-
sure; it correlates well with the visual roughness perception, and
it is relatively fast to compute. The third and fourth moments,
skewness and kurtosis, reflect, respectively, the asymmetry and
uniformity of the histogram. Although these moments relate
to the intensity variations within the region, they have to be
used cautiously because they do not always correlate well with
the visual texture interpretation. Nevertheless, they can be used
as extracted features in pattern recognition applications where
their potential value is explored with a quantitative analysis.
The variance and kurtosis of three textures are illustrated with
Figure 15.13 and Table 15.1.

Statistical moments have been used for applications such as
texture quantification in ultrasonic images of liver tissue [43].
Statistical moments do not contain spatial information because
they are derived from the image histogram. Since the concept
of roughness is often associated with the size of the grain in the
object, texture measures that convey spatial information may
be valuable.

15.2.2 Co-Occurrence Matrix Measures

Several texture metrics that contain spatial information are
based on the co-occurrence matrix, also known as the spatial
gray-level dependence matrix. Just as building the histogram
is a preprocessing step that prepares the data for statistical
moments, forming the co-occurrence matrices is an initial
step that compiles spatial as well as statistical information for
computing the texture metrics described later. The spatial infor-
mation considered is the relative position of pairs of pixels,
defined with distance d and orientation θ that describe the loca-
tion of the second pixel with respect to the first. A co-occurrence
matrix is formed for each such position. In this manner, each
co-occurrence matrix prepares the data to emphasize primarily
structure or streaks in a given direction and a grain size that is
at least as large as the selected distance. Typically, four values of
θ, namely 0◦, 45◦, 90◦, and 135◦, cover the orientations, and the
most common choice of distance is d = 1 when θ is 0◦ or 90◦,
and d = √2 when θ is 45◦ or 135◦.

For an image with number of pixels P = 36, gray levels
K = 4, and pixel values

1 0 2 3 1 2
1 2 3 2 1 1
2 3 2 0 1 2
3 2 1 0 2 2
2 1 1 2 3 2
0 2 2 3 2 1
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(a) (b) (c)

FIGURE 15.13 Ultrasound image sections of normal liver (left), fatty liver (middle), and liver with cirrhosis (right).

TABLE 15.1 Some texture metrics obtained from the ultrasonic liver image
sections shown in Figure 15.13

Normal Fatty Cirrhosis

Statistical moments
Variance 464.9 366.2 365.5
Kurtosis 2.45 2.87 3.58

Co-occurrence matrix measures
Angular second moment 8.2× 10−4 8.9× 10−4 9.3× 10−4

Inertia 601.4 529.4 532.5
Sum entropy 4.85 4.69 4.68

consider, for example, pairs of pixels positioned diagonally next
to each other from lower left to upper right where d = √2 and
θ = 45◦. A K by K matrix H (d , θ) is formed such that each
element hij is the number of times a pixel with value i and
another with value j are located in the selected relative position.
For example, the count h01 is 3 and the count h33 is 4. The
complete matrix H (

√
2, 45◦) for this image is

j :
0 1 2 3

i : 0
1
2
3

∣∣∣∣∣∣∣∣
0 3 0 0
3 2 1 0
0 2 9 0
0 0 1 4

The number of pixel pairs P ′ used to build H (d , θ) is always
smaller than P because, for each choice of d and θ, pixels on
some edges do not form pairs. In the preceding example, the
11 pixels in the top and right edge do not contribute pairs and
P ′ is 25. The value of P ′ gets smaller as the selected distance
increases because a larger number of rows and columns along
the edges is excluded from the counts.

In the most general case, assuming an image with M rows and
N columns, when θ is 45◦, there will be M − d/

√
2 pairs along

each row and only N – d/
√

2 rows will contribute, resulting in
a total of P ′ = (M − d/

√
2)(N − d/

√
2) pairs to be used in

forming the co-occurrence matrix. Expressions of P ′ for the
four main orientations are

P ′ = M (N − d) for θ = 0◦

P ′ = N (M − d) for θ = 90◦

P ′ = (M − d/
√

2)(N − d/
√

2) for θ = 45◦and θ = 135◦.

The value of P ′ given by
∑

i,j hij can also be accumulated during
computation of H (d , θ).

The co-occurrence matrix C(d , θ) is made of elements cij =
hjj/P ′, namely the probability of having pixel pairs with values i
and j in locations that exhibit the selected relative position. The
size of the co-occurrence matrix that depends on the number
of gray levels in the image can be inconveniently large in many
cases. For example, a 10-bit image would yield a 1024× 1024
co-occurrence matrix, the storage and computational load of
which may be too large for many applications. Often, the pixel
values of the image are mapped to new values in a scale with
fewer quantization levels, possibly producing a new image with
K = 64 or lower. Although some of the image information
is eliminated, texture information can be retained and tex-
ture metrics derived from the co-occurrence matrices remain
valuable, if the mapping is appropriate.

Linear mapping, however, may not be always the best choice.
For example, if the structure of interest has pixels distributed
approximately evenly between 128 and 138 in an 8-bit image,
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a linear mapping to a 5-bit image will map about 80% of the
pixels in this structure to the same new gray level. This will
obliterate the statistical information within that structure by
severely reducing the pixel variations. However, a nonlinear
mapping that uses larger steps at gray levels with insignificant
information and small or unchanged steps at critical gray levels
imparts the desired reduction in K without adversely affecting
the texture metrics.

Many texture metrics can be derived from the co-occurrence
matrices [44], some of which are described next. The angular
second moment, also known as energy,

t1 =
K−1∑
i=0

K−1∑
j=0

c2
ij , (15.38)

quantifies homogeneity. In a homogeneous region, there are
few gray-level transitions, and most of the pixel pairs have the
same or close values. This concentrates most of the probabil-
ity on and around the diagonal of C(d , θ), leaving most of the
Cij elements to be 0. On the other hand, an inhomogeneous
image has many gray-level transitions, and the probability is
more evenly distributed across the entire co-occurrence matrix,
resulting in very small values for each Cij . Consequently, an
inhomogeneous region has an angular second moment that is
lower than that of a homogeneous region. This metric is sen-
sitive to intensity transitions but insensitive to the magnitude
of the transitions. That is, higher local intensity contrast within
the inhomogeneous region does not increase this metric.

The inertia measure quantifies the texture contrast and is
given by

t2 =
K−1∑
i=0

K−1∑
j=0

(
i − j

)2
cij , (15.39)

which weighs each element cij with the gray-level difference
i − j that produced it. In this manner, larger transitions are
emphasized, and this metric becomes sensitive to the local con-
trast of the inhomogeneity. The inertia metric will have low
values for homogeneous regions, and high values for inhomo-
geneous regions with high contrast. A metric that penalizes the
regions with higher contrast is the inverse difference moment:

t3 =
K−1∑
i=0

K−1∑
j=0

1

1+ (
i − j

)2 cij . (15.40)

The entropy measure

t4 =
K−1∑
i=0

K−1∑
j=0

cij log cij (15.41)

quantifies the level of randomness in the region and has its
highest value when all cij are equal. This is the case where all

intensity transitions are equally likely. Although this case is often
not observed in practice, it illustrates the type of information
that this metric conveys. The entropy metric may be used to
distinguish tissue with somewhat structured texture from tissue
with less structure. The first yields a relatively lower entropy
than the second.

Other texture metrics can be computed by using marginal
distributions derived from the co-occurrence matrix:

cx(i) =
K−1∑
i=0

cij and cy

(
j
) = K−1∑

j=0
cij . (15.42)

The means and standard deviations of these marginal distri-
butions are represented by μx ,μy , σx , and σy . In addition, the
sums of probabilities that relate to specified intensity sums or
differences are defined by

cx+y(k) = ∑
i+j=k

cij k = 0, 1, 2 . . . , 2K − 2 (15.43)

and

cx−y(k) = ∑
|i−j|=k

cij k = 0, 1, 2 . . . , K − 1 . (15.44)

Some texture metrics based on these distributions are

Correlation t5 =

K−1∑
i=0

K−1∑
j=0

(
ij
)

cij − μxμy

σxσy
(15.45)

Sum average t6 =
2K−2∑
k=0

kcx+y (k) (15.46)

Difference average t7 =
K−1∑
k=0

kcx−y (k) (15.47)

Sum entropy t8 = −
2K−2∑
k=0

cx+y (k) log{cx+y (k)} (15.48)

Difference entropy t9 = −
K−1∑
k=0

cx−y (k) log{cx−y (k)}. (15.49)

Each of the texture metrics t1 through t9 can be obtained for
each of the four θ values at the selected distance d . While this ori-
entation dependence may be desired in some cases, if a texture
metric that addresses all directions is needed, the four co-
occurrence matrices can be averaged and metrics can be derived
from this multiorientation matrix. Three co-occurrence matrix
measures are illustrated with Figure 15.13 and Table 15.1.

Co-occurrence matrix measures have been used for noninva-
sive analysis of tumors in dermatology [45], for quantification
of texture in echographic images [46], for classification of heart
diseases in echocardiography [47], for discrimination of pro-
static tissues [48], for analyzing ultrasonic liver images [49], for
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quantification of tissue texture surrounding microcalcifications
in mammograms [50], and for analyzing tissue texture in ultra-
sonic images of the breast [51]. An approach for detecting the
texture periodicity using the co-occurrence matrix also has been
suggested [52].

The use of co-occurrence matrices for texture analysis in 2D
explained here can be extended to the quantification of texture
in 3D, as described in Chapter 16.

15.2.3 Spectral Measures

Especially textures that have periodic or almost periodic struc-
ture lend themselves well to quantification using the Fourier
transform. The DFT of an M by N image f (x , y) given by

F (u, v) = 1

MN

M−1∑
x=0

N−1∑
y=0

f (x , y)e−j2π(ux/M+vy/N) (15.50)

contains information on the texture orientation, grain size, and
texture contrast of the image. The DFT is a good approach
for texture quantification because repetitive global patterns are
difficult to describe with spatial techniques but relatively easy
to represent with peaks in the spectrum. First, the magnitude
of the DFT is obtained with

S(u, v) = √
F (u, v) F∗ (u, v) , (15.51)

where F∗(u, v) is the complex conjugate of F(u, v). This
power spectrum is expressed in polar coordinates as a new
function Q(r , θ)where each pixel now is indicated by a distance
r = √u2 + v2 from the origin and an angle θ = tan−1(v/u).
The distance r is the frequency of the pixel, and the angle θ
provides its orientation in the spatial domain. For a texture
with a given periodicity and direction, the spectrum exhibits a
peak at the corresponding frequency r and orientation θ.

The presence of texture with a given periodicity in any
direction can be quantified by forming the sum based on the
corresponding spatial frequency rt

T(rt ) =
π∑
θ=0

Q(rt , θ) . (15.52)

The limits of this summation may need to be restricted if texture
in a selective range of orientations is relevant. Texture of any
size in a desired orientation θt can be measured with

T(θt ) =
rm∑

r=rt

Q(r , θt ) , (15.53)

where rl and rm are the lower and maximal frequencies of
interest, which should be selected to represent the largest and
smallest texture grain sizes, respectively. The two functions

T (rt ) and T (θt ) obtained by varying the selected rt or θt

convey comprehensive information of the texture in the ana-
lyzed region. Statistical analysis of these two functions allows
further data reduction and parsimonious quantification of
image texture. For example, the highest value in each of these
functions indicates the dominant periodicity and orientation,
whereas their means can provide more global representation
when periodicity or orientation are distributed. The variance
and other statistical moments of these functions can also be
used as descriptors.

15.2.4 Fractal Dimension

The recent theory of fractals introduced by Mandelbrot [53]
provided a new framework for analyzing complex geometric
shapes, particularly their roughness, which can be quantified
with the fractal dimension. Consider a geometric object that
resides in an N -dimensional space where N is the smallest inte-
ger that allows the space to contain the object, such as N = 2 for
a curve or N = 3 for an arbitrary surface. The number of small
spheres (or cubes) with diameter (or side) ε needed to cover the
object is

n(ε) = aε−D , (15.54)

where a is a scaling constant and D is the Hausdorff dimen-
sion. A line or a smooth curve has D = 1, indicating that these
are topologically 1D objects embedded in a 2D Euclidean space
and D = N − 1. However, in the same 2D space, the Hausdorff
dimensions of meandrous curves with numerous turns are not
integers and can have, for example, values as high as 1.98 for
very rough curves. In these cases where the Hausdorff dimen-
sion is fractional, it is also called fractal dimension. The same
observations apply to surfaces in 3D space where D is 2 for
smooth surfaces and increases toward 3 with increasing rough-
ness. Fractal dimension can be used as an image texture metric
if the image structure is considered as a surface in a 3D space
where two dimensions are those of the image plane and the third
is the pixel intensity. The area A(ε) of this intensity surface can
be expressed as

A(ε) = n(ε)ε2 = aε2−D (15.55)

as a function of the element ε which can take sizes such as 1, 2,
or more pixels for a digital image. The fractal dimension D of
the image can be calculated by using the area A(ε) estimated at
several sizes of ε and applying linear regression on

log A(ε) = log a + (2− D) log ε. (15.56)

The value of A(ε) can be estimated with the box-counting con-
cept [54], which has been applied to medical image analysis
[55], as discussed and illustrated in Chapter 21 in the context
of mammogram texture quantification.
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The fractal dimension also can be computed by representing
the image intensity surface with a fractional Brownian-motion
model. According to this model, the distance�r between pairs
of pixels (x1, y1) and (x2, y2) given by

�r =
√(

x2 − x1

)2 + (
y2 − y1

)2
(15.57)

and the absolute difference between the intensity values I (x1, y1)

and I (x2, y2) of these pixels

�I�r = |I (x2, y2)− I (x1, y1)| (15.58)

are related with

E[�I�r ] = b�rH , (15.59)

where E[.] is the expectation operator, b is a proportionality
constant, and H is the Hurst coefficient. The fractal dimension
[56, 57] is given by

D = 3−H . (15.60)

In practice, the smallest value of �r is �rmin = 1 pixel and the
highest value�rmax is dictated by the size of the structure under
consideration. To limit the values of �r further, only integer
values can be used [56], in which case �r may be computed
along horizontal and vertical directions only. The value of H is
computed with linear regression on

log E[�I�r ] = log b +H log�r (15.61)

using the selected �r values. Rough textures yield large values
for D and low values for H .

Fractal dimension has been used for texture analysis in ultra-
sonic liver images [56, 58], radiographic images of the calcaneus
[59], mammograms [55], colorectal polyps [60], trabecular
bone [61], and CT images of pulmonary parenchyma [62].
Computation of fractal dimension using maximum likelihood
[59] and fractal interpolation functions [63] also has been
suggested.

15.2.5 Run-Length Statistics

Consecutive pixels along a selected orientation tend to have the
same intensity in a smooth region while their values change
significantly in rough regions. A run is defined as a string of
pixels with the same value, aligned in a given orientation. The
run-length information is collected typically by using the ori-
entations θ = 0◦, 45◦, 90◦, and 135◦. For each orientation θ, the
number of runs with a length of m pixels at grayscale k is com-
puted to form the run-length histogram hθ(m, k). A smooth
structure produces more runs at large values of m than a rough
structure. In striated tissue, long runs occur in the direction of

the striation, whereas the orthogonal direction yields numerous
short runs. Texture can be quantified by analyzing the run-
length histograms for different orientations. A common metric,
the run percentage, is given by

pθ = 1

N

K−1∑
k=0

M∑
m=1

hθ (m, k), (15.62)

where N is the number of pixels in the image, K is the number
of grayscales, and M is the longest run-length. The four pθ
values form a feature vector that can be used to characterize
the tissue. The mean and standard deviation of the pθ values,
which provide more global metrics, can be used for texture
quantification.

15.2.6 Gabor Filters

Texture features extracted using Gabor filters provide good
results in the analysis of kidney ultrasound images [64]. Gabor
filters are related to the function of primary visual cortex cells in
primates [65], and the Gabor decomposition features are con-
sidered to be optimal in minimizing the joint 2D uncertainty in
space and frequency [66]. The general expression of the Gabor
filter family, as implemented in [64], is

G(x , y) = exp

(
− x ′2

2σ2
x

)
exp

(
− y ′2

2σ2
y

)
cos

(
2πx ′2

λ
+ ϕ

)
,

(15.63)

with

x ′ = (x −mx)cos γ − (
y −my

)
sin γ

y ′ = (x −mx)sin γ − (
y −my

)
cos γ ,

where mx and my define the center of the Gabor receptive
field, σx and σy define its size, γ determines the preferred ori-
entation, ϕ is a phase offset, and 1/λ is the preferred spatial
frequency of the Gabor filter. A set of eight equidistant orienta-
tions (γ = {22.5◦, 45◦, . . . 180◦}) and three spatial frequencies
(λ = {5.47, 8.20, 10.93}) is used in [64] and [67], producing 24
features for each position of the filter. The parameters σx and
σy are set with and σy = 2σx = 1.12λ as suggested in [68]. To
quantify the texture of a region in a filtered image, one uses
the sum of squares of pixel values in that region as a metric.
To use the Gabor filters for segmentation based on texture, the
approach in [64] includes a technique based on multiple lines
that pass from each point and a separate texture analysis in the
half-planes on either side of each line.

15.2.7 Laws Texture Energy Measures

Another texture quantification approach that uses convolu-
tion with specialized filters is based on Laws masks [69,
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70]. These are constructed using three foundational vectors,
L3 = {1, 2, 1}, E3 = { − 1, 0, 1}, and S3 = { − 1, 2,−1} which
correspond to center-weighted local averaging, edge detec-
tion with symmetric first differencing, and spot detection
with second differencing, in one dimension. Vectors of length
five are obtained by convolving L3, E3, and S3 with themselves
or with each other, such as L5 = {1, 4, 6, 4, 1}, S5 =
{ − 1, 0, 2, 0, 1}, E5={ − 1,−2, 0, 2, 1}, R5={1, 4, 6, 4, 1}, and
W 5 = {1, 4, 6, 4, 1}. Laws masks (2D filters) are 5× 5 matri-
ces obtained by forming the outer vector product of these
5-element vectors with each other or with themselves. The
masks L5T E5, L5T S5, E5T S5, and R5T R5 have been applied
to fetal lung maturity analysis using ultrasound images [71], to
diagnosis of carotid atherosclerosis in ultrasound images [72],
and characterization of hepatic tissue in CT images [73]. All
possible 25 Laws masks have been used in [74] to characterize
breast tissue surrounding microcalcifications in mammogra-
phy. When the image is convolved with Laws masks, metrics
that quantify the texture of a region of interest are obtained
by computing statistics from the filtered image. These statistics
are typically the sum of the absolute or squared pixel values
normalized by the number of pixels, or the entropy of pixel
values.
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16.1 Introduction

In recent years there is a proliferation of sensors that create 3D
“images”, particularly so in medicine. These sensors either oper-
ate in the plane, creating slices of data which, if dense enough,
can be treated as volume data,or operate in the 3D space directly,
like some new PET sensors which reconstruct volume data by
considering out of plane coincident events. Either way, one may
end up having measurements that refer to positions in the 3D
space. Hitherto such data have been analysed and viewed as 2D
slices. This is not surprising: apart from the fact that often only
sparse slices were available, even when volume data existed, the
analysis and visualisation has been inspired by the limited abil-
ities of human perception: the human eye cannot see volume
data, yet alone analyse them. However, this way a large part
of the information content of the data is totally ignored and
unutilised. Computerised analysis offers the exciting option of
escaping from the anthropocentric description of images, and
go beyond the limitations of the human visual and cognitive
system. This chapter is a very small step in that direction. We
present some techniques appropriate for the texture analysis
of volume data in the context of medical applications. The
microstructural features that can be calculated this way offer
a totally new perspective to the clinician, and the exciting possi-
bility of identifying new descriptions and new indicators which
may prove valuable in the diagnosis and prognosis of various

conditions. In particular, we shall express the variation of the
data along different orientations using two versions of the so
called “orientation” histogram.

First, we shall discuss ways by which one can construct and
visualise the orientation histogram of volume data. Then we
shall concentrate on the calculation of features from the ori-
entation histogram, and in particular features that encapsulate
the anisotropy of the texture. Finally we shall present some
examples of applying these techniques to medical data.

16.2 Issues Related to 3D Texture
Estimation and Representation

There are three major issues related to the calculation and
visualisation of a 3D orientation histogram:

• Tesselation of the unit sphere
• Visualisation of the 3D histogram
• Anisotropic sampling.

The first two topics have been extensively discussed in rela-
tion to 3D object representation (e.g., [9]), while the third is
intrinsic to the medical topographic data acquisition protocols.

The issue of tesselating the unit sphere arises from the need
to quantise the directions in 3D. Clearly, one needs to consider

Copyright © 2008 by Elsevier, Inc.
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equal solid angles. As a solid angle is measured by the area
it extends on the surface of the unit sphere, this requirement
is equivalent to requiring the tesselation of the surface of the
unit sphere in patches of equal area. There are various ways by
which this can be achieved, particularly with the help of reg-
ular or semi-regular polyhedra [7, 9, 10, 17]. However, in all
such approaches the number of quantised directions created is
very limited, leading to representations of poor orientational
resolution. Besides, the use of such representations leads to ori-
entational cells with complicated defining boundaries which
in turn leads to expensive and cumbersome ways of testing to
which cell a certain point on the unit sphere belongs. The two
most straightforward ways by which a point on the unit sphere
(and by extension a certain orientation) can be defined, is to
define it in terms of two angles, φ and ψ, corresponding to
longitude and latitude on the sphere, respectively, or to define
it in terms of the longitude φ measured along the equator of
the sphere, and the height z above the equatorial plane. For a
quick quantisation test, we should have bins that are of equal
size either in φ and ψ, or in φ and z . It turns out that cells
defined by dividing φ and ψ in equally sized sections are not of
equal area. On the other hand, cells defined by dividing φ and z
in equally sized sections are of equal area. Thus, we choose this
tesselation of the unit sphere. The division of 0 ≤ φ < 3600

into M equal intervals and the division of −1 ≤ z ≤ 1 in N
equal segments results in (N − 2)×M spherical quadrangles
and 2M spherical triangles, all sustaining the same solid angle
of 4π/(NM ). Then, an arbitrary direction defined by vector
(a, b, c) belongs to bin (i, j) if the following two conditions
are met:

2π

M
i ≤ φ < 2π

M
(i + 1), where sinφ = b√

a2 + b2

and cosφ = a√
a2 + b2

(16.1)

−1+ 2

N
j ≤ c̄ < −1+ 2

N
( j + 1),

where c̄ = c√
a2 + b2 + c2

. (16.2)

The issue of visualisation is a little more difficult, as one
has the medium of a 2D page to visualise a volume descrip-
tor. In the context of 3D shape representation the extended
Gaussian image has been used to unfold the Gaussian sphere
[8]. This is a 2D representation where the two angles φ and ψ
are measured along the two axes and the grey value of each cell
is proportional to the number density of that cell. Figure 16.1a
shows a 3D section of a liver scan and Figure 16.1b its orienta-
tion histogram representation that corresponds to the extended
Gaussian image. An alternative way is to present the latter as a
landscape seen in perspective. This is shown in Figure 16.1c.
Finally, one may try to represent the orientation histogram as
a 3D structure, with coordinates φ and z of the centre of each

cell defining the orientation, and the accumulated value in each
bin measured along the radius [3]. Again this 3D structure has
to be viewed in projection on the plane. This representation
is shown in Figure 16.1d. We find this the most expressive of
the three representations and we use it throughout this chapter.
It should be clarified here that for each region or window in
the image one has to have such a representation constructed
separately as it will not be possible to visualise the orientation
histograms referring to two different images one on the top of
the other. This is contrary to the 2D case where the histograms
of two regions can be superimposed to visualise differences.
To facilitate comparisons between two such structures, all 3D
orientation histograms produced will be projected on the 2D
page in the same way.

The problem of anisotropic sampling is relevant when metric
3D calculations are performed with the image. As the creation
of features from the orientation histogram necessarily involves
metric calculations, the issue of anisotropic sampling is impor-
tant. It is a common practice when acquiring tomographic data
to choose slice separation much larger than the pixel size on
each slice. Thus, the voxels of the acquired image in reality
are not cubes but elongated rectangular parallelepipeds with
the longest side along the z axis, i.e., the axis of slice separa-
tion. The metric used for the various calculations then is the
Euclidean metric with a scaling factor multiplying the z value
to balance this difference. Figure 16.2 demonstrates the effect
on the orientation histogram, if the rate of sampling along each
axis is not taken into consideration. In Figure 16.2a a section
of an especially constructed test image is shown. An original
image consisting of 151× 151× 151 voxels and with intensity
increasing uniformly and isotropically from its centre towards
its outer bounds was first constructed. Then this image was sub-
sampled with rate 1 : 2 : 3 along the x , y and z axes respectively,
to emulate anisotropic sampling. The orientation histogram of
the 151× 76× 50 image that resulted is shown in Figure 16.2b
without any scale correction and in Figure 16. 2c with the cor-
rect scaling used. As expected, the effect of ignoring the scaling
factor is crucial to such a representation. In all the discussion
that follows, the scaling factor in the metric will be used, with-
out actually appearing anywhere explicitly, in order to preserve
the simplicity of the presentation.

16.3 3D Texture Representation

The first texture descriptor we shall examine is based on a “gra-
dient density” (GD) measure, while the second on an intensity
variation (INV) measure.

16.3.1 Gradient Density Measures (GD)

The 2D “optimal” filters that have been developed for 2D edge
detection (e.g., [14]) are not appropriate for estimating the local
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FIGURE 16.1 Ways of representing the 3D orientation histogram: (a) Original CT liver image volume. Its orientation histogram was constructed
with 24 bins in z and 11 in φ. (b) Histogram displayed as a 24× 11 grey image. (c) Histogram displayed as a landscape. (d) Histogram displayed
as a 3D orientation indicatrix. (Copyright IEEE).

(a) (b) (c)

FIGURE 16.2 Overcoming the problem of anisotropic sampling: (a) An image created originally with isotropic sampling, subsequently sub-
sampled with rates 1:2:3. (b) Its orientation indicatrix if the anisotropic sampling is ignored. (c) Its orientation indicatrix if scaling is used.
(Copyright IEEE).

gradient in textured images due to the multiplicity of edges
present in them. Much more appropriate are small filters that
avoid the problem of interference. Such a filter for 3D images
has been proposed by Zucker and Hummel [21]. This filter is
3× 3× 3 in size, and is represented here by its three cross-
sections orthogonal to the direction of convolution:

⎡
⎢⎣

1√
3

1√
2

1√
3

1√
2

1 1√
2

1√
3

1√
2

1√
3

⎤
⎥⎦

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎢⎣ −

1√
3
− 1√

2
− 1√

3

− 1√
2
−1 − 1√

2

− 1√
3
− 1√

2
− 1√

3

⎤
⎥⎦ (16.3)

The convolution of the image with this mask along the three
axes produces the three components of the gradient vector



282 Handbook of Medical Image Processing and Analysis

at each voxel. Two versions of the orientation histogram are
then possible: Each gradient vector calculated is assigned to
the appropriate bin of the histogram according to the method
described in section 16.2, and the bin value is incremented by
the magnitude of the gradient vector. Alternatively, the bin of
the orientation histogram may be accumulated by 1 every time
a vector is assigned to it, irrespective of the magnitude of that
vector. The latter approach was proved more robust when the
weakest 5–7% of the gradient values were trimmed off when the
orientation histogram was created, due to the fact that such gra-
dient vectors have very poorly defined orientations. This is the
approach adopted in all experiments with real data presented
in Section 16.6.

Examples of the resultant orientation histograms of the two
approaches and for the same volume of a CT vertebral image
are shown in Figure 16.3. The difference in the two appearances
reflects the bone structure of the spinal cord, which had strong
edges in four dominant orientations. These edges dominate the
orientation histogram when the gradient magnitudes are added.
However, their role is diminished when only gradient vectors
are counted as they are fewer in number than average and weak
textural gradients. For this reason, the approach of ignoring the
actual gradient magnitudes is considered more appropriate for
describing micro-textures.

16.3.2 Intensity Variation Measure (INV)

This method is based on the 3D version of the Spatial
Gray-Level Dependence Histogram (SGLDH). For this pur-
pose, Chetverikov’s 2D approach [1] is generalised to 3D
for arbitrary relative positions of the compared density
values.

First we define the five-dimensional co-occurrence histogram
with elements that count the number of pairs of voxels that
appear at a certain relative position with respect to each other
and have certain grey values. For example, element h(i, j,φ, z , d)
of this histogram indicates the number of pairs of voxels that
were found to be distance d apart, in the (φ, z) direction, and
have density values i and j respectively. The value of the image
at non-integer positions is obtained by trilinear interpolation:
The grey value at a general position (x , y , z) is assumed to be a
trilinear function of the position itself, i.e.,

g (x , y , z) = α1x + α2y + α3z + α4xy + α5xz + α6yz

+ α7xyz + α8, (16.4)

where α1, . . . ,α8 are some parameters. The values of these
parameters are determined from the known values at the
eight integer positions that surround the general position
(x , y , z): ([x], [y], [z]), ([x], [y], [z] + 1), ([x], [y] + 1, [z]),
([x] + 1, [y], [z]), ([x], [y] + 1, [z] + 1), ([x] + 1, [y] + 1, [z]),
([x] + 1, [y], [z] + 1), ([x] + 1, [y] + 1, [z] + 1), where [w]
means integer part of w .

Following Conners and Harlow [2], we define the inertia of
the image with the help of this histogram, as follows:

I (φ, z ; d) ≡
Ng−1∑

i=0

Ng−1∑
j=0

(i − j)2h(i, j,φ, z ; d), (16.5)

where Ng is the number of grey values in the image, and we have
used a semicolon to separate d from the rest of the variables in
order to indicate that in our calculations we shall keep d fixed.
We use I (φ, z ; d) to characterise the texture of the image and
visualise it as a 3D structure showing the magnitude of I (φ, z ; d)
in the direction (φ, z).

(a) (b) (c)

FIGURE 16.3 Two versions of the gradient based indicatrix: (a) An original CT vertebral column image of size 159× 159× 289. (b) Orientation
histogram where the absolute values of the gradient vectors are added up. (c) Orientation histogram where simply vectors in each orientation
cone are counted. (Copyright IEEE).
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In practice, of course, we never construct the 5-dimensional
array h(i, j,φ, z ; d). Instead, we fix the value of d and the values
of the directions (φ, z) at which function I (φ, z ; d)will be sam-
pled. Then, each voxel is visited in turn and its pair location is
found at the given distance and given direction; the grey value
at that location is calculated, its difference from the grey value
of the voxel is found, it is squared and accumulated. This is
repeated for all chosen sampling directions (φ, z). These direc-
tions could, for example, be the centres of the bins used for
the GD method. However, there is a fundamental difference
in the nature of the two approaches: In the GD approach, the
more directions we choose, the larger the number of bins we
have to populate by the same, fixed number of gradient vectors.
As a result, the more bins we have, the more rough and noisy
the indicatrix looks because the number of vectors we have to
populate them with becomes less and less sufficient. Here, the
number of directions we choose are simply points at which we
sample a continuous function of (φ, z). The more sampling
points we choose, the better the function is sampled and the
smoother it looks.

16.4 Feature Extraction

In principle, the whole orientation histogram can be used to
characterise the texture of 3D data. However, this is a rather
cumbersome representation and ideally one would like to use
only a few features to describe its shape. Perhaps the grosser
characteristic one may observe in the orientation histogram
is its symmetry: a spherically symmetric histogram implies a
totally isotropic volume, while any deviation from that is a cue
to the anisotropic structure of the underlying material. In what
follows, therefore, we shall use the orientation histogram in
order to characterise the anisotropy of the data.

Although the visual comparison of the orientation indica-
trices makes immediately explicit the textural difference of the
corresponding 3D images, the comparison of the indicatrices
by a computer requires the description of their shapes. Ideally,
one or two features, that capture the most prominent features
of the shape of each indicatrix, should be extracted from them
and used for their comparison. We propose here three such
measures:

• Anisotropy Coefficient:

F1 = Hmax

Hmin
, (16.6)

where Hmin and Hmax correspond to the minimum and
the maximum values of the indicatrix respectively.

• Integral anisotropy measure:

F2 =
√∑N

i=1

∑M
j=1

(
H (i, j)−Hm

)2

NM
, (16.7)

where Hm is the mean value of the indicatrix and H (i, j) is
the value at cell (i, j). This integral feature can be consid-
ered as the standard deviation of the distribution of the
local grey level difference over the different orientations.

• Local mean curvature:

F3 =
√√√√{∑N

i=1

∑M
j=1

(
H (i, j) − 1

4
(H (i − 1, j)+H (i + 1, j)

NM

+ H (i, j − 1)+H (i, j + 1))
)2

NM

}
. (16.8)

This local mean curvature is expressed by the average
value of the Laplacian calculated for all directions of the
indicatrix.

Other features may also be constructed. For example,
Segovia-Martinez et al. used the coefficients of the expansion
of the indicatrix in terms of spherical harmonics as features, in
a study of dementia [16].

16.5 Simulated Data Studies

In this section we are investigating the properties of the two
approaches to texture mentioned above, with the help of sim-
ulated images. In particular, we investigate the effect of the
various parameter values on the behaviour of the anisotropy
measures, and the influence of varied degrees of noise on them.

The simulated 3D image used is shown in the top left
of Figure 16.4. The image shows a fourfold symmetry, and
although it is isotropic along the three axes, it is in general
anisotropic. The dark areas have grey value 100 and the bright
planes are 1 voxel thick, have grey value 180 and are 10 voxels
apart.

The INV method relies on the displacement parameter d .
One usually does not have a priori knowledge of its correct
value, so it is necessary for a range of values to be used. The first
and second column of plots in Figure 16.4 show the indicatrices
computed with values of d equal to 2, 5, 10 and 15. A 3D version
of the indicatrix is shown as well as its projection on one of its
principal planes. All projections on the three principal planes
must be identical due to the symmetry of the image. However,
some differences in appearance are expected due to the fact
that the sampling points are not homogeneously arranged on
the surface of the unit sphere and the triangulation created
from them, as a consequence, introduces some anisotropy in the
appearance of the structure. This apparent anisotropy becomes
unoticeable when the number of sampling points used to tes-
sellate the orientations is increased. The consequence of course
is increase in the computational cost.

It is very interesting to note that the indicatrix is relatively
smooth when the choice of d is less than the texture periodicity,
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no noise

d 5 2, F1 5 2.43, F2 5 0.228, F3 5 0.013 d 5 2, F1 5 2.22, F2 5 0.213, F3 5 0.012

d 5 5, F1 5 2.91, F2 5 0.172, F3 5 0.026 d 5 5, F1 5 2.60, F2 5 0.163, F3 5 0.025

d 5 10, F1 5 17.34, F2 5 0.241, F3 5 0.032 d 5 10, F1 5 14.90, F2 5 0.226, F3 5 0.031

d 5 15, F1 5 3.71, F2 5 0.239, F3 5 0.049 d 5 15, F1 5 3.34, F2 5 0.223, F3 5 0.047

20% noise

FIGURE 16.4 Experiments with a synthetic texture without noise and with 20% additive uniform noise. The indicatrices calculated by the INV
method are presented as 3D structures and in projection on the plane z = 0. (Copyright IEEE).
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while it shows very high anisotropy when d has been chosen to
be equal to the texture characteristic length. We can monitor
this behaviour best with the help of feature F1: Its value from
a modest 2.43 for d = 2 and 2.91 for d = 5 shoots up to 17.34
for d = 10 only to drop again to 3.71 for d = 15. The other
two features also increase in value, but not in such a dramatic
way. This behaviour of INV is preserved for moderate levels of
noise: The second column of results shown in Figure 16.4 and
those shown in Figure 16.5 have been computed from the same
image with 20%, 50% and 80% noise added to it. The noise is
zero mean uniformly distributed and 20% means that its range
is 16 units, while the contrast in the image is 80 units. From these
results we may say that the value of F1 remains a good indicator
of whether the value of d coincides with the basic periodic-
ity of the texture or not, for quite high levels of noise (up to
50%). We used uniformly distributed noise as one of the worse
types of noise. In reality the distribution of noise will probably
be more centrally concentrated and its effect will be even less
prominent.

This behaviour of the INV method is not surprising, as this
approach is based on integration and therefore it is expected
to be robust to noise. The behaviour of the gradient based
method, however, is not expected to be as robust. The gra-
dient based method does not rely on any parameter, but as
it estimates the local gradient at each voxel by using masks
that only take into consideration the immediate neighbours
of a voxel, it is expected to produce results that are different
for different characteristic lengths of the texture. We do not
present results here for zero noise situations because the indi-
catrix in that case consists of four line segments perpendicular
to each other, (the delta functions that represent the deriva-
tives of perfect step edges) save a few extra short lines arising
from the misbehaviour of the gradient masks at the intersec-
tion places of the bright planes. Figures 16.6, 16.7 and 16.8
show the results of applying the method to images where the
characteristic length of the texture is 4, 6 and 10, respectively.
In all cases, results obtained in the presence of noise are also
shown. In particular, examples with 20%, 50% and 80% added
noise are included. It can be seen that the indicatrix becomes
rounder and rounder as noise increases, while the values of the
features very quickly change so that they cannot be used to
identify a texture irrespective of the level of noise. This method,
however, is very fast and for set-ups where the level of noise is
expected to be constant, it can be used to characterise texture
locally.

The INV method also can be used for local calculations, if
we choose d = 1. However, the two methods produce very dif-
ferent results: INV projects the gradients of all the voxels along
certain directions (the sampling directions on the unit sphere)
and adds up all the square magnitudes of those projections.
The GD method on the other hand, simply counts how many
voxels have gradient in a certain cone of directions. That is why

the indicatrix of the GD method in the absence of noise con-
sists of spikes while the indicatrix of INV is rounder, i.e., it has
non-zero values in almost all directions, since it projects even
well-ordered gradients on all sampling directions. This makes
the INV method rather an inappropriate tool for studying
anisotropy of micro-textures: it is too robust for the job.

16.6 Applications to Real Data

From the above two methods, the GD approach has been
reported to be much more sensitive to the microtextures that
characterise medical data than the INV approach [11]. We
present here two applications of the GD method to medical
data.

16.6.1 Detection of Structural Differences
Between the Brains of Schizophrenic
Patients and Normal Controls

Details of this application can be found in [12].
The null hypothesis which was tested by this study was:

There are not any structural differences between the brains of
schizophrenics and normal controls that manifest themselves in
MRI-T2 data and distinguish the two populations in a statistically
significant way.

All subjects were scanned with a 1.5-T GE Signa (GE medical
systems Milwaukee) at the Maudsley Hospital, London. Proton
density and T2 weighted images were acquired with a dual-
echo fast spin-echo sequence (TR = 4000 ms, TE = 20.85 ms).
Contiguous interleaved images were calculated with 3 mm slice
thickness and 0.856 mm× 0.856 mm in plane pixel size in the
axial plane parallel to the intercommissural line. The subjects
were 21 normal controls and 19 schizophrenics. The two groups
were matched for age and social class as defined by the occupa-
tion of the head of the household at the time of birth. (Mean age
for controls 31.5, with a standard deviation of 5.9. Mean age for
patients 33.7 with a standard deviation of 6.9. Social class 1–3,
controls 18/21 and patients 16/19.) The mean premorbid IQs
for both groups were estimated by the National Adult Reading
Test with the normal controls having slightly higher IQ. (Mean
IQ of schizophrenics 101.5 with a standard deviation 11.3 and
mean IQ for normal controls 107.4 with a standard deviation
9.6.) The schizophrenics had an average of 13.1 education years
with standard deviation 6.0, while the normal controls had an
average of 14.3 education years with standard deviation 2.5. All
patients had been taking typical antipsychotic medication for
more than 10 years. All subjects were male and righthanded. All
subjects satisfied the following criteria: no history of alcohol or
drug dependence, no history of head injury causing loss of con-
sciousness for one hour or more and no history of neurological
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50% noise

d 5 2, F1 5 1.79, F2 5 0.156, F3 5 0.010 d 5 2, F1 5 1.56, F2 5 0.113, F3 5 0.009

d 5 5, F1 5 2.00, F2 5 0.130, F3 5 0.024 d 5 5, F1 5 1.67, F2 5 0.104, F3 5 0.023

d 5 10, F1 5 3.08, F2 5 0.172, F3 5 0.027 d 5 10, F1 5 1.84, F2 5 0.128, F3 5 0.025

d 5 15, F1 5 2.63, F2 5 0.177, F3 5 0.038 d 5 15, F1 5 2.11, F2 5 0.133, F3 5 0.030

80% noise

FIGURE 16.5 Experiments with a synthetic texture with 50% and 80% noise added. The indicatrices calculated by the INV method are presented
as 3D structures and in projection on the plane z = 0. (Copyright IEEE).
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c 5 4, noise 5 20% F1 5 90.52, F2 5 0.704, F3 5 1.906

c 5 4, noise 5 50% F1 5 5.81, F2 5 0.173, F3 5 0.334

c 5 4, noise 5 80% F1 5 1.89, F2 5 0.049, F3 5 0.079

FIGURE 16.6 Experiments with a synthetic texture with periodicity 4 along each axis, and with various levels of additive uniform noise. The
orientation histograms calculated by the GD method are presented as 3D structures and in projection on the plane z = 0. (Copyright IEEE).

or systemic illness. The normal controls in addition satisfied the
criterion of having no DSM-IV axis I disorder.

The dual-echo sequence used normally as part of neurolog-
ical examinations at the Maudsley Hospital, London, UK, was
also used for this study. The sequence parameters were opti-
mised to achieve maximum separation of clusters representing
the tissues of the brain and the feature space formed by the voxel
intensities of the two echoes [18].

In all cases the images were preprocessed so that only the
brain parenchyma was extracted for further analysis [19].

Each scan consisted of 32 slices. Initially all slices referring to
the same subject were analysed together, thus resulting in global

brain characterization for each subject. Separate analyses were
performed using the slices that referred to the inferior half and
the inferior quarter of each brain. The registration of the data
with a brain atlas was avoided in order to avoid any distortion
caused by re-sampling and interpolation that any such registra-
tion necessarily entails, especially since the sizes of the brains
of the different subjects were different and the authors were
interested in quantifying the micro-structural properties of the
data. So, the inferior 50% or the inferior 25% of each brain was
identified by visually identifying the two slices which were most
anatomically similar to slice 24 and slice 12 of the Talairach and
Tournoux [20] anatomical atlas, respectively.
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c 5 6, noise 5 20% F1 5 54.89, F2 5 0.853, F3 5 2.154

c 5 6, noise 5 50% F1 5 12.30, F2 5 0.288, F3 5 0.448

c 5 6, noise 5 80% F1 5 4.34, F2 5 0.138, F3 5 0.140

FIGURE 16.7 Experiments with a synthetic texture with periodicity 6 along each axis, and with various levels of additive uniform noise. The
orientation histograms calculated by the GD method are presented as 3D structures and in projection on the plane z = 0. (Copyright IEEE).

A series of three experiments were performed using orien-
tation histograms. In the first experiment whole brains were
analysed. In the second experiment the inferior half of the brain
was used, and in the third only the inferior quarter.

In all cases the strongest gradient vectors were used, with
magnitude greater than 75 units.

All three features, namely F1, F2 and F3 computed from the
orientation histogram, turned out to be good discriminators
when they were computed from the orientation histogram that
corresponded to the inferior part of the brain and in particular
from the data slices that corresponded to slices 1–12 of the
Talairach and Tournoux brain atlas [20].

The box and whiskers graphs of population discrimination
with the help of these features are shown in Figure 16.9. Typical
views of the orientation histograms for the two categories are
shown in Figure 16.10.

These results indicated that the null hypothesis could be
refuted. So, the authors concluded that there were morphologi-
cal differences between the brains of the schizophrenic subjects
and the normal controls, which manifested themselves as dif-
ferent types of texture anisotropy at scales of a few millimetres
in MRI − T2 scans, and in particular in the parts of the scans
that corresponded to slices 1–12 of the Talairach and Tournoux
brain atlas.
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c 5 10, noise 5 20% F1 5 30.80, F2 5 0.789, F3 5 1.993

c 5 10, noise 5 50% F1 5 10.07, F2 5 0.298, F3 5 0.449

c 5 10, noise 5 80% F1 5 4.73, F2 5 0.160, F3 5 0.154

FIGURE 16.8 Experiments with a synthetic texture with periodicity 10 along each axis, and with various levels of additive uniform noise. The
orientation histograms calculated by the GD method are presented as 3D structures and in projection on the plane z = 0. (Copyright IEEE).

16.6.2 Changes of White Matter Texture
Anisotropy with Age and Gender

Details of this study can be found in [13]. The purpose of this
work was to study the texture anisotropy of the white matter
in the brain (WM), based on conventional high-resolution T1-
weighted MRI datasets and its changes with age and differences
with gender. WM anisotropy differences associated with gen-
der were evaluated on the age-matched sample of 210 young
healthy subjects (mean age 24.8, standard deviation 3.97 years,
103 males and 107 females). Changes of WM texture anisotropy
with age were studied using 112 MRI − T1 datasets of healthy

subjects aged 16 to 70 years (57 males and 55 females). The
anisotropy analysis was performed on the whole WM compart-
ment and WM segments in brain hemispheres. It was found
that WM anisotropy in females was consistently higher i.e.,
more regular than in males (p < 10−6, z-scores from 5.2 to
9.0 depending on the brain region). The age-related deteriora-
tion manifested itself in a remarkable decline of WM texture
anisotropy (z-scores from −5.2 to −6.2, p < 10−6). This effect
was more evident in females (z = 5.02, p < 10−6) than in
males (z = 2.32, p = 0.02). Anisotropy characteristics varied
approximately in the same range when considering brain hemi-
spheres. Generally, the age was found to be a more significant
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FIGURE 16.9 Box and whiskers plots of the features computed from slices of the data that correspond to slices 1–12 of the Talairach and
Tournoux brain atlas.

(a)

(c) (d)

(b)

FIGURE 16.10 Typical grey matter orientation histograms for normals (top) and schizophrenic patients (bottom) viewed from the front (left)
and from the top (right).

factor than gender. Such differences may be observed in the
mean WM indicatrices computed over 103 young male and
107 young female subjects (Figure 16.11) as well as for WM
of subjects representing young (16–25 years, 16 female and 17
male) and aged (50–70 years,11 female and 11 male) groups (see
Figure 16.12). The mean anisotropy histograms were computed
using the Procrustes analysis method suggested by Dryden and
Mardia [4] and implemented as a shapes package [5] within
the R, a language and multi-platform environment for statistical
computing [6].

16.7 Conclusions

In this chapter we demonstrated two different approaches to
analysing 3D textures. One is just the 3D orientation histo-
gram of the texture computed by counting gradient vectors in
various orientation bins. The other is an extension to 3D of
Chetverikov’s method [1] of co-occurrence matrices of arbi-
trary displacement and calculation of the inertia as proposed

by [2]. This method effectively projects all gradients on all direc-
tions and adds their square magnitudes up. It is more robust to
noise than the gradient method, but less sensitive to micro-
texture analysis and certainly much more time consuming.
Time is a very important factor when dealing with 3D data,
so for most of our experiments with real data we adopted the
gradient method, as it was also more appropriate for the anal-
ysis of the micro-textures that are present in medical images.
The robustness of the INV method on the other hand, makes it
more appropriate for the global description of macro-textures.

The methodology presented here is generic and it has already
been used in some medical studies. For example Segovia-
Martinez et al. [15] reported an observed trend in anisotropy
measures F2 and F3 with the severity of the condition of
Alzheimer’s patients, using CT data for 24 cases. In a sepa-
rate study, Segovia-Martinez et al. [16] showed that texture
anisotropy in MRI data of Alzheimer’s patients correlated well
with the mini mental state examination (MMSE) score of the
patients. Such works demonstrate the potential of such an anal-
ysis in 1) diagnosing a pathology 2) quantifying the severity of
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FIGURE 16.11 The mean white matter orientation histograms computed over 103 young male (top) and 107 young female (bottom) subjects,
viewed from the front (left) and from the top (right).
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FIGURE 16.12 The mean white matter anisotropy histograms computed for young (16–25 years, 16 female and 17 male) subjects (top) and
aged (50–70 years, 11 female and 11 male) subjects (bottom) viewed from the front (left) and from the top (right).
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the pathology 3) quantifying the change with time of a certain
pathological condition, or structural tissue characteristics.
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The explosive growth of modern tomographic imaging
methods has provided clinicians and scientists with the unique
opportunity to study the structural and functional organization
of the human brain, and to better understand how this orga-
nization is disturbed in many neurological diseases. Although
the quest for understanding the anatomy and function of the
brain is very old, it has previously relied primarily on qualitative
descriptions. The development of modern methods for image
processing and analysis during the past 15 years has brought
great promise for describing brain anatomy and function in
quantitative ways, and for being able to characterize subtle yet
important deviations from the norm, which might be associated
with or lead to various kinds of diseases or disorders. Various
methods for quantitative medical image analysis seem to be
converging to the foundation of the emerging field of com-
putational neuroanatomy or, more generally, computational
anatomy.

Despite the promises of modern imaging technology, there
are many difficulties involved in quantitative studies of brain
morphology. First, the structural and functional organization
of the human brain is very complex and variable across individ-
uals, which necessitates the development of highly sophisticated
methods. Second, brain function often has very focal character.
For example, an abnormally shaped cortical gyrus might
be completely unrelated to a neighboring normally shaped
gyrus that might perform a totally different function. Moreover,
subtle localized abnormalities can have large effects on brain
function. Therefore, gross anatomical descriptions are of very

limited use. Finally, the exploding volume of image data
acquired throughout the world makes it imperative to develop
highly automated computerized image analysis methodologies.

Although plenty of quantitative methods have been used in
the past for analyzing tomographic images, they have been often
limited by the lack of sophistication. As an example we will
consider a brain structure called the corpus callosum, which
includes the majority of the nerve fibers connecting the two
hemispheres of the brain, and which is shown schematically
in Figure 17.1. The corpus callosum has been believed to be
implicated in several neurological diseases and in normal aging.
It also is believed to display sex differences. A widespread
method for obtaining local measurements of callosal size from
tomographic images has been to divide the anteroposterior
extent of the structure in five partitions of equal length and
measure the corresponding areas of the callosal subdivisions,
as depicted in Figure 17.1. Area measurements of these com-
partments have been used as indicators of interhemispheric
connectivity of the corresponding cortical regions. Figure 17.1
demonstrates some limitations of this method. In particu-
lar, the partitioning of the structure depends on its curvature
and shape. Therefore, the subdivisions of the callosum in two
different brains might differ, depending on each individual’s
morphology (Figure 17.1, top). Moreover, a region of reduced
interhemispheric connectivity, which presumably is a region
of relatively smaller area, might fall in between two partitions
(Figure 17.1, bottom), or it might only be a part of a parti-
tion. Therefore, when area measurements of the whole partition

Copyright © 2008 by Elsevier, Inc.
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Region of
interest

FIGURE 17.1 A demonstration of some of the limitations of tradi-
tionally used methods for measuring the morphology of a brain struc-
ture, the corpus callosum. The anterior–posterior (left–right) extent
of the structure is divided into five equal intervals, and each of the
five corresponding areas are measured. As the top row demonstrates,
the partitioning resulting from this procedure might be affected by
the curvature or, in general, the shape of the structure under analysis.
Clearly, the first and the last compartments of the structure are not
divided similarly in the two structures. Moreover, a region of interest,
e.g., a region that might be affected by some disease process, might fall
in between two partitions, as in the bottom image. Since the shaded
region occupies only part of two of the partitions of the structure, an
effect in that region might be washed out.

are examined, the results might be washed out. Finally, the
extension of such measurement methods to 3D is extremely dif-
ficult, since they would require the manual outlining of regions
of interest, which often have complex shapes, so that mea-
surements from these regions can be obtained. Mathematical
methods, such as the ones described in the following sections,
coupled with computer algorithms that implement these meth-
ods efficiently, will eventually help us overcome most of the
difficulties just described.

17.1 Quantifying Anatomy via Shape
Transformations

This section presents a general mathematical framework for
representing the shape characteristics of an individual’s brain.
Since this framework is based on a shape transformation, we first
define exactly what we mean by this term. Consider a three-
dimensional (volumetric) image, I , of an individual’s brain. Let
each point in this image be denoted by x = (x , y , z)T . A shape
transformation, T , of I is a map that takes each point x ∈ I and
maps it to some point T (x). In the context of our development,
x belongs to the brain of one individual, and T (x) belongs
to the brain of another individual. Moreover, these two points
are homologous to each other. In other words, the transforma-
tion T is not just any transformation that morphs one brain to

another, but it is one that does this morphing so that anatom-
ical features of one brain are mapped to their counterparts in
another brain.

Several investigators have used shape transformations to
study brain anatomy [1–6]. However, this approach has its roots
in the early century’s seminal work by D’Arcy Thompson [7],
who visualized the differences between various species by look-
ing at transformations of Cartesian grids, which were attached
to images of samples from the species. Although D’Arcy
Thompson, with his insightful analysis, placed the roots for
modern computational anatomy, his vision came short of reali-
zing that this technique can be far more powerful than merely
quantifying gross morphological differences across species. The
reason is that modern image analysis techniques have made it
possible to morph one anatomy to another with much higher
accuracy than D’Arcy Thompson’s transformations. We will see
some examples later in this chapter.

In order to provide the reader with an intuitive understanding
of how one can precisely quantify the anatomy of an individual
brain, we will draw upon an analogy from a standard measure-
ment problem: How do we measure the length of an object?
Three steps are involved. First, we need to define a standard,
a measurement unit. What exactly we choose as our unit is
relatively unimportant; it can be the meter, the inch, or any
other unit of length. However, we do need to have a unit, in
order to be able to place a measurement in a reference system.
Second, we need to define a way of comparing the length of an
object with the unit; we do this by stretching a measure over the
object, and measuring how many times our measure fits into
the object’s length. Third, we need to define a means of com-
paring the lengths of two objects; this is what the arithmetic
of real numbers does. For example, a 3-meter object is longer
than a 2-meter object. Note that we cannot directly compare
3 meters with 15 inches; we first need to place both measure-
ments in the same measurement system. A generalization of
the comparison between two lengths, which is of relevance to
our discussion, is the comparison of two groups of lengths. For
example, we might want to know if nutrition and other fac-
tors have an effect on a population’s height. Standard statistical
methods, such as t -tests or an analysis of variance, will do this,
by taking into consideration the normal variability of height
within each population.

Placing this analogy in the context of computational neuro-
anatomy, we need three steps in order to construct a repre-
sentation of an individual’s anatomy. First, we must choose
a unit. Here, the unit is a template of anatomy, perhaps an
anatomical atlas [8] or the result of some statistical averaging
procedure yielding an “average brain” [3]. Second, we need to
define a procedure for comparing an individual brain with the
template. In the framework described herein, this is accom-
plished via a shape transformation that adapts the template
to the shape of the brain under analysis. This shape trans-
formation is analogous to the stretching of a measure over
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the length of an object. Embedded in this transformation are
all the morphological characteristics of the individual brain,
expressed with respect to those of the template. Finally, the
third component necessary for shape comparisons is a means
of comparing two brains whose morphology has been repre-
sented in terms of the same unit, i.e., in terms of the same
template. This can be accomplished by comparing the corres-
ponding shape transformations. Figure 17.2 demonstrates this
principle. In particular, the top row in Figure 17.2 shows a
synthesized template (left) and two synthesized shapes to be
compared (middle and right). Our goal here is to be able to put
in numbers the shape differences between these two synthesized
objects, using this particular template as the measurement unit.
The bottom row of Figure 17.2 shows the result of a method for
doing so, which will be described in the following two sections.
In particular, the color code reflects the amount of stretch-
ing that the template had to undergo in order to be adapted
to each of the two shapes. Red reflects stretching, and green
reflects shrinkage. Therefore, the color-coded intensity of these
deformation functions reflects local size differences between
these two shapes. Consequently, one could directly compare
the color-coded functions shown in Figure 17.2 for two diff-
erent subjects or populations, provided that the same shape
is used as the template (in this case, the shape of Figure 17.2,

FIGURE 17.2 An illustration of the principle of computational neu-
roanatomy using shape deformations. The image on the top left
represents an anatomical template. The top center shows a hypothetical
structure of one individual, and the top right shows the same struc-
ture in another individual. In order to compare the two structures,
we use the template as a measurement unit. The amount of stretching
applied during the elastic adaptation of the template to each indivi-
dual shape is shown on the bottom row as a color image, where red
corresponds to highest expansion and green to highest contraction. It
is clear that the deformation of the template reflects the shape pro-
perties of each of the two structures. Since the deformation is defined
with respect to the same template in both cases, it can be directly com-
pared across individuals. For example, a point-wise comparison of the
deformation for these two shapes would immediately show a relative
expansion on the right side and a relative narrowing in the middle
for the top-right relative to the top-middle shape. Since the shape
transformation of the template to each structure under analysis can
be described mathematically, and not simply visually, morphometric
analysis of brain structures can be performed quantitatively via such a
shape transformation. (See also color insert).

top-left). In the approach described herein, this comparison is
performed point wise, i.e., for each point x ∈ I .

17.2 The Shape Transformation

During the past 10 years, a substantial amount of research has
been dedicated to computational models for determining shape
transformations T (·), based on tomographic images. We now
give a brief review of this work. This review is by no means
exhaustive but is meant to give the reader representative exam-
ples of models that have been investigated, as well as their merits
and limitations.

Many of the models that have been pursued have been based
on physical concepts. In particular, the first attempt to develop
algorithms for morphing one brain image to another dates back
to the early 1980s and used a two-dimensional elastic transfor-
mation [9]. The goal there was to maximize some measure of
similarity between the image being transformed and the target
image. The image cross-correlation was used as the similarity
measure. The optimal transformation, i.e., the transformation
that resulted in maximal cross-correlation, was found via an
iterative numerical optimization procedure. That method was
later developed in three dimensions [10, 11]. Several models
that succeeded this method were similar, in that they attempted
to maximize the similarity between two brain images, but they
used different transformation models [2, 12–15].

The most important characteristic of the methods just
described is that they take advantage of the full resolution of
image data, i.e., the image similarity is examined on each indi-
vidual point of the brain, and accordingly each point is freely
transformed to maximize the similarity. Consequently, these
methods have many degrees of freedom, and therefore they are
flexible to morph any brain to another brain. A main limitation,
however, of these methods is that they are based on image simi-
larity criteria. Images of similar brains can differ. For example,
they can be MR images acquired with different protocols, or
they can be digitized atlases [16]. Moreover, aging or diseases
can change the signal characteristics of a tomographic image
of a brain. Such signal changes then can potentially adversely
affect the spatial transformation. A second limitation of image
matching methods is that they do not take into account geo-
metric information, such as curvature or other shape indices,
which often have a biological substrate.

The second major family of methods for shape transforma-
tions in brain imaging has been based on anatomical features.
The main idea is to match distinct features, which are first
extracted from the tomographic images, as opposed to using
image similarity criteria. The features can be individual land-
mark points [1], curves [17–20], or surfaces [20, 21]. In the
remainder of this section we will briefly describe a feature-based
method that was developed in our laboratory [19, 22] and that
is based on a surface-driven elastic transformation.
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Consider a number of anatomical surfaces extracted from a
tomographic brain image. Figure 17.3 shows some representa-
tive features: the outer cortical surface, the ventricular bound-
ary, and various sulci. All of these surfaces are determined using
deformable parametric models, such as the ones described in
[21, 23, 24]. A parametric model is always defined in a para-
metric domain, which in our models is either the unit square
or the unit sphere. Consider, now, a particular surface, such as
the outer cortical surface, whose parametric representation on
the unit sphere has been extracted from a set of tomographic
images for two different brains. The resulting surfaces are both

FIGURE 17.3 Examples of several anatomical surfaces extracted from
magnetic resonance images via the methods described in [21, 23].
The top shows the boundary of the lateral ventricles, the middle
shows the outer cortical surface, and the bottom image shows sev-
eral sulci of a single brain. A mathematical representation of each of
these surfaces is obtained simultaneously with these visual represen-
tations. Consequently, measurements of geometric properties of these
surfaces, such as curvature, shape index, geodesies, or depth, can be
measured quantitatively.

defined in the same domain, in this particular case the unit
sphere. However, homologous anatomical features do not nec-
essarily have the same parametric coordinates on the sphere.
For example, the same cortical fold might have different longi-
tude and latitude in the two brains. For illustration, Figure 17.4
shows two spherical maps obtained from two different sub-
jects, on which we have drawn the outlines of several sulci.
In order to force corresponding features, such as the curves
shown in Figure 17.4, to have the same parametric coordi-
nates, we reparameterize one of the two surfaces [19, 22, 25].
Effectively, this applies a local stretching or shrinking of the
parametric grid of one of the two surfaces so that certain
anatomical features, such as prominent cortical folds, have the
same parametric coordinates for both brains. In the context of
the shape transformation we discussed earlier, we reparameter-
ize the surfaces derived from the template (the atlas) so that their
parametric grids match the surfaces derived from a brain under
analysis.

(a) (b)

(c) (d)

FIGURE 17.4 (a,b) A network of curves (sulci) overlaid on 3D render-
ings of the outer brain boundaries of two individuals. (c) The locations
of these curves on the unit sphere for the two individuals [green corre-
sponds to (a) and red to (b)]. (d) An elastic reparameterization, i.e., a
map of the unit sphere to itself, of the surface in (a), so that the two net-
works of curves have the same parametric coordinates (longitude and
latitude) on the unit sphere. The warping of a “latitude grid” is shown
for visual appreciation of the effect of the elastic reparameterization.
(See also color insert).
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Once a surface-to-surface map has been determined, the
transformation T is then determined in the remainder of the
brain by elastic interpolation. In particular, let x be a point on
a surface defined as before from the template, and let g(x) be
its counterpart in an individual brain. Define a force field that
is applied to the template brain and is equal to

F(x) = g(x)− T (x), (17.1)

on the points lying on the anatomical surfaces used as fea-
tures, and 0 elsewhere. Equation 17.1 implies that points that
lie on a surface in the template should be transformed via the
spatial transformation T (·) to their counterparts, g(x), in the
individual brain. Otherwise, a force that is proportional to
the distance between g(x) and T (x) is applied that tends to
modify T so that these point correspondences are eventually
satisfied. More specifically, the transformation T is the one sat-
isfying the following differential equations, which describe the
elastic deformation of the template under the influence of the
external force field defined in Equation 17.1:

F(x)− λ∇T (x)− (λ− μ)∇DivT (x) = 0. (17.2)

The first term in this equation is a force field that attempts
to match the features described earlier. The remaining terms
describe the deformation of a linear elastic object [26]. These
equations are solved numerically after discretization. In particu-
lar, the continuous transformation T (·) is typically sampled on
every other point in the image, which results in a number of
unknown parameters of the order of 1 million. The discrete
equivalent of the differential equation in Equation 17.2 is a
large, sparse, linear system of equations, which is solved via
well-known iterative techniques, such as successive over
relaxation [27].

Figure 17.5 shows a template of the corpus callosum and
three elastic adaptations of this template to match the anatomy

FIGURE 17.5 The elastic transformation of a template of the corpus
callosum (top left) to the shape of the corpus callosum in three different
brains, whose magnetic resonance images are shown on the bottom.

of three different subjects. The corresponding MR images of
these subjects are also shown in the same figure.

17.3 Measurements Based on the Shape
Transformation

17.3.1 Measurements from Volumetric Images

As we mentioned in Section 17.1, the transformation deter-
mined by elastically morphing a template to an individual brain
carries all the morphological characteristics of the individ-
ual brain. From this transformation, various quantities, each
reflecting different aspects of anatomy, can be calculated. In
most of this section we focus on regional volumetric mea-
surements, which have long been of interest in the brain
imaging community. By regional volumetric measurements, we
mean local size measurements. For example, a locally relatively
reduced size of a brain structure in an individual or in a pop-
ulation might be due to regional brain atrophy, i.e., regional
loss of brain tissue. Several diseases have been associated with
localized brain atrophy. For example, Alzheimer’s patients are
believed to have hippocampal atrophy. Using techniques simi-
lar to ours, others also have reported frontal lobe abnormalities
[6] for Alzheimer’s patients. Similar techniques have also been
used to characterize anatomical differences in the hippocampus
between normal and schizophrenic brains [28].

Regional size measurements, however, are useful not only in
detecting and quantifying brain atrophy, but also in studying
the structural organization of the normal brain. An example,
which will be revisited later in this section, is the corpus callo-
sum, a structure composed of nerve fibers that connect the two
hemispheres. There is evidence that the size of the corpus callo-
sum is proportional to the number of nerve fibers crossing from
one hemisphere to the other [29]. These fibers tend to be fairly
clustered; the anterior region of the corpus callosum includes
fibers connecting the frontal lobes of the brain, while the pos-
terior region includes fibers connecting the posteriorly located
visual cortical regions, and so forth. Accordingly, if a region of
the corpus callosum tends to be relatively larger in an individ-
ual or in a group of individuals, this might imply a relatively
increased interhemispheric connectivity in that individual or
group, in the corresponding cortical region. Consequently, size
differences between two groups might be very localized, and
difficult to detect in the presence of a very high interindividual
variability.

A detailed and very localized representation of the size
of a structure can be obtained via the shape transformation
approach described earlier. For clarity, we will use the exam-
ple of the corpus callosum in the remainder of the section;
however, our model is generally applicable. Specifically, con-
sider a template of the corpus callosum, such as the one shown
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in Figure 17.5 on the top left. Consider, also, the transforma-
tion T (x) that maps each point of the template to the corpus
callosum of an individual brain, such as the ones on the top
row in Figure 17.5. Finally, consider the scalar function d(x),
which we will refer to as the deformation function and is defined
as

d(x) = det{∇T (x)}, (17.3)

where det(·) is the determinant of a matrix and ∇ is the gra-
dient of a multivariate vector field. The deformation function
quantifies how much we locally need to stretch the template
in order to adapt it to the shape of the corpus callosum in the
individual brain under measurement. Therefore, the deforma-
tion function quantifies how large the corpus callosum of the
individual brain is in the vicinity of each point x, relative to the
template. Consequently, the function d(x) is a very localized
measure of size, as shown in Figure 17.2. More generally, the
transformation T (x) reflects shape characteristics of the brain
under measurement, relative to the template, around x.

If we want to compare two different corpora callosa, we can
do so by comparing the corresponding values of d(x) at each
point x. By grouping together regions in which the deforma-
tion functions differ, and by measuring how much they differ in
those regions, we can precisely define regional size differences.
Typically, we are not simply interested in measuring size differ-
ences between two individuals, but in measuring possible size
differences between two groups. In that case, the deformation
functions of the two groups might differ on the average, but the
within-group variability might be very high, possibly making
any average difference uncertain. The simplest way to measure
size differences between two populations is by applying point-
wise t -tests [30] on the deformation functions. By grouping
together the points in which a significant difference is found,
we can define the region in which two brains or two populations
differ, without being restricted by a priori assumptions such as
the one in Figure 17.1.

In order to better demonstrate the principles of this compu-
tational model, we briefly describe its application to a previously
published study on sex differences of the corpus callosum
[3, 31]. It has been previously hypothesized that the posterior
part of the female corpus callosum is more bulbous, possibly
reflecting an anatomical difference in interhemispheric connec-
tivity between the two sexes. In order to test this hypothesis via
the computational models just described, we examined images
from a population of 114 subjects, 68 men and 46 women. The
deformation analysis described previously was applied, and the
resulting deformation functions were compared statistically at
each point in the corpus callosum of the template, i.e., at each
point within the measurement reference frame. Points for which
the deformation functions of women differed significantly from
those of men are shown as white in Figure 17.6. These points
form the region within which it can be hypothesized that there
is a sex difference in interhemispheric connectivity. Note that

FIGURE 17.6 The region in which morphological differences
between men and women were found in a group of 114 normal indi-
viduals. In particular, the highlighted region of the corpus callosum
was relatively more bulbous in women than in men, possibly reflecting
sex differences in interhemispheric connectivity.

FIGURE 17.7 Correlation analysis between size and age and any
other measurement can be performed. For example, this figure shows
the regions in which a significant correlation between size and age
measured for men (left) and women (right).

this region falls exactly on the border between two of the par-
titions shown in Figure 17.1, which means that conventionally
performed area measurements would severely blur the results.
The contradictory findings reported in the literature might be
partly due to this fact (see [31] for related references).

The quantitative descriptions of size, or in general of shape,
can be directly associated with other, nonmorphologic vari-
ables. For example, for the corpus callosum study just described,
the correlation of callosal size, quantified by the deformation
function, with age is shown as an image in Figure 17.7 for
men (left) and women (right). Here, the correlation coeffi-
cient between the value of the deformation function and age
was calculated from the same 114 subjects at each point in the
corpus callosum. White regions in Figure 17.7 display statis-
tically significant correlation between size and age. Therefore,
regions in which a significant rate of loss of interhemispheric
connections is present can be identified by this analysis, under
the assumption that interhemispheric connectivity is reflected
by callosal size. Associations between the deformation func-
tion and various other variables, including activation images
obtained through functional imaging or measures of neurocog-
nitive performance, can be examined in a similar fashion [31].
Therefore, relationships between structure and function or
cognition can be examined in greater detail.

17.3.2 Measurements on Surfaces

Up to now, we have been concerned with shape transformations
that map a 3D anatomical template to a 3D brain image. It is
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FIGURE 17.8 (a) An example of a sulcal ribbon overlaid on which are shown several depth probes found via a dynamic programming
algorithm [33]. Roughly, these probes represent paths along the surface that connect the outer edge of the sulcus with the deepest edge of
the sulcus, and that are as close as possible to a plane that is normal to the ribbon. (b) The resulting depth measurements along the sulcus,
as a function of arc length.

often more intuitive, however, to consider certain anatomical
structures as surfaces embedded in three dimensions. Examples
are the cortical mantle, a sulcus, or the boundary of a subcortical
structure. For example, one might be interested in measuring
the geodesic, i.e., the minimum distance, between two points
on the cortical mantle [32] or the depth [33] or the curvature
[21] of a sulcal ribbon. In the remainder of this section, we
briefly describe a few examples of measurements performed on
the cortical sulci, which we model as thin convoluted ribbons
that are embedded in 3D. Figure 17.3 (bottom) shows examples
of four different sulcal ribbons, which were extracted from the
MRI of a normal brain.

In order to perform measurements on a surface embedded
in 3D, we first need to obtain a mathematical representation of
the surface. We previously developed two methods for deter-
mining a parametric representation of sulcal ribbons [21, 23].
The parameterization of a surface is represented by a map
from a planar domain, such as the unit square, to the three-
dimensional space. Effectively, a parameterization places a grid
of the surface, in our case on the sulcal ribbon. This allows for
various measurements to be made. In particular, we can obtain
estimates of the local curvature of the sulcus or of the depth
of the sulcus. Depth measurements are of particular interest,
since they can potentially provide useful information to algo-
rithms for the automated identification of the cortical sulci. In
order to measure the depth of a sulcus, we developed a dynamic

programming algorithm, which is described in detail in [33].
This algorithm simulates the placement of a flexible probe
along the depth of the sulcus and perpendicularly to the outer
(exposed) edge of the sulcus. Figure 17.8 shows an example of
a sulcus together with a number of depth probes determined
via this dynamic programming algorithm. The resulting depth
measurements are also shown.

17.4 Spatial Normalization of Image Data

In our discussion up to now, we have described how the
morphology of an individual brain can be mathematically rep-
resented by adapting a template to the shape of that brain.
Very often in the brain imaging literature researchers use a dual
technique for analyzing image data. In particular, they spatially
transform image data to a common reference system, which
is associated with a template. This transformation is actually
the inverse of the transformation we discussed earlier: it takes a
point in the individual’s brain and maps it to a point in the tem-
plate brain, which resides in a common reference space often
called a stereotaxic space. Image data mapped this way can be
structural images, in which the various kinds of brain tissues
have been labeled according to some segmentation methodo-
logy [34], or functional images, such as positron emission
tomography (PET) or functional magnetic resonance imaging
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(f MRI), that reflect activation of the brain during certain tasks.
We will treat these two separately.

17.4.1 Structural Images

One of the most common kinds of analysis of structural images
has been volumetric analysis. More specifically, a brain image is
partitioned into a number of structures that are of interest to the
investigator, and the volume of each structure is then measured
and compared across subjects. Spatial normalization offers a
highly automated and powerful way of performing volumetric
analysis. We will follow our previous work on a method for
regional volumetric analysis, referred to as Regional Analysis
of Volumes Examined in Stereotaxic space (RAVENS) [35].
Consider a brain image, I , with sufficient contrast to allow seg-
mentation into three major tissues: gray matter, white matter,
and cerebrospinal fluid (CSF). This approach can be generalized
to include an arbitrary number of tissue types. Apply a spatial
transformation that morphs this brain to a template brain, such
as an atlas. To each point in the atlas, attach one counter for each
tissue, whose purpose is to measure a small volume (in the con-
tinuum, an infinitesimal volume). Take each point in I and map
it to some point in the template, according to this spatial trans-
formation. According to the type of the tissue being mapped
to the template, increment the corresponding counter in the
arrival location by the volume of the tissue contained in a dis-
crete image element. This procedure results in a number (three
in our case) of spatial distributions in the stereotaxic space, one
for each tissue. If the counters in each location in the stereotaxic
space are put together to form three images, one for each tissue,
then the intensity of each image is proportional to the amount
of tissue present in that particular brain.

We will make this more specific through an example.
Figures 17.9a and 17.9d show a representative magnetic res-
onance image for each of two individuals. Figures 17.9b and
17.9c show the corresponding spatial distributions of the ven-
tricular CSF. Following the definition of these spatial maps, if
we integrate the density of the images in Figures 17.9b and 17.9c
within the ventricular region, we will obtain the volumes of the
ventricles in the original images. This is in agreement with the
fact that the image intensity of Figure 17.9b is higher than that
of Figure 17.9c (more ventricular CSF was forced to fit into
the same template for Figure 17.9a than for Figure 17.9d). The
important issue is that these images can be compared point-
wise, since the shapes of the ventricles of these two subjects
are almost identical to the shape of the ventricles of the tem-
plate. Therefore, highly localized differences can be detected
and precisely quantified. For example, if in a small region the
image intensity of Figure 17.9d is 20% higher than that of
Figure 17.9c, this reflects a 20% difference in the volume of the
ventricles in that region. Figure 17.9e shows a comparison of the
spatial ventricular CSF maps of 10 relatively older individuals
(average age: 75) with 10 relatively younger individuals (average

(a)

(b) (c)

(e)(d)

FIGURE 17.9 A demonstration of volumetric measurements using
the RAVENS approach. (a, d) Magnetic resonance images from two
individuals that present different degrees of atrophy. The brain in
(a) has much higher ventricles (the dark regions in the middle) than
the brain in (d). The corresponding distributions of ventricular cere-
brospinal fluid (CSF) in a Stereotaxic reference frame are shown in (b)
and (c); the brighter the image, the more ventricular CSF is present. It
is clear that the difference in these two subjects can be demonstrated
simply by subtracting the two images (b) and (c). (e) A color-coded
image of the difference between two groups, a relatively younger group
and a relatively older group. The red corresponds to regions of rela-
tively larger expansion of the ventricular cavities, resulting from the
loss of brain tissue with aging. (See also color insert).

age: 62). The red regions indicate relatively larger ventricles,
obtained after subtracting the average CSF map of the younger
group from the corresponding map of the older group, after
spatial normalization to the same template.

Although the ventricles were used for illustration purposes,
the primary interest of regional volumetric analyses is in mea-
suring volumes of gray matter and of white matter, which
might, for example, reflect neuronal or axonal loss with aging,
disease, or other factors. In Figure 17.10 we show the aver-
age distribution of gray matter obtained from 100 individuals
[36]. Regions of local atrophy caused by aging, for example,
can be identified by point-wise subtracting the correspond-
ing volumetric maps of a relatively older population from a
relatively younger population. A similar kind of analysis was
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adopted in [6] to point regions of local atrophy in Alzheimer’s
patients.

At this point we need to clarify an important issue. If
the spatial transformation that maps images from different
individuals is “perfect,” i.e., if it is capable of completely
morphing each brain to the template, then the resulting
transformed images will have the exact same shape, though
the intensities of the corresponding volumetric maps will vary
according to the original volumes. Under such a scenario, any
kind of average, like the one of Figure 17.10, will have exactly
the shape of the template to which each image was spatially
transformed. From Figure 17.10 this is clearly not the case,
especially in the cortical region. The fuzziness in Figure 17.10
reflects the imperfection of the spatial transformation. We note,
however, that volumetric measurements can still be obtained.
For example, in Figure 17.11 we have outlined the regions of
two brain structures, the lenticular nucleus and the caudate
nucleus, based on the average spatial distribution of the gray
matter. Notice that although these structures are not in perfect
registration (spatial coincidence) as revealed by the fuzzy
boundary of the average gray matter distribution, the margins
of the outlines counterbalance, to some extent, this problem,
allowing volumetric measurements to be obtained. This is
what makes the spatial normalization method described here
more robust than the deformation analysis method described
in Section 17.3: the inability to completely morph a brain to a
template affects the accuracy of the deformation analysis much

Lenticular
Nucleus

Cortex

Caudate Nucleus

FIGURE 17.10 The average gray matter distribution of 100 healthy
individuals is shown on the left. The atlas that was used as the template
in the spatial normalization of these 100 images is shown on the right.
A few representative structures that can be identified from the average
gray matter distribution are labeled and are also identified on the atlas
template. The reason why structures can be identified in the average
image on the left is that all 100 brain images were morphed to the same
target: the atlas on the right. (See also color insert).

FIGURE 17.11 The spatial normalization of images allows for the
collection of statistics on the volume of a particular structure over
a population. As it is demonstrated here for two structures, the cau-
date nucleus and the lenticular nucleus, a region that encompasses
the structure of interest in the average map, can be defined manually,
and volumetric measurements for each subject can be subsequently
obtained. This is possible because all images have been spatially
normalized to the same template.

more than the accuracy of the regional volumetric measure-
ments. We note, however, that the deformation analysis is far
more general than regional volumetrics, in that it measures not
only volumes, but also various shape parameters. Current work
in our laboratory focuses on the more accurate registration of
the relatively more variable cortical region [25].

17.4.2 Functional Activation Images

In the previous section we described a procedure for analy-
zing anatomical data in a standardized reference system, often
called a stereotaxic system, by morphing all brain images
into shape conformation with an anatomical template such
as a brain atlas. The same approach can be used for ana-
lyzing functional activation images, such as PET or fMRI
images. Perhaps the most widespread approach for functional
image analysis is based on statistical parametric mapping [37].
In this paradigm, images from many different individuals are
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first merged together, and regions that are consistently activated
during a particular task across subjects are identified through
elaborate statistical analysis methods. In order, however, to
properly combine functional images of different subjects, we
first need to remove anatomic variability. In [37], gross mor-
phological differences across subjects were accounted for using
a global polynomial transformation maximizing the similarity
of the spatially normalized functional images.

We have taken a different approach, which can potentially
improve the registration accuracy of the spatial normalization
procedure. In particular, we determine the spatial normal-
ization transformation from the relatively higher resolution
anatomic images of a subject. These images are first coregistered
with the functional images via a rigid body registration method
such as the ones in [38, 39]. The elastic warping of the anatomic
images is then determined, as described in the previous sections.
The same transformation is finally applied to the coregistered
functional images, mapping them to the stereotaxic space.

Figure 17.12 demonstrates the procedure for mapping a
PET image to the Talairach stereotaxic space. The spatial
transformation here was determined from the corresponding

FIGURE 17.12 A spatially normalized positron emission tomogra-
phy (PET) image, overlaid on the digitized atlas image used as the
template. The spatial transformation was determined from a higher
resolution anatomical image of the same subject, and was subsequently
applied to the lower resolution PET image. The PET and the anatomic
images were first brought into alignment by correcting for position
and orientation differences. (See also color insert).

FIGURE 17.13 (Left, right) Two spine images of two different indivi-
duals. (Middle) An elastic transformation of the image on the left that
brings the spine into registration with the one on the right. If a num-
ber of images are spatially transformed to match the same template,
then correlations between the location or size of a spinal lesion and
concomitant clinical symptoms, such as pain, can be readily calculated.

anatomic image, whose axial resolution was 1.5 mm. The spa-
tially normalized PET image is overlaid on the atlas associated
with the Talairach space, showing a good spatial correspon-
dence between the morphed PET image and the target template
image. Our experiments have shown that a substantial increase
in the accuracy and sensitivity of activation focus detection can
be achieved this way [40].

17.4.3 Other Applications

The problem of spatial normalization does not appear only
in the analysis of structural and functional images of the brain.
It appears, more generally, in applications in which image
data from different subjects must be combined and analyzed
together. In particular, in order to merge and directly com-
pare images from different individuals, morphologic variability
must first be removed. More specifically, images from different
subjects must be transformed spatially so that they all reside
in the same coordinate system, with anatomically correspond-
ing regions being in similar locations. Another representative
case in which spatial normalization is necessary is in studying
the relationship between spinal damage and associated pain or
other clinical symptoms. Figure 17.13 shows two spine images
of different individuals, as well as the elastic warping of one of
the images that brings the spinal region into registration with
the other. If this procedure is applied to a number of patients,
then associations between the location of a lesion in the spinal
region and clinical symptoms can be precisely quantified, and
it can be used in surgical planning.

17.5 Conclusion

We have presented some of the recent developments in the
field of computational models for brain image analysis. Despite
their many current limitations, modern computational mod-
els for brain image analysis have made it possible to examine
brain structure and function in greater detail than was possible
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via traditionally used methods. For example, such models will
soon allow us to obtain structural and functional measurements
regarding individual cortical gyri or sulci, not merely of larger
structures such as lobar partitions of the brain. Moreover, we
will be able to perform such measurements on large numbers of
images because of the high degree of automation of algorithms
emerging in this field.

Despite the recent progress, several issues will need to be
addressed in the future. In particular, most investigators have
focused on analysis methods for the normal brain, or for a
brain that has been affected in relatively subtle ways by a dis-
ease. Hence, it has been possible to map brain images from
one individual to those of another via transformations that are
one-to-one and onto. However, in many cases, gross morpho-
logical changes occur in the brain, such as in the development
of tumors. Models that deal with such cases are still in their
infancy [41, 42]. As a second example, we note the analysis
of images from animals whose genetic composition is altered,
so that morphological and physiological effects can be mea-
sured [43]. Such genetic mutations can cause abnormalities
well beyond the ones that can be handled by current models
and algorithms.

Computational neuroanatomical models will evolve in
various directions during the next decade. However, the main
foundation that allows investigators to examine brain structure
and function in precise, quantitative ways has already been
laid.
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18.1 Introduction

Tumor growth modeling is the study of complex dynamics of
cancer progression using mathematical descriptions. Internal
dynamics of tumor cells, their interactions with each other
and with their surrounding tissue, transfer of chemical sub-
stances, and many other phenomena are encoded in formu-
lae by mathematical abstractions. These abstractions rely on
biological and clinical observations coming from different
sources.

Mathematical growth models offer important tools for both
clinical and research communities in oncology. They give us
the opportunity to interpret and integrate experimental results
made in diverse fields of cancer research by providing a common
mathematical ground to combine them in. Moreover, models,
which can be adapted to patient-specific cases, could be used
for quantification of apparent growth by extracting invasion
speed, for therapy planning by suggesting irradiation regions
adapted to growth dynamics, and for optimal dose/temporal
planning in chemotherapy. The role of image analysis is to serve
these purposes by building the link between theoretical growth
models and medical images, and quantify factors that cannot
be observed directly (e.g., extent of the tumor, deformation of
the brain, effect of therapy, etc.).

There has been a vast amount of research conducted on
tumor growth modeling during the past 20 years. These works

can be coarsely classified into two different groups, microscopic
and macroscopic models, based on the scale of observations
they try to explain. Microscopic models, forming the major
class, concentrate on the microscopic observations such as
in vitro and in vivo experiments. They formulate growth
dynamics at the cellular level using the observables at that
scale, e.g., internal dynamics of cells, vascularization, and acid-
ity. Macroscopic models, on the other hand, concentrate on the
macro scale like medical images and histological slices, where
the types of observations are different. Average behavior of a
large number of tumor cells, differentiated invasion of white
matter and gray matter, the mass effect of tumor growth, and
growth at patient-specific geometry are types of phenomena
formulated by such models.

Despite the large amount of research conducted on growth
models at microscopic scale, macroscopic models using med-
ical images and image analysis tools based on such models
are still in their dormancies. In this chapter, we would like to
provide an overview of recent works in this field for the case
of brain tumors. In Section 18.2 we review recently proposed
macroscopic growth models and explain different approaches.
Different tools proposed for therapy planning based on these
models will be presented in Section 18.3. Section 18.4 gives
details about application of tumor growth modeling to reg-
istration and segmentation problems. Finally, Section 18.5
concludes with awaiting challenges and perspectives.

Copyright © 2008 by Elsevier, Inc.

All rights of reproduction in any form reserved. 305



306 Handbook of Medical Image Processing and Analysis

18.2 Mathematical Models

Observations at the macroscopic scale take several forms, with
medical images, computed tomography (CT) scans, and mag-
netic resonance images (MRI) being the most common ones.
Since resolutions of these observations are limited, typically
around 1× 1× 1 mm3 in the best case, observable factors are
limited as well. Macroscopic models try to combine knowl-
edge coming from experimental research and biology with these
observables, such as boundaries of the brain, gray-white matter
segmentation or water diffusion tensors, to formulate tumor
growth.

Macroscopic tumor growth models can be classified in two
different classes in terms of the tumor-induced effect they
explain: mechanical models, which concentrate on the mass
effect of the tumor on the brain tissue, and diffusive models,
which concentrate on the invasion of surrounding tissue by
tumor cells. We use this classification to group different models
in this section. In terms of mathematical formulations, on the
other hand, the major part of macroscopic models uses con-
tinuum, where tumor cells are assumed to form a continuous
distribution. As a result, formulations contain several ordinary
and/or partial differential equations. Recently, some discrete
macroscopic models have also been proposed, using similar
ideas to cellular automata. Such models result in a certain set of
probabilistic rules for individual cells or groups of cells.

18.2.1 Diffusive Models

Almost all macroscopic models, which formulate the growth
process concentrating on the invasive nature of the tumor,
use the reaction-diffusion formalism [1]. The “building block”
equation of this formalism is the reaction-diffusion type PDE
given as

∂u

∂t
= ∇ · (D∇u)+ R (u, t ) (18.1)

η · (D∇u) = 0, (18.2)

where u is the tumor cell density, ∂/∂t is the differentiation
operator with respect to time, D is the diffusion tensor for
tumor cells, and R(u, t ) is the so-called reaction term. This
equation isolates two different characteristics of the tumor
growth in two terms: diffusion and proliferation. The first
term on the right-hand side, ∇ · (D∇u), describes the inva-
sion of tumor cells by means of a Brownian motion, which
is characterized by the diffusion tensor D. The second term
in the equation, R(u, t ), describes the proliferation of tumor
cells. Population growth equations are commonly used for this
term, as summarized in Table 18.1. Equation 18.2 represents
the no-flux boundary condition that is applied at the brain
boundary (skull and ventricles) with normal directions η, for-
mulating the fact that tumor cells do not diffuse into these
structures.

TABLE 18.1 Commonly used population growth terms. (See also
color insert).

Exponential (green) Gompertz (red) Logistic (blue)
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One of the first models working with the reaction-diffusion
formalism was proposed by Cruywagen et al. in [2]. They argue
that a growth model using Equation 18.1 consisting of a single
population was not able to capture the growth dynamics seen
in CT images. Hence, they proposed to use a model with two
different populations of tumor cells, which couples them using
two equations of the form of Equation 18.1, each describing a
different population. Through coupling terms, they were able
to describe the competition between populations for nutrients
and growth factors. The second population of tumor cells was
assumed to be a mutation of the first type. The occurrence of
these cells was attributed to the use of chemotherapy and/or
radiotherapy, based on the observation that therapy agents
cause cells to mutate into more resistant types. The authors
also included the effect of treatment in their model as a con-
stant cell loss mechanism, which is basically another reaction
term. Their final formulation had the form

∂u1

∂t
= Du1∇2u1 + f (u1, u2)− C1(u1, t )

∂u2

∂t
= Du2∇2u2 + g (u1, u2)− C2(u2, t ),

where reaction terms f and g describe the coupling between
tumor populations given by u1 and u2, while C1 and C2 formu-
late effects of therapy. In this model the invasion of tumor cells is
formulated as an isotropic-homogeneous diffusion where speed
of diffusion was given by coefficients Du1 and Du2 .

In [3], Swanson et al. revised the isotropic homogeneous
diffusion assumption made in previous works. Under the influ-
ence of the experimental results of Giese et al. regarding
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the differential motility of tumor cells on gray and white
matters [4], they formulated the invasion of tumor cells by
isotropic-nonhomogeneous diffusion. Hence, diffusion tensor
D of Equation 18.1 was assumed to be isotropic but nonho-
mogeneous; in other words, its form was given as D = d(x)I ,
where I is the identity matrix and d(x) is spatially vary-
ing the diffusion coefficient. d(x) took two different values
in the white matter, dw , and in the gray matter, dg , where
dw >>dg corresponding to the observation that tumor cells
move faster on myelin. In this work, only one population was
used, and again the no-flux boundary conditions were applied.
For the reaction term, the authors used exponential growth,
taking into account only the proliferation of tumor cells (see
Table 18.1). Later on, Swanson et al. in [5] also included the
effect of chemotherapy in this model through a negative reac-
tion term. Instead of modeling the effect of therapy via a
constant cell loss, they took into account the temporal effective-
ness of drugs used and also the possible spatial heterogeneity
of drug efficacy. In these works, by comparing with real cases,
the authors show that such models are successful in predicting
survival times.

Extending the idea of Swanson et al., regarding the differential
motility of tumor cells on different tissues, Clatz et al. and later
Jbabdi et al. included anisotropy to the invasion mechanism
of tumor cells [6, 7]. They modeled the diffusivity of tumor
cells through an anisotropic-nonhomogeneous diffusion. The
assumption they made is that tumor cells not only move faster
on myelin, but also follow the white matter fiber tracts in the
brain. They constructed the tumor diffusion tensor (TDT) from
the water diffusion tensor using magnetic resonant diffusion
tensor images (MR-DTI). Although methods of construction
of the TDT were different in these works, the main idea was
to assign isotropic diffusion in the gray matter and anisotropic

diffusion in the white matter having greater diffusion along the
fiber direction, as given in Table 18.2.

When the anisotropy of tumor diffusion is included in the
formulation, these models were able to capture the “spiky”
and fingering patterns of tumors observed in the images; see
Figure 18.1. Both works proposed an evaluation of their mod-
els by comparing visible tumors in the MR images with the ones
simulated with the model.

Besides the continuum formulations explained previously,
recently Stamatakos et al. proposed to use a cellular automata-
based algorithm to model tumor growth in medical images
[8, 9]. Their model discretizes the visible tumor volume in the
T1–weighted MR image into mesh cells containing groups of
tumor cells. They explain growth by assigning certain proba-
bilistic sets of rules to every mesh cell, which define cell cycle
dynamics for the group of cells inside. These rules take into
account nutrition distribution throughout the tumor, effect of
abnormal p53 gene expression, and type of metabolic activ-
ity of the cell in assigning transition probabilities between
different phases of the cell cycle, mitosis, apoptosis (con-
trolled death of cells), and necrosis (infected death of cells).
As a result, the growth phenomena are explained by the cell
cycle dynamics, which is governed by probabilistic transition
rules. Although some of the parameters are not appropri-
ately observable in medical images, they are modeled based
on assumptions coming from biological experiments. As an
example, the nutrition distribution is taken to be decreas-
ing homogeneously from the periphery of the tumor to the
center. Their model does not take into account the infil-
tration of tumor cells, but rather only the growth through
mitosis. Through the probabilistic nature of their model,
they were able to obtain realistic-looking differentiated tumor
growth.

TABLE 18.2 Differential motility between white and gray matter. The fiber tract is along the y-axis in the second
image (the form used in [6]). α is the multiplicative constant between gray and white matter motility, and f is the
relation between water diffusion and tumor diffusion. (See also color insert).
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FIGURE 18.1 Diffusive models including anisotropy in the tumor diffusion are able to capture the spiky nature of tumor growth.
Figures show evolution of the tumor in two different slices. The first, two columns show the initial image and initial state of the
model, respectively, while the third column shows the tumor after 6 months, and the fourth column shows the evolved tumor using
the model given in [6]. (See also color insert).

18.2.2 Mechanical Models

Mechanical models, which concentrate on the mass effect of the
tumor, contain two distinct formulations: one for the tumor
growth and one for the mechanical characteristics of the brain
tissue. These models couple the two formulations, to describe
the mechanical interactions between tumor growth and brain
tissue leading to deformations. There have been many different
works on characterizing the mechanical properties of the brain
tissue, which is deformable but not elastic. In [10] it is said that
the brain tissue is a sponge-like material, possessing instan-
taneous properties of elastic materials and time-dependent
properties of the viscoelastic ones. Moreover, there is a great
variation in the elastic parameters of different type of brain tis-
sues, as well as in the parameters of similar types. Instead of
formulating such complex mechanical characteristics, almost
all models use simplifying assumptions.

Wasserman et al. proposed one of the first mechanical mod-
els in [10]. In this 2D model, they assumed the brain tissue is
a linear elastic material for which stress-strain relations can be
given by the generalized Hooke’s law. Moreover, the amount of
strain caused on a given volume, by a specific amount of stress
(Young’s modulus), was proportional to the density of brain
tissue in that volume. For the tumor growth part, they assumed
a very simple formulation including only the proliferation of
cells, in which the rate of mitosis was set to be constant.

The coupling between the growth and constitutive equation
of the tissue was established by assigning a homogeneous pres-
sure proportional to the number of tumor cells per volume.
Through this coupling, they were able to model the growth of
the tumor under mechanical constraints and the interactions
in CT images.

In [13], Kyriacou et al. assumed that brain tissue can be better
characterized by a nonlinear elastic material than a linear one.
They modeled white, gray, and tumor tissue as nonlinear elas-
tic solids obeying equations of an incompressible, nonlinearly
elastic neo-Hookean model. With the introduction of nonlin-
ear elasticity into the model and the use of nonlinear geometry,
they were able to describe large deformations through their
formulation. Tumor growth was kept as a pure proliferation
process with uniform growth causing uniform outward strain.
They applied this model in registering images of patients with
tumor-induced deformations to brain atlases. Their 2D model
was applied to individual cross-sectional images obtained by
CT or MR.

Mohamed and Davatzikos extended this model by modeling
the brain tissue as an isotropic and homogeneous hyperelastic
material [11]. With this change, they relaxed the incompress-
ibility assumption made in [13] and ignored the viscous effect,
keeping in mind that times related to deformations were very
large compared to viscosity time constants. In addition to
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modeling the mass effect due to bulk tumor growth, they also
took into account the expansion caused by the edema and
the fact that part of the mass effect should be attributed to
edema. They also assumed a proliferation model for the tumor
growth, which had a constant mitosis rate. Coupling of tumor
growth and mechanical interactions was done the same way as
in Wasserman’s model. As in the work of Kyriacou et al., this
model was also able to describe large deformations. In [12],
Hogea et al. reformulated the model within a general Eulerian
framework, with a level-set-based approach for the evolving
tumor aiming at a more efficient method; see Figure 18.2. They
also mentioned that for patient-specific models, parameters
should be found via solving an inverse problem. However, this
work aimed to generate a large number of brain anatomies
deformed by simulated tumors; hence, they did not concen-
trate on the patient-specific modeling. In order to validate their
model, they compared deformations seen in MR images with
the ones simulated with their models.

In most mechanical models, the tumor growth process
has been kept simple and has been associated only with the
proliferation of the tumor. Clatz et al. combined two approaches

FIGURE 18.2 Models can model large deformations due to tumor
growth and edema. Simulated tumor growth in a normal brain tem-
plate, starting from a small initial seed, orbital-frontal left, using the
modeling framework in [11] and [12]. Left: Original healthy seg-
mented brain template (axial, sagittal, coronal) with a small tumor
seed; Right: Corresponding deformed template with the grown tumor
at the end of the simulation. Large deformations can be clearly
observed.

of the macroscopic modeling in [6] to create a formulation for
glioblastoma multiforme (GBM). They formulated the inva-
sive nature of the tumor growth, besides proliferation, and the
deformation this causes on the brain tissue. They assumed that
brain tissue is a linear viscoelastic material, which can be mod-
eled using a static equilibrium equation, since the time scale
of tumor growth is very large. The coupling of the growth
with the mechanical deformation in brain tissue was estab-
lished using two different mass effects: one for the bulk tumor
and the other for the tumor-infiltrated edema. The effect of bulk
tumor was set as a homogeneous pressure caused by the volume
increase as a result of cell proliferation. The mass effect of the
tumor-infiltrated edema included the effect of invasion through
a stress term that contained tumor cell density as given in
Equation 18.3

∇ · (σ − λI3c)+ fext = 0(3), (18.3)

where ∇· is the divergence operator, σ is the strain tensor, c is
the tumor cell density at a location, and fext is the external force.
Using their model, they were able to simulate both the invasion
and the mass effect simultaneously.

18.3 Image-Guided Tools for Therapy
Planning

The tumor growth models explained in the preceding section
formed the basis for several recently proposed therapy tools.
Using the dynamics of the tumor growth, they can provide
realistic simulations of the therapy or predict the extent of the
tumor. Such tools aim at helping clinicians in planning the ther-
apy course by quantifying and predicting the efficacy of a given
scheme. As noted previously, several authors have included
the effect of therapy in their models, specifically chemother-
apy. Cruywagen et al. [2] modeled the effect of drugs through
a constant cell loss mechanism using a negative reaction
term. Swanson et al., improving this idea, formulated tempo-
ral effectiveness of the drug and spatial heterogeneity of its
efficacy.

Recently in [8], Stamatakos et al. modeled the effect of
chemotherapy based on their cellular automata growth model,
which was explained in the previous section. The effect of the
drug is included as damage to each cell, which, if large enough,
drives the cell to apoptosis. The relation between drug dose
administered orally (D) and the plasma concentration (Cp) the
tumor encounters is given by the relation

Cp = FDka

Vd(ka − kel)

(
e−kel t − e−ka t

)
, (18.4)

where F is the fraction of drug reaching the circulation, Vd is
total volume the drug will distribute in, t is time elapsed since
drug administration, and ka and kel are the absorption and
elimination rate, respectively. For those parameters that are not
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observable through clinical situations and medical images, like
ka , population mean values proposed in the literature are used.
The damage given to a cell is computed through the survival
fraction

SF = e−KSF TSF Cp , (18.5)

which depends on KSF , the survival fraction constant, and
TSF , the duration of exposure of tumor cells to the drug.
Equation 18.5 depends on the type of drug used, and the given
form is for the drug called TMZ, which the authors used in
their simulations. Using this model, they simulated two differ-
ent oral administration schemes with three different doses and
compared the outcomes in terms of the number of remaining
active tumor cells. Using probabilities for cell cycle and drug
damage, they captured the stochastic nature of the therapy and
tumor growth. In their simulations they used the drug TMZ
and patient data with a high-grade glioma. They started using
the real tumor delineation and demonstrated a virtual realistic
evolution; see Figure 18.3.

In another work of the same group [9], Stamatakos et al.
used their cellular automata-based model in modeling the effect
of radiotherapy and simulating therapy. They included in the
model the damage caused in tumor cells (group of cells in
their case) due to irradiation. This is explained by survival
probabilities given by the linear-quadratic model

S(D) = exp
[− (

αD + βD2
)]

. (18.6)

S(D) is the survival probability of a cell given that it takes D
dose of irradiation (in Gy). The α and β parameters define the
radiosensitivity of the cell, and they vary according to the phase
of the cell-cycle, p53 gene expression, and the metabolic activ-
ity type of the cell (oxic or hypoxic). Parameters not observed
from medical images are set by assumptions and mean values
obtained from experiments in biology. Their model was able to
demonstrate conformal shrinkage of the tumor due to irradi-
ation, which is observed in real cases. Using their model, they

(a) (b)

(c) (d)

FIGURE 18.3 (Left ): An MRI slice depicting a glioblastoma multiforme tumor. Both the gross
volume of the tumor and its central necrotic area have been delineated. The same procedure has been
applied to all MRI slices. (Right ): 3D visualization of the simulated response of a clinical glioblastoma
multiforme tumor to one cycle of chemotherapeutic scheme (150 mg/m) orally once daily for 5
consecutive days/28–day treatment cycle, [fractionation scheme (a)]. (a) External surface of the tumor
before the start of chemotherapy, (b) internal structure of the tumor before the start of chemotherapy,
(c) external surface of the tumor 20 days after the start of chemotherapy, and (d) internal structure
of the tumor 20 days after the start of chemotherapy. Pseudocolor Code: red: proliferating cell layer,
green: dormant cell layer (G0), blue: dead cell layer. The following 99.8% criterion has been applied:
If the percentage of dead cells within a geometrical cell of the discretizing mesh is lower than 99.8%,
then [if percentage of proliferating cells > percentage of G0 cells, then paint the geometrical cell red
(proliferating cell layer), else paint the geometrical cell green (G0 cell layer)], else paint the geometrical
cell blue (dead cell layer) [8]. (See also color insert).
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simulated standard and hyper fractionation of irradiation and
compared these two strategies through simulation. Although
they obtained realistic results, several phenomena are not taken
into account in their model, such as infiltration of tumor cells
and the effect of irradiation on the surrounding healthy tissue.
As in the case of the chemotherapy modeling work, simulations
start from the real tumor delineation and demonstrate a virtual
evolution.

Konukoglu et al. proposed a different kind of tool for radio-
therapy in [14], which extrapolates the extents of the tumor
invasion not visible in MR images from the visible part. Their
formulation aims to create irradiation regions that take into
account tumor growth dynamics rather than the conventional
1.5–2.0 cm constant margin around the visible tumor. Based on
the reaction-diffusion formalism, they deduced the anisotropic
Eikonal equation

√∇u · (D∇u)√
ρu

= 1, u(	) = u 0, (18.7)

describing the extents of the tumor starting from the visible
tumor contour in the MR image. In the equation u is the
tumor cell density (or probability of finding a tumor cell),
D is the diffusion tensor constructed in the same spirit as
the works proposed by Clatz et al. [6] and Jbabdi et al., ρ
is the proliferation rate, 	 is the visible tumor contour in
the image, and u 0 is the density of tumor cells assumed to
be constant on 	. By including the different tissue structures
and the fiber directions in their formulation, they quantify the
effect of these factors on the tumor extent. They used artifi-
cial tumors grown in the images of a healthy subject using the
reaction-diffusion formalism. In order to show the discrepancy
between the constant margin irradiation region and the tumor
extent computed using Equation 18.7, they compared both
with the real distribution of the artificial tumor, as shown in
Figure 18.4.

18.4 Applications to Registration and
Segmentation

Tumor growth models, besides being used to create therapy
planning tools, have been used to aid registration and segmen-
tation tools as well. Problems of brain tissue segmentation and
atlas-to-patient registration in the presence of a pathology have
received attention from the medical imaging community for
a long time. Lately, there have been several works proposed
for these purposes using the tumor growth dynamics. These
works can be classified into two related groups: atlas-to-patient
registration and synthetic image creation consisting of a tumor.

18.4.1 Registration

The registration of an anatomical atlas to a patient with a brain
tumor is a difficult task due to the deformation caused by
the tumor. Registration algorithms proposed for normal-to-
normal registration fail due to this reason. Recently, several
authors proposed to include the tumor growth models in
their registration algorithms to tackle this difficult task. The
important ingredient that growth models can add is the quan-
tification of the tumor-induced deformation on the brain
structures through model parameters. Proposed algorithms use
these model parameters in separating the deformation field
between the atlas and the patient into intersubject variation
and tumor-induced parts during the registration process.

Kyriacou et al. proposed one of the first atlas-to-patient reg-
istration algorithms based on the tumor growth dynamics [13].
Starting from the patient image, their algorithm first simulates
the biomechanical contraction in the case of the removal of
the tumor to estimate patient anatomy prior to the tumor.
A normal-to-normal registration between the atlas and the
tumor-free patient brain follows this contraction. At this point
instead of deforming the registered atlas with the inverse of
the deformation field obtained during the contraction, they

FIGURE 18.4 (Left ): In red we see the tumor delineation with the constant margin irradiation region
in white. The visible tumor contour corresponds to the extents of this region. Middle: Extent of tumor
infiltration computed by the model given in [14]. Probability of finding tumor cells decrease from red
to blue. (Right ): The computed invasion region is drawn with the constant margin region. The blue
part shows tumor-infiltrated regions affected by the irradiation, green parts show infiltrated regions
not irradiated, and brown parts show regions not infiltrated according to the model but irradiated
with the constant margin approach. (See also color insert).
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perform a nonlinear regression in order to estimate the tumor
growth parameters that would best fit the observed tumor-
induced deformation. These parameters represent the center
and the amount of expansion of the tumor. Once the parameters
are estimated, they perform the biomechanical tumor growth
inside the registered atlas to obtain the final atlas-to-patient
registration, in 2D.

In contrast to separating the deformation caused by the
tumor and the deformation explaining intersubject variabil-
ity, in [15], Cuadra et al. proposed to combine these two in
a nonlinear demons-based registration algorithm [16] for the
atlas-to-patient registration. The algorithm starts by placing
the two brains on the same frame and scale using a global
affine registration. An expert manually places the tumor seed
on the affinely registered atlas, which corresponds to its place
in the patient image. The seeding is followed by a nonlinear
registration algorithm with adaptive regularization. The tumor
growth is modeled as an outward pressure, causing radial dis-
placement of the surrounding structures. The authors included
this displacement field in their registration algorithm to take
into account the tumor-induced deformation.

Mohamed et al. took a statistical approach for the atlas-to-
patient registration problem in [17]. They proposed a statistical
model on the deformation map created by applying a non-
linear elastic registration to match an atlas with the patient
image. This model is based on the fact that although normal
registration techniques would fail in the vicinity of the tumor,
they will provide the right deformation field for the other
parts. Their statistical model uses the space of displacement
fields and decomposes any deformation field on two orthogonal
hyperplanes, one describing the tumor-induced deformations
and the other intersubject variability. The formulation of the
hyperplanes is done by principal component analysis (PCA)
assuming linearity of the governing space and that displacement
fields are realizations of two independent Gaussian random
vectors. The training of the PCA for the intersubject variabil-
ity is implemented with samples obtained from registering the
atlas to a dataset of healthy subjects. On the same dataset, they
grow artificial tumors using their growth model explained in
Section 18.2.2 for different sets of growth parameters, includ-
ing center of the tumor, expansion of the tumor, and the
edema extent. These instances serve as the training samples
of the PCA for the tumor-induced deformation. When a new
patient image is encountered, they decompose the deformation
field and find the tumor growth parameters specific for the
patient with

Uf ≈ μc + Vc a + μd + Vd b, (18.8)

where Uf is the total displacement field, μc and Vc are the
mean and covariance matrix displacement fields for intersubject
registration, andμd and Vd are the same identities correspond-
ing to tumor-induced deformation. Once the deformation field
linking atlas to subject and tumor growth parameters are

found, the atlas is registered and the tumor is grown in it.
Zacharaki et al. in [18] proposed to improve the registration
algorithm used in this work by a more flexible one, based on
the HAMMER algorithm [19], taking into account the fact that
around the tumor region, the deformation field is distorted
when the tumor model parameters are not optimal. To tackle
this, they introduced a patient-specific optimization framework
based on similarity matching and smoothness properties of the
deformation around the tumor; see Figure 18.5.

18.4.2 Segmentation

Another application of tumor growth modeling is the syn-
thetic dataset creation for validating segmentation algorithms.
Presence of a tumor is a big challenge for the segmentation
algorithms. Algorithms are compared with expert manual seg-
mentations for validation and performance analysis. Manual
segmentations, however, show high interexpert variability and
contain human error due to fatigue and other reasons. In order
to tackle this problem, authors proposed several approaches to
generate synthetic realistic MR images containing tumors, for
which ground truths are known and can be used for valida-
tion and analysis. There are two different subproblems for the
generation. One of them is to simulate the tumor growth realis-
tically. The other one is to mathematically describe the effect of
tumor growth on MR signal intensities, in other words, how
the image intensities change in different parts of the image
(e.g., edema, actively proliferating tumor region, tumor free
part, …).

Rexilius et al. proposed one of the first models for this prob-
lem in [21]. They modeled the tumor with three compartments:
the active tumor tissue, the necrotic (dead) tumor core, and the
edema. The active tissue and the necrotic part are drawn in
the desired location with the desired size. Later, reasonable gray
values are assigned to these regions, including Gaussian noise
to make the intensities realistic. As an example, in the case of
a contrast-enhanced T1w image, the realistic values included
contrast accumulation in the active tumor part. The mass effect
of the drawn tumor is applied to the underlying healthy subject
MR image assuming linear elastic material properties for tis-
sues. The growth is simulated by a radial displacement applied
to surrounding tissues using finite element methods. Lastly for
the edema, they use the distance transform of the tumor on
the white matter mask of the underlying image and deform it
with the same mass effect applied to the brain. Based on the
resulting distance transform values, they assign intensity values
corresponding to edema infiltration.

In order to create more realistic MR images, Prastawa et al.
tackled the same problem using a more sophisticated tumor
growth model and adding contrast accumulation properties of
different tissues [20]. They adopted the growth model proposed
by Clatz et al. [6]. In addition to this model, in their formulation
they took into account the displacement and destruction of
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(a)

(b)

FIGURE 18.5 Left to right: (a) The atlas image with manually labeled regions, the patient
image, the atlas to patient registration result using the algorithm explained in [17], which
includes tumor growth modeling. (b) The selected labels in the atlas are warped and
correspondingly superimposed on the patient’s image. (See also color insert).

white matter fibers using image warping and nonlinear
interpolation, based on the observations of Lu et al. [22]. For
the image generation part, they modeled the contrast agent
diffusion inside the brain using the reaction-diffusion formal-
ism. Using such a formulation, they were able to simulate the
high-contrast accumulation in cerebrospinal fluid (CSF) and
in active tumor regions. As a result, they obtained realistic-
looking synthetic data with contrast irregularities, as shown in
Figure 18.6.

18.5 Perspectives and Challenges

In this chapter, we have tried to review some works on mathe-
matical tumor growth modeling and its applications in medical
image analysis. Rather than being a complete review on this sub-
ject, this chapter is an attempt to highlight the main approaches
and applications.

In terms of realistically modeling the growth phenomena,
some solid attempts have been taken; however, there are very
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FIGURE 18.6 The upper row shows the synthetic images of a brain with meningioma using
the algorithm proposed in [20]. T2w, contrast enhanced T1w and T1w images from left to
right. The bottom row shows the same images coming from a real patient.

exciting challenges awaiting to be solved. Tumor growth is a
very complex phenomenon, including different scales of ingre-
dients from genetic to macroscopic. The biggest lacking point at
the moment is the link between these scales. Observations that
can be obtained from medical images are limited, and obtaining
microscopic observations for a large view area is not possible
at the moment. One approach that can be taken to tackle this
problem would be to include information from different imag-
ing into growth models. Combining techniques such as positron
emission tomography (PET), magnetic resonance spectroscopy
(MRS), and functional-MRI (fMRI) would yield information
about nutrient, oxygen, and metabolite levels in the tumor, pro-
viding an opportunity to integrate microscopic phenomena in
macroscopic models and for patient-specific applications.

Personalization of the tumor growth models and therapy
models summarized in this chapter is an important missing
link between mathematical methods and clinical applications.
Interpatient variation of parameters can be large; hence, obtain-
ing the necessary parameters automatically through inverse
solutions is a required step in adapting general growth models to
individual patients. Such inverse solutions also serve as quantifi-
cation tools that can assess the efficacy of therapy or understand
the amount of deformation caused, as seen in Section 18.4.1.
Moreover, intrapatient variation of these parameters has not
been studied yet. Variation within the same tumor would yield
different growth patterns than those caused by a specific set of
parameters. The heterogeneity in a single tumor can be very
high as well, strengthening the need for stochastic approaches
for tumor growth models.

Another big challenge for creating more accurate models
is the lack of a proper quantitative validation technique. For
macroscopic models, the comparison is done with observed
medical images that are not able to visualize the whole tumor.
Although some quantitative validation methods were proposed
by some authors [6,11], the field still lacks a golden standard in
validation methodology.

Improving imaging techniques and more accurate models
will yield valuable tools for clinical oncology in the future.
Patient-specific models combining information from differ-
ent scales will enable us to perform patient-specific sim-
ulations. Such simulations, both of therapy and of simple
growth, will aid in patient treatment and, we hope, improve
prognosis.
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19.1 Introduction

Because of the critical nature of its function, distributing oxy-
genated blood from the heart to all the organs of the body, the
arterial vascular system has been the object of extensive study in
medicine. Since a significant portion of human morbidity and
mortality is associated with vascular diseases, diagnostic imag-
ing methods for blood vessels, especially arteries, have received
a great deal of attention in the research arena. New imaging and
image processing methods produced by the research are often
rapidly and routinely applied in the clinic.

Planar X-ray films were the only viable diagnostic imaging
method available for many decades after Roentgen’s discovery of
the new light. Methods to enhance the quality of X-ray images
of the vasculature were investigated before the turn of the
century, for instance, the injection of mercury into the vessels
of cadaver limbs and organs [1]. Much later, with the improve-
ments in nuclear medicine imaging methods and ultrasound in
the 1950s and ’60s, these techniques were applied to advantage
to the vascular system, the former for visualizing and quantify-
ing perfusion defects, and the latter for estimating parameters
such as blood velocity and ventricular ejection fraction. Even
more recently, computed tomography (CT) and magnetic
resonance imaging (MRI) have provided the possibility of true
three-dimensional imaging and characterization of vascular
structures and arterial tree morphology. For static vessels CT
and MR angiography (CTA and MRA) are already capable
of producing useful volumetric data sets in which stenoses,
aneurysms, and other pathological features can often be
appreciated and measured with greater clarity and confidence
than is possible with planar projection images. Unfortunately,
the rapid and significant movement of the heart, whose vessels

are of paramount interest, makes the coronary vasculature
challenging to image even with planar, but especially with
(generally slower) 3D imaging modalities. Electron beam CT
(EBCT) and fast MRA methods show promise of being capa-
ble of freezing heart motion by virtue of data collection times
on the order of tens of milliseconds. During the next several
years, improvements in MR gradients and other relevant tech-
nologies promise to move 3D MRA into the clinical arena. Fast,
multi detector-bank, spiral CT may also make CTA a contender
for truly three-dimensional clinical imaging of moving vascular
structures.

In the biological context, morphology might be defined as
the study of the structure, configuration, shape, or form of
animals or organs. Morphometry, then, relates to the process
and methods by which measurements of form or structure
are made. Arterial tree morphometry is important because the
structure, especially lumen diameters and branching patterns,
of a space-filling network of pipes has a profound impact on
its function of distributing and delivering fluid into a three-
dimensional space. For example, flow is proportional to the
fourth power of diameter, so the absolute patent diameter of
vessels is possibly the most fundamentally sought-after quan-
tity obtainable from diagnostic vascular images. The rate at
which arterial branches taper to ever smaller diameters deter-
mines the level (that is to say, the vessel size range) in the
tree hierarchy that contains the resistance vessels: the primary
site of resistance to flow. It is widely accepted that endothe-
lial cells lining the arteries are responsive to shear stress. For
example, they may produce factors that signal smooth muscle
cells in the vessel media to proliferate, a phenomenon at the
root of a number of serious diseases, including systemic and
pulmonary hypertension. Since the total flow through the tree is

Copyright © 2008 by Elsevier, Inc.
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knowable, characterization of the tree morphometry may make
possible the identification of sites of increased shear stress that
may become sites of elevated resistance or plaque formation
in pathological conditions. The manner in which the arterial
tree branches from the aorta to the periphery of the body,
as well as the branching pattern of the subtrees within each
organ, has a profound effect on the energy required to pump
the blood through the vascular circuit. This directly determines
the workload required of the heart. Branching characteristics
that are optimal in terms of minimizing energy expenditure
have therefore been the subject of a great deal of study.

The purpose of this chapter is to briefly review the field of
research involved with exploiting imaging and image process-
ing methods for the morphometric characterization of vascular
structures, arterial trees in particular. Some of the basic research
methods for arterial tree imaging and morphometry employed
in our laboratory and others are summarized in somewhat
greater detail. The field of vascular imaging, and image pro-
cessing methods applied to images of the vasculature, is vast
and precludes an exhaustive review. I attempt to familiarize
the reader with some of the highlights of research in the field,
including methods that have found clinical utility, particularly
methods based on X-ray images. But most of the images and
detail necessarily draws on our work in the basic physiological
research setting where, working with static, excised organ prepa-
rations, we attempt to morphometrically characterize arterial
trees from the largest to the smallest resolvable vessels.

19.1.1 The Functions of Arterial Trees

The primary function of the arterial system is to distribute oxy-
genated blood from the heart to all the organs of the body.
Nutrients (energy, fuel) are made available to living tissues pri-
marily via the flowing blood. The arterial system is miracul-
ously complex. It is a system of tough, regenerable, flexible,
tapering pipes, created and forced by evolutionary pressures to
perform this function optimally in some sense, constantly and
under a daunting variety of conditions. The pipes taper from
about 2 cm at the aorta to 0.0010 cm at the capillaries, which
are of almost identical size and structure at the periphery of all
organ systems. In a resting adult, the cardiac output of some tens
of milliliters per beat is distributed differentially and according
to need to all the various organs [2]. The total blood volume
of about 5 liters is pumped by the left ventricle through the
high-pressure systemic circuit and by the right through the low-
pressure pulmonary circuit, achieving a complete turnover once
each minute. In exercise, the demands of skeletal muscle for
blood may increase sevenfold; the arterial system dynamically
adapts to the dramatically changing distribution requirements
for fuel and nutrients.

Some have portrayed the major conducting arteries in the
tree, and in each organ’s subtree, as having a distribution func-
tion, moving large amounts of blood rapidly over relatively large

distances, while the smaller vessels (<2 mm diameter) through
which blood moves over perhaps the final several centimeters
to the capillaries have been called the delivery vessels [3]. It may
be that the morphometry, the diameters and branching charac-
teristics, of distributing vessels is optimized in a different sense
than is that of the delivery vessels. It will be seen at least qual-
itatively that the appearance of the branching patterns of the
large, conduit vessels is quite different from species to species
and from organ to organ, whereas the characteristics of the
smaller (arteries and arterioles of less than about 1 mm diam-
eter), precapillary subtrees toward the periphery of all organs
are quite similar across species and tissue types.

19.1.2 Definitions

For the purposes of this chapter, only a few definitions are
required. Vascular tree morphology and morphometry have
already been defined as the shape or structure of the tree, and
methods (in this context particularly imaging-based methods)
for quantifying it, respectively. The repeated subunit as the tree
progresses from trunk to periphery is the bifurcation. A bifur-
cation is a branch point in the tree where a parent vessel divides
to give rise to two daughter vessels as shown in Figure 19.1
[4]. The unbranching tube between consecutive bifurcations
is called a vessel segment. At a bifurcation, the parent vessel
diameter is denoted by d0, and the larger and smaller daugh-
ter diameters by d1 and d2, respectively. The 3D midline of
the vessel lumen is called the vessel axis or the medial axis
of the vessel segment. The branching angles, θ1 and θ2, mea-
sured in the planes containing the parent and each daughter’s
medial axes, are the angles between the parent’s medial axis
and the larger and smaller daughter’s medial axes, respectively.
Zamir has claimed that the three vessel axes for all coronary
bifurcations lie approximately in a plane, rendering the three-
dimensionality of bifurcations negligible [4]. The space-filling

D0

D1

D2

Lsegment

�2

�1

FIGURE 19.1 Nomenclature for vessel segment diameters and lengths
and branching angles at a bifurcation.
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characteristics of the entire tree are achieved by translations
and rotations of the numerous bifurcation planes relative to
each other. The bifurcation index is defined as the ratio d2/d1

and varies between 0.0 and 1.0. A symmetrical bifurcation, in
which the two daughters have approximately equal diameters,
would have a bifurcation index close to unity, whereas for a side
branch where a very small vessel branches off a main trunk—a
highly asymmetric bifurcation—this quantity would approach
zero. Thus, the primary fundamental quantities of interest in
arterial tree morphometry are vessel segment lengths and diam-
eters and the branching angles at bifurcations. Other parameters
reported on in the radiological literature, such as the branch-
ing coefficient, defined as the ratio of the cross-sectional area
of the daughters to that of the parent [5], can be derived from
this base set of metrics assuming circular vessel cross-sections.
Of course, there are thousands or even millions of these ele-
mentary measurements available from a single 3D image of a
complete arterial tree, so the necessity arises to summarize their
functional or hemodynamic significance in some meaningful
and intelligible or interpretable way. There are also some higher
order statistics such as measures of connectivity that have been
applied to vascular (the connectivity matrix) [6–9] and other
network-type structures (the Euler number or Euler-Poincare
index) [10–12], but these are not emphasized in this chapter.

19.1.3 Properties of Arterial Trees

Although arterial trees in the various organs have markedly
differing morphologies, they are all similar in several impor-
tant respects: They are space-filling, asymmetrical, optimal in
some sense, and self-similar, and their terminal elements, the
capillaries, are all equivalent. Space-filling denotes the notion—
dictated by the physics of diffusion, a delivery mechanism
effective over only very short distances (tens of microns)—that
the arterial tree must supply all viable tissues with the required
amount of nutrients and oxygen via the blood. Thus, if one
envisions a single inlet (trunk of the tree) to a 3D space, the
tree must branch in such a way that the capillary density is
relatively uniform throughout the organ. The general appear-
ance of arterial trees, therefore, is characterized by several large
distribution branches that carry high flows of blood to tissue
volumes remote from the inlet, and a larger number of smaller
delivering branches or subtrees that carry smaller volumes of
blood from the high-flow conduits to the capillaries.

Teleological principles would suggest that natural processes
are directed toward the end of physiological efficiency, and it
is generally acknowledged that the structure of arterial trees
has evolved toward some sort of optimality. In his classic book,
Thompson suggested that the cost of operating a given section
of arteries is a combination of the cost of the power required to
overcome its resistance and the cost of supplying the blood to
fill it [13]. In 1842 Sir Charles Bell had pointed out that the laws
of hydraulics, which take into account only the first of these

factors, are inadequate to explain the structure of the arterial
tree and that the cost of blood must be taken into account.
For example, if blood were free and the diameter of all arteries
were doubled, quadrupling their volume, the work of the heart
would be reduced to one-sixteenth. Conversely, if blood were
more expensive than it is, the total arterial volume would have
evolved to become smaller, increasing the work of the heart.
A variety of cost functions could conceivably drive this evolu-
tion, but the four most often suggested have been the power
required to pump blood through a bifurcation; the shear or
drag force exerted by the blood on the endothelial vessel lining;
the total blood volume; and the total lumen surface [4, 14–17].
Given three segment diameters at a bifurcation, the magnitude
of each of these cost functions depends on the branching angles
θ1 and θ2; or given two branching angles, the cost functions vary
with the diameters. The diameters and angles that produce the
minimum value of the assumed cost function are the optimal
geometrical parameters. Although it is beyond the scope of this
chapter to summarize all the research in this area, Zamir found,
for the case of two human coronary arterial trees when consid-
ering a cost function combining all four of the above factors,
that the branching angles and branch diameters were strikingly
close to optimal across the entire range of bifurcation indices.
In general, total (θ1 plus θ2) branching angles, which would be
expected to approach 90° to minimize shear stress, tend to be
somewhat below that on average—around 57° for rat and 70°
for human coronary arterial trees [4, 14, 16].

Symmetric bifurcations tend to have smaller branching
angles, whereas highly asymmetric (small) side branches tend
to come off closer to 90°.

19.2 Data Acquisition for Vascular
Morphometry

This section provides an overview of the most important meth-
ods that have been used to acquire data from which to extract
or calculate arterial tree morphometry. Such methods fall into
two major categories: the older destructive techniques, includ-
ing histology and vascular casting, and the increasingly useful
nondestructive imaging methods that are the subject of this
chapter.

Historically, most anatomical data, particularly “micro-
anatomical” data on the remodeling of small arteries, was
derived from histological sections. In fact, the words “mor-
phometry” and “morphometric” are probably used more often
in the histological context, where they are synonymous with
ultra-structure and ultrastructural, than they are in the context
in which we use them here. This dual usage of the termi-
nology can become particularly confounding, since many of
the changes in gross tree structure in which we are inter-
ested, including luminal narrowing and decreases in the num-
ber of parallel vessels in the arterial network, are preceded
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chronologically and etiologically by changes, usually in arte-
rial wall structure, that are best observed and quantified by
histological studies. Serial section reconstructions in histology
are obtained by microtomy and microscopy of tissue blocks
followed by stacking of the digitized photomicrographs in soft-
ware [18]. Although histological observation of stained sections
of vessels is an excellent way to observe the cellular and subcel-
lular changes implicated in conditions and diseases that affect
arterial tree structure and function, this method does not lend
itself to appreciation of the intact tree structure as a whole. It
is difficult, if not impossible, to precisely maintain the position
and orientation of the thousands of sections it would take to
“reconstruct” any significant portion of the tree, and therefore
tedious to arrange them in software in a visually meaningful
and accurate way. Thus, serial section reconstruction methods
have been applied to most advantage to the peripheral zones of
the circulatory system, including the capillaries [19–21].

Corrosion casting refers to a class of methods in which
a polymeric material (such as silicon rubber or Batsons No.
17, a modified methyl methacrylate whose viscosity can be
adjusted over a wide range to govern, in conjunction with the
injection pressure, the microvascular level to which the tree
is filled) is injected into the arterial or venous tree [9, 22–
29]. After filling the vessels, the cast hardens and the tissue
of the surrounding organ is corroded away, typically with a
potassium hydroxide solution. The remaining plastic structure
can represent an intricate and beautiful positive cast of the
vascular lumen, though dimensional accuracy may vary with
experimental conditions. These casts can then be conductively
coated and viewed and photomicrographed in the scanning
electron microscope (SEM). Morphometry has then been car-
ried out by many groups, by meticulously breaking apart the
tree and measuring the segments’ and branching angles’ geo-
metric parameters. Some researchers have used morphometric
parameters obtained in this manner as inputs to mathematical
hemodynamic models [6, 30]. Although highly valuable, casting
methods are tedious to carry out and do not lend themselves to
studies involving significant numbers of specimens or animals.
In fact, until recently, most of the available data on the geometry
of the pulmonary arterial tree, for example, were obtained from
measurements on only a few (one rat [9], one cat [31], two dog
[6, 32], and three human [33]) plastic corrosion casts. Tedious
measurements of individual vessel segment numbers, lengths
and diameters have been made and several methods used to
summarize these data as discussed later. One of the promises
of newer 3D imaging technologies is to provide similar struc-
tural data in a nondestructive manner and with the potential
for much higher throughput.

Microsphere embolization has been used in a number of lab-
oratories as an indirect method to quantify the structure or,
perhaps more accurately, the delivery capacity of the arterial
tree [34–36]. For example, Seiler et al. found a linear rela-
tionship between myocardial mass supplied and the sum of
branch segment lengths distal to any point in the coronary

arterial tree and a two-thirds power relationship between lumi-
nal cross-sectional area and myocardial mass supplied [37].
Again, though valuable, these techniques are acute and, used in
isolation, do not retain information about the 3D branching
structure of the tree or, for example, about focal obstruc-
tions in large vessels, both of which are sought in imaging
studies.

We are primarily concerned with imaging and image pro-
cessing methods for quantifying arterial tree morphometry.
As mentioned previously, for many decades after 1895 planar
X-rays recorded on film were the predominant method avail-
able to image the vasculature or any other type of structure.
Today, the inherently planar methods available to clinicians and
researchers for studying vascular structure and disorders fall
into the two broad categories of radiography (including mobile
units in the clinical setting) and fluoroscopy. Fluoroscopic
methods include the highly specialized and sophisticated vari-
ants employed in angiography suites and cardiac catheteriza-
tion laboratories. Whereas radiographic methods are static in
nature, fluoroscopic methods permit dynamic image acquisi-
tion (15 to 60 frames per second) and are therefore useful for
freezing the motion of structures such as the beating heart in
the interest of extracting accurate quantitative measurements.
Arteriography is a term which has been variously applied to
both static [38] and dynamic (fluoroscopic) [39–41] imaging
methods.

Since the dose in X-ray imaging is always limited, the tradeoff
between speed and image quality is an ever-present problem:
The more time available for imaging and the more dose permis-
sible, the greater the number of photons contributing to image
formation and the lower the noise level in the image. Most
of the physical processes involved in imaging, including X-ray
generation, penetration, and detection, follow Poisson statis-
tics, which means that, for large numbers of X-rays, the X-ray
quantum noise is equal to the square root of the number of pho-
tons contributing to the image or image element. Thus, if 1000
X-rays contribute to the information available in an image pixel,
the maximum possible signal-to-noise ratio (SNR) obtainable,
limited by dose alone, would be 32. If 1,000,000 X-ray quanta
contributed, the SNR could be 1000. So while it may appear as if
there are diminishing returns, at the low fluences permissible in
the clinic quantum noise is a significant problem, and many of
the challenges faced in the processing of vascular imagery, par-
ticularly segmentation or measurement of the smallest vessels,
are caused by the high noise levels. Additional sources of noise
include the background fog always present in radiographic film,
which limits its dynamic range to several hundred at best. The
stochastic nature of light production and light scattering in
radiographic intensifying screens used in conjunction with film
exacerbates the noise problem. For image processing of radio-
graphs to be possible, the film must first be digitized using a
laser scanner or other mechanism, which not only reduces the
resolution of the film but also increases the noise level relative
to the signal.
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Most X-ray imaging techniques for arterial morphometry do
not employ film as the detector, but use a high-gain image inten-
sifier to transform a very dim spatial pattern of X-ray intensities
into a bright visible-light image at the output of the intensifier.
This visible-light image is then digitized, usually with a high-
resolution, low-noise tube-based (Vidicon, Plumbicon, etc.)
[42] or CCD (charge-coupled device) camera [43]. The com-
bination of the image intensifier, the lenses coupling the light
from the output window to the camera sensor, and the camera
chip itself is referred to as the “imaging chain” and is the source
of additional noise. Besides additional statistical noise arising
from the multistage conversion processes within the device
(X-rays to light in a scintillator to electrons in a photocath-
ode and back to light again—after dramatic acceleration of the
electrons through several tens of keV—in an output phosphor),
a background haze called veiling glare [44] is superimposed
upon the image, and the illumination at the image periphery
falls off relative to the center of the field, a phenomenon called
vignetting. An added problem for quantitative imaging appli-
cations is the spatial distortion caused in the image by even the
highest quality fluoroscopic imaging chains. These result pri-
marily from the fact that the image formation process requires
the focusing of high-energy electrons by electrostatic focusing
plates, a process that is imperfect and variable, partly due to
the earth’s magnetic field. Image processing methods to correct
the spatial distortions and to allow for robust performance
in the measurement of vessels in the presence of high noise
levels are discussed later.

Biplane angiography allows for the simultaneous acquisition
of two near-orthogonal views of the contrast-enhanced vas-
culature in real time. This acquisition method has provided
the input data to a large number of algorithms designed to
reconstruct the arterial tree from as few as two projections
[45–59]. One requirement of all such few-view reconstruction
approaches is that the imaging system geometry, that is, the rel-
ative positions of the two sources, the two detectors, and any
fiducial markers placed on the patient, be very precisely known.
Some methods have been developed to calibrate or calculate
the system geometry from information available in the images
[45–49].

The diffusion of computed tomographic imaging technology
starting 25 years ago triggered the 3D revolution in diagnos-
tic imaging. Of course, although the ability to reconstruct
anatomical maps, based on attenuation properties (tissue or
electron densities), of the interior of opaque objects imme-
diately opened up the possibility of true 3D imaging and
quantification, the perceptual, computational and algorithmic
complexities of volumetric analysis have made real progress in
this area quite slow. Starting in the 1980s, magnetic resonance
imaging, with its exquisite sensitivity to soft tissue properties
and ability to exploit a wide range of contrast mechanisms,
added fuel to the fire of activity in this burgeoning field of
research. MR techniques quickly gained in speed, with scan
times being reduced from about an hour to less than 15 minutes

for clinically useful volumes. Scan times continue to decrease,
and 3D images of diagnostic quality covering several axial cen-
timeters can now be acquired in minutes [60]. Recently, CT
research and diagnostic methods have been given new life and
expanded capabilities by the extension, from single slice imag-
ing, first to helical, and now to multislice helical scanning [61].
Currently, four slices can be reconstructed per half-second rev-
olution of the source and detector around the patient, making
fast volumetric scanning clinically useful for imaging entire
organs in a single breath hold. Recent developments in fast
CTA [62–66] and MRA [60, 67–71] are certain to increase the
value of these techniques in clinical applications of quantitative
3D vascular morphometry. In the 1990s ultrahigh-frequency,
high-resolution intravascular ultrasound (IVUS) methods were
developed for imaging the constituents of vascular walls [72].
All these improvements and new methods have given added
impetus and possible value to the field of image processing for
arterial tree morphometry.

19.3 Image Processing for Arterial Tree
Morphometry

Early studies of vascular structures relied solely on qualitative
visual interpretation of the acquired imagery. Severe stenoses
and vascular abnormalities such as arteriovenous shunts could
be observed and documented, for example as an aid to surgi-
cal planning. Interpretation of histological structure, electron
micrographic ultrastructure and early “3D” methods such
as scanning microscopy of freeze-dried tissue or corrosion
casts were also purely qualitative. However, a great deal of
physiological knowledge was gained, in particular about the
cellular constituents and ultrastructure of the vascular wall, the
connectedness of the microvascular network and the spatial
relationships, for example, between alveolar sacs and the flat
capillary sheets that bathe them in blood separated from the air
by a two-cell-thick endothelial–epithelial wall [73]. The state of
early research in the field is well summarized by a collection of
papers covering all aspects of small vessel angiography from the
effects of focal spot size, X-ray spectrum, magnification, film-
screen types and combinations, and electronic imaging chain
imperfections to clinically relevant applications in the cerebral,
pulmonary, renal, pancreatic, and coronary circulations [74].
However, for clinical methods to be reliably applied in routine
practice, the need for quantitative measures of vascular mor-
phometry was clearly evident. In the basic science arena, it is
equally clear that quantitative statistical methods are required
to distinguish significant differences between normal and dis-
eased structures, and between diseased structures of varying
pathology or pathogenesis.

An important early application of quantitative methods was
in the area of assessing the degree of stenosis, particularly of
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coronary vessels [75]. Given a gray-level image of a vascu-
lar tree such as those available from radiography, fluoroscopy,
or MRA, loosely called “angiograms” hereafter, there are two
basic approaches for extraction of quantitative metrics. (Either
may involve judicious preprocessing of the gray-level image
[76–78].) The first is to create a binary image from which mea-
surements can be made in a straightforward manner, and the
other is to operate on the gray-level image directly. To make a
binary image is to decide, based upon some criterion or set of
criteria, which pixels in the image belong to the vessels, usually
the intraluminal space filled with contrast agent, and which do
not. The vessel pixels are then turned on and all the other pixels
turned off, creating the two-phase or binary image. The process
of creating a binary image in this case is called segmentation of
the arterial tree. Possible criteria for selecting vessel pixels range
from thresholding procedures, wherein (for the case of a global,
or simple threshold) every pixel below a specified gray level is
called vessel and all pixels above the threshold background, to
more complex methods involving, for example, vessel tracking
with decisions based upon the location of the maximum gradi-
ent magnitude at the vessel edge. Adaptive threshold values may
be based upon neighborhood gray-level statistics such as the
local histogram or more complex parameters such as entropy
[79]. Recently, rather sophisticated techniques for segmentation
of MRA data have been developed. One utilizes assumed dis-
tributions for tissue-type gray levels and a modification of the
expectation maximization (EM) algorithm to distinguish vessel
from nonvessel voxels and has been applied to cerebral time-of-
flight MRA data [70]. Viergever et al. developed a model-based
approach wherein the vessel medial axis was modeled using
a B-spline curve and the vessel wall with a deformable ten-
sor product B-spline surface to obtain a segmentation from
which diameter assessment could be performed with subvoxel
precision [67].

Mathematical morphology-based methods including water-
shed analysis show promise for segmentation of complex
structures [80–82]. In gray-level mathematical morphology, an
image is treated as a topographical surface in which the gray
level corresponds to elevation [83, 84]. The watershed trans-
form works by piercing holes in local minima in the terrain and
flooding the surface from below [85]. Each minimum starts
its own “catchment basin.” As the flood rises, when the water
from adjacent catchment basins is about to meet, dams are
built to keep them from joining, pixel by pixel. When the pro-
cess is complete, the water has risen to the level of the highest
peak, and the transformed image consists of the crest lines of
the dams separating catchment basins. In the case of a vascu-
lar image, these crest lines would ideally correspond to vessel
medial axes. Vessel contours can be segmented by watershed
transformation of the gradient image. Brute force computation
of the watershed transform results in severe oversegmenta-
tion: Too many crest lines are extracted if all local minima
are used. Instead, a subset of minima has to be selected by

use of a marker function whose catchment basins correspond
to the objects to be segmented. The marker function is gen-
erally defined using a priori knowledge about the nature of
the objects to be segmented. Region growing methods are also
quite popular [86]. These involve specification of a pixel or pix-
els, called “seeds,” that are definitely contained within the vessel
lumen, then growing the regions around the pixels so desig-
nated either to include all candidates between an upper and a
lower threshold bound (“hysteresis thresholding” [87]) or until
a boundary satisfying some criterion, such as gradient magni-
tude, is reached. These boundaries are then the vessel edges. The
analogy to over-segmentation by watershed transformation in
the case of region growing would mean that portions of arterial
tree remained disconnected. In this case, boundaries may be dis-
solved according to a chosen weakness criterion. One reason for
the popularity of seeded region growing methods for segment-
ing structures such as arterial trees is that vascular networks
are known to be connected: Every pixel in the lumen has to
be connected to the arterial inlet. Incorporating a connectivity
constraint into a segmentation algorithm can help to eliminate
spurious background pixels or regions from being included as
vessel.

A method for segmenting tubular objects from gray-level
medical images has been developed by Aylward and Pizer et al.
[88, 89]. It is a variant of their multiscale medial analysis algo-
rithms, such as marching cores [90, 91], and exploits the facts
that vessels are tubular and the medial axes of tubular objects
imaged with imperfect imaging systems are well approximated
by their intensity ridges. The vessel intensity ridges are tracked,
and convolution with a Laplacian of a Gaussian is used to calcu-
late the local maximum in multiscale medialness at each point
along the ridge as an estimate of vessel width. This method
for vessel diameter estimation benefits from the smoothly vary-
ing, nearly circular shape of tubular cross-sections. The tubular
object segmentation method makes it possible, without impos-
ing severe computational demands, to extract representations
that preserve the location, size, and topology of objects in 3D
images with minimal user interaction, and is stable in the
presence of noise. Figure 19.2a is a volume rendering of 48
MRA slices depicting the cerebral vasculature. The challenges
for automated extraction of vessel boundaries, including vari-
ations in vessel intensity and width, and the complexity of the
vascular structures in the noisy background are clearly evident.
Figure 19.2b shows the result of the tubular segmentation algo-
rithm. The surface rendering is based upon 105 ridges and their
widths extracted from the data set of Figure 19.2a. The ven-
tricular contours and brain surface are shown in green and red,
respectively, for reference.

Creating a binary image is a required prerequisite for produc-
ing surface shaded renderings and can facilitate some feature
extraction tasks such as obtaining the tree skeleton. Binary
skeletonization, also called thinning, is a well-established tech-
nique, at least in two dimensions, whereas gray-level thinning
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(a) (b)

FIGURE 19.2 (a) A volume rendering of 48 MRA slices of the cerebral vasculature. (b) The result of the tubular segmentation algorithm.
Images courtesy of Stephen Aylward, University of North Carolina at Chapel Hill.

is not [92]. Skeletonization, in turn, achieves dramatic data
reduction and makes the specification of bifurcation locations
(branch points) and branching angles more straightforward,
particularly in 2D images. The skeleton or approximation of the
medial axis for each segment can be fitted to a line or a curve
and the three midlines of a parent and two daughter segments
at a bifurcation forced to meet at a common point as shown
in Figure 19.1. This midline juncture then defines the branch
point unambiguously. Skeletons properly extracted preserve the
topology of the branching tree, as well as segment lengths and
branching angles, though diameters, unless retained as separate
items in a data structure linked either to medial axis points or
segments, are lost. However, although segmentation followed
by skeletonization may be appropriate in some circumstances,
in general (particularly where the accuracy of vessel diame-
ter measurements is of paramount importance, as is so often
the case) it may not be advantageous to segment the vascu-
lar image. Instead it is more exact and precise to operate on
the gray-level image data directly. Gray-level image-based tree
extraction schemes capture the vessels’ medial axes and borders.
If the whole tree or large portions thereof are to be identi-
fied, they usually involve tracking the vessel centerlines, starting
at the arterial inlet or other user specified point, and search-
ing a rectangle or sector distal to the current centerline point,
symmetric about the current centerline direction [93–96]. The
dimensions of the sector are dynamically adjusted to take into
account the local noise level [93, 94] and vessel tortuosity, or

curvature [97]: If either or both of these are high, the search-
ahead distance is shortened in the interest of more reliable
tracking. The direction of search is updated by use of a matched
filter, for example a rect or triangular function, based on a model
incorporating the current vessel width and the expected shape
of the vessel’s cross-sectional intensity profile. Branch points
are detected by comparing the image brightness level outside
the current borders to the brightness at the vessel center. In
recursive tracking, once a major trunk and its branch points
have been identified, they are deleted from the image to avoid
repeated tracking. The new branch centerline directions at each
bifurcation are then determined, again by the use of a matched
filter, and smaller and smaller subtrees are tracked and deleted
in succession. Several parameters, including a minimal accept-
able vessel length, need to be adjusted depending on image
quality to avoid capture of nonvessel structures or noise in the
image.

Some of the most rigorous processing methods have been
developed for computerized systems designed to improve the
accuracy and objectivity of clinical assessment of stenosis sever-
ity [75, 98]. These methods are based on the classic work
of Canny who developed a computational approach to edge
detection for antisymmetric edges (f(x) = −f(−x), where the
true edge point is at x = 0) such as ridge, roof, and step edges
[99]. The requirements for reliable performance are good detec-
tion and good localization. Good detection means that a true
edge is highly likely to be detected and that the likelihood of
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detecting an edge where there is none is low. Good localization
means that the error in the location of a detected edge rela-
tive to that of the true edge should be small. Canny developed
mathematical forms for the criteria for low error rate and good
localization and showed that there is a trade-off between the
two that dictates a unique shape for the impulse response of
the optimal detector. Further, the detection–localization trade-
off varies with the spatial extent of the filter and the noise
level in the image, mandating a multiscale approach followed
by synthesis of the features detected by operators at the var-
ious scales. A variable-scale approach makes sense in light of
the fact that intensity changes occur over a range of scale
in real images [100]. An approximate realization of the ideal
filter for antisymmetric edges can be realized in the spatial
domain by designating edge points as the maxima in the gra-
dient magnitude of a Gaussian smoothed image, also called the
Gaussian-weighted gradient operator. Intuitively, this filter is a
derivative operator with a smoothing effect—in fact, the first
derivative of a Gaussian—so edges are located at the maxima
in the smoothed derivative of a line scan perpendicular to the
edge. In fact, Marr and Hildreth had pointed out much earlier
in the derivation of their Laplacian of Gaussian operator that
the optimal filter for the image averaging at different scales had
to be Gaussian, since this provides the best compromise for the
conflicting requirements for band limitedness (localization) in
both spatial (because edge information is highly localized) and
frequency (to reduce the range of scales over which intensity
changes take place) domains [100]. In one dimension, the zero
crossings [101] produced by the Marr–Hildreth operator cor-
respond exactly to the maxima in Canny’s Gaussian-weighted
gradient operator, but Canny claimed two advantages to his
approach: The directional properties of his operator enhance
its detection and localization properties in 2D implementa-
tions; and the amplitude of the response at maxima provides a
good estimation of edge strength, which can be exploited by a
subsequent thresholding operation on the gradient image. An
important contribution of Reiber’s group was to extend Canny’s
computational approach to the analysis of asymmetric edges
like those of density profiles through arterial cross-sections.
The consequence of asymmetric edges is that two additional
constraints on the operator must be added: the precise shape
or phase shift of the filter has to be optimized for a particular
arterial diameter and, when a filter of the same spatial extent
is applied to arteries of different sizes, correction factors to the
diameter estimate have to be invoked. A suite of angiographic
image analysis software incorporating the optimal edge detec-
tion algorithms was developed at the Leiden University Medical
Center to assist in clinical decision making regarding severity
of coronary artery stenosis [102]. Figure 19.3 shows one display
mode of the image and results panel. An enlarged view of the
portion of the angiogram containing the lesion is shown, with
the detected arterial borders and highlighted stenosis displayed
as a graphical overlay on the image. A plot of artery diameter

FIGURE 19.3 Portion of a clinical coronary angiogram processed
with the software developed at the Leiden University Medical Center.
The stenotic lesion is highlighted, and a plot of vessel diameter versus
length in the diseased region is displayed, along with a panel of the
important quantitative results including percent stenosis. Image cour-
tesy of Johan Reiber, Leiden University Medical Center. (See also color
insert).

versus length in the diseased region and a panel of quantitative
results are also displayed on the same screen. Phantom and clin-
ical experiments showed that the method performed accurately
and reproducibly for vessels between 1.2 and 6mm in diame-
ter even in the presence of realistic noise levels, and for lower
noise levels performance remained acceptable for vessels with
diameters greater than 0.7 mm [98].

Focal stenoses can be readily appreciated and quantified
with reasonable accuracy from single angiograms by the meth-
ods just described, but subtle disease may elude detection on
single-projection angiograms. Three-dimensional reconstruc-
tion techniques may facilitate accurate assessment of coronary
arterial disease from routinely acquired biplane angiograms,
even in cases of complex morphology. For example, at the
German Heart Institute of Berlin these methods have been
successfully applied to the quantification of diffuse coronary
artery diseases, conditions that may remain occult if only sin-
gle angiograms are evaluated in two dimensions [103, 104].
Figure 19.4a shows four angiographic views of a normal sub-
ject: near-orthogonal views of the left coronary arterial system
in the upper panels and of the right coronary arterial sys-
tem (RCA) of the same patient in the bottom panels. The
left heart pair was acquired simultaneously, as was the right
at a later point in time. A surface shaded rendering of the
3D reconstruction from the views of Figure 19.4a is shown
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FIGURE 19.4 (a) Source biplane angiograms: the upper pair depicts the left coronary artery system (LCA) in time-equivalent projections
from right and left anterior oblique (RAO/LAO) views; the lower pair shows the right coronary artery system of the same subject in a second
acquisition. (b) Visualization of the 3D model reconstructed from the angiograms of Figure 19.4a. The right coronary artery (RCA) is in the
front, at the same level behind it to the left the circumflex artery (LCX), and to the right the left anterior descending artery (LAD). Images
courtesy of Andreas Wahle, University of Iowa.

in Figure 19.4b. The RCA is positioned anteriorly with the left
circumflex artery behind it and the left anterior descending
(LAD) to the right. The reconstructed 3D model allows accu-
rate determination of morphometric parameters of the vessel,
such as spatial lengths and volumes and mean segment or sub-
tree diameter. The length/volume evaluation can be performed
on single vessel segments, on a set of segments, or on subtrees.
A volume model based on generalized elliptical conic sections
is created for the selected segments. Volumes and lengths (mea-
sured along the vessel course) of those elements are summed
and used to derive the mean diameter. In this way, the morpho-
logical parameters of a vessel subsystem can be set in relation
to the parameters of the proximal segment supplying it. These
relations allow objective assessments of diffuse coronary artery
diseases.

Given this summary of various clinical techniques, the
remainder of this chapter describes the work in our labora-
tory to develop methods for morphometric and mechanical

characterization of pulmonary arterial trees in a basic physio-
logy research laboratory setting.

19.4 Arterial Tree Morphometry in
Pulmonary Hypertension Research

We are developing imaging and analysis methods to charac-
terize the structural and mechanical properties of vascular
systems. Our group is particularly interested in pulmonary
hypertension, and we are working with rat models of the dis-
ease. The long-term goals are to develop imaging tools, based
on high-resolution volumetric X-ray computed tomography
(micro-CT), required to quantify the geometric and biome-
chanical properties of the pulmonary arterial tree, and to apply
these tools to determine the relative contributions of vessel
remodeling (e.g., narrowing of the lumen of the arterial tree due
to decreased unstressed vessel diameters and/or decreased vessel
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FIGURE 19.5 Schematic of the micro-CT scanner.

distensibility) and changes in the vascular tree structure (e.g.,
decrease in number of parallel vessels) in causing the elevated
pulmonary vascular resistance in pulmonary hypertension of
different etiologies. To date,we have built the micro-CT scanner,
developed image acquisition and reconstruction protocols and
algorithms to produce high-resolution 3D image volumes of
excised, contrast-enhanced rat lungs, experimented with several
methods for image processing and data analysis, and applied the
methods to a first model of pulmonary hypertension: chronic
hypoxia.

The micro-CT scanner is shown schematically in Figure 19.5.
The main system components are the demountable microfocal
X-ray tube to the right, which is capable of producing focal spots
as small as three microns in diameter, the precision specimen
stage in the center, and the detector to the left, which consists of
a high-resolution 9-7-5′′ image intensifier coupled to a 10242,
12-bit CCD camera. Figure 19.6 shows a photo of the scanner
with a rat lung in place for imaging. Control and experimen-
tal rats in which pulmonary hypertension has been induced by
exposure to chronic hypoxia (11% O2 for 3 weeks) are studied.
The rats are anesthetized, the trachea and pulmonary artery
cannulated, and the lungs excised. The vessels are flushed with
a physiological saline solution to remove the blood, then the
lungs are suspended by the cannulas from the top of a thin-
walled polyacetate cylinder, as can be seen in Figure 19.6 where
the cannulas are just visible at the top. A brominated perfluo-
rocarbon (Perflubron; perfluorooctyl bromide) contrast agent
is then introduced through the arterial cannula. Because of the
surface tension at the perfluorocarbon–aqueous interface, when
introduced into the pulmonary artery, the contrast agent fills

FIGURE 19.6 Photo of micro-CT scanner with rat lung in place for
imaging. X-ray source is to the right, specimen in the middle with
arterial and tracheal cannulas visible, and image intensifier to the left.

only the arterial tree and can be held at a variety of intra-arterial
pressures spanning the physiological range. We image either
whole lungs or left lung lobes at magnifications ranging from
3.5× to 9×. Typical technique factors for image acquisition are
85 kVp, 30 microamps, and 3 minutes total scanning time for
360 views.

Projection preprocessing includes correcting the pincushion
distortion of the image intensifier using a polynomial unwarp-
ing technique in which the coefficients are determined from
the image of a precision grid of ball bearings (BB phantom)
[105–107]. The rotation axis is then centered with the aid of
a sinogram and the illumination nonuniformity corrected by
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FIGURE 19.7 As-acquired (left ) and fully preprocessed (center) projections of mouse lung. Right : Surface shaded renderings of mouse lung
viewed from same angles. (See also color insert).

floodfield division. Images are reconstructed, typically onto a
5123 grid,using the Feldkamp conebeam filtered backprojection
algorithm [108] and a Shepp–Logan filter [109]. Figure 19.7
shows as-acquired views of a mouse lung from two represen-
tative angles on the left. The corresponding, fully preprocessed
projections are shown in the center, and surface-shaded render-
ings, again from the same view angle, are shown on the right.
The mouse lung arterial tree structure could be contained in
an 8-mm sphere, and these projections were acquired at a mag-
nification of about 12× using the 5′′ image intensifier input
diameter. The top panel of Figure 19.8 shows a projection and
surface-shaded rendering of a rat lung viewed from the same
angle. The rat lung structure would fit within a 2.5-cm sphere
and was imaged at a magnification of about 4× using the 7′′
image intensifier input. The bottom panel of Figure 19.8 shows
a surface-shaded rendering of another rat lung on the left and
of a dog lung on the right. Inspection of Figures 19.7 and 19.8
reveals distinct interspecies differences in the pulmonary arte-
rial tree morphometry, at least on a gross scale (the distribution
vessels).

The segmentation algorithm used to produce the render-
ings of Figures 19.7 and 19.8 is based on region growing and
connectivity list routines, similar to the seeded region growing
with gray-level hysteresis described earlier. The image volume
is traversed until a voxel is found within a specified gray-scale
window. This voxel is the first seed point for the region growing

and is added to a list of connected voxels, and the correspond-
ing bit in a previously initialized binary volume is toggled. If
a seed point is found, the routine repeatedly checks whether
the 26 neighbors fall within the specified gray-scale range and
whether they were previously detected as vessel voxels. If they
do and were not, they are added to the connectivity list and the
corresponding bit in the binary volume is toggled. Processing
continues until no more vessel voxels are detected in the first
region, in which case scanning of the volume continues until the
next seed point is found. The routine builds a new connectivity
list for each new seed point it finds and will only accept voxels
as seed points if they are not already included on a connectiv-
ity list. When volume scanning is complete, all vessels within
the gray-scale window will be members of one and only one
connectivity list. The user then specifies the minimum size of
the connectivity list to be accepted in the segmentation (the
smallest connected region falling within the gray-scale window
that is to be accepted as vessel), and the connectivity lists of all
smaller regions are eliminated and the corresponding bits in the
binary volume toggled off. Thus, the binary volume becomes a
segmented volume of the vascular tree. The renderings them-
selves are produced using IDL (Interactive Data Language)
software [110].

One of the problems with quantitative analysis of a structure
as complex as the pulmonary arterial tree is the sheer amount of
data available in the 3D images. Pending complete automation
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FIGURE 19.8 Top: Rat lung projection (left) and surface-shaded rendering (right) viewed from same angle. Bottom: Surface-shaded rendering
of rat (left) and dog (right) pulmonary arterial trees. (See also color insert).

of the segmentation and measurement processes, we are explor-
ing rational procedures for data reduction. In the past several
methods have been used to summarize the data on segment
lengths, diameters and numbers derived from arterial casts.
Discussions as to the advantages of the different methods center
around the kinds of information retained in the morphomet-
ric summary [9, 111]. These vessel classification schemes can
be categorized as centrifugal or centripetal ordering. In cen-
trifugal ordering, vessels are classified according to generation
proceeding from the pulmonary artery to the peripheral, pre-
capillary vessels [73, 112]. This has a simple logic when applied
to a symmetrical homogeneous tree, but as larger variations
in the daughter diameter ratios are encountered as one moves
along the actual asymmetrical heterogeneous tree, it results in
grouping together vessels of very different diameters in the
same generation. In addition, centrifugal ordering has difficulty

coping with the wide range in the number of generations
between the inlet and periphery between short and long path-
ways. As an alternative, centripetal ordering has been advocated.
For example, in Strahler ordering, the classification begins with
the precapillary arterioles and proceeds up the tree with the
order increasing toward the pulmonary artery [7, 8, 28, 111].
Centripetal ordering has some advantages for summarizing
the morphometry of a heterogeneous asymmetrical tree, but
among the drawbacks for imaging data is that imaging systems
typically have limited resolution, which makes starting with the
smallest vessels problematic. It is interesting that, despite the
various ordering systems used, the published corrosion cast data
[6, 9, 31–33] from several species appear to be quite consistent
with respect to linearity and slope if one plots, for example, the
log of the number of segments having a certain diameter vs log
segment diameter or the log of segment length vs log segment



19 Arterial Tree Morphometry 329

diameter. This property of pulmonary arterial tree geometry
suggests alternatives to the problem of morphometric sum-
mary. For example, viewed as a fractal structure, the three vessel
segments forming a bifurcation can be considered the repeat-
ing, scale-independent element comprising the vascular tree
[113, 114]. Then, the diameters of the parent (D0) and daugh-
ter vessels (D1 and D2) from a number of bifurcations can be
used to estimate a value of z defined by Dz

0 = Dz
1 + Dz

2 . The dis-
tribution of z is then the morphometric characterization of the
tree [115, 116]. This approach is practical for imaging data, but
it has also required large numbers of measurements and much
of the information about the connectivity of the tree is lost.

Ritman et al. used a method based on analysis of main trunks
of the pulmonary arterial tree, which is particularly useful in the
context of volumetric CT data [117]. Their results suggest that
a reasonable number of measurements of segment lengths and
diameters can be exploited to investigate hypotheses about tree
structure. One possible approach is to analyze the longest path-
way, or main trunk of the tree from the inlet to the smallest
resolvable precapillary arterioles. Since this principal pathway
contains vessel segments spanning the entire range of diame-
ters present in the structure, its taper might be representative
of the tree as a whole. Figure 19.9 shows a rendering of the rat
pulmonary arterial tree in the top left panel. The four longest
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FIGURE 19.9 Top left panel illustrates the four longest pathways through a rendering of the rat pulmonary arterial tree. Bottom left panel
shows plots of vessel segment diameter vs. distance from branchpoint off the principal pathway. Top right panel shows pathways rearranged to
align the precapillary arterioles. Bottom right panel shows plots of vessel segment diameter vs. distance from pulmonary arterial inlet. The fitted
curves are statistically indistinguishable. (See also color insert).
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pathways through the tree are indicated by the colored lines.
The bottom left panel shows plots for the four pathways of
vessel segment diameter vs distance from the branchpoint off
the principal pathway. The top right panel shows a rendering
of the pruned principal pathway with the subsidiary pathways
rearranged to align the precapillary arterioles at the distal tip.
In the bottom right panel, vessel segment diameter is plotted
vs distance from the arterial inlet for all four pathways. Curves
fitted to the four data sets are statistically indistinguishable,
illustrating the correspondence of the tapers of these four path-
ways. Our results indicate that the various pathways through the
tree are self-similar in the sense that all subtrees distal to vessel
segments of a given diameter are statistically equivalent [118],
and we will exploit the self-similarity of the tree to extrapolate
morphometric and mechanical parameters derived from mea-
surements on a small number of pathways to the structure as a
whole.

Accurate measurement of vessel segment diameters is a sim-
ple concept, but is hampered in practice by a number of
complicating factors related to the physics of the imaging sys-
tem and nuances of the image analysis and data extraction
procedures. Volume averaging causes the densities of vessels
less than about twice the width of the imaging system point
spread function (PSF), which is degraded by the finite focal
spot size, specimen stage imperfections, detector pixel size, and
the reconstruction algorithm, to be smeared out over a con-
siderably larger volume than they in fact occupy [119]. When
subresolution tungsten wires are reconstructed to characterize
the system PSF, the cross-sectional image of the wire affects the
densities of several pixels (the number of pixels depends upon
magnification, which in turn is dictated by imaging geome-
try), even though each pixel represents more than 10 microns,

even at the highest magnifications we have employed (35×).
Therefore, we have developed a model of the ideal vessel cross-
section convolved with the imaging system PSF to calibrate the
imaging system for vessel diameter measurements, assuming
that artery cross-sections are circular. Figure 19.10 illustrates
how an ideal vessel lumen cross-section larger than twice the
full width at half maximum (FWHM) of the system PSF, when
convolved with the PSF, yields a density profile whose width at
FWHM is a good approximation to the lumen diameter and
whose height represents the attenuation characteristics of the
contrast agent. A small ideal vessel with width about equal to
the PSF, on the other hand, when convolved with the PSF, yields
a density trace whose width at FWHM significantly overesti-
mates the vessel diameter and whose height underestimates the
contrast agent density. But the areas under the density pro-
files are proportional to the vessel diameters since, in spite of
volume averaging, contrast agent density is conserved in the
reconstruction. We have imaged wires and contrast agent-filled
tubes of precisely known diameters and found an exactly linear
relationship with zero intercept between the area under density
profiles taken orthogonal to the wire or tube axis and the true
diameter. Therefore, as long as at least one cylindrical object of
known diameter is contained within the reconstruction, we can
accurately measure vessels down to subpixel diameters using a
density profile area vs diameter calibration curve.

Before developing a reliable calibration method for small ves-
sel diameter measurements, we measured vessels larger than the
system PSF using the FWHM criterion. In order to measure a
statistically significant number of smaller vessels, high magni-
fication images of distal portions of the lung were obtained
as shown in Figure 19.11. Density traces across vessels like the
one indicated by arrows on the left panel were analyzed, as
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FIGURE 19.10 Left: Ideal vessel lumen cross section larger than twice the FWHM of the system PSF when convolved with the PSF yields a density
profile whose width at FWHM is a good approximation to the lumen diameter and whose height represents the attenuation characteristics of
the contrast agent. Right : Small ideal vessel with width about equal to the PSF when convolved with the PSF yields a density trace whose width
at FWHM significantly overestimates the vessel diameter and whose height underestimates the contrast agent density. But the areas under the
density profiles are proportional to the vessel diameters.
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50 mm

FIGURE 19.11 Shows method for measuring small vessel diameters from high-magnification projection images. The model vessel diameter is
indicated as 50 microns in the right panel.

FIGURE 19.12 Left: Transaxial slices to which many vessels are nearly orthogonal can readily be accessed from the reconstruction. However,
many vessel segments can be seen to deviate significantly from the vertical. Right: Bifurcation locations can be identified as the xyz coordinates
where two daughters have just separated as shown in the third panel from top. (See also color insert).

shown in the right panel, by fitting the line-scan data to a model
projection of an ideal circular vessel riding on a nonzero and
nonuniform baseline. The width of the model vessel was then
taken as the vessel diameter.

Since the arterial trees are reconstructed on cubic-voxel grids
of isotropic resolution, it is most straight forward to access

orthogonal (axial, sagittal, or coronal) slices from which to
extract density profiles and diameter measurements, as shown
for axial slices in the left panel of Figure 19.12. By interac-
tively “flying through” the stack of transaxial slices, bifurcation
locations can be reliably and reproducibly identified as the xyz
coordinates where two daughters have just separated, as shown
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on the right of Figure 19.12 in the third panel from top. After
recording the coordinates of all branch points for daughters
leaving a pathway, the diameters of the vessel segments com-
prising the pathway can be measured by accessing the slice
equidistant between the contiguous branch points defining the
segment. However, as is evident in Figure 19.12 and shown in
Figure 19.13, many vessel segment orientations deviate signif-
icantly from the vertical. In Figure 19.13 transaxial (yellow)
and orthogonal (lavender) slices through a nearly horizontal
vessel are indicated on the left panel. The vessel cross-section
in the transaxial slice is a high-aspect-ratio ellipse, as shown
in the top right panel. It is nearly impossible to make reli-
able and reproducible diameter measurements from this image
data. We have therefore developed software to access oblique
slices orthogonal to the vessel segment at the midpoint between
consecutive bifurcations off the pathway, as illustrated by the
lavender plane of Figure 19.13. The vessel cross-section viewed
in the orthogonal slice is nearly circular, facilitating accurate
diameter measurement.

A major goal of our current research is to extract functionally
relevant morphometric parameters from 3D images of arterial
tree structures. Our current approach is to analyze the principal
pathway from the inlet to the periphery, measuring the diame-
ters of all segments of the main trunk and of all the daughter
branches immediately off the main trunk.

The upper curve in Figure 19.14 shows a plot of vessel seg-
ment diameter vs distance from the pulmonary arterial inlet for
the principal pathway of a hypertensive rat lung imaged at high
pressure. The lower plot shows the same relationship for the
smaller daughter vessel segments branching immediately off
the main trunk. Morphometric parameters available from such
plots include the parameters of the fitted curves (indicators of
slope and curvature) and the dispersion of the data about the
fits. The latter is greater for the daughter segments, since the
main trunk tapers fairly steadily from inlet to periphery, while

Orthogonal slice

Transaxial slice

FIGURE 19.13 Transaxial (yellow) and orthogonal (lavender) slices
through a nearly-horizontal vessel are indicated on the left panel. The
vessel cross-section in the transaxial slice is a high-aspect-ratio-ellipse,
as shown in the top right panel, whereas the cross section in the
orthogonal slice is nearly circular. (See also color insert).
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FIGURE 19.14 Plot of vessel segment diameter vs. distance from the
pulmonary arterial inlet for the principal pathway of a hypertensive rat
lung imaged at high pressure. The lower plot shows the same relation-
ship for the smaller daughter vessel segments branching immediately
off the main trunk.

small subtrees may branch off to perfuse proximal lung tissue
volumes.

To measure biomechanical properties of the vessels, we
obtain 3D reconstructions of each lung at a series of four
intravascular pressures spanning the physiological range (30,
21, 12, and 4 mm Hg). Thus, for every vessel segment mea-
sured, the diameter vs pressure relationship yields the vessel
distensibility as percent diameter change per unit change in
pressure (%/torr). Figure 19.15 shows projection images of a
hypertensive rat lung obtained at four intra-arterial contrast
agent pressures. The distension of the arteries at high pressure
is clearly evident.

Figure 19.16 shows graphs similar to those in Figure 19.14 for
the main trunk of a normal lung imaged at low and relatively
high pressures. The slopes, intercepts, and curvatures are clearly
increased for the normoxic compared to the hypoxic lung, and
for the normoxic lung at high compared to low pressure. From
the diameter vs pressure relationships, we can calculate the dis-
tensibility (absolute or percent diameter change per torr) of the
pulmonary arteries, either for individual vessel segments or for
the tree as a whole. The results for a large number of individual
vessel segments from several control and several hypertensive
lungs are shown in Figure 19.17, where distensibility is plotted
for each vessel segment vs its diameter at the lowest pressure
(4 mm Hg). Though there is overlap in the data, the method
seems to separate normal from hypertensive animals quite well.
To calculate a global distensibility for the arterial tree in a single
lung, the diameter (D) vs distance (x) data for all four pres-
sures (P) is plotted as a three-dimensional graph as shown in
Figure 19.18. The data is then fitted with a surface of the form

D(x , P) = a[1+ αP(x)] (1− bx)c ,
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FIGURE 19.15 Projections of a hypertensive rat lung imaged at 30, 21, 12, and 4 mm Hg intra-arterial contrast agent pressure.

where α is the global distensibility and a, b, and c are parameters
of the fit. In the case of one normal and one hypertensive rat
the results were as below:

α(mmHg1) a(mm) b(mm1) c

Normoxic (21% O2) 0.031 1.34 0.031 0.49
Hypoxic (11% O2) 0.021 1.26 0.033 0.44

This shows a significant decrease in the arterial distensibil-
ity of the diseased lung, but no significant difference between
the curve fit parameters. These early results demonstrate that
arterial wall distensibility is significantly lower in hyperten-
sive compared to normal pulmonary trees. Future studies will
apply these methods to investigate the mechanisms involved in
other models of pulmonary hypertension, and to studies of the

relative efficacies of interventions designed to slow or reverse
disease progression.

19.5 Discussion and Conclusions

Arterial tree morphometry is an important application of image
processing and analysis in clinical practice and the biomedical
sciences. The severity of coronary artery disease is routinely
assessed in the clinic with the aid of sophisticated image pro-
cessing software to quantify stenoses. Presurgical planning for
vascular abnormalities such as cerebral aneurysms is facili-
tated by segmentation and visualization of the intracerebral
vasculature. Clinical studies provide information about arte-
rial morphology on a macro scale. On the other end of the
scale continuum, histological and electron microscopic meth-
ods have a long history of providing valuable insights into the
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cellular makeup and ultrastructure of vessel walls, and the many
forms of medial hypertrophy. Micro-CT techniques such as
those developed in our laboratory and others [120, 121] and
micro-MR methods under development have the potential to
shed further light on the mechanisms implicated in diseases
such as pulmonary and systemic hypertension by providing
mesoscale images. Clinical imaging modalities cannot capture
dimensional changes in the small vessels most likely involved in
elevating the resistance of the arterial tree, nor can they localize
microemboli in isolated vessels less than about 500 microns in
diameter. Histology and vascular casting methods do not allow
an appreciation for where the observed pathological conditions
such as hypertrophy or obliteration occur in the branching
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tree hierarchy as an intact structure. We and others are trying
to bridge the gap between micro- and macroscopic imaging
methods.

The methods we have developed for arterial tree morphom-
etry to date are capable of obtaining 3D image data rapidly
while the organ is maintained in a near physiological state and
have demonstrated sensitivity to pulmonary hypertension in a
rat model of the disease. The image analysis methods are still
rather labor intensive, and future efforts will include the design
of algorithms and software to speed the 3D image analysis by
automating it insofar as possible. It may also prove fruitful to
try other methods of extracting statistical measures of struc-
ture from the reconstructed volumes, perhaps related to those
utilized in the well-established science of stereology [122–126].
It is likely that for diffuse diseases such as hypertension it may
not be necessary or even desirable to analyze the tree structure
in a brute-force classical way, from top down, as we have been
attempting so far. The precise appearance on images of a disease
such as emphysema or diffuse vascular disorders, including dia-
betes and hypertension, is likely quite different from one animal
to the next in its specifics, suggesting the potential merits of a
search for sensitive statistics of a higher order than the simple
lengths, diameters, and angles of classical morphometry.

It is clear that new imaging technologies and increased com-
putational, storage, and transmission capacity will continue to
provide more and better imagery at ever-increasing rates. The
major challenge in avoiding information overload and data
opacity certainly lies in the area of devising image processing
algorithms and data analysis methods that will yield the highest
discriminatory power and the keenest biological insights into
pathological vascular remodeling mechanisms and thus provide
the highest value, first for the animals and time invested, and
eventually in the form of improved therapeutic and preventive
strategies.
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20.1 Introduction

In musculoskeletal joint systems, many diagnosis and treat-
ment modalities depend on the biomechanical data of the
tissues and the structures involved. Image-based models of the
structure and the materials involved can facilitate the deter-
mination of these data through computational biomechanics.
This chapter will present the state-of-the-art development
of this emerging technology together with several selected
application examples in order to demonstrate its exciting
potential in medical research, education, and patient care.
It is our intention to stimulate collaborations in the field
for the refinement of this technology and to explore other
applications.

Medical technology has gone through two distinct periods of
evolution during the 20th century—from the industrialization
age to the imaging and informatics era. The new discipline of
bioengineering established between these two periods served
as the catalyst in fostering the transition, putting new technol-
ogy and science on firm and rational grounds in the medical
arena. As we march into the new century carrying with us the

available knowledge and know-how, we stand at the thresh-
old of the most exciting time in comparison to the explosion
of biological sciences during the past two decades. New med-
ical innovations based on the engineering technology may
be the solution to allow biological research advances to be
effectively disseminated into practical, reliable, and affordable
clinical applications. Biomechanicians have been working on
quantitating the hard and soft tissue mechanical properties,
muscle and joint forces, and bone stress/strain under both static
and dynamic loading conditions; but rarely were the analy-
ses performed in parallel and interactively, nor could we see
the results together with realistic models depicting the sys-
tem response through animation. With the help of the new
imaging and computational advancements, we now are able to
achieve the goal of “visualization of biomechanical computa-
tions”. Difficult modeling problems associated with the human
musculoskeletal system can be solved using the visual guide
and simulation approach through a hybrid reality environment.
Many known and unknown loading conditions now can be cre-
ated on the models to test their responses with unprecedented
clarity and reliability. This new bioengineering technology

Copyright © 2008 by Elsevier, Inc.
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using image-based models and the biomechanical computation
has been utilized to perform (1) noninvasive determination of
connective tissue mechanical properties; (2) musculoskeletal
structural modeling and analysis; (3) computer-aided surgi-
cal planning; (4) joint replacement implant and bone fracture
fixation device design and evaluation, and (5) rehabilitation
exercise assessment and optimization.

Visualization and medical imaging have rapidly emerged as
unique and significant advancements in the recent history of
medical diagnostics and therapeutic intervention. The input
data of the human organ structure can be obtained from
CT, MRI, PET, SPECT, ultrasound, confocal microscopy, etc.
The early development and utilization of such technology was
restricted to image acquisition and visualization, in both two
and three dimensions. The 3D graphic models of human organ
systems provide the ideal tools for surgical skill training with
realistic anatomical shape, surface texture, and tactile feedback.
Only recently, the qualitative visualization has progressed to
quantitative modeling with the ability to simulate physiologic
function and in vivo biomechanics of musculoskeletal joint
systems—a four-dimensional model simulation.

The purpose of this chapter is to introduce the image-based
biomechanical models and the associated computational tech-
niques to quantitate material properties and to perform static,
dynamic, and stress analyses while allowing results to be visu-
alized through simulation and animation. Combined with the
environment and loading simulation, a virtual laboratory with
computerized human musculoskeletal models and the mate-
rial constitutive relationship can be created on work stations
to allow repeated testing and analyses under unlimited vari-
ations of loading conditions and pathological involvements.
The real-time graphical animation of these models will be a
powerful tool for education, surgical skill training, and basic
scientific research involving musculoskeletal disability effects,
as well as joint deformity or degeneration correction, multi-
ple trauma management, and the patients’ functional outcome
prediction associated with a variety of orthopedic treatments.
The validity of such application depends upon model verifi-
cation using anatomic specimens properly loaded on testing
machines or on joint dynamic simulators. Our ability to iden-
tify and exploit the appropriate and reliable applications of this
technology will help to rationalize this landmark breakthrough
in bioengineering.

20.2 Three-Dimensional Biomechanical
Models of the Musculoskeletal System

20.2.1 Model Development

Recent developments in three-dimensional graphical modeling
of the musculoskeletal system are directly related to the develop-
ment of MRI and CT technologies. Solid models of anatomic

structures are created from sequential serial sections of two-
dimensional (2D) images of the structures. Stacking the slices
creates three-dimensional (3D) models from the 2D images.
Tools to reconstruct 3D images from the 2D sequential slice
data have been developed and widely used in the diagnostic
field [14, 34]. When two-dimensional picture elements (pixels)
are stacked in the third dimension, they become volume ele-
ments, referred to as voxels. Voxel-based models require large
amounts of storage space and core memory. Also, the render-
ing speed achievable with this type of model is too slow to
allow real-time display and manipulation. “Vector-based” solid
models use the voxel image data to generate a descriptive repre-
sentation of the surfaces of the objects within the model. Both
automated edge detection routines and interactive contouring
programs are used to map voxel regions into surface models
representing anatomical structures. A 3D distribution of nodes
provides vertices for a mesh of polygons that define the shape of
each structure. The polygon map of the surface requires far less
computer memory than a 3D voxel-based structure and can
be manipulated with comparative ease [9, 10]. These graphi-
cal models are being used to measure joint motion (kinematic
analysis), joint and muscle loading (kinetic analysis), and the
distribution of the contact pressure and ligament tension within
a joint.

Both generic and specific 3D models of the musculoskeletal
system are used for biomechanical analysis. Three-dimensional
graphical models of living subjects are created for preopera-
tive planning and performance assessment. Three-dimensional
models of cadaver specimens allow parallel image-based mod-
eling and experimental testing of the musculoskeletal system.
Generic models of joints or other anatomic structures are devel-
oped from common domain libraries of musculoskeletal image
data. The techniques used to create 3D models from image data
are identical for generic and specific models. Creating specific
graphic models of anatomical structures requires the time and
expense of obtaining CT and/or MRI data. Generic anatom-
ical image data are easier to obtain, but can introduce errors
when combined with experimental data from living subjects or
cadavers because of anatomical variations.

The most widely used common domain musculoskele-
tal image data is available through the National Library of
Medicine’sVisible Human Project. Axial image data sets, includ-
ing CT and photographic anatomic data, from one female
cadaver and one male cadaver are available. Axial CT images
of the male were taken at 1 mm intervals throughout the body,
with a resolution of 512 pixels by 512 pixels. The axial anatomic
images were also taken at l mm intervals, with a resolution of
2048 pixels by 1216 pixels. The data set for the female cadaver
includes axial anatomic images at 0.33-mm intervals and axial
CT data at 1-mm intervals.

Digitization of the sequential slices to outline the anatomical
structures of interest is usually performed using a commercial
image analysis program, such as ANALYZE (Mayo Foundation,
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Rochester, MN). Some interactivity generally is required to
select the initial seed points and the gray-scale threshold level
that the software uses to outline each structure. The imaging
software or other software packages can assemble the sequential
images, create polygon-based surfaces between the consecutive
slices, and smooth the mesh by redistributing the polygons. The
solid models can be imported into commercial engineering ani-
mation software (VisLab, EAI, Ames, IA) to assign colors and
textures to the models and to animate musculoskeletal motion
(Figure 20.1).

20.2.2 Kinematics Analysis

The computer graphic biomechanical models allow kinematics
analysis of the musculoskeletal joints. Kinematic data is applied
to the graphic models to animate experimentally measured
or theoretical joint motions. Several techniques can be used
to record joint motions experimentally. The most commonly
used devices are 3D video capture systems [10], electromagnetic
sensors [2], and electrogoniometers [28].

Animation of experimentally measured motions requires
construction of a global coordinate system within a work-
station environment that matches the global coordinate system
used experimentally. Typically, external markers define the posi-
tion of each limb segment throughout the motions. These
markers should be rigidly fixed to the bones of interest, but
often are fixed to the skin, creating experimental artifacts due

to the relative motion of the skin with respect to the bone.
The markers generally are positioned on the body with respect
to anatomic landmarks. The marker positions are quantified
within a global coordinate system during experimental testing.
The graphical model allows recreation of the marker positions
with respect to the same anatomic landmarks on the computer
workstation. The global coordinate system is recreated within
the workstation environment to animate the model according
to the recorded motions (Figure 20.2). The markers could also
be imaged and graphically reconstructed with the body seg-
ments during model development. Shape-matching algorithms
can define the orientation of the markers on the graphic mod-
els. The markers and the attached bones can be reoriented to
match the positions recorded during experimental testing.

Once the experimental or theoretical joint motions are repro-
duced on the workstation, the model can be used to quantify the
joint motion with respect to an anatomically defined coordinate
system. Typically, Euler rotations are used to describe joint rota-
tions with respect to anatomical reference axes [4, 8, 17, 36].
Anatomic features such as bony landmarks, longitudinal axes
of long bones, and centers of spherical bone surfaces are used
to define the anatomic coordinate systems. Without a graphical
model, landmark digitization is used to create all of the reference
axes. Therefore, reference axes based on bone shape may include
significant error. In addition, palpation through the skin also
creates experimental errors during landmark digitization. For
a graphically reconstructed joint, the joint coordinate systems

(a) (b)

FIGURE 20.1 An image-based model of the shoulder created from theVisible Human dataset. The model is shown with all of the surrounding
musculature intact (a), and after removing the musculature to highlight the bones and nerves of the shoulder (b). (See also color insert).
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FIGURE 20.2 A model of the bones of the shoulder and the attached
electromagnetic sensors showing passive humerus abduction in the
plane of the scapula. The model was constructed from CT data of a
cadaver specimen used for kinematic testing. The motions recorded
by the electromagnetic sensors were applied to the model to animate
the experimental motions. The scapula and clavicle rotations between
0◦ of abduction and 90◦ of abduction were minimal. Humerus abduc-
tion beyond 90◦ of elevation produced noticeable scapula and clavicle
rotations. (See also color insert).

can be developed with access to the entire bone geometry,
allowing the most accurate axis definitions possible.

Graphic animation of the joint motions provides the
additional benefit of carrying the entire bone surface dur-
ing the motion. The defined bone surfaces can be used
to quantify the proximity between bones during the joint
motions using collision detection or distance measurement
algorithms. This information is particularly relevant when
investigating bone-on-bone impingement or nerve entrap-
ment during joint motion. This quantitative flexibility is
not available during experimental quantification of joint
motion.

20.2.3 Kinetic Analysis

The graphical musculoskeletal models also allow quantification
of the joint reaction forces and moments during the applied
motions (Figure 20.3). Each joint of the model is treated as
a ball joint and each limb is treated as a rigid link. A mass,

center of mass, and moment of inertia are assumed for each
body segment, and the acceleration of each link is quantified
from the kinematic data. The joint reaction force and moment
are quantified using an inverse dynamics approach [7]. The
equations of motion for each limb segment about an arbitrary
point are:

∑
F = m(r̈A + ω̇ × rC + ω × (ω × rC ))∑
M = I ω̇ + ω × Iω,

where
∑

F ,
∑

M are the resultant force and moment vectors of
the external forces and moments acting on the body segment;
m is the mass of the segment; rA is the position of the local
coordinate system in the global frame; rc is the position vector of
the segment mass center relative to the local coordinate system;
ω is the angular velocity of the local coordinate system; and
I is the moment of inertia of the segment about the center
of mass. The external forces and moments include terms for
the joint reaction force and moment acting on each end of
the segment and the gravitational force acting at the center of
mass.

A distal limb, such as the lower leg or forearm, is analyzed
first. The link should be unconstrained at the distal end or
have known loading conditions at that end. The equilibrium
equations are used to quantify the joint reaction force and
moment acting at the proximal joint. The joint reaction force
and moment acting on the proximal joint of the most distal
segment are used to apply the same analysis to the next link,
such as the upper arm or upper leg.

The joint reaction forces and moments can be distributed
among the muscles that cross each joint. The muscles acting
about the proximal joint are typically modeled as vectors act-
ing along straight lines between the point of origin and the
point of insertion. The point of origin and the point of inser-
tion of each muscle on the bones being modeled are identified
on the graphic model, and followed throughout the applied
motion. The equations of motion for each degree of freedom
are expressed as:

m∑
i=1

FM
i τi + F J = Fe

m∑
i=1

FM
i (r i × τi)+ T J = T e ,

where m represents the number of muscles; F M
i represents the

magnitude of the ith muscle force; τi represents a force unit
vector of the ith muscle; F J and T J represent the joint reaction
force and moment vectors; Fe and T e represent the external
force and moment vectors; and r i represents the location of
the ith muscle insertion [23]. The graphical model may show
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(a) (b)

FIGURE 20.3 A model of the skeleton during baseball pitching. The model is shown from the side (a) and from the front (b) prior to
the ball release. A collegiate baseball pitcher was videotaped in three dimensions while wearing reflective markers to obtain the pitching
kinematics. The inverse dynamics technique was used to quantify the joint reaction force (single arrow head) and the joint reaction moment
(double arrow head) at the shoulder and the elbow during the pitching motion. (See also color insert).

that some muscles wrap around the bone during the motion.
In these cases, the centroidal line of the muscle should be
plotted along the muscle length to determine the appropriate
moment arm.

Quantifying the individual muscle forces is an indeterminate
problem, since there are more unknowns than equations. The
number of unknowns can be reduced by combining muscles
with similar orientations or removing the least active muscles
from the analysis based on EMG studies [11]. For most joints,
however, reduction alone can not remove enough muscles
to make the analysis determinate. Therefore, optimization
techniques are combined with the equations of motion to solve
for the muscle forces. The underlying assumption behind the
optimization method is that the central nervous system con-
trols muscle action by minimizing some performance criteria
or cost function, such as muscle activity [23, 24], muscle stress
[1], or the square of the muscle stress [21, 36]. The system of
equations are also subjected to the constraint that the muscle
stresses, expressed as the muscle force divided by the physi-
ological cross-sectional area, are nonnegative and less than a
maximum value [1]. The optimization procedure allows quan-
tification of the individual muscle forces and the joint contact
force. Ligament forces are treated as part of the joint contact
force.

20.2.4 Joint Contact Pressure and Ligament
Tension Analysis

The joint contact force can be broken down further into the
joint contact pressure distribution and the ligament tension

using the graphical models (Figure 20.4). The bones of the joint
are treated as rigid bodies. The articular cartilage within the
joint is treated as a matrix of linear compressive springs, and
the ligaments are treated as linear tensile springs to quantify
the joint contact pressure distribution and the ligament tension
[3, 20, 35]. This analysis technique is known as discrete ele-
ment analysis. The discrete element analysis method requires
dramatically less computational time than finite element anal-
ysis techniques, but has been shown to provide similar contact
pressure distribution measurements [27].

The potential contact area is determined graphically using
the image-based models. A spring is placed at the centroid of
each polygon on the bone surface within the potential contact
area. The spring is aligned in the direction of the surface normal.
The stiffness, k, of each cartilage spring is defined as

k = E(1− ν)
(1+ ν)(1− 2ν)h

,

where E is the elastic modulus, ν is the Poisson’s ratio, and h is
the thickness. When an external force is applied to the centroid
of a rigid body, the deformation of each spring is quantified,
which is used to quantify the spring force. If any of the cartilage
springs carry a tensile force or any of the ligament springs carry a
compressive force, the springs are eliminated from the analysis.
The equilibrium equations are solved again on an iterative basis
until equilibrium is reached. For each polygon element on the
bone surface, the spring force and the polygon area determine
the applied pressure.

Discrete element analysis uses the principle of minimum
potential energy to quantify the relative displacement between
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(a) (b)

(c)

FIGURE 20.4 A computational model of the wrist used for discrete element analysis of the joint contact pressure and ligament tension.
A CT scan of a cadaver wrist was used to create each bone segment (a). The ligaments of the wrist were modeled with tensile springs (b).
Compressive springs were distributed along the contact surfaces between the bones (c) to quantify the joint contact pressure. (See also color
insert).
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the two rigid bodies. The equilibrium equations describing
the spring deformation are derived by applying Castigliano’s
theorem to the contact surface area,�. Castigliano’s theorem is
expressed as

R = ∂V (U )

∂U
= KU ,

where the strain energy function, V (U ), is defined as

V (U ) = 1

2

∫∫
�

kδ2d�.

These equations give a system of n equations with n unknowns
to quantify the deformation of each spring (δ). In these equa-
tions, K represents the spring stiffness matrix (including both
tensile and compressive springs). R represents the vector of
applied forces and moments acting at the centroids of the rigid
bodies. U represents the displacement vector (both translations
and rotations) for the rigid body centroids. The shear forces
within the joint are not included in this set of equations, but
can be added.

20.3 Bone Structure and Material
Property Analysis

20.3.1 Significance of Quantitative Analysis of
Anisotropy in Connective Tissue

Connective tissues exhibit anisotropy due to nonmineralized
or mineralized collagen fiber (trabecular bone) orientation.
Quantitative analysis of the collagen fiber and trabecular ori-
entation are important to evaluate physiological, pathological,
and healing connective tissues, as well as to understand their
mechanical properties. Anisotropy characteristics of the con-
nective tissue are represented using various image information,
such as red, green, blue (RGB) intensity and gray levels. Several
methods have been developed to evaluate the directionality
of the trabecular bone based on a binary image [32]. Fourier
analysis, however, is useful to evaluate the image based on the
gray level gradient. Fourier analysis has been applied to study
connective tissue structures, including trabecular bone [18], lig-
ament [29] and cornea [33]. Recent rapid progress of numerical
processing of imaging data has enabled us to compute a two-
dimensional fast Fourier transform (FFT) of a video image
easily. Such an analysis can allow quantitative evaluation of con-
nective tissue orientation, which will help to elucidate structural
and material properties. It is also a powerful tool to study the
healing and remodeling processes affected by biomechanical
factors in a quantitative manner.

20.3.2 Use of Fast Fourier Transform of
Histological and Radiological Images
for Quantitative Analysis of Connective
Tissue Anisotropy

20.3.2.1 Pretreatment of the Color Image Data for
Fast Fourier Transform

Histologic sections usually are stained to highlight specific tis-
sues using different types of staining techniques. For example,
in the modified Goldner’s trichrome staining, the calcified tis-
sue, uncalcified new bone, and osteoid are stained green, red,
and orange, respectively (Figure 20.5). In order to quantitate
tissue orientation using FFT, staining is required to provide the
data set for 2D FFT. Several techniques are available for color
extraction. Figure 20.5 shows an example of the color extraction
using a color spectrum distance transform in RGB space.

20.3.2.2 Two-Dimensional FFT

The gray level of each pixel of the image is represented by a
function, g (x , y), where x and y are the Cartesian coordinates
of a pixel point. The 2D discrete Fourier transform g (x , y) is
F(n, m) and expressed as

F(n, m) = 1

N 2

N−1∑
x=0

N−1∑
y=0

g (x , y) exp{−2πi(xn + ym)/N },

FIGURE 20.5 Color extraction using color distance transform. Each
tissue is represented by a cluster in RGB space (the left image). The
intensity of the selected color (R, G, B) is defined as a distance D from
the base color (R′, G ′, B′); D ≡ |R − R′| + |G − G ′| + |B − B′|. The
middle image illustrates the intensity of the uncalcified new bone
defined as a distance from the calcified new bone. The right image
illustrates the intensity of the calcified new bone defined as a distance
from the uncalcified new bone. (See also color insert).
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FIGURE 20.6 An image of collagen fibers represented in 256 gray lev-
els and its frequency transform (a). Coordinate system in the original
image and frequency transform (b).

where n and m are spatial frequencies corresponding to
the x-axis and the y-axis of the original image, respectively
(Figure 20.6). The value for N is the size of a two-dimensional
square array and should be a power of 2 for the FFT algorithm.

The preferred orientation in the original image is represented
by a peak in the power spectrum |F(n, m)|2 around the origin
of the frequency transform (Figure 20.6).

20.3.2.3 Analysis of Angular Distribution of Power
Spectrum

In order to quantitate the orientation, the summation of the
power spectrum within a narrow fan-shaped area is calculated.
For this purpose, the power spectrum transformed in a polar
system, |P(r , θ)|2, is more convenient than the Cartesian system
(Figure 20.7). The function P(r , θ) is decomposed into pθ(r)
for each θ and pr(θ) for each r , yielding a pair of functions
[pθ(r), pr(θ)] to be used by a texture operator. The intensity
of the orientation at an angle θ, F(θ), is indicated by sum-
mation of the power spectrum within a fan-shaped area and
written as

F(θ) =
N
2∑

r=0

pθ(r).

(a)

(b)

m
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FIGURE 20.7 Coordinate transform from Cartesian to polar using
a linear interpolation (a). Angular distribution analysis of frequency
transform (b). The intensity of orientation at an angle of θ is calculated
as a summation of the power spectrum in a segment in a narrow
fan-shaped area (shown as a gray area).

The distribution function, f (θ), is calculated as

f (θ) = F(θ)
180∑
θ=1

F(θ)

(Figure 20.7).

This function can be incorporated in theories to define the
degree of the anisotropy and estimation of the mechanical
properties of the anisotropic materials.

20.3.2.4 Masking (High-Pass Filtering) Effect on
Discrete Fourier Analysis of Connective
Tissue Orientation

Since the power spectrum in the low-frequency terms in the
discrete Fourier transform is limited, selectivity of the direction-
ality in the low-frequency area is low. Removal of low-frequency
terms (masking of low-frequency, high-pass filtering) is often
used to obtain better angular selectivity because of the lower
angular selectivity in the low-frequency terms. Intensity of
orientation, F(θ), is often calculated as

F(θ) =
b∑

r=a

pθ(r)

(
0 ≤ a < b ≤ N

2

)
,
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where a is a lower cutoff level and b is a higher cutoff level
of a band-pass filter (Figure 20.7). Usually, only the high-
pass filter is used to calculate the intensity of orientation(
b = N

2

)
.

The influence of the high-pass filtering on orientation inten-
sity can be visualized by the reconstruction of the images
using an inverse FFT after the masking of the low-frequency
component (Figure 20.8).

In the image of the trabecular bone, low-frequency compo-
nents constitute bulk density of the trabeculae. High-frequency
components constitute only the edges of the trabeculae. On
the other hand, the effect of masking the low-frequency
zone for the collagen fiber image is not noticeable. Low-
frequency components do not include structural information
for collagen fibers, and masking the low-frequency compo-
nent does not suppress the characteristics of each collagen fiber
(Figure 20.9) [19].

Masking of the low-frequency zone influences the density of
the thick architecture such as trabeculae, and it may affect the
estimation of structural anisotropy based on volume orienta-
tion or area orientation. Application of a larger image array
with an appropriate filter may be helpful to overcome this
problem. Estimation of anisotropy based on surface orienta-
tion is possible by using high-frequency component images.
Fine structure such as collagen fiber is more suitable for Fourier
analysis.

Trabecular bone

Collagen fibers

FIGURE 20.8 Filtering effects on the image of connective tissue.
Images are reconstructed by an inverse Fourier transform using
frequencies from a to b.
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ASSUMPTIONASSUMPTION MEASUREMEASURE METHODSMETHODS

Homogeneous
Isotropy
Homogeneous
Isotropy

DensityDensity

DensityDensity
Trabecular
orientation
Trabecular
orientation

DensityDensity
Trabecular
orientation
Trabecular
orientation

MicrostructureMicrostructure

Micro-CTMicro-CT

Plain X-rayPlain X-ray
UltrasoundUltrasound

Plain X-rayPlain X-ray
DEXADEXA
QCTQCT

Homogeneous
Anisotropy
Homogeneous
Anisotropy

Heterogeneous
Anisotropy
Heterogeneous
Anisotropy

FIGURE 20.10 Three different assumptions in predicting mechanical
properties of the trabecular bone.

20.3.3 Prediction of Material Properties of
Trabecular Bone Based on Image Data

Quantification of the material properties of bone, such as
strength and elastic modulus, using noninvasively measured
parameters is important to predict fracture risk and evalu-
ate effects of treatment for osteoporotic patients. Osteoporotic
change is initiated from trabecular bone within both ends
of long bones, vertebral bodies of the spine, flat bones such
as the pelvis, and carpal and tarsal bones. Therefore, frac-
tures related to osteoporosis occur in the trabecular-bone-rich
regions. The vertebral body, distal radius (wrist joint), and
proximal femur (hip joint) are the most common sites for frac-
tures associated with the osteoporosis. There are three major
approaches (assumptions) to predicting material properties
(Figure 20.10).

20.3.3.1 Homogeneous and Isotropic Model

Only the density is evaluated in this model. Dual energy
X-ray absorptiometry (DEXA) and QCT are usually used for
the density measurement.
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20.3.3.2 Homogeneous and Anisotropic Model

The density and directionality are evaluated in this model. This
type of model is often used to estimate the mechanical proper-
ties of anisotropic material such as fiber-reinforced composite
materials. Anisotropy in this model is macroscopic and ana-
lyzed from a statistical point of view. Fourier analysis is suitable
for this model. High resolution plain X-rays or CT can be used
for the Fourier analysis. Ultrasound measures both the den-
sity and anisotropy simultaneously. These parameters cannot
be separated by the ultrasound measurement alone.

20.3.3.3 Heterogeneous and Anisotropic Model

The density, anisotropy, and microstructure are evaluated in
this model for which micro CT can be used [16]. In addition
to the density and macroscopic anisotropy, the microstructure,
such as thickness and connectivity of the trabeculae, can be
evaluated.

Because of ease of measurement, the bone density measure-
ment has been widely used to predict material properties of
the bone. Strong correlation between the material properties
and bone density has been reported. However, the relation-
ship between the bone density and the material properties has
been reported to be nonlinear [6]. Clinical investigations show
the limitation of the density measurement in predicting frac-
ture risk. Changes in the trabecular orientation in osteoporotic
patients is widely recognized by the clinician and sometimes
evaluated in the grading system of osteoporosis in vertebral
bodies and the proximal femur.

Even though the importance of the trabecular orientation is
recognized to determine the material properties of the trabec-
ular bone, this parameter has not been included in the analysis
until recently because of the technical difficulties in quantify-
ing the trabecular orientation. The trabecular bone has a lattice
structure but it is not a perfect lattice structure and shows a
variation of the orientation. Unlike histological images based
on a thin section, the radiological images have a gray-level

gradient. Fourier analysis is suitable to quantitate the preferred
orientation based on such image data.

Material properties measured by compressive tests and ultra-
sound velocity (USV) showed high correlation with bone
mineral density (BMD) measured from a soft X-ray of the
test specimen. If the parameter of the trabecular orientation
is incorporated, however, a higher correlation is obtained. The
correlations between the compressive stiffness or USV and the
BMD as well as the intensity of the trabecular orientation
have been studied using human calcaneal trabecular bone. The
trabecular orientation can be quantified with the 2D FFT of
the soft X-ray image of the test specimens (Figures 20.11a, b).
Equivalent bone density oriented along the loading and
ultrasound axis is calculated as the product of bone den-
sity and trabecular orientation intensity along the same axis
(Figure 20.12). The component of bone density oriented along
the loading axis correlated significantly better than BMD with

Equivalent bone density in one direction

5 Vf x a1 x a2

(0 5 < a1, a25 < 1.0 Vf : volume fraction of trabecular bone)

a2

a1

FIGURE 20.12 Equivalent bone density in one direction in transverse
plane (α1) and coronal plane (α2)under homogeneous and anisotropic

assumption. αn =
180∑
θ=1

f (θ) cos4(θ)(n = 1, 2) [12]. (See also color

insert).
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FIGURE 20.11 Measurement of the anisotropy of trabecular orientation in a cubic trabecular bone specimen using two-dimensional
Fourier transform of the X-ray image. A distribution function f (θ) in one plane (a). The distribution functions in three orthogonal
planes (b).
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both compressive modulus and USV [31]. This investigation
suggests the importance of the trabecular orientation in esti-
mating the mechanical properties of the trabecular bone in
addition to the bone mineral density.

20.4 Applications

20.4.1 Movement Rhythm of the Shoulder
Complex

Image-based graphical modeling of the shoulder joint has been
used to characterize the movement rhythm of the shoulder
complex during passive humerus elevation [15, 26]. Image-
based models were constructed to represent cadaver shoul-
ders that were used for experimental kinematic testing. The
image-based models allowed graphical construction of local
coordinate axes for all of the shoulders tested. The models also
provided animation of the shoulder kinematics to aid interpre-
tation of the experimental results. The animations also were
used to quantify the distance between bony surfaces in regions
of possible soft tissue impingement and nerve entrapment
[22, 25].

For the experimental testing of joint kinematics, intact
cadaver torsos were secured to a testing stand without con-
straining the shoulder joint. For five shoulders, the humerus was
passively elevated in abduction in the scapula plane, abduction
in the coronal plane, and flexion. During elevation, electromag-
netic sensors rigidly fixed to the humerus, scapula, and clavicle
quantified the motion of each bone. After testing, dummy
sensors filled with a CT contrast medium replaced the electro-
magnetic sensors. CT data were used to create graphical models
of each cadaver shoulder, including the dummy sensors. An iter-
ative closest-point algorithm [5] mapped a block to the surface
of each sensor in the graphical models to determine the posi-
tion of each sensor within the workstation coordinate system.
The transformations describing the motion of each sensor dur-
ing shoulder elevation were applied to the models to animate
the shoulder kinematics (Figure 20.2). Anatomic coordinate
systems were defined for the scapula, clavicle, humerus, and
spine of each model. For each bone, the iterative closest-point
algorithm mapped geometric shapes to the bones to create the
reference axes. The rotations of each bone were expressed as
Euler rotations about the local coordinate axes, using the coor-
dinate system fixed to the spine as a global reference system.
Scapula and clavicle rotations were expressed as a function of
humerus elevation.

The shoulder kinematics varied between elevation planes.
For flexion and scapula plane abduction, all three of the scapula
and clavicle rotations were less than 5◦ until the humerus and
scapula became linked at approximately 90◦ of elevation. For
coronal plane abduction, the bony and soft tissue constraints
within the shoulder caused scapula and clavicle rotations on the
order of 10◦ prior to 90◦ of elevation. The humerus and scapula

became linked after 90◦ to 100◦ of elevation for all elevation
planes. Once linked, the scapula rotations increased linearly
with humerus elevation, and the clavicle rotations increased
linearly with scapula lateral rotation. The results indicate that
humerus elevation initiates passive shoulder motion and that
bony and articular constraints within the joint vary between
elevation planes.

20.4.2 Resultant Force Analysis of the Shoulder
during Throwing Activities

Image-based graphical modeling has been used to quantify
the joint reaction forces within the shoulder during dynamic
pitching activities. For this model, kinematic pitching data from
living subjects was applied to a generic model of the muscu-
loskeletal system to animate the pitching motion. The model
also was used to apply inverse dynamics analysis to the pitching
motion to quantify the joint reaction forces at the shoulder and
elbow. The joint reaction forces and moments were also incor-
porated into the pitching animation to improve interpretation
of the results.

For this analysis, the kinematics of collegiate baseball pitch-
ers pitching from an artificial mound within a motion analysis
laboratory were captured. Force plates were built into the wood
mound to measure the ground reaction forces during the pitch-
ing motion [30]. Reflective markers were taped to the skin of
each pitcher at the wrist, elbow, shoulder, hip, knee, and ankle.
A marker also was fixed to the baseball. The pitching motions
were recorded using a 5-camera, 200-Hz video capture system.
Following testing, the marker positions were digitized through-
out the pitching motion. The marker positions were recreated
on a generic skeleton model. The markers were moved to match
the digitized positions throughout the pitching motion, creat-
ing an animation of the pitching motion on the model. Local
coordinate systems were defined within the skeleton model to
quantify the joint rotations during the pitching motion. The
upper arm and forearm also were modeled as rigid links con-
nected to ball and socket joints at the elbow and shoulder.
Inertial properties were assumed for each link based on anthro-
morphometric data, and inverse dynamics techniques were used
to quantify the joint reaction force at the elbow and the shoulder
(Figure 20.3).

The force in the shoulder tended to reach a maximum near
the ball-release phase of the pitching motion. The largest com-
ponent of the force was a compressive force along the humerus
shaft, which generally exceeded 500 N. The moment acting on
the shoulder generally peaked between the position of max-
imum external rotation and ball release. In this region, the
moments acting on the shoulder were internally rotating the
humerus and bringing the humerus down and across the chest.
This study showed that the graphic model can be used to dis-
play kinematic results and quantify joint kinetics. The model
can be used to quantify the variation in joint forces from one
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individual to another or between pitches for a single individual.
This data will be valuable both for performance enhancement
and for injury prevention in athletes.

20.4.3 Ligament Tension and Joint Contact
Pressure in the Wrist

An image-based model of the wrist was developed for a
biomechanical analysis of a limited intercarpal fusion for the
treatment of Kienböck’s disease [20]. The model was used
to quantify the wrist joint contact pressure distribution and
ligament tension for multiple intercarpal fusion procedures.
The goal of the study was to determine how the procedures
alter the force transmission through the wrist joint, in gen-
eral, and to determine if any of the procedures reduce the
load applied to the lunate, in particular. A capitate-hamate
fusion, a scapho-trapezial-trapezoidal fusion, and a scaphocap-
itate fusion all were modeled using the discrete element analysis
technique.

Graphical models of 10 human wrist joints were created
form CT data of cadaver specimens (Figure 20.4). Each model
included 27 joint surfaces. A rectangular grid was constructed
on each joint surface, and a compressive spring was placed on
each rectangular element, with a minimum spring density of
one spring per square millimeter. Three to six tensile springs
modeled each of the carpal ligaments, with a total of 48 tensile
springs used in each model. External loads were applied to the
fingers to model a grip maneuver. Intercarpal fusions were mod-
eled by increasing the spring stiffness of the cartilage between
the fused bones from 22.6 N/mm to infinity. The pressure dis-
tributions for the applied loading conditions were displayed on
the graphic wrist models.

Scaphocapitate and scapho-trapezial-trapezoidal fusions sig-
nificantly decreased the joint force at the radio-ulnate joint and
the luno-capitate joint, compared to the intact wrist. In con-
trast, these fusions significantly increased the joint force at the
radioscaphoid joint, in comparison with the intact wrist. In
the midcarpal joint, scaphocapitate fusion also increased the
joint force at the scapho-trapezio-trapezoidal joints and the
triquetral-hamate joint, whereas scapho-trapezial-trapezoidal
fusion increased the joint force at the scapho-capitate joint.
Capitate-hamate fusion yielded no significant changes in the
joint forces through the entire wrist joint. In the analy-
sis of ligament tension, scaphocapitate and scapho-trapezial-
trapezoidal fusions significantly decreased the tension only
in the dorsal scapholunate ligament. These findings demon-
strate that scaphocapitate and scapho-trapezial-trapezoidal
fusions are effective in decompressing the lunate. By con-
trast, capitate-hamate fusion is ineffective in reducing lunate
compression. Although scaphocapitate and scapho-trapezial-
trapezoidal fusions are recommended for the treatment of
Kienböck’s disease, the increase in force transmission through
the radio-scaphoid and the midcarpal joints may lead to early
degenerative changes.

20.4.4 Osteoporotic Change in Trabecular
Pattern of the Vertebral Body

Osteoporosis is characterized not only by a reduction in bone
mass but also by alteration in the architecture of trabecular
bone. Changes in BMD have long been considered the most
important factor in the diagnosis of osteoporosis and in pre-
dicting the risk of fractures caused by osteoporosis. However,
recent studies have demonstrated that similar BMD values have
been associated with different osteoporosis-induced fracture
outcomes. Changes in the trabecular architecture of the osteo-
porotic vertebral body are well known, but quantitative analysis
of trabecular structure and its correlation with BMD have not
been well studied.

The BMD measured on 39 vertebral bodies from 11 human
cadavers using DEXA showed a reverse correlation with
anisotropy of the trabecular orientation of the vertebral body.
The anisotropy was defined as the ratio of the intensity of
vertical trabecular orientation to the intensity of horizontal
trabecular orientation (vertical/horizontal) measured with the
two-dimensional Fourier transform of the soft X-ray of the
vertebral body (Figure 20.13). The study demonstrated a sig-
nificantly lower BMD and higher vertical trabecular orientation
in the osteoporotic vertebral body. This phenomenon also was
found even within a vertebral body (anterior one-third), which
corresponds to the higher incidence of the vertebral fracture
in the anterior part of the vertebral body (a wedge-shaped
fracture).

An increasing number of studies indicate that, in addition
to BMD, trabecular microstructure is an important factor in
the assessment of osteoporosis. The prediction of fracture risk
in osteoporotic bone based on BMD measurement alone has
been reported to be insufficient. The prediction of fracture
risk using BMD measurement could be improved by incor-
porating the changes in trabecular orientation of vertebral
body.

Distribution function
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FIGURE 20.13 Anisotropy of the trabecular bone in normal and
osteoporotic human vertebral bodies.
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20.4.5 Bone Structure and Loading Relationship
in the Proximal Tibia

It is well known that the density and trabecular orientation
of cancellous bone adapts to its loading environment [13].
Distribution of the density in the subchondral bone (trabecular
bone underneath the joint surface) reflects the loading history
of the joint associated with physiological activity. Therefore, tra-
becular orientation adjacent to the joint surface may reveal the
biomechanical function of the joint. This information would
be especially beneficial for determining the physiological load-
ing of the knee joint, where there is a wide range of dynamic
loading to the joint surface, and redundant muscle, tendon, and
ligament forces are applied. Analysis of the trabecular orienta-
tion of the proximal tibia provides the loading history of the
tibio-femoral joint following Wolff ’s hypothesis [37].

The proximal tibia trabecular structure was analyzed in seven
fresh human tibias using the two-dimensional Fourier analysis
of contact radiograph images taken from 5-mm sagittal sections
(Figure 20.14a). Several specific regional differences in trabec-
ular orientation were identified (Figure 20.14b). Trabeculae
beneath the lateral condyle were oriented toward the poste-
rior cortex and particularly toward the proximal tibio-fibural
joint (TF). Beneath the medial condyle, trabeculae were ori-
ented toward both the anterior cortex and the posterior cortex.
Trabeculae located immediately below the center of the medial
condyle (subchondral bone region) were oriented parallel to
the joint surface (S). At the tibial tuberosity, there was a strong
orientation (DP) toward the patellar tendon insertion site (PT).
Superior to the tibial tuberosity, there were trabeculae oriented
in the direction of the patellar tendon insertion surface on
the tibial tuberosity. The specific power spectrum of trabec-
ulae beneath the insertion sites of the anterior and posterior
cruciate ligaments was also observed.

The distinct trabecular orientation found in the proximal
tibia may be adapted to its applied loading, not only at the
joint surface but also at the tendon and ligament insertion
sites. Mechanical properties of cancellous bone show anisotropy
based on trabecular orientation. Distribution of the trabecular
orientation in the proximal tibia could be used for material
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FIGURE 20.14 Soft X-ray of the proximal tibia in sagittal plane
(PT: patellar tendon) (a). Trabecular orientation in the proximal tibia
(PT: patellar tendon) (b). Representative trabecular orientation in the
proximal tibia (c).

property data for numerical analysis such as a finite element
analysis and/or validation of the analysis.

20.5 Summary

In musculoskeletal systems, simulation and visualization using
digital imaging graphic models are vital for biomechanical
analyses and data presentation. The quantitative information
derived from such analyses will be the basis for developing
the next generation of implants, devices, surgical procedures,
and rehabilitation regimens for patients with bone and joint
diseases, deformities, and disabilities. The real-time graphical
animation of these models is a powerful tool for education
and basic scientific research involving objective assessment
of connective tissue material and structural properties and
the functional anatomy under normal and pathological con-
ditions. For bone strength prediction, quantitative imaging
techniques combined with mechanical property assessment will
be required to improve its reliability and clinical acceptance
as a practical diagnostic modality. The use of 3D sonography
and stress wave detection may meet this critical demand. The
validity of the image-based solid models and the biomechanical
analysis results must be established through experimental verifi-
cation. To facilitate clinical application, patient-specific models
must be constructed using simplified imaging methods com-
bined with nonlinear mapping and scaling techniques using the
generic models as the reference. With these improvements, the
image-based models and their analysis/animation capabilities
will be the foundation for developing the image-guided and the
robot-assisted medical and surgical interventions of the future.
Such technical advancements will also make telemedicine and
telesurgery both reliable and practical.
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21.1 Introduction

Angular measurements on bony structures are often crucial
for pathoanatomical analysis, diagnosis, and therapeutic plan-
ning in cases of orthopedic diseases. Typically these angles are
determined on radiographs that require correct positioning
and appropriate interpretation of the projections of anatomical
structures. These requirements can be difficult to meet and may
lead to substantial errors during angular measurements, espe-
cially if major three-dimensional (3D) problems are present in
the specific disease.

21.1.1 Slipped Capital Femoral Epiphysis

One of the diseases carrying major 3D problems is slipped
capital femoral epiphysis (SCFE), defined as the slippage of
the femoral head relative to the femoral neck along the prox-
imal femoral growth plate. This disease affects particularly
the proximal femur of adolescents whose growth plate is not

yet calcified and therefore is soft enough to give way for a
slippage under certain circumstances. During a slippage the
femoral head shifts and rotates along the proximal end of the
femoral neck, usually posteriorly and inferiorly (Figure 21.1).
Such a slippage changes the geometry of the hip joint, leading
to an incorrect position of the femoral head relative to its joint
partner, the acetabulum. This misalignment is the cause of a
dysfunction of the hip joint. Initially the loss of motion may
be tolerated, but eventually pain and stiffness of the joint will
result from early arthritic degeneration.

In general, the planning of a surgical treatment in these
cases is based on measurements made on anterio-posterior and
lateral plain radiographs (Figures 21.2 and 21.3). Currently,
slippage angles measured on such images are essential for the
planning of correctional surgeries [9, 14]. However, it is obvi-
ous that in most SCFE cases it is impossible to position the hip
in a reproducible and accurate manner for plain radiographs.

This chapter describes a new concept for angular measure-
ment based on 3D computer models and illustrates its use for

Copyright © 2008 by Elsevier, Inc.
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FIGURE 21.1 Anterior (upper image) and superior aspect (lower image) of a 3D display of a slipped capital femoral epiphysis on the left femur.
In the superior aspect a cross-section of knee condyles is seen.

cases of SCFE. A 3D computer graphics environment provides
user-friendly interaction that allows measuring angles directly
on virtual 3D structures, and therefore without projection
errors or positioning problems.

21.1.2 Conventional Measurement Methods

Radiographic imaging is the established technique for quanti-
fying the slippage and planning the treatment, which includes
correctional surgery. Correctional osteotomy aims toward
improving alignment of the acetabulum and proximal femur in
order to prevent early arthritic degeneration due to pathologic

hip function [3, 7, 14]. Typically the crucial angles are deter-
mined on an anterio-posterior and a lateral radiographic view
of the hip. Clinically relevant angles are shaft–neck angle, shaft–
physis angle, torsion of the femoral neck, and physeal torsion
(Figures 21.2 and 21.3), described in more detail later. These
angles reflect the deformity of the proximal femur and thereby
help the surgeon to indicate and plan a correctional osteotomy
[7,14]. However, since radiographs are projection images, angu-
lar measurements derived from them may have distortions
due to the projection [8]. If the positioning of the patient is
accurate and reproducible, this problem can be corrected. Yet,
appropriate positioning, especially in cases of SCFE, is difficult
because these patients usually experience hip pain (note the
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FIGURE 21.2 Anterio-posterior plain radiograph of both hips with a SCFE on the left hip. Sketched on the image is also the way to determine
the shaft-neck (red, right hip) and shaft-physis angle (blue, left hip).

FIGURE 21.3 “Frogleg”-radiograph of both hips with a SCFE on the left hip (same patient as in Figure 21.2). Sketched on the image is also the
information about the torsion of the neck (red, right hip) and physis (blue, left hip). Note the asymmetrical positioning.

asymmetrical positioning in Figure 21.3). The extent to which
angular measurements can be off under clinical circumstances
is indicated in Section 21.3.

Since the clinical introduction of CT imaging, this method
has also been used to gather information on femoral geome-
try [17]. In general, cross-sections through the hip and through
the knee condyles are taken. This makes it possible to determine
the torsion of the femoral neck, physeal torsion (Figure 21.4)
and acetabular anteversion (Figure 21.14, right image). This
technique does not suffer from projectional distorsion because
of its cross-sectional imaging. Nevertheless, there are also
sources for errors in torsional measurements, especially if the
femoral shaft or the pelvis are not positioned perpendicu-
larly to the imaging plane. In comparison to the errors made

on plain radiographs, these errors are relatively small and in
most cases clinically tolerable. On the other hand, CT images
of the hip region in general provide only axial cross-sections.
Without further processing of these cross-sections this method-
ology does not allow definition of shaft-neck angle, shaft-physis
angle, or acetabular inclination. Because SCFE is a disease
with a major three-dimensional problem and because correc-
tional osteotomy is a complex three-dimensional procedure,
axial cross-sections alone are not sufficient. We will not address
the comparison between measurements on 3D computer mod-
els and axial CT images because the latter do not address the
entire three-dimensional problem. A complete solution may
be obtained with 3D computer models and related angular
measurements.
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FIGURE 21.4 Axial CT-cross-sections through the knee condyles (left image) and the upper femoral neck (right image). The way to determine
the torsion of the neck (red, right hip) and physis (blue, left hip) is also shown. In the depicted method the line sketched on the left image is
transferred to the right images and tided 1 in the latter.

21.1.3 Planning of Correctional Osteotomies
Based on 3D Computer Models

Conventional planning methods of osteotomies are tradition-
ally focused on the amount of slippage of the femoral epiphysis
to improve the alignment of the acetabulum and the proxi-
mal femur. The acetabular orientation and the geometry of the
proximal femur are generally not taken into consideration for
preoperative planning of correctional osteotomies. It is known
that the slippage of the femoral head and the deformation of
the proximal femur cause an impingement between the acetab-
ulum and the femoral neck. This impingement and the changed
distribution of forces between femur and acetabulum may lead
to an early arthritic degeneration. Therefore it is necessary to
address the amount of slippage, the acetabular orientation and
the geometry of the proximal femur when planning correctional
osteotomies.

Projectional errors which reduce the accuracy of plain radio-
graphs preclude the determination of crucial angles such as the
orientation of the acetabulum. After further processing, 2D CTs
of the pathological hip joint provide all essential angles but inac-
curacies caused by positioning and projection errors remain. In
contrast, 3D-CT analysis for preoperative planning enables the
surgeon to take all important angles into consideration and
provides accurate measurements.

21.2 3D Angle Measurement Method

21.2.1 Data, Postprocessing, and Graphics

21.2.1.1 Image Data

The approach described here is based on cross-sectional images
obtained with CT. The field of view and energy of the radio
source are handled as necessary for the individual case, but kept
constant throughout the CT scan. As in the presented case, the

scan should cover the area between the acetabulum and minor
trochanter with contiguous 3 mm slices. In addition, one cross-
section of the femoral knee condyles is acquired. During the
3D measurement, this cross-section provides important infor-
mation about the rotation of the femoral neck relative to the
knee. Digital copies of all images are transferred to a network
of workstations for further postprocessing.

21.2.1.2 Image Postprocessing

The goal of the postprocessing is to delineate the structures of
interest within the scanned volume. Initial segmentation of the
femur and pelvis is done with commonly used intensity thresh-
olding techniques [1]. Operator interaction is needed to ensure
proper separation of pelvis and femur and to determine the bor-
der between femoral head and neck. The latter is equivalent to
the growth plate, which appears less dense than calcified bone
in CT images. Because of this contrast, a reliable and quick seg-
mentation of the growth plate can be achieved manually. The
final segmented volume contains pelvis, femoral head, proximal
femoral metaphysis, and a cross-section of the condyle, for the
left and the right sides (Figure 21.5).

21.2.1.3 3D Visualization

The segmented images are used to reconstruct 3D models
(Figure 21.1) using marching cubes [9], an algorithm described
in the Visualization section of this book and available in “The
Visualization Toolkit” (VTK) [12] (Figure 21.6). During the 3D
reconstruction process, the border of an anatomical structure
on one cross-section is connected to the next with triangles.
Surface models of the reconstructed structures typically con-
sist of about 50,000 triangles, after application of a triangle
reduction algorithm [13]. The rendering process uses the VTK
libraries as well [12]. Display is performed on Sun workstations
with 3D graphic hardware acceleration.
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FIGURE 21.5 Symbolic depiction of a segmentation. Structures of interest are outlined separately (seen as different colored areas). All other
information of the images is omitted.

FIGURE 21.6 Using triangulation, the edges of the outlined structures are connected throughout the cross-sections, thereby building a 3D
reconstruction.

21.2.1.4 3D Graphics Measurement Tool

The software development platform for the interactive 3D mea-
surement tool is the Tcl/Tk language in combination with the
programming languages C and C++. Tcl/Tk is a script lan-
guage that provides the capabilities of standard C/C++ coding
and supports socket programming, input/output handling,
looping, and mathematical manipulation. Tk is a popular
extension of Tcl designed for graphical user interface (GUI)
construction with convenient features for interface layout and
associated event handling. Both Tcl and Tk have interfaces
that enable developers to implement custom C/C++ code for
arbitrary extensions. For 3D computer graphics representa-
tion, a graphics programming environment such as VTK can
be used along with a graphics library such as OpenGL (Sun
Microsystems).

The 3D graphics part of the interface depicts a scene of the
3D models and an axis tool that consists of an axis and a plane
perpendicularly placed on one end of the axis. Point of view and
sizing of the whole 3D scene can be changed by direct mouse
interaction on the display window. In addition, the axis tool can
be positioned independently of the anatomical bone structures.
A GUI window allows this manipulation in six degrees of free-
dom. One can determine an anatomical axis on the 3D bone
structures interactively by positioning the axis tool along the
presumed anatomical axis. A mouse click on the save buttons
in the GUI window stores the vector information for the appro-
priate anatomical axis. Buttons and anatomical 3D structures
are accordingly color-coded to prevent user errors. After all nec-
essary axes are determined and stored, the required angles can
be computed and displayed.
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21.2.2 Measurement Theory

21.2.2.1 Clinically Relevant Angles

For pathoanatomical analysis and accurate planning of surgical
treatment, it is essential to know the following angles: shaft-neck
(Figure 21.7), physis-neck, femoral neck torsion (Figure 21.8),
physeal torsion, and acetabular anteversion and inclination
(Figure 21.14) [2].

(Remark: in general, shaft-neck angle is called caput-collum-
diaphysis angle (CCD). In this chapter, this term is not used in
order to prevent misinterpretations; in severe cases of SCFE it
is not useful to determine the proximal end of the neck (lat.:
collum) as the center point of the femoral head (lat.: caput)
because of its misplacement.)

These angles describe the geometry of the proximal femur,
the degree of slippage, and the acetabulum orientation. For
the measurement of these angles it is necessary to deter-
mine the axis of the femoral shaft (Figure 21.9, left image),
condyles (Figure 21.9, right image), capital femoral physis
(which is interpreted as the base of the slipped femoral head,
Figure 21.10, left image), neck (Figure 21.10, right image),
acetabulum (Figure 21.11), and the pelvis (I+ II) (Figures 21.12
and 21.13). The principal axes are vectors:

Femoral neck axis (acetabular axis I): �n
Capital femoral physis: �g
Femoral shaft axis (pelvis axis I): �s
Femoral condyle axis (pelvis axis II): �k

Shaft axis

Neck axis

FIGURE 21.7 Depiction of a femoral shaft-neck angle measurement
(blue) on the shaft-neck plane (green).

When S is the plane with normal vector �s, the shaft–neck
angle is the angle formed by the projection of the femoral
neck axis �n and condyle axis �k onto S, defined as �n′ and �k ′
respectively.

In the same manner, the shaft–physis angle is formed by the
projection of condyle axis �k and the CFE �g axis, namely �g ′.

Absolute values of each angle are formulated as follows:

Shaft-neck angle: |∠N ′OK ′| = |cos−1(�n′ · �k ′)|
= |cos−1((�s × �n) · (�s × �k))|

(21.1)

Shaft-physis angle: |∠S′OG ′| = |cos−1(�g ′ · �k ′)|
= |cos−1((�s × �g ) · (�s × �k))|.

(21.2)

The angles computed in (21.1) and (21.2) are absolute values;
thus, we have to evaluate the positive and negative factor of
shaft–neck and shaft–physis angles separately.

The femoral neck can be ante- or retrotorted with respect
to the knee condyles. This correlates with either positive or
negative positioning of �n′ with respect to �k ′. Here, �n′′ is the
outer product of �s and �n′, and �k ′′ is that of �s and �k ′. If the �n′
is in the positive (or counterclockwise) side of the �k ′, the angle
formed by �n′ and �k ′′ is greater than the angle formed by �n′′ and
�k ′. In cases where �n′ is in the negative (or clockwise) side, the
same angle should be smaller.

Consequently, shaft-neck and shaft-physis angles are formu-
lated as

∠S′ON ′ =
{∣∣cos−1((�s × �n) · (�s × �k))∣∣, |∠N ′OK ′′| ≤ |∠K ′ON ′′|
−∣∣cos−1((�s × �n) · (�s × �k))∣∣, |∠N ′OK ′′| ≥ |∠K ′ON ′′|,

(21.3)

where

|∠N ′OK ′′| = ∣∣cos−1
(
(�n × �s) · �k ′

)∣∣ (21.4)

|∠K ′ON ′′| = ∣∣cos−1
((�k × �s) · �n′)∣∣ (21.5)

and

∠S′OG ′ =
{∣∣cos−1((�s × �g ) · (�s × �k))∣∣, |∠GOK ′| ≤ |∠KOG ′|
−∣∣cos−1((�s × �g ) · (�s × �k))∣∣, |∠GOK ′| ≥ |∠KOG ′|,

(21.6)

where

|∠GOK ′| = ∣∣cos−1((�g × �s) · �k ′)∣∣ (21.7)

|∠K ′OG ′′| = ∣∣cos−1((�k × �s) · �g ′)∣∣. (21.8)

The torsional angles (neck torsion and physeal torsion) and the
angles against the diaphyseal axis were assessed for the neck and
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FIGURE 21.8 Depiction of a femoral neck torsion measurement (blue) between the shaft-neck plane (green) and the shaft-condyle plane (red).

s

k

FIGURE 21.9 Determination of a femoral shaft axis (left image, anterior aspect, right femur) and a knee condyle axis (right image, superior
aspect, right femur) using the 3D goniometer.

the growth plate, respectively:

∠SON = cos−1(�s · �n) (21.9)

∠SOG = cos−1(�s · �g ). (21.10)

Acetabular anteversion was determined analogously to the tor-
sional angles and acetabular inclination analogously to the
shaft-neck angle.

21.3 Results

21.3.1 Phantom Study

The presented approach was evaluated for accuracy by a phan-
tom study. A wooden stick was used to simulate a femoral shaft.
Smaller sticks penetrating the ends of this “shaft” simulated two
condylar axes and three femoral neck axes. The arrangement
is depicted in Figure 21.15. The angles between the axes were
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FIGURE 21.10 Determination of the orientation of a capital femoral epiphysis (left image, anterior aspect, right femur) and a femoral neck
axis (right image, right latero-superior aspect, right femur) using the 3D goniometer.

FIGURE 21.11 Determination of the acetabular axis (left image, anterior aspect; right image, posterior aspect).

measured by conventional goniometers. The phantom was then
placed in a CT scanner in an arbitrary position comparable to a
patient’s femur and the scanning protocol described above was
applied. The scan was then repeated with the phantom placed
in a different position. Digital images were segmented and the
angles of the 3D reconstruction were determined for the two
scans, resulting in 6 shaft–neck angles and 12 torsional mea-
surements of the neck. The measurements of the 3D digital
model are compared with the measurements on the phan-
tom. The average difference (± one standard deviation) for

the shaft–neck angles is −0.02◦ ± 0.84◦, and for the torsion
measurement+0.06◦ ± 1.16◦.

21.3.2 Results in Retrospective Cases

The angle quantification was also applied to 23 retrospec-
tive cases and compared with the conventional measurement
technique. In these cases a CT scan as well as conventional radio-
graphic imaging was available. The necessary 3D structures
were reconstructed using the CT scans. Angular measurements
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FIGURE 21.12 Determination of the pelvis axis I (left image, superior
aspect; right image, posterio-lateral aspect).

FIGURE 21.13 Determination of the pelvis axis II (left image, anterior
aspect; right image, lateral aspect).

on both femora were performed using the conventional and 3D
methods. The comparison of the two methods showed a notable
discrepancy between them. The mean difference (± one stan-
dard deviation) between the X-ray and the 3D technique was
6.5◦ ± 5.2◦(n = 46) for shaft-neck angle, 10.3◦ ± 13.0◦(n =
45) for shaft–physis angle, −15.6◦ ± 13.1◦(n = 45) for neck
torsion, and 2.4◦ ± 21.0◦(n = 44) for physeal torsion. The
comparison of the physeal torsion angles obtained with the
X-ray and 3D methods is presented likely in Figure 21.16.

FIGURE 21.15 Photo of the wooden phantom used for the accuracy
study.

21.4 Discussion

Imaging techniques are still developing rapidly, and the increas-
ing speed of computers is making demanding post processing
functions possible. A modern feature often available on recent
CT and MRI consoles is the ability to generate 3D surface
models from a series of cross-sectional images. However, the

FIGURE 21.14 Determination of the acetabular inclination (left image, anterior aspect) and the acetabular anteversion (right image, inferior
aspect) using the 3D goniometer.



364 Handbook of Medical Image Processing and Analysis

20°

0°

�20°

�40°

�60°

�80°

�100°
�100° �80° �60°

X
-R

ay
 m

ea
su

re
m

en
t

3D measurement

Physeal torsion

�40° �20° 0° 20°

FIGURE 21.16 Comparison between measurements of the physeal
torsion on plain radiographs and the same measurements using 3D
methodology (n = 45 hips; in 1 of the 23 cases a lateral image of the
healthy side was not avaliable).

function of the 3D models is often restricted to display only and
so far the applications for further manipulation of the 3D mod-
els have been limited. The described method for 3D bone angle
quantification provides a computational goniometer based on
3D models for angular measurements on individual femora.
The 3D goniometer tool is easy and intuitive to handle. It was
possible to show that such 3D systems provide good angular
measurements.

In preparation for a correctional osteotomy the crucial
angles are measured on antero-posterior and so-called“frogleg-
position” images. The angular accuracy of measurements on
radiographs depends strongly on correct and reproducible posi-
tioning of the patient. Accurate knowledge of the slippage angle
of the femoral head is essential for correctional osteotomy.
However, the torsional angular measurement of the capital
femoral epiphysis on radiographs differs considerably from that
obtained from 3D models in most cases (a standard deviation
of± 21.0◦), without showing a systematic error. The main rea-
son for this seems to be the difficulty in positioning. In a review
of the plain radiographs, inaccurate positioning was clear, espe-
cially on “frogleg” images used to interpret the slippage in
the transversal plane. On virtually all images an asymmetric
position of left and right hip was clearly apparent.

Some angles that are essential for an accurate preoperative
planning of correctional osteotomies, such as acetabular antev-
ersion, cannot be obtained on plain radiographs. Although a
few articles describe acetabular anteversion based on 2D CT
data sets [11, 15, 18], axial CT images do not allow assessment
of the acetabular inclination.

Slippage of the femoral head leads to an unphysiologic posi-
tion of the head relative to the hip cup and therefore to an
impingement between the acetabulum and the femoral neck.
The consequence of this impingement may be an early degen-
erative joint disease. In severe cases of SCFE the femoral neck
is regularly deformed [6, 10]. In contrast to conventional pre-
operative planning on plain radiographs, 3D computer models
provide all essential geometric information — femoral antev-
ersion, physis anteversion, acetabular anteversion, shaft–neck
angle, shaft–physis angle, and acetabular inclination — and
further important information about the deformity of crucial
anatomical structures.

There is still a debate about preventive fixation of the con-
tralateral hip in cases of unilateral SCFE. Shear forces caused by
changed femoral geometry depending on the level of activity
may lead to a slippage of the femoral epiphysis [4]. A changed
geometry of the unaffected proximal femur should be taken into
account when considering preventive fixation of the unaffected
contralateral epiphysis. Former 2D-CT studies reported that
SCFE is associated with a reduced femoral anteversion [5, 16].
In this manner the lack of an appropriate measurement method
for the unaffected hip may cause unnecessary surgery, or early
stages of slippage may be overlooked.

Pathoanatomical analysis and preoperative planning based
on 3D computer models provide accurate measurements, deter-
mine essential angles that are not considered in traditional
planning, and present further information on the deformity
of crucial anatomical structures.

Thus far, 3D reconstruction on CT/MR consoles has limited
use because of very simple segmentation algorithms; in gen-
eral, only intensity thresholding and connectivity checking are
available.

More advanced segmentation algorithms can be found in
the Segmentation section of this Handbook. Depending on the
anatomy of interest, a combination of segmentation algorithms
may be appropriate.
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22.1 Introduction

Because the data extracted and presented for pattern recog-
nition or classification in medical images are often complex,
noisy, or incomplete, it is difficult to use conventional algo-
rithmic approaches to determine the truth based on a set of
predefined rules. As a result, many machine learning methods
have been tested and used in the field of medical image pro-
cessing where computer-aided detection or diagnosis (CAD) is
involved. Among the variety of machine learning techniques,
artificial neural networks (ANNs) and Bayesian belief networks
(BBNs) are popular choices because of the inherent func-
tion approximation and decision-making capability of these
two networks. The performance of these networks is usually
evaluated and compared using a receiver operating character-
istic (ROC) or FROC (free-response) methods [4, 15]. In this
chapter, we first briefly introduce and compare the basic charac-
teristics of ANNs and BBNs used in medical image processing.
In order for a CAD system involving either an ANN or a BBN
to achieve good and robust testing performance in the clinical
environment, an unbiased database and a small set of effective
features will be important considerations in the development

phase of the system. Thus, we will focus the discussion on the
issues and methods related to optimization of database and
feature selection used in ANNs and BBNs for medical image
processing.

22.1.1 Artificial Neural Networks

An ANN is a computational structure inspired by the study of
biological neural processing. It has some capability for simu-
lating the human brain and learning or recognizing a pattern
based on partial (incomplete) information. Although there are
many types of ANN topologies (e.g., from a relatively simple
perceptron to a very complex recurrent network), by far the
most popular network architecture is a multilayer feed-forward
ANN trained using the back-propagation method. Because it
has been proved that only one hidden layer is enough to approx-
imate any continuous function [15], most ANNs used in CAD
of medical images are three-layer networks. In this chapter, we
discuss three-layer feed-forward ANNs, but the conclusion also
should be applicable to other types of ANNs. Once the topology
of an ANN (the number of neurons in each layer) is decided,

Copyright © 2008 by Elsevier, Inc.
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Hidden layer

Input layer

Output layer

FIGURE 22.1 A three-layer feed-forward ANN.

the ANN needs to be trained either in supervised or unsuper-
vised mode using a set of training samples. In the supervised
training the identity of each training sample is known, and
in unsupervised training the identity of each sample needs to
be decided by the ANN using a clustering method. In a typ-
ical three-layer feed-forward ANN as shown in Figure 22.1,
there is one input layer, where the neurons are represented by
a set of features, one hidden layer, and one output layer, where
the decision making is performed. The relationship between
the input neurons (Xi , i = 1, 2, . . . , n) and the output neu-
rons (Yk , k = 1, 2, . . . , N ), which are connected by the hidden
neurons (hj , j = 1, 2, . . . , m), is determined with the equation

Yk = g

⎡
⎣ m∑

j=1

wkj g

(
n∑

i=1

wjixi + θin

)
+ θhid

⎤
⎦, (22.1)

where g (z)= 1/(1 + e−z ), wkj is the weight from the jth hidden
neuron to the kth output neuron, wji is the weight from the ith
input neuron to the jth hidden neuron, θin is a bias neuron in
the input layer, and θhid is another bias neuron in the hidden
layer. A nonlinear sigmoid function,

Opj = 1

1+ exp

(
−
∑

i

wjiOpi + θj

) , (22.2)

is typically used as an activation function for each of the pro-
cessing neurons in the ANN, where Opj is the jth element of
the output pattern produced by the input pattern Opi . Then,
with the use of the back-propagation concept and Widow/Hoff
learning law, the weights between pairs of neurons are adjusted
iteratively so that the difference between the actual output
values and the desired output values is minimized. Initially,

the weights are randomly assigned. Then, the adjusted weights
are calculated as

�wji(k + 1) = ηδpj Opi + α�wji(k), (22.3)

where η is the learning rate, α is the momentum term used
to determine the effect of past weight changes on the current
changes, k is the number of iterations, and δpj is the error
between the desired and actual ANN output values. All the
final weights in the ANN can be determined when either error
δpj is smaller than a predetermined value (e.g., 0.001) or train-
ing iteration number k has reached a predetermined number
(e.g., 3000). However, setting a fixed threshold for error δpj or
iteration number k cannot guarantee that the ANN is optimally
trained. A safer approach based on available training and testing
databases is to stop training by monitoring the ANN’s perfor-
mance on the testing dataset. Training should continue for as
long as the test performance improves (or the error decreases),
and it should stop when the test performance starts decreasing.

When one is using an ANN, another important decision is
the number of hidden neurons in the hidden layer. Usually,
the network requires enough hidden neurons to make good
separation between different classes (e.g., true-positive and
false-positive abnormalities detected from medical images).
However, adding more hidden neurons is equivalent to adding
more features. As the number of hidden neurons increases, the
ANN begins to separate training data too well (over fitting)
and decrease in performance in independent testing due to loss
of generalization of the network.

22.1.2 Bayesian Belief Networks

A Bayesian belief network (BBN), which also may be called a
Bayesian causal probabilistic network, is a graphical data struc-
ture that compactly represents the joint probability distribution
of a problem domain by exploiting conditional dependencies.
A BBN can capture knowledge of a given problem domain in
a natural and efficient way [24]. A BBN builds an “acyclic”
graph in which nodes represent feature variables, and connec-
tions between nodes represent direct probabilistic influences
between the variables. Because of the properties of “acyclic”
connection and d-separation defined in the BBN, there is no
feedback loop between any nodes, and the lack of connection
between two nodes indicates the probabilistic independence of
two variables. One node in a BBN represents one feature vari-
able. Each variable must have two or more discrete states. For a
discrete variable, its digital or symbolic values can be transferred
directly to the states of the node. For a continuous variable, it
must be segmented into a discrete variable. Each discrete num-
ber corresponds to one state. Then, each state is associated with
a prior probability value; for each node, the summation of prob-
ability values for total states equals 1. The connections between
nodes are represented by conditional probabilities. The number
of the conditional probabilities is determined by the structure
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FIGURE 22.2 A BBN used for diagnosis of breast cancer. Adapted from Wang XH, Zheng B, Good WF, Chang YH. Computer-assisted diagnosis
of breast cancer using a data-driven Bayesian belief network. Int J Med Informatics. 1999;54:115–126.

of the BBN. In a BBN, these prior and conditional probabilities
can be either assigned by established statistic data or computed
from a set of training data. In general, when the network struc-
ture is given in advance and the variables are fully observable
in the training examples, learning the prior and conditional
probabilities is straightforward [24].

Unlike a three-layer feed-forward ANN that has fixed topol-
ogy, the structure of a BBN can be flexibly changed for different
applications, based on human knowledge. It allows investiga-
tors to specify dependence and independence of features in a
natural way through the network topology. For example, one
study developed and tested a BBN to classify between malig-
nant and benign breast lesions [33]. The network includes 13
features where 5 are related to patients’ clinical history, 4 are
obtained from general findings in physical examination, and 4
others are extracted from findings in mammograms. Based on
the relationship (dependency) of these features, the topology of
a BBN was designed (Figure 22.2). Then a series of prior and
conditional probabilities was computed. In this network, the
nodes represented by features from 5 different types of patient
clinical history information are located in the same layer. These
5 nodes independently point to (connect to) the node of breast
cancer. Because each of these 5 nodes (Yi , i = 1, . . . , 5) and
each node of breast cancer has two states, yes and no, a total of
64 conditional probabilities should be determined as follows:

P1(Cancer = yes|Y1 = yes, Y2 = yes, Y3 = yes,

Y4 = yes, Y5 = yes)

P2(Cancer = no|Y1 = yes, Y2 = yes, Y3 = yes,

Y4 = yes, Y5 = yes)

P3(Cancer = yes|Y1 = yes, Y2 = yes, Y3 = yes,

Y4 = yes, Y5 = no)

. . . ,

P64(Cancer = no|Y1 = no, Y2 = no, Y3 = no,

Y4 = no, Y5 = no).

In these 64 conditional probabilities, 32 are independent.
Next, the node of breast cancer also connects to eight other
nodes that represent the features extracted from patients’ phys-
ical and mammographic examinations. These eight nodes are
considered to be independent in this topology. Six of them have
two states, and two others have three states [33]. Because all the
connections between these nine nodes start from the node of
breast cancer, the conditional probabilities should be computed
as P(Xi |Cancer = yes), and P(Xi |Cancer = no), i = 1, . . . , 8.
The total conditional probabilities between the node of breast
cancer and these eight feature nodes are 36, where 20 are inde-
pendent. Meanwhile, based on the states of each node in the
network, the total number of prior probabilities in these 14
nodes is 30 where 16 of them are independent. Therefore,a com-
plete weight structure in this BBN requires 30 prior probabilities
and 100 conditional probabilities. In this BBN, the probabil-
ity of a patient having breast cancer can be predicted when
the required diagnostic information (features) of this patient is
presented to the network.. Using a testing database of 419 cases
(including 92 malignancies), the BBN achieved a performance
level of AZ = 0.89 (area under a ROC curve) [33].

However, in many CAD studies a large number of features are
initially computed. Visually defining the dependency between
these features is often difficult. Researchers have developed
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several software packages (i.e., Hugin Demo [16] and BN Power
Predictor [16]) that are available for users to build and optimize
the BBN. Based on the training and testing databases, these
machine learning tools can automatically search for the depen-
dency of input features (including selecting useful features and
discarding redundant ones) and build an optimal BBN.

22.1.3 Comparison between Artificial Neural
Networks and Bayesian Belief Networks

The ANN and BBN use different machine learning concepts
for pattern recognition and have very different characteristics.
Table 22.1 summarizes and compares the basic characteristics
of these two networks.

Because a large number of features are usually extracted and
computed in medical image processing, the extracted informa-
tion produces a complex and multidimensional space. Different
machine learning methods and classifiers have been applied to
define the separation boundary between different classes (i.e.,
malignant and benign lesions). The ANN is one of the most
popular classifiers used in a large number of CAD schemes. The
biggest advantage of the ANN is that it is relatively easy to imple-
ment, since the ANN does not need much human intervention
and knowledge of the problem. ANNs can learn and automat-
ically define boundaries between different pattern clusters in
a multidimensional space based on the optimization approach
of “hill-climbing” even when the training data contain noise
and incomplete information. However, because it is a heuristic
optimization method, there is no guarantee that the ANN will
find the most accurate model. To help the ANN avoid being
trapped inside a locally optimal solution, one should apply an
appropriate momentum (α) and learning rate (η). The major
concern about the ANN is that it acts like a “black box” and
cannot meaningfully explain its reasoning [7].

Because of the “black box” approach and possible data over-
fitting in training an ANN, some researchers found that it might
be difficult to convince the physicians to accept and act on
advice from an ANN-based CAD system [31]. In contrast, a
BBN can explain the reasoning process and offer an efficient and
principled approach for avoiding data overfitting [24]. Thus,

TABLE 22.1 Characteristics of an ANN and a BBN

Characteristic ANN BBN

Optimization method Simpleheuristic
approach

Probabilistic
approach

Explainable learning process No Yes
Flexibility in topology design No Yes
Weights inside the network Trained Computed or

assigned
Possible data overfitting Yes No
Limitation on input data type No Yes (only

discrete data)
Implementation Easy Difficult

some investigators suggested that a BBN should be more reli-
able than an ANN used as a CAD tool for diagnosis of medical
images [27]. However, there was no experimental evidence to
support that a BBN is better than an ANN in medical image
processing. In fact, an important principle in pattern classi-
fication indicates that diversity of the training database and
feature extraction are the two most crucial aspects of classifi-
cation. If the training database and features are not capable of
discriminating classes of interest at all, the resulting recogni-
tion performance will be poor regardless of what decision rules
and classifiers are employed. On the other hand, if the training
database is diverse and features exhibit simple statistical struc-
tures and separate classes well, various decision rules will make
little appreciable difference in the overall classification perfor-
mance [29]. Therefore, the choice of classifier may not be as
important as the quality of the training database and input fea-
tures. Future efforts aimed at improving the performance and
generalization of the ANN and BBN in medical image process-
ing will benefit considerably from the refinement of training
databases and feature selection.

22.2 Database Selection

Since the topology of an ANN or a BBN depends on a set of fea-
tures and the distribution of weights inside the network depends
on a set of training data, both the database and selected features
play important roles in determining the training and testing
performance of the network. Figure 22.3 shows a schematic
representation of the process of evaluating the performance
of a classifier using either an ANN or a BBN. In the figure,
collection of sample data (or images) is the first step for build-
ing and testing a machine learning classification system. In
this section, several issues related to the database selection are
discussed.

22.2.1 Effect of Case Difficulty

Nishikawa et al. demonstrated that the accuracy of a CAD
scheme was inversely related to the percentage of difficult or
subtle medical images in the training and testing database. In
principle, when one is using a limited number of images to
train an ANN or other classifiers, the classifiers can achieve any
accuracy from 0% to 100% depending on the nature or diffi-
culty of the database [25]. For example, with only 10% change
in the composition of the database, the sensitivity of an ANN-
based CAD scheme for detecting microcalcification clusters in
digitized mammograms dropped from 100% to 77% at a false-
positive rate of 1.0 per image [26]. As a result, the performance
of two different machine learning classifiers trained and tested
by different medical image databases is usually not compara-
ble. To solve or minimize this problem, different researchers
have suggested many avenues, such as establishing a common
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FIGURE 22.3 Schematic diagram of ANN or BNN performance evaluation in medical image processing.

database to test different schemes and using standard methods
to measure case difficulty, such as size, contrast, and conspicu-
ity of medical abnormalities [26]. However, before a standard
method to measure case characteristics is established and agreed
upon in the field, the investigators should report the proce-
dure of case selection and measurement protocols in a manner
that allows others to reproduce their methodology. Without a
detailed description of the case difficulty in the training and
testing databases, the performance reported for a specific clas-
sifier used in medical image diagnosis may be meaningless to
other researchers.

22.2.2 Adequacy of Training Samples

Minimizing training biases in the ANN or the BBN is another
important issue in database selection. Because of the complex
and noisy nature of medical images, there is no way to know
whether a particular finite training database is sufficient for
training the network. However, several studies have demon-
strated that increasing the size of the training database was an
effective approach to minimize training bias in the networks
[32, 36]. One study systematically investigated the relationship
between the size of the training database and the performance
of an ANN-based CAD scheme [36]. In this study, an ANN
with 24 input neurons, 8 hidden neurons, and 1 output neuron
was built and tested. The input neurons represent 24 features

computed by the CAD scheme from the automated segmented
mass region and its surrounding background depicted in digi-
tized mammograms. The database contained 368 positive mass
regions and 1778 suspicious but negative regions. As a testing
dataset, 120 positive and 400 negative regions were randomly
selected. The selected testing dataset was used solely for testing
purposes and was not used in any of the training protocols.
The remaining 248 positive and 1378 negative regions made up
the database from which the appropriate number of positive
and negative regions was randomly selected for each training
experiment. At the completion of each training cycle with 1:1
ratio between positive and negative regions, the performance
of the ANN was evaluated by using the same testing dataset.
With use of the ANN output as a summary index, the area
under the ROC curve (Az value) [34] was computed for each
testing at varying training sample size. The results demonstrate
that the performance of the ANN on the testing dataset contin-
ues to improve when the number of training regions increases
(Figure 22.4). The training bias, represented by the difference
between the Az values of training and testing databases, mono-
tonically decreases as the number of training samples increases
from 60 to 496, as shown in Figure 22.4. This study indicates the
facts that many of the features extracted from medical images
are continuous and span a wide range of values, and that it
may require a very large, carefully selected sample set of cases to
ensure that the entire variable domain is adequately covered. In
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reality, the training data samples that are selected, segmented,
and used to optimize a classifier in diagnosis of medical images
are very sparse in relationship to the feature space. Under this
situation, one is more likely to “stress” the system during testing
by using cases that were “never seen,” because at least some of
these may cover areas in the feature space that had not been
(or at best had been sparsely) represented in the training set.
Therefore, a large training database is often required to effi-
ciently model the complex relationships among the medical
findings and computed features. Another independent database
is also required to test the performance and generalization of
the network.

22.2.3 Effect of Validation Methods

However, selecting a large training database in medical image
processing is often a difficult or infeasible task in many appli-
cations. In reality, the size of databases used in many studies
reported to date is very limited. Although holdout evaluation
(dividing a database into two independent training and test-
ing subsets) is the best approach to assess the performance
and robustness of computer schemes, it is not widely used
in developing CAD schemes for medical images due to the
limitation of the size of available databases. Hence, differ-
ent cross-validation (CV) methods have been widely used to
evaluate the performance of an ANN or a BBN.

Although there are many theoretically sound techniques for
validating the performance of machine learning classifiers (i.e.,
ANN and BBN) [8], most are based on the assumption that
the training database covers the entire sample space sufficiently
well. When the case domain is adequately sampled, and the
investigator takes great care not to overtrain the classifier, these
are valid approaches. This is typically the case when the feature
domain is reasonably limited and well defined in many other

fields, such as recognition of optical characters or mechanical
parts in an assembly line. Unfortunately, it is not the case in
many clinical applications of medical imaging. The diagnostic
problems in medical images are often complex, and available
data are often limited and rather noisy. The noise is typically
inherent because of the poor specificity of the various clini-
cal symptoms and findings presented in the medical images.
Tourassi et al. presented a study that used three different sta-
tistical methods—cross-validation with various partition ratios
on the training and testing samples, round robin (leave-one-out
strategy), and bootstrap—to evaluate the diagnostic perfor-
mance of two ANNs in diagnosing pulmonary embolism and
breast cancer. The experimental results demonstrated that pre-
dictive assessment of both ANNs varied substantially depending
on the training sample size and training stopping criterion. The
study then concluded that it was difficult to identify the best sta-
tistical method to estimate the predictive accuracy of an ANN.
The decision of selecting a validation method depends on the
complexity of the diagnostic problems, and the number as well
as the variability of the available sample cases. To reduce the
bias, users should validate the ANN by different methods. If
different validation methods achieve similar estimations of the
performance of an ANN, the users can be more confident about
the ANN’s true diagnostic performance [32].

Recently, Li et al. used the Monte Carlo simulation method
to investigate, compared the potential bias of several validation
approaches, and concluded that the holdout evaluation was a far
less precise method than the k-fold CV method using the lim-
ited database. They recommended that one should use different
methods (i.e., bootstrap) to partition the database into a series
of k subsets. The average performance level obtained from mul-
tiple k-fold CV evaluations provides a more precise estimate
of the true performance level than any other methods. This
random partition process can reduce the risk of transferring
the initial “testing” dataset (as used in the holdout evaluation
method) into the “training” dataset and resulting in the poorer
robustness of the “optimal” ANN. In addition, if a previously
optimized ANN performs poorer in a new dataset later, it usu-
ally suggests that the old dataset does not represent the diversity
of the medical images acquired in the clinical practice. The best
way to improve ANN performance is to combine the prior and
new datasets and use multiple k-fold CV methods to retrain
and retest the ANN [21]. Since the k-fold CV method generates
an optimal topology of the ANN and multiple sets of weights
between each pair of connected neurons, one should use the
whole dataset to train the ANN using the same training pro-
tocol used in k-fold CV process. This will be the final ANN
optimized for the real application. Because ANN performance
and robustness generally depend on the size of the training
dataset [36], this final ANN should perform comparably or
better than any other ANNs optimized during the k-fold CV
process.

The same concept is also valid for a BBN optimized using
a data-driven approach, because different combinations of
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learning samples may change the conditional probabilities, as
well as feature dependency, inside the BBN, which could then
change the predictive values in testing new cases.

22.3 Feature Selection

After an image database has been established, the images are
usually preprocessed using various techniques of image filter-
ing, segmentation, and transformation, to define the regions
of interest (ROIs) that may depict diseases or cancers. Then, a
computer program is used to extract and compute features from
each ROI in the processed images. Many different image features
(i.e., intensity, geometrical, morphological, fractal dimension
based, and texture features) have been used in medical image
processing. Feature extraction can be considered as data com-
pression that removes irrelevant information and preserves
relevant information from the raw data. However, defining
effective features is a difficult task. Besides the complex and
noisy nature of medical images, another important reason is
that many computed features are not visible by human vision,
or the meanings represented by these features are inaccessible to
human understanding. It is almost impossible to directly inter-
pret the effectiveness or redundancy of these subtle features.
Thus, in order to find out the maximum number of effective
features from the ROIs in medical images, investigators usually
extract a large number of initial features. Since most of these
initial features are redundant, in order for a machine learn-
ing classifier to remain robust, relatively few features should
be selected and used to train the classifier. This process of
incorporating an optimal set of features (or input nodes) into
ANNs and BBNs presents issues that are similar to the typi-
cal signal-to-noise ratio problem. Every feature extracted from
medical images contains both information (signal) and noise.
The redundant features used in the input nodes of an ANN or
a BBN make very little contribution to the information pre-
sented to the network but add noise to it. An important lesson
about generalization of a supervised machine learning classi-
fier can be learned from statistics: too many free parameters
result in overfitting. A curve fitted with too many parameters
follows all small details or noise, but is very poor for interpola-
tion and extrapolation [13]. The same is true for an ANN and a
BBN. Theoretical analysis supports that decreasing the number
of free parameters in a network can improve its generalization;
thus, one of the most critical problems in network design is the
problem of choosing an appropriate network size for a given
application [2].

Therefore, when one is developing a CAD scheme that
includes an ANN or a BBN, optimization of feature selection
is a critical issue to obtain good training performance and pre-
serve the generalization of the network in the clinical testing.
In this section we discuss and compare several feature selection
methods commonly used and reported in optimization of CAD
schemes.

22.3.1 Direct Measurement of Feature
Characteristics

There are many criteria to describe effective features. In general,
the effective features used in a machine learning classifier should
possess the following characteristics:

1. Large interclass mean distance (discrimination): Features
in different classes should have significantly different
values.

2. Small intraclass variance (reliability): Features should have
similar values for objects of the same class.

3. Low correlation with other features (independence):
Features should not be strongly correlated to each other.

4. Insensitivity to extraneous variables (little signal-to-noise
ratio dependency): Features should not be affected signif-
icantly by changes in other features.

If the number of initially selected features is limited, direct
measurement of feature characteristics can be a choice to search
for effective features and eliminate redundant ones. In order to
remove biases associated with different scaled feature values and
to preserve good numerical behavior, one should first normal-
ize all of the features using the entire database (samples in all
classes) with

f new
k = fk − μk

σk
, (22.4)

where

k = feature index, k = 1, 2, . . . , n

f new
k = normalized feature

fk = original feature

μk = 1

N

N∑
l

fk(i) (22.5)

σk =
√√√√ 1

N − 1

N∑
i=1

(fk(i)− μk)2

N = the number of samples. (22.6)

After normalization, the mean (μk) and standard deviation (σk)
of every feature are equal to 0 and 1, respectively. Then, we
can compute the characteristics of each feature and the cross-
correlation coefficients between any pairs of features as follows:

1. Interclass mean distance. For any two classes, (i =
1, 2, . . . , n1) and ( j = 1, 2, . . . , n2), the interclass mean
distance is

distk = 1

n1

n1∑
i=1

fk(i)− 1

n2

n2∑
j=1

fk(j). (22.7)
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2. Intraclass variance. For each feature, we can compute
intraclass variance as

σ2
c =

1

nc − 1

nc∑
i=1

(fk(i)− μc)
2, (22.8)

where

μc = 1

nc

nc∑
i=1

fk(i). (22.9)

3. Cross-correlation coefficient. The cross-correlation coeffi-
cient between any pair of features is

ρjk =

√
1
N

N∑
i=1

fj(i)fk(i)

K
, (22.10)

where K is a normalization constant so that ρkk = 1.

Besides computing these parameters, histograms and scat-
ter diagrams are also useful tools that allow investigators to
directly visualize the mean and standard deviation of each class,
the separation between different classes, and the correlation
between different features. Using these computation and dia-
gram methods, investigators can sort the features based on the
values of interclass distance, intraclass variance, and correlation
coefficients with other features. Then, those features exhibiting
the large interclass separation and small intraclass variance are
chosen as input features to the classifier. In medical image pro-
cessing and CAD, many studies reported to date have used this
direct measurement method to select optimal features in dif-
ferent machine learning classifiers. For example, in one recent
study, seven features were initially computed from the 54 mass
lesions depicted on sonograms. In 54 lesions, 24 were malig-
nant and 30 were benign. The mean and standard deviation of
each feature for the malignant and benign lesions were com-
puted. Then, four features that showed the most separation,
in a one-dimensional analysis, between malignant and benign
lesions were selected for the ANN input. At 95% sensitivity, the
ANN achieved 76.5% specificity and the area under the ROC
curve was 0.86 [30].

22.3.2 Permutation and Progressive Roundoff
Approach

Once the topology of a network and the database are deter-
mined, the most reliable method for the optimization of feature
selection is a complete permutation search. In this method, all
possible combinations of features are tested in the network. A
set of features that generate the best testing performance in
the network is then defined as an optimal set of features. For

Mass node

Feature 1 Feature 2 Feature 3 Feature 4 Feature 20

FIGURE 22.5 A simple BNN structure for classification of mammo-
graphic masses. The number of feature nodes (varied from 1 to 20)
is determined by the “exhaustive” permutation search. Reprinted with
permission from Zheng B, Chang YH, Wang XH, Good WF, Gur D.
Feature selection for computerized mass detection in digitized mam-
mograms using a genetic algorithm. Acad Radial. 1999;6:327–332.

example, in one study [37], a complete permutation method
was applied to search for an optimal feature set in a BBN
used for classification of mammographic masses, as shown in
Figure 22.5. In this experiment, the training database included
288 positive mass regions and 2204 negative regions, while the
testing database included 304 positive mass regions and 1586
negative regions. For each region, 20 image-based features were
extracted. Then, an“exhaustive”(complete permutation) search
method was used to test all possible combinations of features,
where the number of features used in the BBN ranged from 1 to
20. For each feature set, a BBN was defined, trained, and tested.
The highest Az values computed for a set of a given number
of features are shown in Figure 22.6. As the number of fea-
tures increase, the maximum Az value also increases initially.
It reaches the highest performance index of 0.876 ± 0.008 for
11 features. Beyond 11 features, Az values decrease monotoni-
cally in the BBN. This experiment indicates an expected general
shape for the optimal performance curve as a function of the
number of features because of the contribution of information
versus the addition of noise when features are incorporated into
a classification system.

Although the permutation method can guarantee finding
the optimal feature set for the inputs of a classifier, it is very
inefficient. In the preceding example, the exhaustive permu-
tation method includes the search for a total of 1,048,575
feature combinations. It may take more than one day for
a regular personal computer (PC) to process all these com-
putations [37]. As the number of features increases or as
the network topology becomes more elaborate, the complete
permutation method quickly becomes computationally inac-
cessible. To improve searching efficiency, we can use the
progressive roundoff approach [22] to replace the exhaustive
permutation search.
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FIGURE 22.6 The highest performance (Az value) achieved as a
function of the number of image-based features used in the BBN.
Reprinted with permission from Zheng B, Chang YH, Wang XH,
Good WF, Gur D. Feature selection for computerized mass detection
in digitized mammograms using a genetic algorithm. Acad Radial.
1999;6:327–332.

Suppose that we want to search for an optimal set of features
from N extracted features, and we already know that m features
(m < N ) are part of the optimal features. The classifier, using
these m features, can achieve the performance of Max[Az (m)].
We fix these m features and then add one of the remaining fea-
tures into the classifier. After finding the highest performance
(Max[Az (m + 1)]) using m + 1 features, we fix these m + 1
features again and search for adding another feature. This pro-
cess can be repeated for each of the remaining unfixed features
but will usually be stopped if the Max[Az (n + 1)]<Max[Az (n)],
where n < N . Then, these n fixed (selected) features are used
as input features to the classifier. In medical image processing,
although a large number of features may be initially extracted,
only a small number of features are needed in order to build
a robust classifier. In this situation, the progressive roundoff
method can be a practical and efficient approach to search
for the optimal feature set. To use this method, we can first
use the permutation method to build a growth core (seeds) by
searching for a small number of m features (e.g., m = 5). The
computation iterations (the possible feature combinations) are

Tp = N !
m! × (N −m)! . (22.11)

Then, we could increase the number of features from m to
m + 1 by evaluating the small number of calculation circles
(N −m). In summary, the total testing number of different
feature combinations using a progressive roundoff search in

the entire feature space is

T = N !
m! × (N −m)! +

N−m∑
i=1

i. (22.12)

For example, in the experiment discussed before [37], we found
that if we first searched for five optimal features and fixed them
as initial growth seeds, the progressive roundoff method could
obtain the same search results as shown in Figure 22.6. Since
N = 20 and m = 5, Tp = 15,504. After five optimal features
have been selected, it would take another 120 tests to finish
a complete progressive roundoff search in this feature space.
The computation time in this progressive roundoff experi-
ment is only about 1.5% of the time required in the exhaustive
permutation method.

22.3.3 Stepwise Feature Selection

The stepwise feature selection (SWFS) method is another well-
established statistical approach to search for the features that
can enhance the performance of a classifier. Although the SWFS
method was initially associated with linear discriminant analy-
sis (LDA), it can also be applied to the feature selection process
used in optimizing ANN and BBN. The basic concept of the
SWFS method is the same when used for different machine
learning classifiers, but different statistical criteria could be
used in different studies to choose effective features. For exam-
ple, in classification between normal and abnormal medical
images that are represented by two feature vectors x1 and x2,
one commonly used selection criterion is maximization of the
Mahalanobis distance r :

r =
√
(x1 − x2)T	

−1(x1 − x2). (22.13)

It provides a generalized measure of the distance between two
feature vectors of normal and abnormal images by accounting
for the covariance matrix of the distribution of vectors. Other
statistical criteria, such as the minimization of Wilks’ lambda
(the ratio of within-group sum of squares to the total sum of
squares of the distributions) [12] and the maximization of Az

value (the area under ROC curve) [5], were also reported to
select optimal features used in CAD schemes.

When one is using the SWFS method, the first step is to
define a small number of features as the initial feature model.
This step is similar to the initial step of the progressive round-
off method. The difference is that in the progressive roundoff
method, once a feature has been selected, it will stay as one
of the optimal features in the selection process, whereas in the
SWFS method, the features selected in the previous step can be
removed from the optimal feature set in the next step. Basically,
in the SWFS searching process, one feature that provides the
best performance based on a predetermined criterion and an
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evaluation statistic inside the initial feature pool is selected into
the search model first. The F statistic is generally used in the
SWFS method. Once the initial feature model is established,
the SWFS method selects individual features controlled by two
parameters, namely F-to-enter and F-to-remove, based on F
statistics. The feature entry step and the feature removal step
are alternately performed in the SWFS method. In a feature
entry step, each of the features that are not yet in the model
is selected and added into the model one at a time. The selec-
tion criterion (performance) in each new feature model is then
tested. The feature that provides the most significant perfor-
mance improvement will be entered in the feature model if the
F-to-enter value is larger than the F-to-enter threshold. In the
feature removal step, a new set of tests is conducted to evaluate
the performance of the classifier by removing each of the fea-
tures inside the feature model one at a time. If, after one feature
is removed from the model, there is no significant change in
the performance of the classifier (or the F-to-remove value is
smaller than the F-to-remove threshold), this feature will be
permanently removed from the feature model. The SWFS pro-
cedure is iteratively performed, and it is terminated when the
F-to-enter values for all features outside the model are smaller
than the F-to-enter threshold and F-to-remove values for all
features inside the model are greater than the F-to-remove
threshold.

The feature selection results in the SWFS method depend
on the optimization of F-to-enter and F-to-remove thres-
hold values. The optimal values of these two threshold values
usually cannot be known in advance. Thus, one has to exper-
iment with these parameters and increase or decrease the
number of selected features inside the initial model to obtain
the best performance of the classifier. Hadjiiski et al., reported
an automated simplex optimization method to select these two
threshold values in their study to optimize a CAD scheme for
classifying between malignant and benign masses using pairs of
current and prior images. The SWFS method selected an opti-
mal set of 10 features from the initial pool of 35 features. Then,
CAD achieved the best performance in the testing dataset with
an Az value of 0.92 [12].

Although using SWFS does not guarantee selection of the
optimal subset of features, it remains as a popular method to
date for feature selection due to its computational efficiency
compared to the exhaustive search [5, 34].

22.3.4 Genetic Algorithm Approach

The genetic algorithm (GA) is another popular machine
learning method with some type of biological paradigm
that emulates Darwinian evolution by following the only the
strongest survive strategy. The fundamental principle of GA
is based on natural selection. To solve an optimization task
in feature selection, GA usually involves the following five
steps [14]:

1. Initialization. The GA starts from a population of ran-
domly selected chromosomes, which are represented by
binary or gray-level digital strings. Each chromosome
consists of a number of genes (bits in the string) and
corresponds to a possible solution of the problem. For
feature selection in medical image processing, a chromo-
some is typically represented by a binary-coded feature
string, with 1 indicating the presence of a gene (the fea-
ture is used in the classifier) and 0 indicating its absence
(the feature is not used).

2. Evaluation. In this step a fitness function is applied to
evaluate the fitness of all chromosomes in the population.
The type of fitness function or criterion is determined
by the specific applications. Since the main purpose of
medical image processing is to improve the diagnostic
accuracy of cancers or diseases, and ROC methodology is
considered a standard to evaluate the diagnostic accuracy,
the areas under the ROC curve (Az ) are often used as
a fitness criterion. Because the fitness function must be
applied to assess the fitness level of each chromosome in
the population, evaluation is typically the most difficult
and computationally costly step.

3. Selection. This step involves rewarding high fitness chro-
mosomes (e.g., the chromosomes that generate high Az

value for the classifier) and eliminating the low fitness
ones. Thus, using different selection methods, such as
roulette wheel selection, tournament selection, and elite
selection, the chromosomes with better fitness levels can
expand to take up a larger percentage of the population,
while those with poor fitness levels decrease in numbers.

4. Search. After the population has adjusted itself to take
advantage of the higher fitness chromosomes, search
operators are used to recombine or create a new gener-
ation of chromosomes. The two most popular operators
in this step are crossover and mutation. The crossover
exchanges genes between two chromosomes to produce
two offspring in the new generation, and mutation injects
random changes to selected genes (from 0 to 1 or vice
versa in binary-coded chromosomes) to reduce the risk
of the optimization process being trapped inside local
minima.

5. Termination. GA continually evolves until one of some
terminating conditions is reached. These conditions
occur when (1) GA has found a chromosome that yields a
predetermined fitness value, (2) GA has reached a prede-
termined number of evolution generations, and (3) GA
cannot find better chromosomes in the new generations.

A number of free GA software packages are available for
research purposes [18]. However, since these GA programs were
typically designed to be applicable to a variety of problems
and to generate solutions without knowing anything about the
problem domain, the GA programs downloaded from different
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research websites usually cannot be directly used in a specific
application of medical image processing. The program needs
to be tested and modified. The users should design a fitness
function and implement it into the available GA software. In
addition, some initial parameters used in the GA must be tested
and optimally selected for the specific application. When one
is developing an ANN used in CAD schemes, a fitness function
using the area under the ROC curve as a fitness criterion is com-
monly designed and implemented into the GA program [38].
The size and diversity of the initial chromosome population are
important. The size of the population should expand as much
as possible, constrained by computer resources and time. The
diversity of the initial population can help find better start-
ing points in the GA. Hence, to achieve better results, a small
part of the population (e.g., less than one-third of initial chro-
mosomes) may be assigned by the investigators based on their
knowledge to the application problem, and the rest of the popu-
lation should be randomly assigned by the computer program.
In general, a bigger population size creates better opportunity
for GA to find a close-to-optimal solution, and diversity in ini-
tial chromosomes also makes GA converge more quickly to its
searching destination.

Although to a lesser degree than simpler search methods such
as the ANN, GA is susceptible to the problems of the “hill-
climbing” process. Namely, it does not guarantee finding the
best feature subset (or global maximum) in a large multidi-
mensional feature space. However, because GA starts searching
from many different places in the feature space simultaneously
and uses the only the strongest survive strategy, it is not easily
trapped into local maxima. GA has demonstrated the ability
to find good (or close-to-optimal) solutions for a wide vari-
ety of applications. As a result, GA has also gained popularity
in CAD schemes of medical images for feature selection and
system optimization problems. In a study reported by Sahiner
et al., a database consisted of 168 biopsy-proven mammo-
graphic mass regions and 504 normal breast tissue regions.
From each region, 572 texture features and 15 morphological
features were initially extracted. Using 10 different partitions
in the training and testing data, the GA selected on the aver-
age 20 features and yielded an average Az value of 0.90. If 20
features were randomly selected, the average Az value was only
0.82 [29]. In another study aimed at improving performance of
a CAD scheme for detecting microcalcification clusters in dig-
itized mammograms, Anastasio et al. utilized GA for searching
through a “parameter space” that consists of all possible com-
binations of parameter values. These parameters included not
only the image-based features extracted from suspicious micro-
calcification clusters, but also the processing values used in the
scheme, such as filter weights and threshold levels. Compared
with the empirical selection of these parameter values, the
study demonstrated that using the GA selection approach,
the sensitivity of the detection scheme could increase from
80% to 87% at a false-positive rate of 1.0 per image based

on a jackknife testing method involving 89 digitized mam-
mograms [1]. Gurcan et al. compared GA with two other
optimization methods (steepest descent and simulated anneal-
ing) in selecting optimal features used in a convolution ANN.
The study found that GA achieved the best result [11].

22.4 Summary

In the past two decades, ANNs and BBNs have become increas-
ingly popular in the development of CAD schemes for medical
images. Commercialized CAD systems have been routinely used
in a large number of medical institutions around the world
to assist radiologists detect suspected breast lesions (including
masses and microcalcification clusters) during their interpreta-
tion of screening mammograms [9,10]. A large number of other
CAD schemes for detecting different types of cancers and dis-
eases depicted in medical images (e.g., pulmonary nodules [28]
and colonic polyps [3] on CT images) have also been developed
and tested in the laboratory environment. The performance
and robustness of ANN and BBN depend on selecting a large
and diverse dataset as well as a small set of effective features.
However, a number of issues related to the optimization of
database and feature selection remain unsolved. In database
selection, there is no agreement upon (1) how to assess the
adequacy of a database, (2) how to measure and compare the
difficulty between different databases, and (3) how to establish
a common database that can effectively represent the diversity
of clinical images. In feature optimization, because of a large
number of features that are typically extracted and computed
in the initial stage of CAD development, current methods are
not always efficient for exploring the large and complex feature
spaces. In addition, the effectiveness of feature selection also
depends on the size of the training dataset. Studies have shown
that when one has a small training dataset and a large number
of initial features from which to select, the probability of select-
ing an optimal or even near-optimal subset of features is small.
As the training data size increases and the initial number of fea-
tures decreases, the probability of selecting an optimal subset
of features substantially increases [20].

Therefore, searching for more effective and efficient meth-
ods in optimization of database and feature selection remains
as one of the major research topics in an attempt to improve
the performance and robustness of machine learning classifiers
(including ANN and BBN) used in developing CAD schemes
or other medical imaging processing techniques. As significant
research effort continues to refine present methods and intro-
duces new techniques for database optimization and feature
selection, the obstacles to the practical implementation of CAD
systems for medical image diagnosis will probably be overcome
in time. As this occurs, CAD systems can provide clinicians reli-
able and cost-effective diagnostic tools for better diagnosis of
diseases and optimal management of patient treatment plans.
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23.1 Introduction

In the past few years, it has become possible to obtain mam-
mographic images in digital form, either by means of high-
resolution film digitizers that are now widely available or with
full-field digital mammography systems that are rapidly being
implemented into clinical use. In each case, a digital radio-
graph of the breast is available with spatial resolution from
10–25 samples/mm and precision of 12–14 bits. These two
developments have opened several opportunities for image pro-
cessing in mammography. Considerable research activity has
been directed toward using image processing to improve image
display or in the development of methods for computer-aided
detection and diagnosis. In this chapter, we describe some of
the work that has been carried out in another direction—
using quantitative information extracted from mammograms
to predict risk of breast cancer.

Breast cancer is the second largest cancer killer of North
American women [1]. Its causes are still largely not understood;
however, both genetic and environmental factors have been
implicated. Currently, the most effective approach to reduc-
ing mortality from breast cancer is through early detection.
Routine screening of women over the age of 40 with X-ray mam-
mography has been demonstrated to contribute to mortality
reduction. Studies of the impact of screening have estimated
the magnitude of reduction to be between 17% and 30%.
Results will depend on many factors, including the age of the
women, the quality of mammography, the screening interval,
compliance with the screening program, and the timeliness and
quality of subsequent workup and treatment of screen-detected
abnormalities.

Until the causes of breast cancer are understood, the iden-
tification of risk factors for the disease is particularly impor-
tant. Risk factors are defined as characteristics that victims of a

Copyright © 2008 by Elsevier, Inc.
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disease have in common. Mammographic density has been
shown to be a strong risk factor for breast cancer. In this
chapter, we describe methods for estimating breast cancer risk
through quantitative analysis of mammographic density. In
addition, density is an important cause of loss of sensitivity
and specificity of mammography due to superposition of tis-
sues in the formation of the image [2], and an assessment of the
amount of density might lead to choice of an alternative imag-
ing modality for women whose breasts are found to be very
dense.

Because the mechanism of image formation is central to most
of the methods for density analysis, we begin with a brief review
of the physics of acquisition of the mammographic image.

23.1.1 Mammography

Mammography is a radiographic examination of the breast. An
X-ray beam from a metallic target is directed toward the breast,
and the transmitted X-rays are detected by an image recep-
tor. Most commonly, the image receptor is a fluorescent screen,
held in intimate contact with a sheet of single-emulsion pho-
tographic film in a light-tight cassette. In mammography, the
X-ray spectrum is most frequently emitted by a molybdenum
target, although rhodium or tungsten may be used for imaging
large or dense breasts. The spectrum usually has a maximum
energy of 25–32 keV. The beam is prefiltered with a metallic
foil, before becoming incident on the breast. Attenuation of
X-rays by the breast is governed by the thickness and com-
position of the tissues through mechanisms of absorption
and scattering. Because the scattered radiation degrades the
shadow image of normal and pathological structures, a device,
called an antiscatter grid, is placed between the breast and the
image receptor. This removes much of the scattered radiation,
but unfortunately, also some of the useful, primary quanta.
Equations 23.1 and 23.2 give a simplified description of the
formation of the mammogram.

The first process involves absorption of the X-rays to produce
an initial signal:

L(x ′, y ′, E) =
∫ Emax

0

dN0(E)

dE

[
e
−

T (x′, y ′)∫
0

μ(x , y , z , E) dl
]

[
1+ STs

PTp

]
η(E)G(E)EdE , (23.1)

where

L(x ′, y ′) is the quantity of initial signal incident on the image
recording device. This can be the amount of light produced
by a phosphor, or the electronic charge from a conversion
layer.

E is a particular energy of the X-ray quanta.
Emax is the maximum energy of quanta in the spectrum.

(dN0/dE)(E) is the differential number of X-ray quanta at
energy, E , that would be incident on a specified area of
receptor in the absence of the breast and the grid.
μ(x , y , z , E) is the attenuation coefficient of the breast tissues

at each X-ray energy E .
T (x ′, y ′) is the total thickness of the breast along the path that

projects to x ′, y ′.
S/P is the scatter-to-primary ratio of radiation at the image

receptor with no grid.
Tp , Ts are the transmission factors of the grid for primary and

scattered quanta.
η(E) is the quantum interaction efficiency of the screen.
G(E) represents the conversion efficiency and signal transmis-

sion efficiency of the X-ray detecting layer.

This is followed by a recording step:

D(x ′, y ′) = f (L(x ′, y ′), (23.2)

where

D(x ′, y ′) is the optical density (blackness) of the processed film
mammogram at a location (x ′, y ′) in the image receptor, or
in the case of a digital image, the image signal at a pixel
corresponding to the position (x ′, y ′).

f (L) represents the characteristic response curve of the record-
ing system to the initial signal. For film, this curve is generally
sigmoidal in shape. For intermediate exposures, D is propor-
tional to log(L). For digital detectors, f generally represents
either a linear or logarithmic relationship with L.

Note that for some X-ray detectors called quantum counting
systems, L is not weighted by the energy of the quanta, so that
effectively G(E)E = 1.

After correction for several factors, such as X-ray scattering
and field nonuniformities, the values of D in the mammogram
reflect the composition of the breast, in terms of the spatial dis-
tribution ofμ. The intensity of the X-ray spectrum, dN0(E)/dE ,
depends on the design of the X-ray tube, the target material, the
applied voltage, the electron beam current (mA) and exposure
time, the filter material and thickness, and the presence of other
attenuators such as the breast compression plate and breast
support table. Considering this and the other variables enu-
merated previously, one can see that many factors will influence
the actual value of D(x ′, y ′) in the mammogram. In addition,
it is usual that a sensor is situated beneath the image receptor
to record some of the radiation transmitted through the breast
and the receptor. This is used to actuate an automatic expo-
sure control (AEC) that terminates exposure when the sensor
has received a predetermined amount of radiation. The pur-
pose of the AEC is to provide an image on the processed film
or digital system, which has a constant optical density or signal
level, regardless of the thickness and composition of the breast.
While the AEC is an important tool, contributing to high image
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quality, its use further weakens the absolute connection between
the recorded signal, D, and the composition of the breast, unless
all of the exposure factors are known. Therefore, much of the
work on mammographic image analysis has not attempted to
use the underlying physical variables of image acquisition, but
instead to concentrate on subjective or quantitative features of
the image itself.

23.1.2 Mammographic Density

Figure 23.1 is a composite of six mammographic images of
the breast. These images illustrate that the breast has a wide
range of appearances on mammography, associated with dif-
ferences in composition. Radiographically, the breast consists

mainly of two component tissues: fibroglandular tissue and
fat. Fibroglandular tissue is a mixture of fibrous connective
tissue (the stroma) and the functional (or glandular) epithe-
lial cells that line the ducts of the breast (the parenchyma).
The remainder of the breast is fat. In terms of X-ray atten-
uation, fat is more radiolucent than fibroglandular tissue;
thus, regions of fat appear darker on a transilluminated
radiograph of the breast. Regions of brightness associated
with fibroglandular tissue are referred to as mammographic
density.

The hypothesis that breast cancer risk is associated with
mammographic density was presented by Wolfe in the 1970’s
[3, 4]. Wolfe developed a qualitative scale that classified the
breast as being predominantly composed of fat or as belonging

(a) (b) (c)

(d) (e) (f)

FIGURE 23.1 Mammographic images taken in the cranial–caudal projection illustrating a
six-category classification (SCC) of mammographic density. Quantification is in terms of the
percentage of the area of the breast that appears as mammographically dense tissue. The cate-
gories are defined as follows: (a), NONE; (b), (0, 10]; (c), (10, 25]; (d), (25, 50]; (e), (50, 75];
(f), (75, 100]. Note that “]” indicates that the endpoint is included with the interval. Reprinted
with permission from Byng JW, Boyd NF, Fishell E, et al. The quantitative analysis of
mammographic densities. Physics in Medicine and Biology 1994;39:1629–1638.
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to one of three categories representing increased mammo-
graphic density associated with either the prominence of the
ductal structures or diffuse areas of density. These categories
were then related to the subsequent development of breast
cancer.

Each of the images in Figure 23.1 was selected as represen-
tative of one of the categories of a six-category classification
(SCC) scheme, which is quantitative for the proportion of the
breast that appears as mammographically dense tissue. The
six categories in this classification range from “no density” to
“extensive density.” This system, which is used subjectively in
reader studies [5], represents an attempt to develop a single-
variable scale for characterizing mammographic density that is
more quantitative than the Wolfe grades.

Table 23.1 summarizes the results of a nested case-control
study that related breast density classified according to SCC by
radiologists with cancer incidence [5]. It illustrates the struc-
ture of a study used to quantify a risk factor. The table includes
odds ratios (OR), as an approximation of the relative risk (RR)
of disease, across categories of mammographic density. The
OR is the ratio of the odds of being a case (having developed
breast cancer) to being a control in each category relative to the
odds in the lowest density category. This study demonstrated
that any increased mammographic density is associated with
an increased chance of developing cancer. Women (aged 40–
59) with the most extensive density were found to be 5.3 times
more likely to be have been diagnosed with cancer relative to

women with an absence of density. At these magnitudes, mam-
mographic density is among the strongest known risk factors
for breast cancer.

The data in Table 23.1 also demonstrate that increased density
is present in a large proportion of breast cancer cases. In this
study, 18.6% of the women who developed cancer also had
the most extensive category of density, and 44% of the women
with cancer were in the two most extensive density patterns (i.e.,
where more than 50% of the projected area of the breast appears
as mammographic density). Breast density is an important risk
factor for breast cancer, not only because of the magnitude
of the risk prediction, but also because it is present in a large
fraction of breast cancer cases.

Several studies [6–10] have used multicategory quantitative
classifications of mammographically dense tissue. Warner et al.
[11] performed a meta-analysis of these studies and compared
quantitative versus strictly qualitative classifications of mam-
mographic density. They found the former to give stronger
predictions of risk.

23.1.3 Comparison with Other Risk Factors

The importance of breast density as a risk factor for breast can-
cer is particularly evident when comparing it with other breast
cancer risk factors. For North American women, the strongest
risk factor is age. Some other well-known risk factors for breast
cancer are summarized in Table 23.2 (adapted from Kelsey and

TABLE 23.1 Distribution of case and control subjects according to mammographic
density in the Canadian National Breast Screening Study: unmatched, unadjusted analysis
of radiologist-estimated densities. OR refers to the odds ratio in each category, with “no
density” used as the reference (adapted from Boyd et al. [5]).

Proportion of breast occupied by densities, %Age at entry
to NBSS

Total
SampleNone (0,10] (10,25] (25,50] (50,75] (75,100]

All ages
Case 10 29 65 94 90 66 354
Control 25 61 73 97 67 31 354

Total 35 90 138 191 157 97 708
OR* 1.0 1.2 2.2 2.4 3.4 5.3

Aged 40–49
Case 3 9 22 35 51 46 166
Control 10 17 25 40 49 25 166

Total 13 26 47 75 100 71 332
OR† 1.0 1.8 2.9 2.9 3.5 6.1

Aged 50–59
Case 7 20 43 59 39 20 188
Control 15 44 48 57 18 6 188

Total 22 64 91 116 57 26 376
OR‡ 1.0 1.0 1.9 2.2 4.6 7.1

*Cochran-Armitage test for trend, p =<0.0001.
†Cochran-Armitage test for trend, p = 0.005.
‡Cochran-Armitage test for trend, p = 0.002.
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TABLE 23.2 Selected risk factors for breast cancer (adapted from Kelsey and Gammon. [12])

Group

Risk Factor High Risk Low Risk Relative Risk

Age Old Young >4.0
Country of birth North America, Asia, Africa >4.0

North Europe
Socioeconomic status High Low 2.0–4.0
Marital status Never married Ever married 1.1–1.9
Place of Residence Urban Rural 1.1–1.9
Nulliparity Yes No 1.1–1.9
Age at first full-term pregnancy ≥30yrs <20 yrs 2.0–4.0
Premenopausal oophorectomy No Yes 2.0–4.0
Age at menopause Late Early 1.1–1.9
Age at menarche Early Late 1.1–1.9
Weight, postmenopausal Heavy Lean 1.1–1.9
Previous breast cancer (1 breast) Yes No 2.0–4.0
Benign proliferative disease Yes No 2.0–4.0
Previous cancer (ovary or endometrium) Yes No 1.1–1.9
Family history (first degree relative) Yes No 2.0–4.0
Family history (mother and sister) Yes No >4.0
Radiation to chest Large doses minimal exp. 2.0–4.0
Parenchymal patterns Dysplastic* Normal 2.0–4.0

*dense.

Gammon [12]). Many of the factors listed carry a risk prediction
less than 2.0.

Family history of breast cancer, which is commonly consid-
ered to be one of the most important risk factors for breast
cancer, carries only a substantial relative risk when multiple
first-degree relatives (e.g., a mother and a sister) are involved.
This form of family history, however, is present in a very small
fraction (estimated 1%) of breast cancer cases. Considerable
interest has surrounded the recent discovery of genes involved in
inherited breast cancer, namely BRCA-1 and BRCA-2 [13, 14].
These genes are seen to play a role particularly in early onset
disease. Women who are heterozygous for either of these genes
are at up to a 10-fold increase in risk [15]. Although a genetic
mutation is potentially a strong risk factor for disease, such
mutations are believed to be associated with only 3–10% of
breast cancers [16].

An additional feature of mammographic density that sets it
apart from other risk factors for breast cancer is that it appears
to be modifiable. Mammographic density is known to regress
with age, attributed to the hormonal changes associated with
menopause. There is evidence that hormone replacement ther-
apy can preserve or increase mammographic density in peri-
and postmenopausal women [17]. It has also been shown that
a hormonal contraceptive that suppresses ovarian function can
result in a significant reduction in mammographic density in
just a 1-year interval [18]. It is not yet known whether the reduc-
tion in density also reduces breast cancer risk. Nevertheless, the
observation that a strong risk factor for breast cancer can be
altered gives hope to the development of potential preventive
strategies.

23.2 Methods for Characterizing
Mammographic Density

Methods for characterizing mammographic density can be clas-
sified as subjective (like the SCC technique described earlier),
interactive, or fully automatic. Furthermore, they can be based
on anatomical or mathematical image features or on the under-
lying physics of image acquisition. In this chapter, we will use
some of the research that has been carried out in our laboratory
to exemplify these methods.

Subjective methods such as SCC can provide strong risk
predictions; however, several limitations have been identified.
Use of subjective criteria contributes to considerable inter-
and intraobserver variation in making the classification. For
example, in one study [9] in which three radiologists made
classifications of mammographic density, there was consider-
able variation in the magnitude of the risk prediction between
them; agreement between radiologists was as low as 60%.
Subsequently, it has been found that cooperative training
of radiologists can improve their agreement; however, this
may not be possible or practical in general. A further lim-
itation is associated with coarse categorization scales, which
make it difficult to distinguish small differences in mammo-
graphic density. The ability to measure small differences in
mammographic density is particularly important in studies
investigating changes in density with time, or with a poten-
tial intervention that may alter the breast. The use of more
categories to provide a finer scale of density assessed in the
same subjective manner would likely only increase variability in
classification.
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It is desirable to be able to characterize mammographic
density on a continuous scale (quantitative), with particular
consideration for magnitude of the risk prediction, and the
reliability of classification. Because many clinical studies are
based on patients for whom mammograms have already been
obtained, it is also important that any image features to be used
can be obtained from images without further information, i.e.,
features that can be calculated retrospectively.

23.3 Planimetry

One of the first quantitative techniques attempted for assess-
ment of mammographic density was planimetry [6, 19]. An
observer simply outlined regions on the mammogram that were
considered to represent dense tissue, and their area was calcu-
lated. This method allowed prediction of relative risk factors on
the order of 4, associated with density. It does, however, rely on
a skilled interpreter who must make qualitative judgments in
segmenting dense from nondense regions. Generally, because
the process is labor intensive, only a rather coarse outline of the
areas of density is performed.

23.4 Semiautomated Feature: Interactive
Thresholding

To provide a more quantitative estimate of mammograph-
ically dense tissue in the breast, one can use an observer-
assisted interactive thresholding technique. This technique can
easily be applied to a digital representation of the mam-
mogram and does not rely on the absolute optical densities
in the image, but instead on the observer’s familiarity with
the relatively simple anatomical features displayed on the
mammogram.

In the digital image, the brightness of each picture element
(pixel) is represented by a gray-level value, i, ranging from 0 to
2n − 1 where n is the number of bits of digitization. In the case
of film digitization

i = INT

[[
(D − D0)

(Dmax − D0)
∗ (

2n − 1
)]+ 0.5

]
, (23.3)

where

INT is the integer (truncation) function.
Dmax is the optical density corresponding to the maximum

output of the digitizer.
D0 is the optical density corresponding to a digitizer value

of 0.
n is the number of bits of digitization.

In the thresholding procedure, an observer, while viewing
the mammogram, manipulates a computer pointing device to
select threshold gray levels that identify the edges of regions of

density in the breast. The result is observed on a graphics over-
lay of a computer display of the image. For each image, only
two relatively simple threshold decisions must be made. The
first identifies the edge of the breast from the background (area
outside the breast). This threshold is referred to as iEDGE, and it
is illustrated for the mammogram of Figure 23.2 by the dashed
line. Similarly, a second threshold is selected that best outlines
region(s) of mammographic density in the image and above
which all pixels are interpreted as mammographic density. This
threshold is referred to as iDY. Pixels having this value are rep-
resented by the solid bright line in Figure 23.2. The size of each
region can be determined by counting the enclosed pixels, a
process that is simplified by considering the histogram of gray-
level frequencies from pixels within the breast. The histogram
is constructed such that hi represents the number of pixels with
gray level i (Figure 23.3). The area under the histogram (sum-
ming all pixels in the histogram above iEDGE to the maximum
gray-level iMAX) is then a measure of the projected area of the
breast, A:

A =
iMAX∑

i=iEDGE

hi . (23.4)

Pixels in regions of mammographic density have a gray-level
i > iDY. The area under the histogram above this threshold is
representative of the projected area of mammographic density

FIGURE 23.2 Interactive thresholding procedure, PD, for the quan-
titative determination of the proportion of the area of the projected
image of the breast that represents mammographic density. The red
line indicates the selected threshold for the edge of the breast; the
area shaded in green indicates the selected threshold for the edge of
mammographically dense tissue. (See also color insert).
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FIGURE 23.3 Gray-level histogram of a digitized mammogram indi-
cating thresholds iEDGE for segmentation of the area of the breast and
iDY for the area of dense tissue. Adapted with permission from Byng JW,
Boyd NF, Fishell E, et al. The quantitative analysis of mammographic
densities. Physics in Medicine and Biology 1994;39:1629–1638.

in the breast. The ratio of these totals defines the proportion,
by area, of mammographic density in the breast, PD:

PD =

iMAX∑
i=iDY

hi

A
× 100%. (23.5)

The use of gray-level thresholding to distinguish mammo-
graphic density allows one to apply a relatively simple decision
criterion, which has contributed to reproducible measures, both
within and between observers, of both A and the extent of
mammographic density within the breast.

To facilitate clinical studies in which PD is computed on a
large number of mammograms, a Windows-based program,

CUMULUS, has been developed. The program provides a user
interface (Figure 23.4) in which intensity windowing can be
applied to aid in visualizing the edge of the breast and the
boundaries of regions of parenchymal tissue. Thresholds for
the gray level corresponding to the iEDGE and iDY can then be
set. Pixels corresponding to the thresholds appear in color—in
this example, red for iEDGE and green for iDY. In addition, there
are tools available allowing the operator to use the mouse to
describe regions of the image that are to be excluded from the
histogram calculation. A multisegmental line can be defined
to segment the shadow of the pectoralis muscle adjacent to
the chest wall. Similarly, polygonal areas can be outlined to
eliminate the effect of radiographic markers, which may inad-
vertently superimpose on the image of the breast. After the
thresholds have been set and the exclusion regions defined,
the algorithm proceeds in a raster fashion, from the back of the
breast to where the skin edge threshold is encountered, counting
pixels lying within the image of the breast as well as those whose
intensities lie above iDY. PD can then readily be calculated.

23.4.1 Thresholding of Direct Digital
Mammograms

Recall from Equation 23.1 that in the production of a mam-
mogram, for the simplified situation of a monoenergetic X-ray
beam and no recorded scattered radiation, the signal is of the
form

L(x ′, y ′, E) ∝
[

e
−

T (x′, y ′)∫
0

μ(x , y , z , E)dl
]

.

For film imaging, the response of film (at least for an inter-
mediate range of exposures) is logarithmically related to L, so
D becomes proportional to the path integral of the attenua-
tion coefficient along the X-ray path through the breast; i.e.,

Intensity windowing for
brightness and contrast

Threshold for edge

Threshold for density

Tools to exclude
unwanted areas

Calculation window

Edge of
pectoralis

Edge
contour

FIGURE 23.4 Screen presentation of a program developed for interactive analysis of mammographic
density. (See also color insert).
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it provides direct information about the material composition.
For many direct digital systems, a so-called raw or DICOM
for processing an image is produced by the detector, where D is
linearly related to L, causing there to be an exponential relation-
ship between D and the tissue composition. In order to analyze
mammographic density by thresholding, it is then advisable to
apply a logarithmic transformation to the image. Furthermore,
it has been found useful, when density measurements from dig-
ital images are to be compared to those from film images, for
the transformation to be designed to mimic that imposed by
the characteristic curve of mammography film.

Digital mammography systems frequently apply a transfor-
mation to the raw image to make it more suitable for viewing
on a computer monitor or for hard-copy printing. The result is
referred to as the “processed” image or, in the DICOM lexicon,
the “for presentation” image. Frequently, these transforma-
tions contain a logarithm-like operation but may also include
various other nonlinear and nonspatially invariant operations
like contrast-limited adaptive histogram equalization [20] or
peripheral enhancement [21], which, while improving the cos-
metic value of the image, can disrupt its quantitative value for
density measurement. If the exact nature of these operations is
not known it is generally advisable to work with the raw image
and to transform it for density measurement.

23.5 Automated Analysis of
Mammographic Densities

While interactive methods, such as the one discussed previously,
provide a continuous, quantitative scale for density assessment
and have been shown to be quite reliable, they are still some-
what subjective and they are also labor intensive. For this reason
it would be desirable to develop more objective techniques
for characterizing mammographically dense tissue. To achieve
this goal, several investigators have attempted to identify fea-
tures that can be calculated automatically and on a continuous
scale [22–27]. Mammographic density is distinguished in the
image on the basis of both brightness and texture variations.
Features to be used for image segmentation can be based on the
image itself, on transforms of the image, or on the gray-level
histogram.

Two features that have been successfully applied are a mea-
sure of image brightness variations based on the skewness (third
moment) of the histogram of pixel gray levels and one of tex-
ture quantified by the fractal dimension. These measures have
been found to be well correlated with subjective assessments of
mammographic density [22]. Furthermore, these parameters
have been demonstrated to be robust to simulated variations in
mammographic technique, at the level of those found in clini-
cal practice. This is important, because, in practical applications
of risk prediction from mammographic density measurement,
images will be acquired over a period of several years and at
different geographical sites.

23.5.1 Histogram Analysis

The shape of the histogram can be represented by the moments
of the distribution about the mean gray level. Among the
histogram-based features that have been found to be useful
is the third moment [28, 29], which characterizes the asym-
metry or skewness of the histogram. To be more sensitive to
local variations, one performs the calculation for regions of the
image based on local means [30].

To generate the histogram, one can use a method similar to
that described in the discussion of PD to identify the edge of
the breast and areas to be excluded so that only pixels lying
between the chest wall and the skin edge (i.e., that are within
the breast) are counted and assigned to hi . For an image (or
region of an image) containing N pixels, the kth moment, mk ,
of the histogram is given by

mk =

iMAX∑
i=0
[hi(i − i )k]

N
, (23.6)

where

N =
iMAX∑
i=0

hi and i =
iMAX∑
i=0

i hi

N

is the mean of the distribution.
If the normalized third moment is used,

S = m3

m2
3/2

, (23.7)

a unit-free measure is obtained. This normalization to the 3/2
power of m2 essentially removes the effect of the variance (the
spread of the histogram) from the measure, while preserving the
skewness information. This facilitates comparisons of different
distributions and distributions of different variability.

To understand how the measure of skewness defined in
Equations 23.6 and 23.7 would work on a mammogram, con-
sider that, a priori, the distribution, hi , associated with a region
of fibroglandular tissue should tend toward higher gray levels
(i.e., whiter). The tail of values below the mean, (i < ī), yields
large negative contributions (i − ī)3, which would result in a
negative skewness (S < 0). Similarly, a region of fatty tissue
should yield a distribution that tends toward lower gray levels
so that a positive skewness (S > 0) would be measured.

The skewness measurement is more sensitive to local tissue
composition when it is calculated for individual small regions
of the breast with a local measure of (ī) than when a sin-
gle global measurement is used. A regional characterization
can be obtained by dividing the projection of the breast into
nonoverlapping square areas. For each region, the skewness can
be calculated according to Equation 23.6 and averaged over all
regions to obtain a single number, Sr , for the image.
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A nondense breast should have a more positive measure of Sr

as the majority of local regions reflect predominantly fatty tissue
(each with more positive skewness). As the breast becomes more
fibroglandular, a more negative Sr should be measured because
a greater proportion of regions have more negative skewness.
We investigated the effect of the region size on the measure of
Sr and found that with decreasing region size a stronger trend
between the measure and mammographic density was obtained,
although the range of the measure also decreased [22]. A region
size of 24× 24 pixels (3.12 mm× 3.12 mm) was chosen as a
compromise between regions small enough to represent local
tissue patterns, and large enough to provide a statistically mean-
ingful result. In a study of 60 mammograms chosen to span the
full range of the SCC measure, the regional skewness measure-
ment ranged between−0.27 and 0.19. The correlation between
Sr and SCC was very good (Spearman,−0.88).

23.5.2 Fractal Analysis

“Fractal geometry,” proposed and initially developed by
Mandelbrot [31], can provide a mathematical description for
complex shapes that are not easily described by Euclidean
geometry. “Fractal objects” often possess an invariance or “sta-
tistical self-similarity” when observed under different scales.
This property can be used to determine a “fractal dimension”
that quantifies the complexity of the object. Fractal dimen-
sion is consistent with the concept of spatial dimension, but is
not restricted to being an integer. For example, a higher fractal
dimension represents a more complex or space-filling object
[31–33].

The fractal concept has been applied to many fields in
medicine [34] and in particular has found widespread appli-
cation in the description of radiographic images [24, 35–39].
In such application, the fractal dimension has been calcu-
lated to characterize the inherent texture in regions of the
image. Caldwell et al. [24] found that a fractal dimension
could be calculated for mammographic parenchyma, which was
related to the qualitative categories of the Wolfe grades. In fact,
Wolfe’s [3, 4] original description of regions of fibroglandular
tissue as sheet-like areas of density was suggestive of textural
analysis for mammographic parenchyma. As one can see in
the images and corresponding surface plots from Figure 23.5,
a breast with a small degree of density will have an image
with coarse texture (upper part of figure), due to good con-
trast between the connective tissue and the predominantly
fatty glandular tissue. Similarly, when there is a high degree of
mammographic density, the image will appear smoother, which
should be reflected by a lower fractal dimension.

One method for calculating the fractal dimension follows the
approach of Lundahl et al. [35]. This calculation is analogous to
a “box-counting technique” described by Barnsley [32]. In this
approach, the brightness i of each pixel at (x , y) in a digitized
image can be treated as a vertical dimension accompanying

FIGURE 23.5 Wire-frame representations of two digitized mam-
mograms. The gray level of each pixel determines the height of the
terrain. (Upper) Low mammographic density. (Lower) Extensive den-
sity. Reprinted with permission from Byng JW, Boyd NF, Fishell E,
et al. Automated analysis of mammographic densities. Physics in
Medicine and Biology 1996;41:909–923.

the two-dimensional assignment of pixels (of size ε× ε) in the
digitization process. This creates a surface shown schematically
in Figure 23.6a.

The first step of the measurement technique is to determine
the area, A(ε), of such a surface for a given pixel size, ε. This sur-
face area is calculated as a sum of the area of each pixel, ε2, plus
the contributions of the “exposed” sides of the boxes (difference
in height [or pixel value] between neighboring pixels):

A(ε) =
∑
x ,y

ε2+
∑
x ,y

ε (| iε(x , y)− iε(x , y + 1)| + | iε(x , y)

− iε(x + 1, y)|). (23.8)

Mandelbrot [31] showed that for certain structures or images,
called “fractal,” there is a power law relationship between A(ε)
and ε, the exponent being related to the “fractal dimension.”
Specifically, for a two-dimensional image, the fractal dimension
is given by

D = 2− � log[A(ε)]
� log[ε] (23.9)

In practice A(ε) is calculated from Equation 23.8, for various
pixel sizes, ε. A set of different effective pixel sizes can be synthe-
sized by averaging adjacent pixels together [24]. Combinations
of 1× 1, 2× 2, 3× 3, and 4× 4 pixels, etc., can be used to
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FIGURE 23.6 (a) Calculation of A(ε) in the measurement of fractal dimension. (b) Illustration of the
regression of log[A(ε)] vs log[ε] in the measurement of fractal dimension. Reprinted with permission from
Byng JW, Boyd NF, Fishell E, et al. Automated analysis of mammographic densities. Physics in Medicine and
Biology 1996;41:909–923.

obtain values of ε for the regression. The application of the frac-
tal model holds if, over the range of pixel sizes, this regression
is linear.

Equation 23.9 indicates that, for an image, the fractal dimen-
sion can be determined from the slope of the regression between
log [A(ε)] and log [ε] over a range of pixel sizes. This is illus-
trated in Figure 23.6b. For the 60 images that we studied, the
measured fractal dimension ranged between 2.23 and 2.54,
similar to the range observed by Caldwell et al. [24]. In the
determination of the fractal measure, the coefficient of regres-
sion between logarithms of ruler size, ε, and measured surface
area, A(ε), over the 60 images ranged between 0.962 and 0.999,
indicating excellent linearity of this relationship.

When the fractal parameter was compared on the same
60 images to the density categories of the SCC assessed by a
radiologist, a correlation coefficient, Rs = −0.76 was achieved,
indicating a strong negative trend (i.e., as the proportion
of mammographic density increases, the fractal dimension
decreases).

Taylor et al. [26] also considered the fractal dimension
and regional skewness measurements as features for charac-
terizing breast composition and found that they successfully
provide a two-category discrimination of dense from fatty
mammograms.

23.5.3 Multiparameter Classification

There may be value in combining multiple image features in
an automated algorithm for mammographic density. Through

use of a Bayesian classifier [40], the ranges in value of the
fractal and regional skewness measures described previously
that corresponded to the classification of SCC by radiologists
were identified. The data were then partitioned on the basis of
these ranges to automatically assign a classification of mammo-
graphic density. It was found that a two-dimensional, regional
skewness-fractal classifier (S-FC) provided better correlation
with subjective mammographic density assessment by SCC
than was obtained with either the regional skewness (SC) or
fractal classifier (FC) alone [22].

23.5.4 Effect of Mammographic Technique

Changes in imaging technique (e.g., film/screen combination,
processing conditions, kVp, and exposure time) can alter the
mammographic appearance of breast tissue. The effect of
changes in mammographic technique on the measured value
of the regional skewness and fractal dimension were evalu-
ated for 30 digitized mammographic cases through simulated
changes in the shape of the characteristic (H&D) curve [22].
It was found that both the regional histogram skewness and
the fractal measure are quite robust with respect to change
in the sensitometric curve of the film used to produce the
mammogram. With moderate increases or decreases in the film
gradient, there was little variation in the values obtained. This
is to be expected, as the dominant effect of small changes in
technique would be a shift in the histogram (i.e., a change in
mean). Because the shape of the histogram would be largely
unaffected, characterization through the higher order moments
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of the distribution is relatively insensitive to variations in
sensitometry.

23.6 Symmetry of Projection in the
Quantitative Analysis of
Mammographic Images

An important practical question in the analysis of mammo-
graphic density is the extent to which information about
mammographic pattern is carried by any one of the four views
of a typical mammographic exam. This applies to both sym-
metry between the right (R) and left (L) breast in a given
projection, and to symmetry of projection, i.e., between cranial-
caudal (CC) and medial-lateral oblique (MLO) projections of
the same breast. If the information available from a single image
is representative, then the measurement of quantitative, objec-
tive parameters could be simplified and the additional work and
cost of digitization, storage, and analysis of the other three views
in a mammographic exam could be eliminated. Invariance
of breast parenchyma characterizations between views in a
mammographic exam has implications in retrospective stud-
ies of mammographic parenchyma. For example, when studies
include women diagnosed with breast cancer in one breast, it
is sometimes necessary to view images from the other breast to
avoid observer bias.

There is good evidence to suggest that a high degree of sym-
metry normally exists. A study of over 8000 women, by Kopans
et al. [41], found that diagnostically significant asymmetries
were reported in only 3% of mammographic exams. In a study
by Boyd et al. [42], exact agreement in Wolfe grade classification
was observed between RCC and LCC projections in 71% of the
78 pairs of films classified.

To evaluate symmetry for measures of mammographic den-
sity, we carried out a study on 90 sets of patient mammograms
spanning the full range of mammographic density [43]. For
each case, comparisons were made between projections (RCC
versus RMLO), and between images of the left and right breast
(RCC versus LCC ) for (1) subjective classification of mammo-
graphic density by radiologists (SCC); (2) interactive density
thresholding (projected breast area, A, and percent mammo-
graphic density, PD); (3) regional skewness measurement; and
(4) fractal texture measurement.

For subjective classification (SCC), very high levels of con-
cordance (Spearman correlation Rs = 0.95) were obtained
for comparisons of mammographic density between the two
breasts. Similarly, all objective parameters tested showed strong
left-right symmetry (RCC versus LCC). The slopes in each
of the regressions include 1.0 and the intercepts include 0.0,
within 95% confidence intervals. Although natural variation
between the right and left breasts is expected, these differences
do not significantly affect the value of either subjectively or
objectively derived features from the mammograms. Strong

correlations were also observed for comparisons of the RMLO
and RCC projection. In most cases, the 95% confidence inter-
vals for the slope and intercept include 1.0 and 0.0, respectively.
This suggests that each of the parameters reflects the general
organization of breast tissue, independent of projection.

These results indicate that a representative characterization
of mammographic density can be obtained from analysis of a
single projection of one of the breasts. Typically, the choice of
which projection to use is arbitrary. In studies for which disease
is present in one of the breasts, an image from the contralateral
breast should be used.

23.7 Variation of Thickness across the
Breast: Effect on Density Analysis

One of the limitations of both the interactive thresholding
technique and the automated methods described previously is
explained by examining Equations 23.1 and 23.2 and noting
that among many other factors, the value of D at a given point
on the image depends on both the composition of the breast and
the total thickness of tissue through which the X-rays must pass.
Techniques relying solely on the image brightness are unable to
separate these factors.

A breast under compression can be considered to consist of
two regions: a central area of approximately uniform thickness
and a margin where the thickness is reduced. These are illus-
trated schematically in Figure 23.7. Depending on the size and
compressed thickness of the breast, the margin can represent a
substantial portion of the projected area. In the central area, the
image will vary in brightness according only to the relative com-
position of fat and glandular tissue. When a threshold, iDY, is
set using the PD method, while considering the uniformly com-
pressed central area, it is possible to segment the dense from the
nondense areas successfully as long as the dense tissue is fairly
constant in thickness. Nevertheless, where the thickness of the
stroma is reduced to wisps of density, the image signal may fall
below the iDY setting and that tissue will be excluded from the
calculation.

Similarly,near the periphery,where the thickness of the breast
decreases, it is likely that, even though there may be dense tissue
present, the image brightness will be lower, due to increased
X-ray transmission, and the region will fall below the setting of
iDY. Near the margin of the breast, indicated by the vertical line
in Figure 23.7b, it is apparent that changes in brightness due
to composition variations are overwhelmed by the changing
brightness due to the reduction in thickness.

It is possible to perform a transformation on a digitized
mammogram to adjust the image in the margin of the breast,
accommodating for the reduction in signal associated with
reduced thickness [21]. The transformed image, equalized for
thickness variations, will thus more accurately represent com-
position variations across the breast. This might facilitate the
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FIGURE 23.7 Schematic illustration of the compressed breast. Under compression the breast is considered to consist of two regions, one of
approximately uniform thickness referred to as the central region, and a margin where thickness varies. In the margin, variation in transmitted
X-ray fluence occurs because of changes in both breast thickness and composition.

measurement of PD and strengthen its association with the risk
of developing breast cancer as well as improve the performance
of automated analysis algorithms.

The thickness equalization correction can be performed by
identifying the margin region where the thickness is changing
and then using an estimate for the thickness across the breast,
derived from the image, to correct the margin for the changing
thickness there. An explicit determination of thickness is not
required in this technique. It is sufficient to obtain an estimate
of the thickness from the change in signal in the margin of a
low spatial frequency (smooth) representation of the image.

The “outer edge” of the breast (skin line) is easily identified
for each row in the image by a thresholding procedure operating
on each row of the image. Working from the chest-wall side of
the mammogram, the algorithm identifies the point at which
the signal is no longer significantly above the background. This
is performed for all rows. The set of points, obtained in this
manner, is then smoothed to provide the description of the
outer edge of the breast. This outer edge is used to restrict the
correction to pixels lying within the breast.

The overall thickness profile of the breast is obtained from
a smoothed representation, s(x , y), of the image. Smoothing
suppresses variations in signal associated with changes in com-
position while preserving variations due to changes in thickness.
The generation of the smoothed image is illustrated schemat-
ically in Figure 23.8a. This is a Fourier filtering operation in
which the Fourier-transformed image is multiplied by a first-
order Butterworth low-pass filter [44] (shown in one dimension
in the figure) described in the chapter titled “Fundamental

Enhancement Techniques” prior to the inverse transformation.
It was found that edge artifacts were reduced if the image was
mirrored before the Fourier transforms were calculated. The
smoothed image corresponds to half of the transformed and
filtered image.

23.7.1 Thickness Correction

Figure 23.8b summarizes the essential information necessary
for the thickness correction. The smoothed image, s(i), is con-
sidered to reflect largely only that part of the signal due to
thickness variation. An estimate of the signal resulting from
thickness at a particular location in the margin, relative to that
in the central region of the breast, is calculated as the ratio of the
smoothed image signal at that location to the mean smoothed
signal, C , in a selected area of the central region. The value of
the corrected image, E(i), is obtained for each point by dividing
the original digital signal, o(i), by the relative thickness estimate,
s(i)/C , at that point.

The selection of the low-pass filter was based on the empirical
objective of having the same approximate average level in the
corrected margin as in the central region of the image. The
thickness equalization transformation of a typical mammo-
graphic image is illustrated in Figure 23.9. The unprocessed
image with the outer edge and inner margin highlighted is
shown at left, while the thickness-equalized image is shown at
right. The profiles of digital gray levels taken from the same line
of data near the middle of both the original and transformed
images are shown in Figure 23.10.
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FIGURE 23.8 (a) A smoothed representation of the image s(x , y),
is obtained from a low-pass filtering operation. The low-pass filter
(shown schematically in 1 dimension) is a first-order Butterworth filter
with a cutoff frequency of 0.05 cycles/mm. (b) Overview of the thick-
ness equalization processing technique. For each point in the margin,
the smoothed image is used to determine a correction factor.

FIGURE 23.9 Demonstration of the thickness correction algorithm.
The left image shows the original digitized data, with the inner and
outer edges defining the margin superimposed. The right image has
been thickness corrected. Note that only pixels in the margin have been
altered.

As expected, the effect of the transformation on the results
obtained from the PD algorithm is to increase the estimate of
PD in cases in which there is some density in the peripheral
region of the breast. This may improve the agreement with
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FIGURE 23.10 A profile of brightness as a function of position across
a line of the original and corrected images. The vertical lines identify
the margin. Note the reduction in the range of levels in the corrected
data, as a result of the adjustment in the margin.

subjective assessment in some situations; however, where the
actual thickness of peripheral dense tissue is very low, this cor-
rection may cause overestimation of density by giving this tissue
the same weighting as that in thicker areas of the breast. This
simple thickness correction method has been further improved
by modeling using an assumed generic thickness profile at the
edge of the breast and warping this according to the shape of
each individual breast [45].

23.8 Volumetric Analysis of
Mammographic Density

One of the major strengths of the PD method is that it can be
employed in retrospective studies, where little information is
available about how the mammographic exam is carried out.
This eliminates the need to explicitly track most of the vari-
ables in Equations 23.1 and 23.2; however, as one can see based
on the preceding sections, it has a significant disadvantage in
treating the breast as a binary structure (dense or nondense)
and ignoring the variations in thickness of the dense tissue.

The previous section illustrated the effect of variation in
total breast thickness on estimation of mammographic den-
sity. Clearly, breast density is a three-dimensional phenomenon
that ideally should be treated as such.

Because the radiologist visualizes the information in the
mammogram as three-dimensional, this may contribute to the
greater risk prediction of subjective classification, compared
with PD. The mechanism connecting density to risk is not yet
known. It is logical, however, that risk would be more closely
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associated with the actual amount of dense tissue than with its
projected area. A measurement of volume of mammographic
density may provide a more relevant characterization of mam-
mographic density in the breast and potentially a stronger risk
prediction.

Currently, two approaches are being used to estimate mam-
mographic density volumetrically. They can be characterized
loosely as either modeling or calibration; however, as these
methods develop, they are tending toward convergence in a
hybrid.

Modeling is probably best exemplified by the work coming
out of the original research by Highnam et al. [46]. Their model
treats the breast as being composed of essentially only two mate-
rials, adipose and fibroglandular tissue, so that the thickness of
the breast, T , can be partitioned into Ta and Tf (which they call
hint, the thickness of “interesting” tissue). This allows simplifi-
cation of Equation 23.1. Their model includes a description
of the behavior of all the other processes in image forma-
tion described by Equations 23.1 and 23.2, including the X-ray
source, filtration, scattering and the antiscatter grid, and the
image receptor. Empirical data are employed when necessary.
If the total thickness of the breast is known accurately, the equa-
tions can be solved for the fraction of fibroglandular tissue,
Tf /Ta. Their method has been refined and is now referred to as
the “standard mammographic form” or SMF [47].

In our work, we have developed a calibration method that
attempts to determine Tf/Ta without the need to have a detailed
understanding of the operation of all the individual compo-
nents of the imaging system. For a given X-ray system and
choice of anode target, filter, kV and mAs, and for a specified
antiscatter grid and image receptor, the signal D(x ′, y ′) depends
on the thickness of the breast and on Tf/Ta. We calibrate the
system by imaging a test object, the two-dimensional tissue
equivalent “staircase” phantom (Figure 23.11) varying in thick-
ness (from 0–8 cm in 1 cm steps) in one dimension and in tissue
composition [48] (from pure fibroglandular to pure fat in 8
steps) in the other. A radiograph of the breast and the calibration
object are shown in Figure 23.12. This is done at a constant mAs
setting for all clinically used target/filter/kV settings for each
machine. From each image of this phantom acquired under a
specific set of exposure factors, a surface (Figure 23.13) can be
determined that relates the measured signal to the thickness
and composition of tissue represented by the steps. Then, if
the breast thickness, T , is known corresponding to each point,
(x , y), in the mammogram, the composition, Tf/Ta, can be
determined from the calibration surface.

In modern mammography systems each clinical image is nor-
mally acquired under automatic exposure control (AEC) where
a sensor in (for digital) or beneath (for film) the image receptor
terminates the exposure when a predetermined value of D has
been attained. Therefore, for both the modeling and calibration
methods, it is necessary to record the actual mAs used to acquire
each clinical image. In the calibration method, it is also neces-
sary to shift the surface determined under the mAs condition

FIGURE 23.11 Calibration object for determination of volumetric
mammographic density.

FIGURE 23.12 Mammogram with calibration object. Radiographic
gauge for breast thickness measurement is shown at upper right.

used for calibration to reflect the actual value used clinically.
For screen-film mammography, the accuracy of this procedure
is limited by the nonlinear shape of the characteristic response
curve of the film, and the full calibration of the system requires
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FIGURE 23.13 Example of an empirical model that relates brightness
in the mammogram (gray level) to the thickness and composition of
breast tissue. The model has been constructed from the image of the
calibration object shown in Figure 23.11.

the acquisition of calibration images at different exposure levels
and bootstrapping data from these together. For digital mam-
mography systems whose response extends reliably over a much
wider dynamic range, this is generally not required.

The estimated value of mammographic density is very sen-
sitive to the accurate knowledge of the compressed breast
thickness. Thickness can be measured by means of the breast
compression gauge of the mammography unit. Although these
devices often provide reasonably reproducible results, their
accuracy is typically quite poor. In addition, the compression
plate may be tilted and tends to flex under the force of breast
compression. We have found that it is possible to improve the
accuracy of estimation of the true compressed thickness ver-
sus position by creating a model that includes as independent
variables the readout thickness, the reported compression force,
and the machine type.

23.9 Other Imaging Modalities

In some applications it is not practical to use the mammogram
for assessment of breast density, and instead, it is preferable
to use another imaging method for this purpose. One exam-
ple is in young women (under age 40) who do not normally
receive routine mammograms. Another may be in high-risk
women for whom it may be advisable to monitor changes in
the breast more frequently than is considered appropriate with
mammography. In both cases, an imaging method that does not
employ ionizing radiation would be desirable. Two modalities
can be immediately considered: ultrasound and magnetic res-
onance imaging. These not only avoid radiation concerns, but
also produce three-dimensional image data, thereby facilitating
volumetric analysis.

With ultrasound, differences between the acoustic scattering
properties within fibroglandular tissue and fat [49–51] give rise
to differences in image texture. Work is currently underway to
determine features that allow effective segmentation of dense
tissue from fat. One problem is that the thin slices normally
produced in ultrasound scans used for diagnostic purposes are
likely to be too noisy due to speckle, making segmentation
unreliable. This may be overcome by combining slices
(Figure 23.14) to form thick image slabs with noise reduction
due to averaging. Another issue is that the ultrasound gain con-
trols are normally used interactively to optimize the diagnostic
value of the image by compensating for tissue attenuation. This
process is both patient- and operator-dependent. For quantita-
tive work, it will be necessary to adopt a model in which machine
settings are constant for the entire imaging procedure or else a
method to correct for alterations in acquisition parameters.

Some work has also been done to develop magnetic reso-
nance imaging for characterizing the composition of the breast
[52, 53]. It has been shown that a pulse sequence that allows
separate “fat” and “water” images to be produced provides
data that correlate very well with X-ray mammographic den-
sity analysis [54]. These methods can use saturation techniques
to exclude irrelevant tissue from the measurement. Unlike the
long times required for diagnostic MRI, the low-resolution
tissue composition images can be acquired in as little as
18 seconds.

23.10 Applications of Mammographic
Density Measurements

In general, factors that allow the identification of women at
increased risk have important applications in studying the eti-
ology of a disease. Because it is a strong risk factor that is present
in a large proportion of breast cancer cases, this is particularly
true of mammographic density. Additional applications arise
from the potential to modify a factor that is so strongly asso-
ciated with the disease. In addition, density may be useful as a
clinical decision-making tool in the screening for breast cancer
and in guiding risk-reducing interventions.

It is important to remember that risk factors are derived
based on populations. Not all women with a particular risk fac-
tor for breast cancer will develop the disease, nor will all women
without the factor be free of the disease. The data of Table 23.1
suggest that women with extensive density are more likely to
develop breast cancer relative to women with an absence of den-
sity. There are, however, women without density who develop
breast cancer and women with extensive density who do not.
For an individual woman, risk factor information should be
considered only as a guide. With factors over which the individ-
ual has some control, e.g., environmental exposures or lifestyle
choices, this information may provide insight as to how risk
might be reduced.
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(a) (b)

(c)

FIGURE 23.14 4 MHz ultrasound breast images of a 71-year-old subject (a) single transverse slice and (b) 1 cm-thick slice consisting of
the average of 10 images spaced 1 mm apart. Darker regions represent fatty tissue while bright regions represent fibroglandular tissue. Note
the reduction of speckle noise and “mammographic” appearance of this image. (c) Segmented image showing fibrous (white) and fatty
(gray) tissues. Images courtesy of Dr. Stuart Foster.

In addition to the increased risk of breast cancer associated
with density, there is also a greater chance that a cancer will
be missed because of the reduced sensitivity of mammography
in the dense breast [55]. When a woman has been identified
to have very dense breasts on an initial mammogram, it may,
therefore, be appropriate for subsequent screening to include
an imaging modality where the quality will be impaired less
by density such as digital mammography or contrast-enhanced
breast MRI.

Some women with low mammographic density will still
develop breast cancer. This fact suggests that, regardless of
mammographic density, all women within recommended age
groups should be screened at least on some regular interval.

Information on mammographic density may be most use-
ful in the research of breast cancer. In particular, women at
increased risk for the disease are good subjects in whom to study
its causes. The strong relationship between mammographic
density and breast cancer risk suggests the causes of breast can-
cer may be better understood by finding the factors that are
associated with mammographically dense tissue and how that
tissue changes [56, 57]. As a strong risk predictor for breast can-
cer that is potentially modifiable, mammographic density may

also be a good target for the development and monitoring of
potential preventive strategies. For example, changes that occur
in mammographic density may be an important interim obser-
vation with manipulation of hormones [18], tamoxifen [58], or
a dietary intervention [59].
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Breast cancer remains the most frequently diagnosed and the
second most lethal cancer for U.S. women. In 2003, an estimated
181,000 women were diagnosed with invasive breast cancer and
41,000 died from it. The odds of developing invasive breast
cancer over one’s lifetime are 1 in 8 [1]. Until an effective pre-
vention mechanism becomes widely available, early detection
followed by effective treatment is the only recourse for reducing
breast cancer mortality. The effectiveness of breast cancer treat-
ment depends strongly on cancer progression. Compared with
advanced cancers, patients diagnosed with minimal cancers
have significantly better 20-year survival rate [2–4]. Currently,
state-of-the-art mammography is the most effective imaging
modality in breast cancer detection, particularly in finding non-
palpable small cancers (in situ or invasive cancer less than 1 cm
in diameter) [5–9]. Large-scale, randomized, controlled clini-
cal trials have shown that annual screening of asymptomatic
women reduces breast cancer mortality by 20–30% [6, 10, 11].
The results of these studies have led to the recommendation and
systematic implementation of screening for breast cancer in the
United States [12,13], Canada, and many European countries.

The important role that mammography plays in breast cancer
detection can be attributed largely to technical improvements
[14] and the dedication of radiologists (mammographers) to
breast imaging. However, despite remarkable advances, cur-
rent state-of-the-art mammography still faces challenges. It is
known that mammography is unable to detect all breast cancers
and is unable to reliably differentiate between malignant tumors
and benign lesions [15–21]. The effectiveness of breast cancer
screening is compromised by not being able to detect all breast
cancer cases. Inability to reliably differentiate benign lesions
from malignant tumors not only subjects healthy women to
unnecessary trauma and anxiety, but also increases the cost of
breast screening [22,23]. Estimates from analysis of large series
of mammograms show that the sensitivity of mammography
(the fraction of breast cancers that are detected) is as high as
85–95%, but positive predictive value at biopsy (the fraction of
lesions biopsied that are proven to be malignant) ranges only
from 15% to 30% [15].

Causes that limit the sensitivity of mammography include
poor differentiation in radiographic appearance between

Copyright © 2008 by Elsevier, Inc.
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cancerous tissue and normal breast parenchyma [24]; inappro-
priate imaging techniques such as failure to include the breast
lesion in the mammogram; and observational factors such as
fatigue, distraction, and the satisfaction-of-search effect, i.e.,
stopping the systematic search for lesions prematurely after an
abnormality is found. Current efforts focusing on improving
the sensitivity of mammography include the development of
full-field digital mammograms (FFDMs), which better utilize
available radiation contrast between tumor and normal breast
parenchyma [24, 25]; better quality control and the accredi-
tation of mammography clinics; and double reading [26–28],
as well as standardization of the interpretation and reporting
of mammograms [29]. Double reading, in which a mammo-
gram is read by two radiologists, has been shown to improve
sensitivity by as much as 15%: although each radiologist may
miss a small number of cancers, those missed might be detected
by the other radiologist. However, because each mammogram
is read by two radiologists, this approach is inefficient from
a practical point of view because radiologists’ productivity is
reduced. As an alternative to double reading by two radiolo-
gists, computer-aided diagnosis, in which a computer acts as the
“second reader,” has been proposed [30–32]. Computer-aided
diagnosis (CAD) is defined as a diagnosis made by a radiologist
who considers a computerized analysis of the mammogram in
his or her diagnostic decision making. Computer-aided detec-
tion can help improve sensitivity when the computer identifies
lesions missed by a radiologist. This potential of CAD has been
shown in several laboratory tests for the detection of breast
lesions [33, 34], lung nodules [35], and pulmonary interstitial
infiltrates [36].

During the past 20 years, extensive research has been devoted
to developing computer-aided diagnostic schemes for the detec-
tion of various radiographic abnormalities [31, 34, 37–41],
which are reviewed in [30, 42, 43]. Reported performance of
computer techniques has steadily improved over the years,
with some reaching a level thought to be sufficient for clinical
application. The performance of automated techniques is often
characterized by the numbers of true lesions (sensitivity) and
false positives detected by the computer, in a set of radiographs
known as a database. For example, Nishikawa and colleagues
reported 87% sensitivity and approximately 0.5 false-positive
detection per image for clustered microcalcifications from a
database of 78 mammograms, half containing subtle clustered
microcalcifications [40]. Giger et al. reported 92% sensitivity
and 2 false-positive detections per image for breast masses, from
a database of 154 pairs of bilateral mammograms, 90 pairs con-
taining masses [41]. As automated detection methods begin
to mature, initial clinical evaluation of these techniques has
begun [44].

Increasing the detection rate of abnormalities solves only part
of the problem; mammography still faces the additional chal-
lenge of improving its ability to differentiate malignant and
benign breast lesions. Figures 24.1 and 24.2 show examples of

malignant and benign breast lesions in mammograms. Low
positive predictive value is caused by the morphological sim-
ilarities between breast cancer and many benign diseases, by
observational factors such as inexperience, and by medical-
legal constraints. Imaging techniques that are not based on
x-ray, such as ultrasonography (US), magnetic resonance imag-
ing (MRI) [45, 46], and recently radionuclide imaging [47, 48]
are being investigated to explore different avenues for better
visualization of breast cancer.

Although these new techniques focus on better character-
ization of breast cancers, variability in observer performance
needs to be addressed [49–52]. Computer-aided diagnosis can
potentially play an important role in this regard. CAD may
be useful in improving sensitivity as well as the positive pre-
dictive value of mammography-directed biopsies (also known
as positive biopsy yield). Sensitivity can be improved when
a radiologist changes his or her recommendation regarding
malignant tumors from follow-up to biopsy as a result of a
computer’s positive assessment. Positive biopsy yield can be
improved when a radiologist changes his or her recommen-
dation regarding benign lesions from biopsy to follow-up as a
result of a computer’s negative assessment, while retaining the
correct recommendations of biopsy for all malignant tumors.

The purpose of this chapter is to provide an overview of
the motivation, approach, performance, and potential clini-
cal impact of computer classification of malignant and benign
breast lesions. Numerous investigators contributed to this field,
which will be illustrated in this chapter by describing the work
and findings of some [53–59], while the work of many others
can be found in references [60–65]. Good reviews of the earliest
work in the 1970s and 1980s are also available [42,43].

The rest of this chapter is organized in three sections. First,
we describe the techniques of computer classification of breast
lesions. Second,we summarize the state-of-the-art performance
in computer classification. Third, we describe in more detail two
observer studies that provided evidence that computer classifi-
cation can potentially alter radiologists’ diagnosis and improve
their accuracy. Throughout the chapter, we will illustrate com-
puter classification by examples. Whenever appropriate, we will
critically review the advantages and disadvantages of competing
approaches. We will also occasionally identify common pitfalls
in this active field of research. To help organize the three sec-
tions, we will need to break up the description of the research
work used as examples into parts, and we shall return promptly
to the same examples throughout the chapter.

24.1 Techniques for Classifying Breast
Lesions

Classification of breast lesions as malignant or benign from
mammograms must be based on information present in the
mammograms. In addition, clinical data such as patient age
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(a) (b)

FIGURE 24.1 Two 5-cm-square regions of mammograms depicting (a) a malignant mass and
(b) a benign mass. Reprinted from [58] with permission.

1 cm

(a) (b)

1 cm

FIGURE 24.2 Photographically enlarged regions of mammograms depicting (a) a malignant cluster
of microcalcifications and (b) a benign cluster of microcalcifications.
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Classifier
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FIGURE 24.3 Schematic diagram of a typical computer technique for
the classification of malignant and benign breast lesions.

can also be used. A common approach to this task is to extract
information (called features) from mammograms and then
use a mathematical or statistical model (called a classifier) to
make the malignant versus benign assessment. This strategy is
not unique to classification with computers; many radiologists
advocate a similar systematic approach in their interpretation
of mammograms [66,67]. A typical diagram of a classification
technique is shown in Figure 24.3.

24.1.1 Classification Based on Human
Perceptual Features

One way to obtain features is to ask radiologists to read a set
of mammograms and to describe the appearance of the lesions
[53–55, 60–63]. Radiologists are specialists who are trained to
recognize the normal or abnormal appearance of radiographs.
Therefore, it is only reasonable to classify breast lesions based on
their perceptual descriptions. The advantage of this approach
is that it makes direct use of radiologists’ expertise. However, a
standard language must be developed for a computer technique
to interpret radiologists’ description. Radiologists may often
use somewhat differing terminology when describing breast
lesions. Occasionally, they may also use the same words to con-
vey slightly different meanings. This ambiguity in terminology
is generally not a problem for a radiologist, since he or she can
make good use of his or her own description in making the
malignant versus benign diagnosis. However, it is problematic
for computer classification because it is not possible for an auto-
mated technique to interpret a particular radiologist’s language
unless a standard set of terms is used.

Getty et al. have used this approach to classify breast lesions
based on radiologist-described features [53]. They developed
two diagnostic aids to help radiologists interpret breast lesions.
The first aid was a checklist containing a set of features
that a radiologist must assess and record. The second aid
was an estimated probability of malignancy provided by a
computer classifier that analyzed the features reported by radi-
ologists. The process of developing the checklist of features was
remarkably involved. It started with interviews with five mam-
mography specialists. These interviews generated several dozen
features. Then, this extensive set of features was reduced to
29 through mathematical multidimensional scaling and hier-
archical clustering, and through a series of consensus-seeking
group discussions. Finally, the 29 features were reduced to 13
by means of linear discriminant analysis. The final set of 13
features was believed to be a necessary and important set of
features for classifying malignant and benign breast lesions.
The final set included six features describing masses, three fea-
tures describing clustered microcalcifications, and two features
describing architectural distortion and skin thickening. The
complete set of features is included as an appendix in their
seminal paper in 1988 [53] and is also listed in Table 24.1. This
process illustrates the difficulty in identifying important fea-
tures and in developing a common language for the features.
Remarkably, however, once such a feature set is developed, it
may be a useful aid to radiologists even without computer
classification—hence, the first of their two diagnostic aids
for interpretation of mammograms. That diagnostic aid helps
radiologists by guiding them to interpret breast lesions in a
methodical way through consideration of each of the impor-
tant features. We will come back to this work later in the
chapter.

In an effort to standardize mammogram interpretation in a
much larger scope, the American College of Radiology (ACR)
has developed the Breast Imaging Reporting and Data System
(BI-RADS) [29]. The purpose of the BI-RADS is to serve as a
quality assurance tool to standardize mammographic reporting,
reduce confusion in breast imaging interpretations, and facili-
tate outcome monitoring. BI-RADS contains a breast imaging
lexicon that is a list of breast-lesion features and standard-
ized terms for describing these features. It is meant to be
adopted by radiologists so that there can be uniformity in the
interpretation and description of breast lesions. The BI-RADS
lexicon can be a useful source for computer analysis as well.
Baker et al. have developed a classification technique based
on radiologist-reported BI-RADS features [55]. They used a
total of 18 features. Ten of them describe breast lesions—
calcifications, mass, and any associated findings—using only
BI-RADS descriptive terms. The rest of the features are descrip-
tions of patient history. The BI-RADS features are attractive
because they eliminate the need for other investigators to dupli-
cate the work of identifying important and comprehensive
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TABLE 24.1 Examples of human perceptual features and computer-extracted
features that can be used to classify malignant and benign breast lesionsa

Feature type or number Feature description Reference

Human perceptual features

1 Mass size: CC view [53]
2 Mass size: lateral view
3 Mass shape
4 Mass spiculation
5 Mass invasion
6 Mass singleness
7 Homogeneity of soft tissue
8 Number of calcification elements
9 Size of calcification cluster: CC view

10 Size of calcification cluster: lateral view
11 Smoothness of the typical calcification element
12 Evidence of architectural distortion
13 Evidence of nipple or skin retraction

Computer extracted mass features

1 Spiculation [58]
2 Margin sharpness
3 Average gray level
4 Texture measure

Computer-extracted clustered microcalcifications features

1 Cluster circularity [59]
2 Cluster area
3 Number of microcalcifications
4 Average effective volume of microcalcifications
5 Relative standard deviation in effective thickness
6 Relative standard deviation in effective volume
7 Average area of microcalcifications
8 2nd highest microcalcification-shape-irregularity

measure in a cluster

aAdapted from source with permission.

features and because, at least in principle, it could be readily
adopted by others once BI-RADS becomes widely used by
radiologists.

However, reporting features is a time-consuming process for
radiologists. In addition, the results of the computer classifica-
tion are prone to be influenced by variability in radiologists’
interpretation of mammograms [68]. Requiring radiologists
to interpret and describe 10 or 13 features may reduce their
productivity in reading mammograms and diminish their
enthusiasm for performing this task. The use of BI-RADS fea-
tures can potentially alleviate this problem. The Mammography
Quality Standard Act (MQSA) now requires radiologists to
use BI-RADS assessment categories in reporting mammog-
raphy findings. Although not specifically required by MQSA,
BI-RADS recommends that descriptions of features of breast
lesions be included in mammography reports. If this is imple-
mented, there will be no additional work on the part of
radiologists when features are collected for computer classi-
fication. Variability in radiologists’ interpretation, however, will

always be present in the features they report. It has long been
recognized that radiologists’ impressions of mammograms are
not always consistent from day to day or from one radiolo-
gist to another. Studies have shown that this variability may
be quite large [49–52]. Clearly, variability can affect the accu-
racy of computerized classification of breast lesions that is
based on human perceptual features. For example, if a com-
puter is trained by an expert radiologist and is then used by a
less experienced radiologist, in order to derive the maximum
benefit, the less experienced radiologist must score features
in the same way as the expert. Even if the expert radiologist
uses the computer aid himself, he must also score features
in the same way as when he trained the computer to achieve
the best computer performance. If there are significant differ-
ences in the ways in which features are scored, then the results
of computer classification will be less accurate and the com-
puter aid will be less effective in helping radiologists make the
correct diagnoses. An example of this variability is shown in
Figure 24.4.
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FIGURE 24.4 ROC curves indicating the impact of within- and between-observer variations in radiologists’ feature ratings
for (a) textbook cases and (b) clinical cases. If the variation were not present, the ROC curves would have been perfect, with
Az = 1. The decreases in Az from 1 indicate the impact of within- and between-observer variations. Reprinted from [54]
with permission.

24.1.2 Classification Based on
Computer-Extracted Features

Another way to obtain features of breast lesions is to develop
computer techniques to automatically extract features from dig-
ital mammograms. At the present time, since mammograms are
recorded on film, it is necessary to convert the analog image to
a digital image using a film digitizer. In the future, when full-
field digital mammogram (FFDM) becomes widely available,
features may be extracted directly from the digital image, elim-
inating the manual step of film digitization. Using a computer
to extract features frees the radiologist from having to provide
input for computer classification before results of the com-
puter analysis can be considered by the radiologist. Therefore,
a radiologist will have the computer classification results
available as he or she interprets the mammogram. This auto-
mated approach also completely eliminates the subjectivity and
the associated variability in radiologist-extracted features. With
today’s high-performance computers, it becomes possible to
develop sophisticated computer feature-extraction techniques
to capture the essence of an image as it is interpreted by radiolo-
gists. It also becomes possible to extract image features that are
not necessarily visible to radiologists. As will be shown later in
this chapter, computer-extracted features can be highly effective
for accurate classification of breast lesions. However, because
the computer classification is now completely independent
from radiologists’ interpretation of mammogram, radiologists
must decide when to trust the results of computer analysis.

A list of computer-extracted features of clustered microcal-
cifications developed by Jiang et al. is shown in Table 24.1 as

an example of features that correlate to radiologists’ percep-
tual experience [56]. These features describe both the group of
microcalcifications as a cluster and the individual microcalci-
fications (see also Figure 24.2). Because most breast cancers
originate in small milk ducts, malignant microcalcifications
often have the appearance of a ductal tree. The first two features
are means to capture this distinctive appearance of malig-
nant microcalcifications by describing the shape and size of
a cluster. The third feature, number of microcalcifications in
a cluster, is information readily available to radiologists and
therefore is included in this and several other computer clas-
sification techniques. The size of individual calcifications is
important in that relatively large calcifications that are on
average larger than a millimeter in size are almost always
benign. Smaller calcifications—known as microcalcifications—
are more likely to be related to cancer. The fourth and seventh
features measure the size of individual microcalcifications
both in the image plane and in the direction perpendicu-
lar to the image plane (measured by means of contrast that
was converted to effective thickness). Another characteristic of
malignant microcalcifications is pleomorphism, which means
that individual microcalcification particles tend to have differ-
ent appearance in shape and size. The fifth and sixth features
identify pleomorphism by calculating the relative standard
deviation of the size of individual microcalcification particles.
Lastly, perhaps the most classic feature of malignant micro-
calcifications is a linear or branching shape that is caused
by the microcalcification particles filling segments of small
ducts. The eighth feature identifies these classically malignant
microcalcifications.
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FIGURE 24.5 Quantitative correlation between computer-extracted
features and an expert mammographer’s assessment of the presence
of spiculation in 95 masses. On both axes, larger numbers indicate
stronger confidence that spiculation was present. Reprinted from [58]
with permission.

The links between computer-extracted features and radiolo-
gists’ perceptual experience imply that feature values extracted
by a computer should be correlated with feature values per-
ceived by a radiologist. Figure 24.5 shows an example of this
correlation. The correlation will not be perfect, however, in part
because of the variability in radiologists’ assessment of image
features. Beyond the correlation of feature values, the links
between computer-extracted features and radiologists’ percep-
tual experience also imply that malignant lesions identified by
computer and by radiologists should share similar characteris-
tics. In the example shown in Figure 24.6, which is a scatterplot
of cluster circularity versus cluster area, benign microcalcifica-
tion clusters tend to be small in area and round in shape,whereas
the malignant clusters tend to be larger in size and irregular
in shape. These results agree with the characteristics of benign
adenosis and malignant ductal microcalcifications, respectively.
Although in this example the correlation is only qualitative, the
correlation can be used as a priori knowledge in developing and
identifying important computer-extracted features.

Automated techniques must be developed to extract fea-
tures from digital mammograms. The techniques for extracting
the microcalcification features (Table 24.1) are described here
as an example [56]. To calculate the area and circularity of
a microcalcification cluster, a cluster margin was first con-
structed with a sequence of 10 morphological dilations followed
by three morphological erosion operations on a binary image
containing only the individual microcalcifications. A single
kernel was used in the morphological operations and was
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FIGURE 24.6 Distributions of computer-extracted features of micro-
calcification cluster circularity versus cluster area illustrating the qual-
itative correlation between the characteristics of computer-identified
malignancies and radiologists’ perceptual experience. Reprinted from
[56] with permission.

constructed from a 5× 5 pixel square with the four corner pixels
removed. Microcalcifications were segmented from the mam-
mogram using a technique based on thresholding and region
growing after the parenchyma background was subtracted
from the mammogram [69]. The parenchyma background was
approximated by a third-degree polynomial surface fitted to
a 10× 10 mm region centered on a microcalcification. The
area of a microcalcification was defined by the result of the
segmentation.

Effective thickness of a microcalcification was defined as the
length of a microcalcification along the X-ray projection line.
It was calculated by first converting signal contrast in pixel
value to signal contrast in relative exposure and then convert-
ing signal contrast in relative exposure to physical length. The
first conversion uses the characteristic curve of the film digi-
tizer and the H&D curve of the screen-film system. The second
conversion uses the principle of exponential attenuation and a
“standard” model of the breast and the microcalcification. The
standard model assumes (a) a 4-cm-thick compressed breast
composed of 50% adipose and 50% glandular tissue; (b) a
microcalcification composed of calcium hydroxyapatite with
a physical density of 3.06 g/mm3; and (c) a 20-keV monoen-
ergetic X-ray beam. Corrections in contrast were made to
compensate for blurring caused by the screen-film system and
by the digitization process and to compensate for X-ray scatter.
Effective volume of a microcalcification was then computed as
the product of area and effective thickness.

A microcalcification’s shape-irregularity measure was calcu-
lated as the relative standard deviation of 12 shape indices,
which were defined as follows. Four shape indices represented
distances between the center-of-mass pixel and the edges of the
smallest rectangular box (drawn to the pixel grid) enclosing the
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microcalcification. The rest of the eight shape indices were the
maximum length of line segments drawn from the center-of-
mass pixel and other pixels within the microcalcification along
the directions of 0, 45, 90, 135, 180, 225, 270, and 315 degrees.

An example of computer-extracted image features that do
not necessarily correlate with radiologists’ perceptual expe-
rience is the approach by Chan et al., who have developed
computer techniques to extract texture features that are present
in mammograms but are not explicitly used by radiologists
as a source of diagnostic information [57]. Their approach is
based on the co-occurrence matrices described in Chapter 15,
titled “Two-Dimensional Shape and Texture Quantification.”
Co-occurrence matrices, also known as spatial gray-level depen-
dence (SGLD) matrices, compute second-order statistics of the
digital image data. Each matrix element provides the joint prob-
ability that a pair of pixels with a given relative position will have
specified gray-level values. Because a matrix can be formed for
each orientation and distance, a very large number of features
can be computed. From a total of 260 features computed in [57],
a stepwise feature selection technique selected the 7 best fea-
tures, which included correlation, difference average, difference
entropy, inertia, and inverse difference moment, whose defi-
nitions can be found in Chapter 15. In such techniques, the
number of mammograms determines the outcome of the anal-
ysis, since the best features determined on a very large number
of mammograms may not be the same as those derived from a
small number of mammograms [70].

24.1.3 Classifiers

Once a comprehensive set of significant features is obtained, a
classifier can be designed to classify breast lesions as malignant
or benign. Common classifiers are linear discriminant analysis
(LDA) and artificial neural network (ANN). The issues involved
in designing classifiers to classify breast lesions are essentially the
same as in other classification tasks. Here we will address the
issues related to mammogram database and presentation of
the computer classification results. The principles and use of
classifiers can be found in other chapters as well as several good
texts [71–73].

To design a classifier effectively, one needs to obtain a random
sample of image data that represent reasonably well the popu-
lation to be classified. However, it is often difficult to obtain a
large number of mammograms with confirmed diagnosis (i.e.,
presence or absence of cancer) that can be accessed easily for
classifier design. In practice, classifiers are often designed with
100 to 200 mammograms. While it is difficult to tell whether
200 mammograms can adequately represent the patient pop-
ulation, data resampling techniques such as the jackknifing
and leave-one-out methods are often employed to use avail-
able mammograms in an efficient way [71,74]. The jackknifing
method divides a set of mammograms into a training set for
designing the classifier and a test set for assessing its accuracy.

Since a set of mammograms can be partitioned in more than
one way, typically the classifier performance is assessed by aver-
aging results from several training and test partitions. The
leave-one-out method is a special case of the jackknifing in
which the multiple-partitioning and result-averaging are used
to their extreme. A set of mammograms is divided so that only
the mammograms from one patient, possibly more than one
view, are used for assessing classifier accuracy, with the rest
of the mammograms being used to train the classifier. The
classifier accuracy is obtained from the summary results by
exhausting all possible ways of partitioning the mammogram
sample. As in other classification tasks, the sample-size issue
manifests itself not only in training and testing, but also in fea-
ture selection and optimizing various parameters in a classifier,
e.g., the number of hidden units in an ANN. These effects have
been illustrated [71,74] and have been studied more recently in
the context of computer-aided diagnosis [75,76].

For classification results to be useful to radiologists, the
results must be presented in a clear and convenient manner.
Presenting classification results in terms of the likelihood of
malignancy is one way to communicate the results to radiol-
ogists, since many radiologists advocate the estimation of the
likelihood of malignancy in their own interpretations of mam-
mograms as a means of improving the consistency in deciding
biopsy or follow-up [29]. However, unless the native output
from the classifier represents probability, which is typically
not the case, a conversion must be done to put the classifi-
cation results into an understandable format before they can be
reviewed by radiologists.

Jiang et al. transformed ANN output to likelihood of malig-
nancy via the maximum-likelihood (ML) estimated uni-
variate binomial receiver operating characteristic (ROC)
model [59, 77] illustrated in Figure 24.7. Let M (x) be the

Latent decision variable (x)
�2 0 x 2 4

M(x)B(x)

FIGURE 24.7 Illustration of the binomial model upon which the
transformation from ANN output to likelihood of malignancy was
based. Reprinted from [59] with permission.
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probability density function of a latent decision variable x for
actually malignant cases; let B(x) be the analogous probabil-
ity density function for actually benign cases; and let η be the
prevalence of malignant cases in the population studied. The
likelihood of malignancy, as a function of the latent decision
variable x , can be written as

LM (x) = ηM (x)

ηM (x)+ (1− η)B(x) . (24.1)

LM (x)must then be converted to likelihood of malignancy as a
function of the ANN output. This can be done by a polynomial
fit of ANN output and LM (x),with the data required to estimate
their relationship (ANN output, false positive fraction, and true
positive fraction) provided as part of the output from Metz’s
LABROC4 program [78]. (The ROC analysis is described in the
next section.)

24.2 Performance of Computer
Classification

One way to assess the accuracy of computer classification is
to compare its performance against that of radiologists. This is
typically done in retrospective studies using a set of images with
confirmed diagnosis that are often obtained by means of biopsy.
Use of biopsied cases provides reasonable assurance of correct
diagnoses. However, lesions that are not suspicious enough to be
biopsied but otherwise are equally likely to be incorrectly diag-
nosed by radiologists are excluded from the database. A group
of radiologists who are not familiar with the specific cases are
typically asked to read the mammograms and make a diagno-
sis based on the mammograms. To facilitate the use of ROC
analysis [79], the radiologists are often asked to report their
diagnosis in terms of their confidence that a lesion in question
is malignant. Using the confidence ratings, ROC curves can
be computed for each radiologist and especially for the radi-
ologists as a group. The latter case represents their skill level
in mammogram interpretation. These ROC curves document
radiologists’ diagnostic accuracy. Similarly, an ROC curve can
be obtained as a measure of the accuracy of the computer classi-
fication. Comparison of diagnostic accuracy can then be made
on the same mammograms between computer classification
and radiologists.

We digress from the topic of classifying breast lesions to
briefly describe ROC analysis, as it is the standard metric for
assessing computer classification performance. An ROC curve
(see, e.g., Figure 24.8) is a plot of sensitivity (defined as the
fraction of cancers correctly diagnosed) versus (1 – speci-
ficity) (specificity defined as the fraction of cancer-free cases
correctly diagnosed) [77, 80]. Conventionally, the axes of an
ROC curve are frequently labeled as in Figure 24.8 by “true-
positive fraction,” which is equivalent to sensitivity, and by
“false-positive fraction,” which is equivalent to (1 – specificity).
Area under the ROC curve, either from unfitted experimental
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FIGURE 24.8 Comparison of the average unaided and CAD ROC
curves of five attending radiologists (solid lines) and of five senior radi-
ology residents (broken lines). For attending radiologists, the Az values
are 0.62 for unaided and 0.76 for CAD (p = 0.006). For residents,
the Az values are 0.61 for unaided and 0.75 for CAD (p = 0.0006).
As a reference (dashed line), the computer’s Az value is 0.80. The
operating points represent biopsy performance of unaided attend-
ing radiologists (�), attending radiologists in CAD (•), unaided
residents (�), and residents in CAD (◦). Reprinted from [59] with
permission.

data (trapezoidal area) or from a fit to the binormal model (Az ),
is the most commonly used accuracy index [81]. Another accu-
racy index, 0.90A′z , which represents a normalized area under
the ROC curve above sensitivity of 0.90, is used to assess
classification accuracy in a more clinically meaningful way,
as it is imperative to maintain high sensitivity in mammog-
raphy [82]. For the perfect classification accuracy, the ROC
curve reaches sensitivity of 1.0 at a constant specificity of 1.0,
and it maintains a sensitivity of 1.0 at all other specificity val-
ues. The area under the perfect-accuracy ROC curve is 1.0.
The partial area index for the perfect-accuracy ROC curve,

0.90A′z , is also 1.0. At the other extreme, the ROC curve of
random guessing is the positive diagonal line and the area
under this curve is 0.5, whereas the partial area index, 090A′z ,
is 0.05. Statistical methods and computer software are avail-
able for fitting the ROC curve and for comparison of ROC
curves [83].

24.2.1 Classification Performance Based on
Human Perceptual Features

Wu et al. compared the accuracy of radiologists to that of
a computerized technique based on 14 features perceived by
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radiologists and an ANN classifier [54]. The database included
30 mammograms with masses and 30 with microcalcification
clusters, and the biopsy results indicated that 26 mammograms
were malignant while the rest were benign. The diagnostic per-
formance of radiologists was obtained from reports of five
attending and five resident radiologists experienced in reading
mammograms. The accuracy levels of computer classification
and attending and resident radiologists, measured with Az , were
0.89, 0.84, and 0.80, respectively, with a statistically significant
difference between the computer and both the attending and
resident radiologists (p < 0.01).

Similar results were obtained in a study that used 18 features
based on BI-RADS and an ANN applied to 206 mammograms
where 73 were shown to be malignant in biopsy [55]. The
Az accuracy levels in this study were 0.89 for the computer
and 0.85 for the radiologists. Although these two Az values
were not statistically different (p = 0.29), the differences in
specificity observed at high sensitivity levels were statistically
significant [55].

24.2.2 Classification Performance Based on
Computer-Extracted Features

Huo et al. have developed a computer technique for classifying
malignant and benign breast masses based on computer-
extracted features and have compared the computer accuracy
with that of radiologists [58]. In their technique, they used four
computer-extracted features (listed in Table 24.1) that correlate
to radiologists’ perceptual experience to describe the margin
and density of masses. Their comparison of the computer and
radiologists was made on a database of 95 mammograms from
65 patients. Of these, 57 mammograms contained a malig-
nant mass and 38 contained a benign mass. On this set of
mammograms, the computer achieved an Az value of 0.94.
The computer’s performance was similar to that of an expert
mammographer, whose Az value was 0.91. On the same set of
mammograms, five radiologists with some experience in mam-
mography achieved an Az of 0.81. The difference between the Az

values of the computer and the five radiologists was statistically
significant (p = 0.01).

24.2.3 The Potential of Computer Classification
to Improve Mammogram Interpretation

Although it is important to determine whether computer
classification can achieve an accuracy level that is compara-
ble to or even better than the accuracy of radiologists, it is
more important to identify how computer classification might
improve radiologists’ interpretation of mammograms. To this
end, it is clear that computer classification can potentially
reduce the number of biopsies performed on benign lesions
while maintaining sensitivity in the biopsy of breast cancers.
Wu et al. reported that using an appropriate threshold to

their computer classification results, one could hypothetically
recommend biopsy in 100% of malignant cases and in only
41% of benign cases. Alternatively, using a different threshold,
one could recommend biopsy in 92% of malignant cases and
in only 29% of benign cases [54]. Baker et al. reported sim-
ilar findings in greater detail. For example, they showed that
one could hypothetically recommend biopsy in 95% of malig-
nant cases and in 38% of benign cases. This result was better
than that could be obtained from radiologists’ interpretation,
which would be to recommend biopsy in 95% of cancers and
70% of benign lesions, with a statistically significant difference
(p < 0.01) [55].

These results indicate the potential of computer classifi-
cation to reduce the number of biopsies on benign lesions.
However, we must remember that these results were based
entirely on the computer analysis. These results do not mea-
sure how a radiologist—who makes the biopsy or follow-up
recommendation—might use the computer results in making
his or her own recommendation decision. We must also exer-
cise care when interpreting the computer performance when
it correctly classifies 100% of cancers in a particular database.
Although it is highly desirable for computer classification to
identify 100% of cancers, that extreme performance is difficult
to measure accurately from a statistical point of view.

24.3 Effect of Computer Classification on
Radiologists’ Diagnostic Performance

Computer classification can improve diagnostic accuracy by
helping radiologists to be more accurate. An effective diagnostic
aid does not function the same way as a single, indepen-
dent detection system. The ability of computer classification to
improve the diagnosis of breast cancer depends on the accu-
racy of radiologists, the accuracy of the computer analyses,
and the ability of radiologists to incorporate the computer
classification results into their own diagnostic decision mak-
ing. The clinical potential of a classification technique must be
assessed with an observer performance study in which radi-
ologists read mammograms with and without the computer
aid, and their diagnostic accuracy in both cases is compared.
Because this type of study provides the most direct evidence to
date that computer classification can help improve breast cancer
diagnosis, we will describe the following experiments in more
detail.

24.3.1 Diagnostic Aid Based on Human
Perceptual Features

The first observer performance study of computer classification
was done by Getty and colleagues [53]. As described earlier in
this chapter, their mammogram reading and decision-making
aid consisted of a checklist of 13 features that a radiologist
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must extract from the mammogram and an LDA classifier.
Their observer study consisted of six general radiologists who
practice in community hospitals in the Boston area and who
had read at least five mammograms a week in the preceding
5 years. Their study used 118 mammograms with biopsy-
confirmed diagnoses: 58 cases were malignant and 60 were
benign. The readers first read the 118 cases in the standard
condition designed to simulate the usual clinical practice. For
each case, the readers rated their confidence that the lesion
localized for them on the mammogram was malignant using
a 5-point scale (1 = definitely or almost definitely malignant;
2 = probably malignant; 3 = possibly malignant; 4 = prob-
ably benign; and 5 = definitely or almost definitely benign).
After this baseline reading, the readers went through a train-
ing session for using the computer aid and then read the same
cases again, this time using the computer aid. The purpose of
the training was first to help the readers get familiarized with
the 13 features required for the computer analysis, second to
practice rating the 13 features, and third to familiarize readers
with the computer-estimated probability of malignancy. The
readers were asked to rate the 13 features in absolute num-
bers (e.g., mass size, calcification number) or on a scale of 1
to 10. For example, for the spiculation feature, 1 represented
definitely no spiculation and 10 represented definitely some
spiculation. The training process consisted of a practice run on
44 separate cases. After every 15 cases, a feedback on the aver-
age response given by five mammography specialists on those
same cases was given for comparison purposes. Subsequently
in the enhanced condition, the readers first provided scaled
rating values of the 13 features, then received the computer-
estimated probability of malignancy, and finally rated their
confidence that the lesion was malignant using the same
5-point scale.

The average Az value of the six readers in the standard con-
dition was 0.83, and it was 0.88 in the enhanced condition. The
Az value of the computer classifier alone was 0.86. Five read-
ers performed at a higher Az value in the enhanced condition
compared to the standard condition. The one reader who did
not improve performed at very high Az values above the group
average in both conditions. The overall improvement in Az from
0.83 to 0.88 was statistically significant.

In addition to the performance of the six general radiol-
ogists, the performance of five mammography specialists was
also measured on the same set of mammograms. The specialists
did not use the computer aid, however; their interpretation of
the mammograms was used to obtain a baseline performance
for purpose of comparison. Interestingly, the baseline perfor-
mance of the specialists was an Az value of 0.88, which is the
same value achieved by the general radiologists who had their
performance enhanced by using the computer aid. Therefore,
Getty et al. [53] concluded that the computer aid provided an
enhancement of general radiologists’ performance such that it
was brought to the level of the specialists’.

24.3.2 Diagnostic Aid Based on
Computer-Extracted Features

Jiang et al. have performed another observer study to assess
the clinical potential of computer classification of clustered
microcalcifications as malignant or benign [59]. Their tech-
nique consisted of eight computer-extracted features and an
ANN classifier. These features are listed in Table 24.1 and were
described earlier in this chapter. The computer aid to radiolo-
gists was an estimate of the likelihood that a microcalcification
cluster represented a malignancy. This study was the first to
evaluate the clinical potential of computer classification based
on computer-extracted features that is completely indepen-
dent from radiologists’ interpretation of mammograms. Like
the Getty study, this study also demonstrated that the classi-
fication aid can improve radiologists’ accuracy in diagnosing
breast lesions as malignant or benign. In addition, this study
also indicated that computer classification can help radiologists
make better biopsy recommendations.

Ten radiologists who had experience in reading mammo-
grams served as observers. Five observers were attending
radiologists who read mammograms as part of clinical prac-
tice but who did not read mammograms exclusively. These
radiologists had read mammograms for an average of 9 years
at the time of the experiment. They represented a sample of
radiologists who were responsible for interpreting the majority
of mammograms in the United States. Expert mammogra-
phers, who are few in number, and radiologists who are not
qualified to read mammograms according to MQSA were not
sampled. The other five observers were senior radiology resi-
dents. The residents represented a sample of radiologists who
had just started interpreting mammograms with little previous
experience except that obtained during residency training.

They used mammograms from 104 patients in whom a sus-
picious cluster of microcalcifications was found. In all cases,
the diagnosis was confirmed by either surgical or percutaneous
core biopsies. Of the 104 cases, 46 were malignant and 58 were
benign. The cancer cases consisted of 9 invasive cancers and 37
cases of ductal carcinoma in situ (DCIS). In each case, the origi-
nal standard-view and magnification-view mammograms were
available for the observers to interpret. However, the computer
analysis of the mammograms was done on the standard views
only. The set of cases was derived from a consecutive biopsy
series, leaving out only cases that contained masses and those
that had missing films. The proportion of cancers was enriched
for this series [79].

Figure 24.8 shows the results in terms of ROC analysis com-
paring the average performance of the radiologists with and
without the computer aid. The observers’ unaided ROC curve
showed the poorest performance, with an Az value of 0.61. The
observers’ aided or CAD ROC curve showed a substantially
improved performance, with an Az of 0.75. Statistical tests con-
firmed that the improvement in the Az value was statistically
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significant (p < 0.0001). These results show that the radiol-
ogists were able to use the computer classification to modify
their confidence regarding lesion malignancy and they substan-
tially improved their diagnostic accuracy. The computer-only
ROC curve, with an Az value of 0.80, indicates better perfor-
mance than the observers’ CAD performance, suggesting that
although the radiologists were able to benefit from the com-
puter aid, they were unable to use it optimally. It is possible that
combining their own confidence with the computer aid, both
of which were continuous quantities, was not a trivial task for
a human observer. In other words, the maximum potential in
the gain of diagnostic accuracy was not realized in the study.

Radiologists’ ability to recommend biopsy for cancers and
not to recommend biopsy for benign lesions was also improved
by using the computer aid. Without the computer aid, the aver-
age sensitivity of the 10 observers in terms of making biopsy
recommendations was 73.5% and their average specificity was
31.6%. When the computer classification was provided as an
aid, the average sensitivity was improved to 87.4% and the
average specificity was improved to 41.9%. Use of the com-
puter classification resulted in a simultaneous increase both in
sensitivity (14%) and in specificity (10%). When compared in
terms of averages across the 10 observers, each observer recom-
mended biopsy for 6.4 additional malignant cases when they
used the computer aid (p = 0.0006), and each observer rec-
ommended follow-up for 6.0 additional benign lesions when
they used the computer aid (p = 0.003). As a result of these
changes, the hypothetical positive biopsy yield—the fraction of
cases recommended for biopsy that are malignant—increased
on average from 46% to 55%.

Two sample cases are shown in Figures 24.9 and 24.10 to
illustrate the effect of computer classification on radiologists’
diagnostic confidence and on their biopsy recommendations.
Figure 24.9 shows an invasive ductal carcinoma seen in the
lower-inner quadrant of the left breast. Figure 24.10 shows a
benign lesion consisting of fibrocystic changes, fibroadenoma,
and adenosis, seen in the upper-outer quadrant of the right
breast. The histological diagnoses of both cases were obtained
through surgical biopsy. The computer results reported a 60%
likelihood of malignancy for the malignant case (Figure 24.9),
and 13% for the benign case (Figure 24.10). For the malig-
nant case, all five attending radiologists reported higher levels
of suspicion with the computer aid, and two radiologists
changed their clinical recommendations from follow-up to sur-
gical or alternative tissue sampling (Table 24.2). Consequently,
the computer aid helped two radiologists correctly diagnose
an additional cancer that they initially had missed. For the
benign case, all five attending radiologists reported lower lev-
els of suspicion with the computer aid, and all five radiologists
changed their clinical recommendation from biopsy to follow-
up (Table 24.3). In this manner, the computer aid helped
all five radiologists avoid recommending biopsy for a benign
lesion.

24.4 Methods for Presenting Computer
Analysis to Radiologists

Our discussion so far has concentrated on arriving at a numer-
ical estimate of the likelihood of malignancy for a breast lesion
in a mammogram with computer image-analysis techniques.
Once such an estimate is obtained, the computer image analy-
sis result must be conveyed to the radiologist. In the observer
studies described previously, the computer analysis results were
presented to radiologists numerically. This is one way to con-
vey computer results to the radiologist. Other methods are also
explored [84].

Giger et al. [84] developed a computer workstation in which
they present the results of computer image analysis in three
different ways. A screenshot of this workstation is shown in
Figure 24.11. In Figure 24.11a, the two small mammogram
regions of interest (ROIs) in the top right contain a mass lesion
in question. Clicking on either of these two ROIs with the com-
puter mouse will display the image in full resolution in the
top left of Figure 24.11a. The first method for presenting the
results of computer analysis is the computer-estimated like-
lihood of malignancy, displayed just above each ROI. These
estimates are computed from each mammogram and, there-
fore, two not necessarily identical estimates are displayed for the
images. The second method for presenting the results of com-
puter image analysis is a selection of cases from a reference-case
library that contains a mass lesion similar to the one in question.
These similar reference cases are shown in the center right of
Figure 24.11a. The known malignant cases are displayed with
a red frame around the image, and the known benign cases
are displayed with a green frame for ready identification of the
known diagnoses. The similar cases are identified either based
on the computer-estimated likelihood of malignancy or indi-
vidual image features that the computer extracts. The user can
select a criterion for identifying similar cases by pushing the
appropriate button in the center-right margin of Figure 24.11a.
The third method for presenting the results of computer image
analysis is a histogram of the results of computer analysis of
all reference cases superimposed with the result of computer
analysis of the case in question. This histogram is shown in
the bottom right of Figure 24.11a with the result of the case
in question indicated by a small white triangle just above the
frame of the histogram. Figure 24.11b shows an analogous dis-
play for the computer analysis of ultrasound images of the
mass lesion.

The use of similar images to present the results of computer
image analysis is motivated by an assumption that radiolo-
gists respond better to images than abstract numbers. After all,
radiologists acquire their radiology training by reading images,
and they accumulate experience from reading a large number
of cases, from which they learn to recognize what is normal
anatomy, what is benign abnormality, and what is cancer. The
display of similar cases can be thought of as an online atlas or



24 Classification of Breast Lesions from Mammograms 411

(a) (b)

FIGURE 24.9 Mammograms of (a) standard CC view and (b) magnification MLO view showing
(4 inch× 3 inch) a cluster of microcalcifications in the lower-inner quadrant of the left breast. The his-
tological diagnosis was invasive ductal carcinoma. The computer-estimated likelihood of malignancy
was 60%. The computer result helped two radiologists correctly diagnose this case (see Table 24.2).
Reprinted from [59] with permission.

(a) (b)

FIGURE 24.10 Mammograms of (a) standard MLO view and (b) magnification LM view showing
(4 inch× 3 inch) a cluster of microcalcifications in the upper-outer quadrant of the right breast. The
histological diagnosis was fibrocystic changes, fibroadenoma, and adenosis. The computer-estimated
likelihood of malignancy was 13%. The computer aid helped all five radiologists avoid recommending
biopsy for this case (see Table 24.3). Reprinted from [59] with permission.
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TABLE 24.2 Attending radiologists’ assessments of likelihood of malignancy and their
clinical recommendations on a malignant case with computer-assessed likelihood of
malignancy of 60%a

Assessments of suspicion Clinical recommendations

Attending radiologists Unaided CAD Unaided CAD

A 53% 84% Alternative biopsy Surgical biopsy
B 25% 50% Short-term follow-up Surgical biopsy
C 55% 58% Alternative biopsy Alternative biopsy
D 10% 49% Routine follow-up Alternative biopsy
E 55% 66% Surgical biopsy Surgical biopsy

a Reprinted from [59] with permission.

TABLE 24.3 Attending radiologists’ assessments of likelihood of malignancy and
their clinical recommendations on a benign case with computer-assessed likelihood of
malignancy of 13%a

Assessments of suspicion Clinical recommendations

Attending radiologists Unaided CAD Unaided CAD

A 51% 14% Alternative biopsy Short-term follow-up
B 54% 20% Surgical biopsy Short-term follow-up
C 56% 13% Alternative biopsy Routine follow-up
D 60% 53% Alternative biopsy Short-term follow-up
E 42% 15% Surgical biopsy Short-term follow-up

a Reprinted from [59] with permission.

teaching file that helps the inexperienced radiologist to compare
the case in question against a library of classic or prior cases.
Obviously, a very large library of prior cases is a prerequisite for
this approach, especially when prior clinical cases, as opposed
to classic teaching cases, are used. Because the similar images
are intended to persuade the radiologist in his or her diagnostic
decision making, obtaining a high-quality library of reference
cases is important.

This approach requires that similar cases be selected auto-
matically from the reference library without intervention from
the radiologist,because the radiologist cannot devote time while
interpreting clinical cases to browse through the library of cases
and find similar ones. Automated selection of similar cases is
an area of ongoing research. One approach is to select cases
based on the similarity of computer-estimated likelihood of
malignancy. This is a clearly defined criterion that is easy to
implement with a computer. However, sometimes, cases that
share similar computer-estimated likelihood of malignancy do
not look similar to radiologists. It is problematic when dis-
similar cases appear on the similar-case list because it defeats
the purpose. However, because the impression of whether two
cases are similar is largely subjective, designing a mathemati-
cal method to capture this subjective impression is challenging.
Other methods also can be used to identify similar cases, for
example, using an individual image feature or a combination of
image features with equal or different weights applied to the fea-
tures. Reliable identification of similar cases to the radiologist
remains an area of ongoing research [84–86].

While the intent of presenting the computer image analy-
sis results is to allow the radiologist to compare the case in
question to similar cases in the reference library with known
diagnosis, in practice, radiologists sometimes simply count the
relative number of similar cases from the reference library that
are known to be malignant versus those that are known to
be benign. This can be done quickly with the computer to
save the radiologist’s time in clinical interpretation. The red
and green color frames of the similar reference cases indicat-
ing their known malignant versus benign diagnosis further
facilitates the task of the radiologist. Because the radiologist
intends to devote minimal attention to the reference library,
it is important that the first few similar reference cases are
truly similar and that they appear at the top of the list of the
similar cases, to receive the radiologist’s attention. Otherwise,
the radiologist’s impression of the reference cases may devi-
ate from the information intended by the computer image
analysis.

Some radiologists find it useful to have an overall perspec-
tive of the entire reference library and a view of where the
case in question fits among the cases of the library. The his-
togram presentation gives the radiologist such a perspective.
The radiologist can identify from the histogram the degree of
overlap—or the apparent separation—between known malig-
nant and benign cases based on the computer image analysis.
This gives the radiologist a tangible impression of the com-
puter’s capability in predicting unknown cases as malignant or
benign. The radiologist also can see readily from the histogram
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(a)

(b)

FIGURE 24.11 An example of presenting computer image-analysis results for (a) mammogram and (b) ultrasound images in three different
ways, namely, an estimate of the likelihood of malignancy, similar cases with known diagnosis from a reference library, and a histogram reference.
See text for details of the various components of this display. Reprinted from [84] with permission. (See also color insert).



414 Handbook of Medical Image Processing and Analysis

where the case in question fits in the library of reference cases,
whether the case in question falls where the computer analy-
sis produces overlapped malignant and benign cases or clearly
separated malignant or benign cases.

The display shown in Figure 24.11a contains much informa-
tion for the radiologist who may need to prioritize and decide
which form of presentation of the computer analysis results to
concentrate on when interpreting the case in question. Different
radiologists may prefer different presentation forms but it is
unlikely that radiologists will study all three presentations in
detail. Rather, a radiologist may choose one presentation that
he or she prefers.

24.5 Summary

Techniques developed for computer classification of malignant
and benign breast lesions can potentially be used clinically
to help radiologists differentiate breast cancers and benign
breast lesions. These techniques can be either based on human
perceptual features provided by radiologists or based on
computer-extracted features that can be obtained with a fully
automated process. The identification of the important features,
either perceptual or computer-extracted, is critically impor-
tant for computer analysis of mammograms. Once features are
obtained, classifiers can be designed for the classification of
malignant and benign lesions.

Several research groups have shown that the accuracy
of computer classification can be comparable to or better
than the performance of radiologists. These conclusions were
reached after comparing computer classification with radi-
ologists’ diagnoses using ROC analysis. These encouraging
results suggest that computer classification has the potential
to help improve the diagnosis of breast cancer and benign
lesions.

Results of observer performance studies showing the effect
of computer classification on radiologists’ performance is also
encouraging. These results show that radiologists can out-
perform themselves when they use computer classification as
an aid, and improve their diagnoses in two ways. With the
computer aid, radiologists can potentially send fewer women
without breast cancer to biopsy and at the same time correctly
diagnose more cancers. With the aid of computer classifica-
tion, it is possible to reduce the physical and psychological
trauma in patients who have benign breast lesions by avoiding
unnecessary biopsies without compromising the effectiveness
of mammography screening for breast cancer. As a result,
the cost associated with mammography screening could be
reduced. However, computer classification must also be fur-
ther developed and tested in larger studies before it can be
used clinically, and before its potential in reducing the mor-
bidity and mortality of breast cancer can be realized in clinical
medicine.
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In diagnostic cardiac imaging, a large number of quantitative
parameters that can be extracted from dynamic images are clin-
ically relevant. Also in cardiology, almost all types of imaging
modalities are used,and many of them tend to measure the same
functional parameters in different ways. For example, cinean-
giograms, radionuclide ventriculography, ultrasound, and MRI
can be used for the assessment of ventricular wall motion abnor-
malities. Coronary angiography, thallium scintigraphy, and
positron emission tomography can be used to evaluate myocar-
dial perfusion. Ultrasound, MRI, and fast CT can be used to
visualize cardiac malformation, etc. Cardiac imaging proce-
dures rely heavily on quantitative analysis techniques. Some
of the quantitative measurement techniques used in different
modalities are similar. For example: (1) A geometric estimate
of ventricular size and ejection fraction can be applied to ultra-
sound, cineangiograms, radionuclide ventriculogram, and MRI
images; (2) blood flow and coronary reserve can be evaluated
from contrast coronary angiography, conventional scintigra-
phy, and PET using similar tracer kinetics models; and (3) the
temporal behavior of regional ventricular wall motion can be
analyzed from cineangiography, radionuclide ventriculography,
and MRI using similar factorial and Fourier analysis techniques.

Since the heart is a moving organ, its mechanical function
is evaluated using motion and temporal analysis techniques.
The vital function of the heart is to mechanically push large
volumes of blood through the vascular system; therefore, it is
understandable that most quantitative analyses focus on the
evaluation of its hemodynamic performance.

The first digital imaging modality used in cardiology was
radionuclide imaging, where digital images were acquired and
stored in digital acquisition systems. This led to the early
development of image processing techniques directed toward
the enhancement and quantitative evaluation of radionuclide
images [1]. All these early developments were focused on
quantitative measurement of regional activity and ventricular
function, overlooking problems associated with a rather poor
spatial resolution. As radionuclide imaging techniques became
more widely available, many new analysis methods were intro-
duced, providing new approaches for quantitative assessment of
abnormalities in cardiac function as well as myocardial perfu-
sion. The improvement in diagnostic efficiency due to these
analysis techniques was well demonstrated in clinical trials
where they were compared to preexisting conventional methods
[2, 3]. New concepts in the assessment of ventricular function,
such as the measurement of temporal changes in regional wall
motion by Fourier phase analysis of radionuclide angiograms
[4], led to a significant improvement in the detection of regional
alterations in ventricular function.

25.1 Dynamic Image Acquisition
Techniques

In order to evaluate cardiac motion and ventricular function,
images must be acquired dynamically in time while maintaining
a direct correlation with the different phases of the cardiac cycle.
This is usually performed by synchronizing image acquisition
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with the electrocardiogram (ECG) signal recorded from elec-
trodes located on the body surface. The ECG signal provides a
trigger for the acquisition of an image at a selected moment of
the cardiac cycle. Traditionally the beginning of a cardiac cycle
is identified as the start of ventricular contraction, which cor-
responds to the QRS pulse on the ECG. An alternative to the
ECG signal is the vascular pulse recorded either mechanically
or optically from limb extremities. This signal, referred to as
peripheral pulse gating (PPG), is used whenever the electrical
signal from the ECG is difficult to obtain or is of insufficient
quality due to electrical noise or interference.

Some imaging modalities such as contrast angiography or
echocardiography rely on “post-synchronization” techniques
in which the acquired images are sorted to match the differ-
ent cardiac phases recognizable from the corresponding ECG
tracing recorded simultaneously with the images. Other tech-
niques such as radionuclide angiograms, MRI, and CT images
can be acquired“synchronously”by initiating image acquisition
directly by the ECG trigger signal. In most cases several succes-
sive heart cycles are acquired and combined to generate a set of
“representative”images corresponding to an average heart cycle.
The total heart cycle is divided into a fixed number of intervals
with a representative image for each interval. A dynamic replay
of the sequence of these images in a continuous loop will pro-
vide the perception of the beating heart using a display mode
often referred to as a “cine-loop” display.

Cardiac images acquired dynamically allow for quantitative
ventricular wall motion and cardiac hemodynamic perfor-
mance. Global parameters obtained from differences in cardiac
volumes between different phases of the cardiac cycle are used
to evaluate the cardiac output and the general performance
of the heart. Differences in output and filling of different
compartments of the heart allow evaluation of valvular insuf-
ficiencies and abnormal communication channels between the
different heart chambers. Dynamic evaluation of myocardial
wall thickening and ventricular wall motion allow identifi-
cation of regional abnormalities in myocardial contractility.
Furthermore, some dynamic images depict the progression of
blood or contrast media flowing through the heart cavities
and the large vessels. These images will allow for the quanti-
tative evaluation of cardiac output as well as the detection and
measurement of abnormal hemodynamic flow patterns such
as cardiac shunts, valvular insufficiencies, and turbulent flow
secondary to stenotic restrictions.

25.2 Dynamic Analysis of Left Ventricular
Function

The global hemodynamic performance of the heart can be
evaluated, in most cases, from the measurement of the left
ventricular function. Computer analysis methods for the assess-
ment of left ventricular function and the measurement of global
parameters, such as ventricular volumes, stroke volume, and

ejection fraction, have been widely adopted by cardiologists
and are routinely used as part of their clinical investigations.
Geometric and densitometric analysis techniques for the mea-
surement of ventricular size and ejection fraction are applied to
radionuclide as well as contrast ventriculograms [5, 6]. Most of
the traditional geometric techniques are nowadays applied also
to tomographic techniques such as ultrasound, CT, and MRI.

25.2.1 Geometric Calculation of Changes
in Cardiac Volumes

The most common volume measurement in the heart is the
left ventricular volume because it is the most clinically rele-
vant for evaluating cardiac performance. The method used to
make this measurement depends on the type of images that are
used. The imaging modality can be a digital contrast angiogram,
a radionuclide angiogram, or a set of tomographic images.
A geometric calculation of the ventricular volume relies on
proper identification of the edges of the ventricular cavities
on these images. Several edge detection techniques have been
proposed for the automatic or semiautomatic outline of left
ventricular borders. For images such as a contrast angiogram
where the contrast between the ventricular cavity and the
ventricular wall is high, the determination of the ventricular
contour is fairly easy. Totally automated methods have been
developed and validated. Such methods require a perceivable
contrast between the left ventricle and superimposed structures
such as ribs, catheter, aorta, and diaphragm in order to define
ventricular borders accurately. In addition, inhomogeneous dis-
tribution of contrast medium within the left ventricular cavity
(especially in diastolic and in mitral regurgitation) also causes
significant technical problems for totally automated techniques.

In difficult cases, a good compromise solution is an auto-
mated edge detection method, coupled with human interaction
to guide the edge detection algorithm and to correct any mis-
takes made by the computer. The simplest and fastest edge
detection technique often used is the “raster” technique [7].
The image is first subdivided into rows where each row is the
average of several raster lines. The left ventricular boundary
is then extracted for each row by searching for the maximum
first derivative of gray level along the row. These investigators
have reported that 64% of contrast ventriculograms could be
processed totally automatically, and an additional 14% could
be analyzed with some human intervention [7]. Raster tracking
has a disadvantage that border tracking may fail for portions of
the left ventricular boundary that are nearly tangential to the
raster lines. Hence, it is essential that the left ventricular image
be rotated so that the long axis of the left ventricle is perpendic-
ular to the raster lines. Even at this orientation, the boundary
at the left ventricular apex may be discontinued because it is
almost parallel to the raster lines. The orientation problem
can be avoided if an “omnidirectional tracking” technique is
used [8, 9].
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This omnidirectional edge tracking technique can be rel-
atively computationally intensive and slow, and it may be
inaccurate when overlapping structures such as pulmonary ves-
sels or the diaphragm interfere with the proper identification of
the ventricular boundaries on projectional images. The desire
to compromise between speed and accuracy will determine
performance of the chosen technique.

Other contouring techniques rely on more specific geometric
assumptions of the shape of the heart. Given the assumption
that the heart has an oval convex shape, several specific edge
detection techniques were developed based on a “radial” search
of ventricular boundaries from a center point in the ventricu-
lar cavity. Further refinements of the edge detection technique
have been proposed based on the concept of active contours or
“snakes,” which have the ability to conform to irregular con-
tours in an image [10, 11]. This class of algorithms is discussed
in Chapter 8 as well as other chapters.

The relatively large size of the left ventricle and the need for
global contouring of the ventricular cavity for left ventricu-
lar volume and function evaluation facilitates the use of digital
image processing techniques that enhance the image quality and
lead to improved edge detection accuracy [12]. When using con-
trast, such as in contrast ventriculograms, the background or
overlapping structure can be suppressed by subtracting a mask
image from the corresponding ECG-gated, opacified image.
Random noise such as quantum noise can also be reduced if
images from the same point in several cardiac cycles are aver-
aged [13]. After completion of the edge detection procedure, the
left ventricular boundary contours can then be used to generate
left ventricular volume and regional wall motion data.

25.2.1.1 Left Ventricular Volume Measurement

Once edges are located, end-diastolic and end-systolic volumes
can be obtained and ejection fraction and stroke volume can
be calculated. The most widely used method of measuring left
ventricular volume is the area length method introduced by
Dodge et al. [14]. This method models the left ventricule as
a three-dimensional ellipsoid. The three axes of the ellipsoid
are estimated from the antero-posterior (AP) and lateral (LAT)
views of biplane left ventricular images. The expression used
for the volume calculation is

V = πL

6

(
4Aap

πLap

)(
4Alat

πLlat

)
,

where Aap and Alat are the projected left ventricular areas in the
AP and LAT views, respectively, Lap and Llat are the longest mea-
surable axes in the projected LV, and L is the longer of Lap and
Llat. The errors associated with the volumetric measurements
obtained from these two views are about 8% [15]. This for-
mulation has also been found accurate for oblique RAO/LAO
projections [15–17]. This technique was also applied to other
imaging techniques such as gated cine MRI (Figure 25.1).

The same technique has been further extended to measure-
ments made from a single projection [18]. In the single plane
method, it is assumed that the ellipsoid has rotational or circu-
lar symmetry about its long axis. The preceding formula is then
reduced to

V = πL

6

(
4A

πL

)2

.

It was shown that single plane methods can provide the same
accuracy as the AP/LAT biplane views if the single plane view
is perpendicular to the long axis of the left ventricular. This
approximately corresponds to the RAO/30◦ view. However, in
general, single plane studies are inferior to biplane studies. Left
ventricular ejection fraction deduced from volumetric mea-
surements obtained from the best views have about a 10%
uncertainty.

25.2.2 Densitometric Calculation of Volumes

Quantitative analysis techniques were developed for projection
X-ray imaging techniques based on the principle that image
density measured after opacification of ventricular cavities
with contrast material is proportional to the volume of blood
contained in a given cavity. These methods, referred to as densit-
ometric measurement techniques, applied to angiography after
digital subtraction, have been validated for the calculation of left
and right ventricular volumes and the evaluation of ventricular
stroke volumes.

Evaluation of left ventricular volume can be accomplished
using peripheral or central venous injection of contrast mate-
rial or by selective injection of contrast material directly into
the left ventricle [19, 20]. Generally, the real-time subtracted
image series is preprocessed by manually or automatically
selecting images with the largest (end-diastolic) and smallest
(end-systolic) left ventricular silhouette.

The development of digital subtraction angiography (DSA)
provides an ideal setting for densitometric analysis as an alter-
native to the geometric method for the determination of either
left ventricular ejection fraction or right ventricular ejection
fraction. Densitometric measures utilize the relative bright-
ness values of picture elements (pixels) in regions of interest
containing the left ventricular or the right ventricular area
during systole and diastole to derive the ejection fraction.
The technique is independent of left ventricular geometry and
odd-shaped ventricles.

In practice, a number of technical problems make abso-
lute densitometric measurements extremely difficult. These
include nonlinearity of the image intensifier and video trans-
fer function, beam scatter and energy modification, geometric
distortions of the X-ray beam geometry, and veiling glare [21–
23]. Moreover, these factors are not uniform over the field
of view and therefore cannot be corrected by measurements
performed in a single location. Variation in the overlaying
noncardiac structure attenuation further complicates these
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FIGURE 25.1 Left ventricular volume calculated from cine-MRI using the area–length geometric method applied to two orthogonal planes.

problems. Inhomogeneous distribution of contrast within the
cardiac chambers can also be a significant problem. Despite
these difficulties, accurate estimation of ejection fractions has
been reported [24–26].

The densitometric analysis is comparable to count-based
radionuclides in their evaluation of ejection fraction. For the
calculation of the ventricular ejection fraction, regions of inter-
est containing the ventricular chamber at end-diastole and
end-systole are extracted from the images. A third region of
interest representing the background is usually obtained at end-
systole forming a U-shaped area between the end-diastolic and
end-systolic region of interest (Figure 25.2).

The ejection fraction is then calculated by the formula

EF = EDd − ESd

EDd − BKd
× 100,

where EDd equals the summed intensity in the end-diastolic
area, ESd the intensity in the end-systolic, and BKd the back-
ground intensity. To obtain total background intensity, the
average background pixel value is extrapolated for the total
number of pixels in end-diastole:

BKd = Background intensity at ES

Number of pixe1s in BK
.

This algorithm is very similar to that utilized in the calcula-
tion of ejection fraction by radionuclide methods. Although it is
necessary to trace the borders of the ventricular end-systole and
diastole, no geometric assumptions regarding left ventricular
shape are made.

End-diastolic ROI

Background ROI

End-systolic ROI

FIGURE 25.2 Schematic representation of end-diastolic and end-
systolic regions of interest. The background region is the area between
end-diastole and end-systole.

In a clinical evaluation study reported by Nissen et al. [27],
the densitometric ejection fraction correlated closely to both the
single-plane RAO and biplane area–length methods for a group
of 72 patients who presented with a wide variety of cardiac
disorders and ejection fraction ranging from 24% to 82%. The
correlation was equally close for the subgroups of patients in
whom digital ventriculography was performed following either
intravenous or direct ventricular injection. Accordingly, these
data indicate that calculation of ejection fraction by densitom-
etry can be applied to digital subtraction images produced by
either site of injection. In the subgroup of patients without prior
myocardial infarction, densitometric analysis of ejection frac-
tion correlated closely with both single-plane RAO and biplane
area–length methods. Presumably, left ventricular geometry in
these patients conforms to the geometric ellipsoid assumption
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of the area–length method. It is therefore not surprising that
densitometry correlates nearly as well with single plane RAO
cineangiography as biplane cineangiography in this noninfarc-
tion group. Significantly, however, patients who had previously
suffered myocardial infarction were studied and ejection frac-
tion correlated more closely to the biplane than the single-plane
area–length method. These data strongly suggest that densit-
ometric ejection fraction obtained from a single RAO view
may reflect global left ventricular function more accurately
than single-plane area–length methods in patients with dyssyn-
ergy. Many catheterization laboratories lack facilities for biplane
angiography, and densitometry analysis appears to be preferable
to area–length methods for the assessment of ejection fraction
in this setting.

Several practical factors need to be considered in the
technique employed for densitometry analysis. Densitometric
assessment of ejection fraction relies upon a linear relationship
between the concentration of contrast and optical brightness.
However, a variety of nonlinearities are involved in the process.
These include the possibility of a nonlinear response from the
image intensifier or fluoroscopic camera that may be present
in some X-ray systems. Many X-ray systems exhibit vignetting,
a phenomenon that causes a fall-off in image brightness from
the center to the edge of the field. Geometric distortions due
to the pincushion effect also can be a potential nonlinearity.
Furthermore, radiographic scatter and optical veiling glare can
result in a nonlinear relationship between contrast concentra-
tion and pixel gray value. Registration artifacts due to patient
motion are an additional concern. It was reported that as many
as 20% of patients are unable to hold inspiration and to remain
motion-free for sufficient time to perform a study [5]. When a
registration artifact is present due to misalignment of images
before and after contrast injection, calculation of ejection frac-
tion by densitometry should be avoided. If densitometry is
to be performed following direct LV or RV injection of con-
trast, several additional cautions are appropriate. All cardiac
cycles during the injection of contrast cannot be utilized since
additional contrast is continuously entering the cavity. Because
of concerns regarding mixing, most investigators have limited
studies to intravenous contrast administration.

25.2.2.1 Radionuclide Blood Pool Images

Both qualitative and quantitative approaches have been
employed for the evaluation of gated radionuclide angiograms,
also referred to as “blood pool” studies. Visual interpretation of
blood pool images can best be accomplished by displaying the
image sequence as an endless loop movie using a computer-
based display. Such a movie display allows the observer to
use both spatial features and motion information in identi-
fying various cardiac structures. Most quantitative analyses of
gated blood pool images require the calculation of one or more
regional time activity curves. Analysis of left ventricular time

activity curves can yield several measures of left ventricular sys-
tolic performance, including the global ejection fraction peak
ejection rate and various temporal measures [5, 28–30].

Left ventricular ejection fraction is calculated from the counts
in the left ventricular region of interest at end-diastole and
end-systole using the formula

EF = EDc − ESc

EDc
× 100,

where EDc and ESc are the background corrected end-diastolic
and end-systolic counts. Background correction is necessary
since about 30% of the activity in the left ventricle is contributed
by noncardiac structures. The procedure for determining the
ejection fraction essentially consists of identifying regions of
interest that contain the left ventricle at end-diastole and end-
systole and one or more appropriate background regions.

Following identification of end-diastolic and end-systolic
regions of interest, the background region of interest can be
automatically identified on the end-systolic frame. It is usu-
ally located to the lower right and follows the contour of the
left ventricle. In general the background region of interest will
fall in a position in the image that is partially within the end-
diastolic region of interest. The rationale for this approach is
that it attempts to measure background activity at the position
that is superimposed on the left ventricle during diastole and
thus, is more representative of the true ventricular background.
The ejection fraction can be determined from the region of
interest data using the complete formula

EF = (ED − BED)− (ES − BES)

ED − BED
× 100,

where ED and ES are the end-diastolic and end-systolic counts
and BED and BES are the corresponding background correc-
tion factors. The accuracy and reproducibility of left ventricular
ejection fraction determined by gated blood pool imaging
depends upon careful selection of background and ventricular
regions of interest. This is particularly critical in patients with
very high (> 80%) or very low (< 20%) ejection fractions [31].
For this reason, most institutions usually report such patients
as having an ejection fraction above 80% or less than 20%.

25.2.3 Quantitative Evaluation of Regional
Function

Generating parametric images for evaluation of regional left
ventricular function implies performing a data reduction and
consequently isolating specific functional features from a car-
diac cycle. Whether the latter has been obtained by a gated
equilibrium blood pool image or by contrast cineangiography
is inconsequential. However, the following discussion will be
based on gated equilibrium radionuclide angiography. The data
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reduction generated by parametric imaging ultimately com-
presses all the information found in the cardiac cycle
sequence—pertaining to a certain functional component—into
one or two images. This makes for a much easier interpreta-
tion and singles out the respective functional component. Such
images remove a great part of subjectivity of interpreting a cin-
ematic display and enables quick comparisons at subsequent
patient follow-up. It is also important to remember that for
parametric images, a color display is an absolute necessity and
not a luxury [32, 33]. The most commonly used parametric
images are the simple conventional function images such as
stroke volume image, the paradoxical image, the regional ejec-
tion fraction image, and more complex parametric images such
as the phase analysis and the time rate factor analysis images.

25.2.3.1 Stroke Volume Image (SV)

This image is simply obtained by subtracting pixel-by-pixel
end-systolic from end-diastolic counts (ED – ES). The result-
ing image is a regional map of the net volume changes between
diastole and systole in each pixel [33, 34]. The display usu-
ally includes only positive values (negative values are set to 0);
only those structures that contain more blood in end-diastole
than in end-systole will be presented. Therefore, under normal
circumstances only the ventricles will be seen. The result will
not change whether the operation is performed before or after
background subtraction.

25.2.3.2 Paradox Image

Originally developed for dynamic radionuclide studies, this
image is obtained by doing inverse pixel-by-pixel subtraction,
which means subtracting the end-diastolic from the end-
systolic counts (ES – ED). Similarly to the SV image, the pixels
for which subtraction generates negative values are set to 0
and the results are not dependent on background subtraction.
In normals, only the atria and great vessels area will be seen
because ventricles will generate negative values. The purpose
of this image is to detect ventricular paradoxical motion. This
is possible because dyskinetic regions will have increased local
blood volume during systole.

25.2.3.3 Regional Ejection Fraction Image (REF)

This image is obtained by dividing pixel-by-pixel the SV image
by the background corrected end-diastolic frame:

REF = ED − ES

ED − bkg
.

In this case, the use of background subtraction is mandatory.
The regional ejection fraction image is proportional to local
ejection fraction values. In normals, its pattern is represented by
a number of crescent-shaped areas of progressively lower value

going from the free borders and apex to the septum and ven-
tricular base. At the periphery, there are values of 100% or close
to it because all of the blood volume present in end-diastole has
been completely expelled by the time end-systole is reached. In
regional wall motion abnormalities, the normal REF pattern is
broken. If dyskinetic segments are present, the resulting nega-
tive values are set to 0. There is a significant potential for errors
in the computation of a REF image because of its dependence on
adequate background subtraction, leading to significant overes-
timation or underestimation. In addition, for practical reasons
(presence of surrounding noise) the REF image requires mask-
ing, which confines the results to the ventricular region of
interest.

25.2.4 Temporal Evaluation of Ventricular
Wall Motion

The clinical usefulness of global evaluation of ventricular func-
tion through the measurement of ventricular volume and
ejection fraction is well demonstrated and widely accepted.
However, from a clinical point of view, a better evaluation
of the ventricular function should allow the detection and
the measurement of regional dysfunctions in ventricular wall
motion [35]. A wide number of wall motion and regional
ventricular function evaluation methods have been reported.
Regional ejection fraction [36] and segmental shortening mea-
surements using radial [8] or centerline [37] methods have been
applied and showed that regional assessment of ventricular per-
formance yield greater accuracy in the evaluation of cardiac
diseases.

However, in order to discriminate between alterations in sys-
tolic and diastolic behavior, a quantitative analysis of regional
ventricular wall motion should include a temporal analysis of
the complete heart cycle. The three conventional parametric
images described in the previous section have proven quite
useful and have been utilized in several centers for several
years. However, none of these images give information about
synchrony of contraction. Of course, some indirect informa-
tion exists in the sense that areas of abnormal wall motion
have implicitly abnormal synchrony. Nevertheless, these images
detect abnormal wall motion based on abnormal amplitude
of contraction and not because of asynchrony. As a conse-
quence, if the contraction amplitude is normal in a certain
area, an existing asynchrony will be missed, which occurs
in most cases of electrophysiologic or ischemic disturbances.
The two specific aspects mentioned earlier have been among
the principal reasons for the success of the next category of
images [38].

25.2.4.1 Phase Analysis of Ventricular Wall Motion

A technique based on pixel-by-pixel Fourier-phase analysis of
radionuclide angiograms [39] was found to be very useful for
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the detection of regional asynchrony in wall motion. Phase and
amplitude are obtained by what is commonly referred to as
phase analysis; a more appropriate term could be “first har-
monic analysis,” while an inappropriate yet often-used term
is “Fourier analysis.” The latter term implies that multiple har-
monics are used,which is not the case. The results of this analysis
technique are displayed in color-coded parametric images rep-
resenting two-dimensional maps of the sequence of contraction
in the different regions of the heart.

The amplitude image reflects the extent of contraction on
a pixel-by-pixel basis. The phase image is nothing more than
a topographical representation of relative values of timing of
count rate changes. This in turn means that on a phase image,
only the information pertaining to synchrony-asynchrony of
motion is displayed. Being thus free of the amplitude charac-
teristics, the phase image is in general no longer dependent on
anatomy. Since 1979, phase imaging has been investigated for
detection of ventricular wall motion abnormalities, evaluation
of the cardiac electric activation sequence, and for many other
applications [40–42].

Commonly, the phase analysis technique is applied to
gated blood pool images obtained in the LAO projections
(Figure 25.3). Some investigators however, have applied phase
analysis in as many as three cinegraphic image projections [40].
The value of the pixel within a blood pool image represents
the sum of the radioactivity along a line perpendicular to the
camera through the patient’s chest. If a pixel value is plotted
against time (frame number), the resulting plot is a time activity
curve for this pixel. To derive phase and amplitude images, each
time-activity curve is approximated by a single cosine function.

The amplitude and phase of the first Fourier harmonic,
used in constructing the cosine approximation, are derived by
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FIGURE 25.3 Schematic illustration of the generation of the phase
and amplitude images from a set of radionuclide angiogram images.
The time activity curve of each pixel is approximated by a single cosine
function using discrete Fourier transforms. The phase shift and ampli-
tude of this cosine function are then used to generate color-coded
parametric maps.

subjecting the time-activity curve f(n) to discrete Fourier
transform analysis:

F(k) =
N−1∑
n=0

f (n) cos

(
2πkn

N

)
− j

N−1∑
n=0

f (n) sin

(
2πkn

N

)
F(k) = a(k)+ jb(k) , k = 0, 1, . . . , N − 1.

F(k) is the kth harmonic of the time-activity curve and in gen-
eral is a complex number, and N is the number of frames in the
study. The amplitude (A) and phase (θ) of the kth harmonic
are defined by

A(k) =
√

a(k)2 + b(k)2

θ(k) = arctan

[
b(k)

a(k)

]
.

The amplitude of the first harmonic contains information
about the regional stroke volume (changes in counts from end-
diastole to end-systole), while the phase contains information
about the sequence of contraction. The amplitude and phases
derived from first harmonic analysis of time–activity curves
are used to form amplitude and phase images. Since pixels
outside the heart tend to have small amplitudes and random
phases, they are deleted by thresholding the amplitude images
and using the threshold amplitude image to mask the phase
image. Thresholds from 6% to 15% of the maximum ampli-
tude have been found suitable [4, 31]. Several methods have
been used to represent graphically the results of phase analy-
sis. Color-coded phase images are often displayed to facilitate
visual discrimination of subject changes. Dynamic displays or
“activation movies” are very helpful in assessing the patterns of
phase changes over the ventricles [31, 43]. Activation movies
can be constructed in two ways. In one method, the displayed
phase image itself is static, but the color scale used to display
the image is rotated. This technique is based on the argument
that since phase is a periodic parameter, phase images should
be displayed using a cyclic color scale.

A second method, described by Verba et al. [44], displays
an end-diastolic image of the heart and superimposes upon it
black dots which are turned on and off in a temporal sequence
determined from the phase of each pixel. An activation movie
constructed in this fashion gives one the impression of a wave
of contraction spreading over the heart (Figure 25.4).

A useful adjunct to these images is the phase distribution
histogram. The shape and color of its components help both
qualitative and quantitative evaluation of the phase image [4].
The phase histogram has two peaks, one corresponding to pixels
in the ventricles and the other to pixels in the atria. Clearly,
phase analysis distinguishes between the onset of ventricular
and atrial contraction. Of more interest is the extent to which
it distinguishes the onset of contraction within the ventricles
(Figure 25.5).
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FIGURE 25.4 Two different representations of the phase image. In
diagonal a sequence of maps where the phase progression is indicated
as a “wave” of a different color. On the lower left, a composite color-
coded phase image of the same sequence.

The main purposes for which this parametric imaging tech-
nique has been employed are the evaluation of global and left
ventricular function and the assessment of the cardiac electric
activation sequence. Both amplitude and phase images appear
to be useful for the assessment of ventricular function. The
rationale for using the amplitude image is clear; this image is
simply a picture of the pixel-by-pixel stroke volume. The ratio-
nale for using the phase images rests on the observation that
ischemia reduces the velocity of myocardial contraction, and
thus, local abnormalities of wall motion are frequently asso-
ciated with changes in the time of wall movement [4]. Phase
analysis has also been employed in a wide variety of settings in
which the electric activation sequence is altered. Several studies
have investigated phase imaging for non-invasively identifying
the location of pacemakers [45–47] or for evaluating the effect
of different pacing techniques [48]. These studies have shown
a gross correspondence between the side of stimulation by a
ventricular pacemaker and the first motion of the ventricu-
lar wall as identified by the phase images. Some studies have
shown that the activation sequence determined by phase imag-
ing correlated well with the actual electric activation sequence
measured by epicardial mapping [45]. Conduction abnormal-
ities have also been extensively studied using phase analysis.
Although phase analysis measures mechanical motion and not
electrical activation, it does appear useful for inferring electrical
events.

Phase analysis has been applied to a variety of different imag-
ing modalities and also to organs other than the heart. It has
been used, for example, to study renal perfusion from radionu-
clide images [3]; it was also used to study lung perfusion patterns

Histogram of phase distribution Histogram of phase distribution

Histogram of phase distribution Histogram of phase distribution

A

C

B

D

FIGURE 25.5 Example of phase analysis applied to a radionuclide
ventriculogram at rest (A, B) and during exercise (C, D) in a patient
with coronary artery disease. Images A and C show the phase map
of the whole cardiac silhouette, and images B and D show the phase
map of the isolated left ventricular region. The phase images clearly
show the areas with perturbed ventricular wall motion as bright sec-
tions (arrows). The histogram of phase distribution also shows a wider
ventricular peak during exercise.

[49]. Some investigators have also reported the applicability of
this technique to dynamic CT and MRI images of the heart [50].

25.2.4.2 Fourier Analysis of Contrast Ventriculograms

The usefulness of the temporal phase analysis of radionu-
clide angiograms has been well demonstrated [4, 51, 52] for
the detection of regional alterations in wall motion in coro-
nary artery disease (CAD). A similar pixel-by-pixel analysis of
digitized cineangiogram images was also attempted, but was
found to be valid only if one assumes that changes in den-
sity of each picture element are proportional to changes in
blood volumes in the ventricular cavity. This is true only if the
contrast medium is homogeneously mixed with the blood in
all the images selected for the analysis. With careful selection
of studies with homogeneous opacification of LV by intra-
venous injection, a pixel-by-pixel phase analysis was, however,
reported to be useful for the detection and quantification of
regional asynchrony [53]. A similar technique developed for
the assessment of the synchronicity of regional wall motion
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based on a multiharmonic Fourier analysis of the ventricular
edge displacement was also proposed [54]. This alternative tech-
nique is based on the measurement of the radial motion of the
ventricular endocardial edge (see Figure 25.6) and can there-
fore be applied to images obtained either after intravenous or
after conventional intraventricular injection, regardless of the
homogeneity of the dilution of the contrast material [55].

Temporal analysis of ventricular wall motion from contrast
angiograms was studied in patients with coronary artery disease
[56]. The display of Fourier parametric images allows the visu-
alization of the spatial distribution of this temporal behavior
and the detection and localization of segmental abnormalities
of wall motion by depicting abnormal synchronicity of contrac-
tion and relaxation, even in the absence of significant reduction
in the amplitude of contraction.

The temporal analysis of myocardial wall motion can also
be applied to tomographic images such as two-dimensional
echocardiogram or MRI images, provided that adequate delin-
eation of myocardial contours is obtained from the images.
Some difficulties and limitations of automated analysis of
ultrasound images must, however, be considered. The mecha-
nism underlying image degradation must be clearly understood
before algorithms can be developed to account for them. Gray-
scale manipulation, smoothing, and integration of information
from several heartbeats are methods that have been borrowed
from other imaging systems and applied to echocardiographic
images. The two major problems are the location of a pictorial
boundary on the image, and the determination of the relation
of this pictorial boundary to an anatomic one. MRI images pro-
vide a better delineation of the different anatomical structures
and are more suitable for automatic analysis of myocardial wall
motion (Figure 25.7).

Assuming that an adequate edge detection algorithm is
implemented, additional analysis of ventricular wall motion
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FIGURE 25.6 Phase analysis of dynamic X-ray contrast ventriculo-
gram. Parietal wall motion is analyzed in a radial way from the center
of the ventricle.

can be applied to the detected ventricular contours. We have
demonstrated that motion analysis techniques similar to the
one developed for contrast angiograms can be applied to cardiac
MRI images. The inward-outward motion of the ventricular
wall is analyzed along a user-selectable number of radii (usu-
ally between 60 and 120 sectors) drawn automatically from the
geometric center of the ventricular cavity. The motion curve
along each radius is analyzed and the corresponding Fourier
coefficients are calculated. The phase of the first harmonic is
calculated and used to generate a parametric image represent-
ing the extent of wall motion of each segment that is color-coded
according to the phase. The color assigned to each sector cor-
responds to the delay in time of the calculated phase for that
particular sector (see Figure 25.7). The full color scale corre-
sponds to the RR interval of the study. The analysis program
also plots a histogram of the number of sectors with a given
phase value. This histogram represents the homogeneity and
synchrony of wall motion, where a narrow peak reflects a very
synchronous motion of all ventricular segments while a wider
peak will indicate the presence of asynchronous or delayed seg-
ments. A standard deviation of the main peak (SDp) on the
phase histogram is used as an index of homogeneity of phase
distribution.

25.2.5 Dynamic Analysis of Myocardial
Contraction

The methods described earlier for the evaluation of the left
ventricular function are based on the analysis of changes in
the shape of the ventricular cavity. There is, however, a need to
evaluate the myocardial function more directly by analyzing the
rate and extent of contraction and relaxation of the myocardial
muscle. Echocardiography is the preferred imaging modality
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FIGURE 25.7 Phase analysis of dynamic cine-MRI images.
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for the evaluation of myocardial wall thickening and measure-
ment of regional myocardial contraction. Differences between
diastolic and systolic wall thickness as well as the rate of con-
traction and relaxation of the myocardial muscle can be directly
measured from the dynamic images. Most analysis techniques
rely on manual identification of the endocardial and epicardial
borders for measurement of myocardial thickness at any point
in time during the cardiac cycle.

With the rapid development of cardiac MRI and fast CT
imaging techniques, it is nowadays possible to obtain high-
resolution dynamic images of the heart with excellent quality
allowing the clear delineation of endocardial and epicardial
contours. This is particularly attractive with MRI imaging
modality allowing images to be acquired in multiple oblique
planes more suitable for alignments along the axis of the heart
and the orientation of the ventricular cavities (see Figure 25.8).
Using dynamic cardiac MRI images in multiple planes it is pos-
sible to evaluate myocardial wall thickening in all segments of
the left and right ventricle. Furthermore, with recent MR imag-
ing techniques, the contrast ratio between the myocardium
and the ventricular cavity and the surrounding structures is
such that automatic edge detection techniques can reliably be
applied to the images for automatic assessment of regional wall
motion [10].

FIGURE 25.8 Evaluation of myocardial wall thickening from
“dark blood” cine-MRI images.

Several studies have demonstrated that fast cine-MRI
sequences provide means for reliable and accurate measure-
ment of ejection fraction and ventricular function. Dark blood
sequences also allow measurement of regional wall thicken-
ing. In an attempt to provide a better temporal analysis of
regional wall motion abnormalities, Fourier analysis of regional
wall motion can also be used. Similar to the “phase” analysis
technique used in radionuclide angiography studies, Fourier
analysis of regional wall motion from cine-MRI images can
depict subtle asynchronies in wall motion that are unde-
tectable through visual analysis before they can affect the global
ventricular function [57].

Dynamic MR imaging techniques provide very attractive and
promising means for evaluation of global and regional cardiac
wall motion and function. Special tagging techniques allow the
myocardium to be physically marked with a geometric pat-
tern that can be followed during the cardiac cycle to identify
regional abnormality in myocardial contraction. This technique
is described in Chapter 26.

25.3 Quantitative Evaluation
of Flow Motion

Analysis of cardiac function with dynamic imaging techniques
is not limited to the evaluation of cardiac motion, and some
dynamic imaging techniques provide means to measure and
evaluate the kinetic patterns of blood flow through the ven-
tricular cavities and the large vessels. The measurement of
flow velocity and identification of abnormal flow patterns
allow better evaluation of the severity of valvular diseases,
the presence of abnormal shunts, the alterations and dissec-
tions of vascular walls, and the hemodynamic anomalies in
deficiencies of the cardiac function. Measures of flow velocity
can be obtained from echocardiography studies using Doppler
ultra-sonography techniques and from cine-MRI using phase
encoding imaging techniques.

25.3.1 Two-Dimensional Color Doppler
Ultrasound

Two-dimensional echocardiography provides real-time
dynamic ultrasound images that are used to evaluate cardiac
anatomy and function. This noninvasive technique is widely
used to evaluate cardiac motion and function, but it was only
with the introduction of pulsed and continuous wave Doppler
acquisition systems that the direction, character, and velocity of
blood flow could be appreciated. The most dramatic addition is
real-time two-dimensional Doppler color flow mapping, which
allows for real-time display of multiple sampling sites where
flow velocity is expressed as a color-coded map overlaid on the
anatomical cardiac images. Imaging intracardiac blood flow
in two dimensions simultaneously with morphologic display



25 Quantitative Analysis of Cardiac Function 429

in real time is perhaps one of the most important advances in
medical Doppler technology.

The Doppler principle states that the frequency of transmit-
ted sound is altered when the source is moving in relation to
the observer. This alteration in frequency, known as Doppler
shift, is used to define the direction and velocity of blood flow
through the heart and great vessels. The relationship between
blood flow V and the Doppler shift is expressed mathematically
by the formula

V = c

2.Ft

Fr − Ft

cos θ
,

where the Doppler shift (Fr − Ft ) is the difference between the
frequency of the transmitted ultrasound wave (Ft ) and the fre-
quency of the ultrasound wave that returns to the transducer
(Fr ), c is the speed of sound in tissue, and θ is the angle between
the direction of blood flow and the propagation direction of the
ultrasound beam.

Measurement of flow velocity from Doppler ultrasound has
been used to evaluate the presence and severity of various
valvular diseases. In addition to the velocity itself, it can be
used to estimate the pressure gradient across a valve. This is
done by applying a simplified form of the Bernoulli principle,
�P = 4V 2, where �P is the pressure gradient and V the peak
velocity. All current echocardiography equipment has software
that allows the estimation of peak velocity and mean gradient
across a valve.

The dynamic display of Doppler shift information is usually
obtained using color-coded overlays directly on the standard
echocardiographic images (Figure 25.9). This information is
displayed on two-dimensional or M-mode images with direc-
tion relative to the transducer coded by color (conventionally,
red = toward, blue = away), and velocity information coded
by shade within each color (lighter = faster, darker= slower).

25.3.2 Velocity Encoded Cine-MRI

More recently several authors have demonstrated that dynamic
MR imaging can be envisioned as an attractive alternative to
echocardiography [58, 59]. In addition to being a noninvasive
technique, MR imaging has several advantages, such as provid-
ing three-dimensional anatomical and functional data, dynamic
evaluation of flow and velocity measurements, and poten-
tially more accurate measurements of ventricular function than
echocardiography [60]. The clinical use of velocity-encoded
MR (VEC-MR) imaging techniques allows for the accurate
estimation of velocity profiles across a valve or any vascular
structure. This capability of obtaining velocity information at
any point in space during the cardiac cycle allows MR imag-
ing to provide similar flow information as duplex Doppler or
color Doppler ultrasound [61, 62]. MR imaging, however, does
not encounter the same limitations and problems of penetra-
tion for accessing different portions of the heart and therefore

provides a better visualization of morphology and flow velocity
throughout the cardiovascular structures.

Flow-sensitive imaging techniques permit the measurement
of flow expressed either as velocity or volume flow per unit
time. The most popular flow-sensitive cine-MR technique used
now is the phase change technique based on the principle that
the phase of flowing spins relative to stationary spins along a
magnetic gradient changes in direct proportion to the velocity
of flow. This technique, referred to as “phase contrast,” “phase
shift” MR imaging or “velocity encoded cine-MR” imaging
(VEC-MRI) allows quantification of blood velocity profiles at
different points during the cardiac cycle [61, 63]. The VEC-MRI
technique is based upon acquisition of two sets of images, usu-
ally acquired simultaneously: one with and one without velocity
encoding. The subtraction of the two images allows the calcu-
lation of a phase shift that is proportional to the velocity of flow
along the direction of the flow compensation gradient. Images
can be reconstructed in magnitude, providing anatomic infor-
mation, and in phase, providing flow velocity information. The
phase shift, proportional to the velocity, is displayed as varia-
tions in pixel intensity on the phase map image. On this image,
stationary tissue appears in gray, whereas flow in the positive
or negative direction along the flow-encoding axis will appear
as bright or dark pixels, respectively. Thus, one can visually dif-
ferentiate antegrade from retrograde flows. Furthermore, the
phase map image can be color-coded with different colors for
either flow direction as in Doppler, reinforcing the differenti-
ation between antegrade and retrograde flows (Figure 25.10).
Velocity can be encoded either on planes perpendicular to the
direction of flow by using slice-selective direction (through
plane velocity measurement) or parallel to the direction of flow
by using phased-encoded or frequency-encoded directions (in
plane velocity measurement) or more recently in three dimen-
sions. However, VEC-MRI has potential sources of error and
limitations [64]. Because of the cyclic nature of phase, alias-
ing may appear if more than one cycle of phase shift occurs. To
avoid the aliasing phenomenon, which occurs when the velocity
range is lower than the predicted maximal velocity, the velocity
threshold must be correctly selected before the acquisition so as
to maintain the phase shift less than 180 degrees. Flow-related
signal loss can be due to (i) loss of coherence within a voxel,
resulting in the inability to detect the phase of the flow signal
above that of noise, (ii) inappropriate selection of the veloc-
ity range, leading to poor detection of small vessels with slow
flow, and (iii) turbulence occurring in valvular stenoses and
regurgitations. The latter can be overcome by using sequences
with short TE. Partial volume averaging can occur in cases of
small vessels, improper alignment of the vessel,or narrow inflow
stream, particularly when using in-plane velocity measurement
and a thick slice. Misalignment between the true and measured
flow influences the measurement of flow velocity as determined
by the equation Vmeas = Vtrue cos θ, where θ is the angle of
misalignment. However, for small angles, the error is small (a
misalignment of 20° produces an error of only 6%).
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FIGURE 25.9 Example of color-coded Doppler images superimposed over a dynamic 2D echocardiogram.

Magnitude Flow velocity Composit

FIGURE 25.10 Example of velocity-encoded cine-MRI images (VEC-MRI) depicting flow patterns in the large vessels on a transverse plane of
the thorax.
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VEC-MRI can be used to calculate absolute speed at each
point in the cardiac cycle at given locations in the plane of
data acquisition. The velocity can be measured for each pixel or
within a region of interest (ROI) encircling the entire or parts of
the vessel cross sectional area or across a valve annulus. Based
on the measurement of the cross-sectional area of a vascular
lumen or a valve annulus on the magnitude image, the product
of area and spatial mean velocity (average value for all pixels
in the cross-sectional area on the phase image) yields instan-
taneous flow volume for a specific time frame in the cardiac
cycle. Integration of all instantaneous flow volumes through-
out the cardiac cycle gives the volume flow per heartbeat. This
technique has been evaluated in vitro as well as in vivo by sev-
eral authors, and it has led to accurate measurements of aortic
and pulmonary artery flow, representing the stroke volumes of
the left ventricle and the right ventricle, respectively [65]. It has
been used as well in the calculation of pulmonary to systemic
flow ratio, allowing noninvasive quantification of left-to-right
shunts and separate measurement of right and left pulmonary
flows. These measurements can furthermore apply to the eval-
uation and quantitative assessment of regurgitant as well as
stenotic valvular lesions.

25.4 Conclusion

Many quantitative analysis techniques have been developed for
more accurate evaluation of cardiac wall motion and ventricu-
lar function from dynamic cardiac images. Most conventional
techniques are usually based on global or regional evaluation
of differences between end-diastolic and end-systolic frames.
Such methods do not depict differences in the timing of wall
motion along different segments of the ventricle. Several studies
have already demonstrated the importance of temporal evalu-
ation of regional myocardial wall motion and the usefulness of
the assessment of alterations in contraction and relaxation pat-
terns and rates. The so-called “phase analysis” technique based
on a pixel-by-pixel measurement of the phase and amplitude of
the fundamental Fourier frequency in the time-activity curve of
each pixel is commonly used for the evaluation of regional asyn-
chrony of wall motion from radionuclide angiograms [47, 66].
This technique has been extensively evaluated in clinical studies
and was found to be very sensitive for the detection of ischemic
alterations in regional wall motion [67]. It was found to be
adequate for the detection of subtle abnormalities in the dias-
tolic phase that usually occurs in stress-induced ischemia. It
is therefore often used to differentiate ischemic from nonis-
chemic wall motion alterations during exercise radionuclide
ventriculograms. Similar techniques were successfully trans-
posed to X-ray contrast angiograms and dynamic MRI imaging
modalities [68].

Accurate edge detection of ventricular cavities remains a crit-
ical step for any quantitative evaluation of ventricular function.

Most techniques reported in the literature based on differentia-
tion of cardiac structures using differences of gray levels suffer
from inaccuracies in edge detection when significant changes
in tissue intensity occur. New image processing techniques and
refined image acquisition systems are constantly improving the
ability to automate the task of outlining anatomical structures
for quantitative analysis of cardiac function and ventricular wall
motion. Furthermore, the ability to analyze the intracardiac
blood flow using Doppler echocardiography or flow-sensitive
cine-MRI sequences permits a more comprehensive evaluation
of the hemodynamic function of the heart.
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26.1 Introduction

The introduction of tagged cardiac magnetic resonance imaging
(MRI) [1, 2] over a decade ago has led to an explosion of analysis
tools for in vivo assessment of heart performance. In particu-
lar, the use of tagged MRI to measure myocardial strain [3–5]
has figured prominently in many recent medical research and
scientific investigations. It has been used to develop and refine
models of normal and abnormal myocardial motion [6–10],
to better understand the correlation of coronary artery disease
with myocardial motion abnormalities [11], to analyze cardiac
activation patterns using pacemakers [12], to understand the
effects of treatment after myocardial infarction [13–15], and
in combination with stress testing for the early detection of
myocardial ischemia [16–19].

The process of MR tagging uses a special pulse sequence to
spatially modulate the longitudinal magnetization of the sub-
ject to create temporary features, called tags, in the myocardium.
Fast spoiled gradient echo imaging techniques are used to create
CINE sequences that show the motion of both the anatomy
of the heart and the tag features that move with the heart.
Analysis of the motion of the tag features in many images
taken from different orientations and at different times can
be used to track material points in 3-D, leading to detailed

maps of the strain patterns within the myocardium (see [5]
and [20]).

This unique imaging technique has led to a number of inno-
vative approaches for analyzing tagged cardiac MR images,
which we describe in this chapter. To set the stage, we provide
background in the anatomy of the heart, its motion, cardiac
MR imaging, and MR tagging. A major goal of this background
section is to establish a concise mathematical notation for both
the measured quantities and the motion parameters to be esti-
mated. Then, we delve into the analysis of tagged MR images,
which can be divided into two basic approaches:

1. Feature tracking of tag motion within two-dimensional
(2-D) images;

2. Direct encoding of motion (e.g. strain or displacement)
using phase information from the tag features.

We detail feature tracking in Section 26.3, where we organize
the many techniques proposed in the literature into categories
and we use a common notation for all. Then, in Section 26.4,
we describe direct encoding methods using the same math-
ematical notation. Once motion measurements are available,
a remaining challenge is the fusion of these measurements
into a three-dimensional (3-D) motion estimate consisting of

Copyright © 2008 by Elsevier, Inc.
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material points tracked over time and strain calculations, which
we describe in Section 26.5. In each of these sections, we also
point out the assumptions, approximations, and key challenges
associated with each of the various approaches. We conclude
with a brief critique of the state-of-the-art, a discussion of
remaining challenges, and a look to the future.

26.2 Background

26.2.1 LV Anatomy and Motion

Tagged MR image analysis has focused almost exclusively on the
myocardium of the left ventricle (LV), which will be the topic
of this chapter as well. Many of the techniques we will discuss
are readily extendible to the right ventricle and other mov-
ing bodies. The LV is the primary heart chamber responsible
for pumping blood throughout the body, with thick, muscu-
lar walls—the myocardium—delivering the required pressure.
These walls form a hollow, ellipsoidal body, with the aor-
tic and mitral valves located at one end of the ellipsoid.
Within the hollow chamber are extensions of the myocardium
known as papillary muscles. The LV anatomy is diagrammed in
Figure 26.1, along with an MR image showing these features.

The collection of all material points p within the LV
myocardium comprises a 3-D body in motion. Mathematically,
that motion is described by the function x(p, t ) that relates
the reference position p to its deformed position x at time t .
Traditionally, the reference position is taken to be the spatial
position of p at end-diastole (t = 0), meaning p = x(p, 0). The
temporal progression of points through space x(p, t ) is known
as the forward map of motion and is the fundamental function
required for diagnostic motion analysis. Another important
function is the reference map p(x, t ) which relates the spatial
position x at time t to the corresponding reference position p
and is often easier to measure than the forward map.

A related motion measurement, generally considered more
valuable for diagnosis, is strain, which may be computed from
either motion map. A detailed discussion of strain is beyond the
scope of this chapter and the interested reader is directed to con-
tinuum mechanics texts. For our purposes, we will concentrate
on determining the deformation gradient matrix

F(p, t ) = ∇px(p, t ),

from which any strain function can be directly calculated. In
this expression, ∇p is the gradient with respect to p. In terms
of the components of x = [x1 x2 x3]T and p = [p1 p2 p3]T the
deformation gradient is

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂x1

∂p1

∂x1

∂p2

∂x1

∂p3

∂x2

∂p1

∂x2

∂p2

∂x2

∂p3

∂x3

∂p1

∂x3

∂p2

∂x3

∂p3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (26.1)

where the dependence of F on p and t is implicit.
Examples of strains calculated from F are the left and right

Cauchy-Green strain tensors given by B = FF T and C = F TF ,
respectively. The most common strain measurement found in
literature on cardiac motion is unit elongation in a direction ep,
which is given by

ε(ep) = ‖Fep‖
‖ep‖ − 1 (26.2)

and provides the fractional change in length in the given
direction. The subscript p indicates that the direction is spec-
ified in the reference frame relative to p. Unit elongation
measurements—sometimes called normal or axial strains—are
often calculated for directions oriented radially outward from
the center of the heart (radial strain), circumferentially within
the myocardium (circumferential strain), or parallel to the long
axis of the heart (longitudinal strain). Other cardiac strain mea-
surements that have been made include shear strain, eigenvalues
and eigenvectors of strain tensors, and the temporal rate of
change in strain.

Finally, strain may be calculated relative to a Lagrangian or
Eulerian description of motion. For Lagrangian strain, param-
eters are specified in the reference frame, relative to p. In (26.2),
for example, ep is specified in the reference frame, making ε(ep)

a Lagrangian strain. Alternatively, Eulerian measurements are
made in the current frame relative to the spatial position x.
For example, the inverse of the deformation gradient may be
calculated at x using

F−1 = ∇xp(x, t ).

Then, unit elongation at that spatial position is given by

ε(ex) = ‖ex‖
‖F−1ex‖ − 1. (26.3)

Because ex is specified in the current frame as indicated by the
subscript x, (26.3) is an Eulerian strain. Eulerian and Lagrangian
strains are equivalent measures, as evidenced by the fact that
(26.2) and (26.3) produce the same result for a particular mate-
rial point if ex and Fep point in the same direction. Either may
be calculated depending on which frame, the reference or the
current, facilitates the calculation.

26.2.2 Tagging

While the diagnostic and scientific value of these motion func-
tions is well established, in vivo determination of LV motion
from medical images is a major challenge. The primary problem
is that the myocardium is quite uniform, providing few readily
identifiable features in images. As demonstrated in Figure 26.1,
the inner (endocardial) and outer (epicardial) boundaries of
the LV are apparent, but little transmural variation is present. In
such featureless regions, motion measurements are impossible.
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FIGURE 26.1 (a) Heart anatomy depicted with a typical image plane superimposed and (b) imaged using standard
2-D MRI.

For the LV in particular, most conventional images only allow
measurement of wall thickening [21].

The lack-of-features problem is effectively solved by a tech-
nique unique to MR imaging called tagging [1, 2]. Tagging
uses pulse sequences—similar to standard imaging sequences—
to impose temporary spatial variation in the longitudinal mag-
netization of protons inside the body. In subsequent images,
the varying magnetization manifests itself as an alternating
light and dark tag pattern, such as the parallel lines apparent
in Figure 26.2a. The advantage of tagging is that the pat-
tern is induced within the tissue itself. Therefore, any motion
that occurs between tag application and imaging is clearly
visible as a distortion of the applied pattern, as depicted in
Figure 26.2b. Figure 26.2b also shows fading of the tag pat-
tern relative to Figure 26.2a, reflecting the temporary nature
of tags.

We designate the applied tag pattern as f0(p), a function that
modulates the steady-state tissue magnetization of each mate-
rial point p and must satisfy |f0(p)| ≤ 1. The design of tagging
sequences for creative tag patterns such as Single Point Tag
(SPOT) grids (Figure 26.2c) has received much attention in
the literature (e.g. [1, 22–24]), but the most commonly used
sequence produces the relatively simple spatial modulation of
magnetization (SPAMM) pattern [2, 25]. SPAMM tag patterns
are imposed by applying a sequence of N hard RF pulses,
generally with different tip angles. Between the RF pulses, a
gradient pulse with integrated magnitude and direction 1

γ
g is

applied, where γ is the gyromagnetic ratio. The whole sequence
is then followed by a crusher to remove the effect of transverse
magnetization.

For a SPAMM sequence, Kerwin and Prince [24] showed that
the N RF pulses produce a modulation pattern with 2N − 1
peaks in MRI k-space. As shown in Figure 26.2d, these peaks are
clearly evident in the raw k-space data from the MRI scanner.
For a SPAMM sequence applied at t = 0, the tag pattern is

f0(p) =
N−1∑
n=0

an cos(ngTp) . (26.4)

The magnitude of g determines the spatial frequency of the tag
pattern and the direction of g determines the tag direction. The
coefficients an are determined by the tip angles θ1, . . . , θN of
the RF pulses and can be approximated by [24]

an =

⎧⎪⎪⎨
⎪⎪⎩

1− 1

2

N∑
l=1
θ2

l n = 0

−
N−n∑
l=1

θlθl+n n = 1, . . . , N − 1 .

The pattern in Figure 26.2(a)-(b) is an example of SPAMM
tags, where the dark lines appear wherever the cosines line up
in phase. Finally, two SPAMM sequences are often applied in
rapid succession with orthogonal gradient directions resulting
in a grid pattern given by

f0(p) =
(

N−1∑
n=0

an cos(ng
T

1 p)

)(
N−1∑
n=0

an cos(ng
T

2 p)

)
,

where g1 and g2 are the two gradient directions.
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(a)

(c) (d)

(b)

FIGURE 26.2 Tagged MR images: (a) SPAMM tags immediately after application at end-diastole, (b) 260 msec
later near end-systole—note the tag fading particularly prevalent on the left side, (c) SPOT grid pattern, (d) raw
k-space data for (a) showing distinct harmonics at the spatial frequency of the tags.

26.2.3 Imaging

To describe a tagged MR image, we designate each position
within the image by its 2-D image coordinate vector y = [y1 y2]T
and the image brightness at each position by I (y, t ). The image
is obliquely oriented in 3-D space and each image coordinate
y can be related to its 3-D position x by the function x(y) =
y1h1 + y2h2 + x0 where h1 and h2 are two 3-D, orthogonal, unit
vectors describing the image orientation and x0 is the image
origin. Defining H = [h1, h2], we may alternatively write

x(y) = H y+ x0 .

The material point imaged at y is then given by p(x(y), t ),
which we write concisely as p(y, t ). In this, we implicitly assume
the images are obtained from an infinitesimally thin image
plane. In reality, images are integrated across a thin slab of
tissue, but the planar assumption is generally a reasonable
approximation.

Basic tagged MR image acquisition is accomplished by apply-
ing a tagging sequence at end-diastole (t = 0), followed by an
imaging sequence at some later time t . End-diastole is signaled
by the QRS complex of the ECG, a time when the left ventri-
cle is full of blood and the heart is relatively slow-moving. The
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resulting image is given by

I (y, t ) = I0(y, t )f (y, t ) , (26.5)

where I0(y, t ) is the image that would have been obtained with-
out tagging and f (y, t ) is the faded and deformed tag pattern.
Within the myocardium, f (y, t ) is given to good approximation
by

f (y, t ) = β(t )f0(p(y, t ))+ (1− β(t )) , (26.6)

where β(t ) represents tag fading and is a function, monoton-
ically decreasing from 1 to 0. The function β(t ) is primarily
determined by longitudinal relaxation of the magnetization and
the choice of imaging sequence.

The stability of the tag pattern within the myocardium leads
to a 2-D apparent motion of the tag pattern within the image
plane, despite the fact that the true motion is 3-D. The concept
of apparent motion proves very useful for describing tagged
image processing. To define apparent motion mathematically,
we first define a 2-D reference position given by

q(p) = H T(p− x0) , (26.7)

which is the projection of any material point from its refer-
ence position onto the image plane. This allows us to define a
2-D correspondence between any image position y and a 2-D
reference position q by the mapping q(p(y, t )), which we will
abbreviate q(y, t ). Within the myocardium, the 2-D reference
map is invertible so that the forward map y(q, t ) also exists. The
result is a complete set of 2-D motion equations—the apparent
motion.

The map y(q, t ) qualifies as an apparent motion of the tag
pattern because tag patterns are usually applied such that all
material points p mapping to the same q(p) also share the
same initial tag pattern value f0(p). Therefore, for a fixed q,

the forward map y(q, t ) traces the temporal path of a particular
point in the tag pattern. The required condition for this to hold
is that all gradient pulses in the tagging sequence are oriented
parallel to the image plane, i.e. g is a linear combination of h1

and h2. In the remainder of the chapter, we assume this to be
the case except where indicated.

To obtain motion measurements throughout the contraction
phase of the LV, tagged images are acquired at regular time
intervals from tag application at end-diastole to full contraction
at end-systole. Compiled together, each image sequence makes
a movie depicting LV contraction and apparent motion within
the particular image plane. Such movies are obtained for many
spatial positions and image plane orientations, such as those
in Figure 26.3, to depict motion throughout the LV. Three (or
more) tag pattern orientations, determined by g, may be used
in combinations of 1 or 2 per image plane. In total, hundreds of
images may be obtained to assess the motion of a single heart.

Acquisition of this number of images requires many consid-
erations for such factors as acquisition speed and image contrast
(see [8, 26, 27] for details). In particular, present technology
requires multiple heartbeats in multiple breathhold periods
to obtain all of the images. During acquisition, LV motion is
assumed to be perfectly repeating, at least from end-diastole to
end-systole. Under this assumption, the imaging equations gov-
erning MR tagging can assume that the entire imaging process
takes place in one heart beat.

26.3 Feature Tracking Techniques in MR
Tagging

Conceptually, the most intuitive approach for tagged image
analysis is to track the apparent motion of the tag features.
This approach is similar to general object tracking in video
analysis. For tag tracking, however, we have the benefit of
explicit knowledge of the intensity profile of the tag features,

(b)(a)

FIGURE 26.3 Typical image geometries include stacks of images here (a) showing short axis (SA)
images and (b) spoke arrangements that best depict the long axis (LA) of the LV.
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True displacement
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Orthogonal component
of displacement (known)

Initial tag plane

Image plane

FIGURE 26.4 Depiction of a point on a tag line. It has been displaced
from some unknown reference point that lies on the known initial tag
plane. We therefore know the component of the displacement oriented
perpendicular to the tag plane.

the initial position of the tag features, and to some extent, the
likely motion of the tag features. For best results, SPAMM pulse
sequences with 2 to 7 RF pulses and a total tip angle of 90◦
are applied. This results in a tag pattern with no net magneti-
zation, f0(p) = 0, wherever gTp = 2mπ, m an integer denoting
the tag number. The set of material points satisfying this con-
dition comprise parallel planes of tissue, called tag planes. In
subsequent images, clearly-defined lines of minimal brightness
—tag lines—correspond to material points within those planes.

To illustrate the tag tracking concept, let yi be a point along
a line of minimal brightness at time t and assume we know
the original location of that tag plane (i.e. we know m). Then,
we effectively have a 1-D measurement of apparent motion
orthogonal to the tag plane, which is illustrated in Figure 26.4
and represented mathematically as gT(q(yi , t )− yi). In this sce-
nario, tag tracking consists of identifying points of minimal
intensity along tag lines, and determining the corresponding
tag number m to identify the initial position. Variations on
this theme including using tag grids and tracking just the
intersections of perpendicular tag lines, and tracking points
of all relative brightness, not only minimal brightness. Actual
tracking methods include template matching [28–31], active
geometry [7, 32–34], and optical flow [35–38].

26.3.1 Template Matching

In template matching, which is illustrated in Figure 26.5, a point
on a tag line is found by comparing the image brightness along
a strip of pixels to an expected tag pattern template. The loca-
tion at which the template and the measured brightness best
match is assumed to be a point on a tag line. To demon-
strate, let s be the 1-D position along the strip of pixels, I (s)

be the continuous image brightness function along the strip,
and g (s) be the centered tag template. Then, the pixels in the
strip are samples of I (s) at regularly spaced positions s1, . . . , sK

and the estimated position of the tag line ŝ0 is found by
shifting g (s) until the total squared error between g (s) and
I (s1), . . . , I (sK ) is minimized. That is, the tag point estimate is
given by

ŝ0 = argmins0

K∑
k=1

|g (sk − s0)− I (sk)|2.

Repeating this process for additional lines of pixels results in a
discrete approximation of the tag line.

The tag point found through template matching is deter-
mined with sub-pixel precision; in theory, the error in the
measurement can have a standard deviation as low as 0.9/CNR
pixels [28], where CNR is the contrast-to-noise ratio of the
tag pattern. In typical tagged MR images, this translates to an
error of 0.1 pixels, an accuracy level that has been confirmed
experimentally [28]. To achieve such a low level of error, the
template must accurately reflect the true profile, which depends
on the applied tag pattern, fading, the line spread function of
the scanner, local myocardial properties, and the motion of the
tissue that we are trying to resolve. One approach for obtaining
an accurate template is to simulate the physics of MR tag-
ging and imaging [29]. On the other hand, a generally good
approximation is the Gaussian template

g (s) = I0(1− de
− s2

w2 ) ,

where I0 is the local tissue brightness, d is the tag depth, and w
is a width parameter. These parameters may also be estimated
in the process of identifying a point on a tag line [30].

Although finding the optimal position ŝ0 of the template
match accurately identifies a point on a tag line, it does not
determine m, which relates the point to a specific tag plane. To
determine m, a recursive tracking procedure is used such as that
proposed by Guttman et al. [29]. Beginning with a user supplied
set of initial tag line locations, search regions are identified in
each subsequent image based on the estimated tag position at
the previous time. The best template match within the search
region is considered to be a point on the tag line corresponding
to the same tag plane. For better error performance and outlier
rejection, Kerwin and Prince [30] added a spatio-temporal filter
to refine the tag point estimates between recursions. Improved
performance may also be attained by Fourier filtering of the
tagged images [39].

One challenge for template matching procedures is that
image features other than tags, such as boundaries, are often
mistaken for tags in template matching. To avoid this problem,
search regions are restricted to the myocardium, the borders
of which must be identified by hand or with user-intensive
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(a)

(b) (c)
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s0

g(s)

^

FIGURE 26.5 Template matching: First a search region, such as the white box is selected from a tagged image (a), shown here at high
magnification. Then, the image intensities of pixels within the search region are fit to a template (b) which provides the location of the tag line
ŝ0. Repeating this process and tracking over time produces a complete set of identified tag points with corresponding values of m (c). Also shown
are the identified boundaries of the myocardium.

semi-automatic procedures [29]. Alternatively, Denney [40]
uses the spatial and temporal characteristics of myocardial tags
to weed out misidentified points.

26.3.2 Active Geometry

In active geometry approaches, tag identification is accom-
plished using a curve segment called a snake that conforms
itself to a tag line in the image. The snake is assigned an energy
function and moves in an effort to minimize that energy. The
energy function has two components: Eimage, determined by the
image in such a way that a snake will have low energy along
the feature of interest, and Einternal, determined by derivatives of
the curve and forcing continuity and smoothness in the snake.
For tag line tracking, Eimage is usually related to image bright-
ness because minimizing this energy will force a snake towards
brightness minima, i.e., tag lines.

In practice, a snake is approximated by a set of K points
along a tag line, the k th point at the nth time being y(k, tn).
To determine the set of points y(1, tn), . . . , y(K , tn) that best
identifies a tag line, we begin with the solution for time tn−1,
or for the first time, with a user-specified line of points. We
then find a set of 2-D displacements d(k, tn) that move the
snake at tn−1 to the optimal position at tn . Thus, the solution is
given by

y(k, tn) = y(k, tn−1)+ d(k, tn).

Repeating this process for time tn+1, using the solution for time
tn as a seed, results in a recursive procedure that maintains

the correspondence of the snake to a specific initial tag
plane.

In this formulation, the problem boils down to finding the
optimal set of displacements. Therefore, the energies Einternal

and Eimage are defined in terms of d(k, tn). First, the internal
energy of the k th point is given by

Einternal(d(k, tn)) = a1||d(k + 1, tn)− d(k, tn)||2
+ a2||d(k + 1, tn)+ d(k − 1, tn)− 2 ∗ d(k, tn)||2.

The two components of this internal energy function approxi-
mate the squared magnitudes of the first and second derivatives,
respectively, thereby resisting stretching (large first derivative)
and bending (large second derivative). The weights a1 and a2

are empirically chosen for good performance. Second, the image
energy at the k th point is given by the image brightness at the
displaced location

Eimage(d(k, tn)) = I (y(k, tn−1)+ d(k, tn)).

Interpolation of image brightness between pixels is used to pro-
vide sub-pixel precision. Finally, the solution for displacement
is given by

argmin
d(1,tn),...,d(K ,tn)

K∑
k=1

Eimage(d(k, tn))+ Einternal(d(k, tn)),

which is found using gradient descent methods beginning with
d(k, tn) = 0.
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(a) (b)

FIGURE 26.6 Using the active geometry method of Young et al. [7], a 10× 10 grid of coupled snakes is
superimposed on the first image in the sequence (a). After energy minimization, the snakes move at a later time
to deformed positions (b). The diamonds in the image are snake points that have been turned off because they
are outside the myocardium.

An example using the active geometry method of Young
et al. [7] is shown in Figure 26.6, in which 20 snakes with two
orientations track a grid of tag lines. Some unique character-
istics of their method are first, they use coupled snakes where
intersections are shared by two snakes and are thus subject to
two sets of internal forces; second, they add an interactive, user-
defined energy to force the snake away from incorrect local
energy minima where necessary; third, they use hand drawn
boundaries to turn off the energy associated with points outside
the myocardium (shown as diamonds in Figure 26.6b), thereby
preventing the snake from being influenced by extramyocardial
data. Nevertheless, active geometry methods are generally less
sensitive to accurate boundary information and often work well
with no boundary information whatsoever. Another variation
on this theme is the method of Amini et al. [33] in which the
snake is parameterized by a set of B-spline control points. The
inherent smoothness properties of the B-spline replace the need
for internal snake forces.

26.3.3 Optical Flow

While tag line tracking provides highly accurate measurements
of the reference map, those measurements are limited to the
relatively sparse regions along tag lines. To produce denser mea-
surements from tagged MR images, optical flow [41] techniques
have been used [35–37] in which the velocity is estimated for
every point in an image. In the case of 2-D tagged MR images,
optical flow processing yields an estimate of the 2-D apparent
velocity field v(y, t ).

The basis for measuring velocity using gradient-based
optical flow techniques is an identity known as the brightness

constraint equation. It is derived by taking the material time
derivative of the brightness function—that is, the partial deriva-
tive of I (y, t ) holding q constant. This derivative is complicated
by the fact that y itself is an implicit function of q and t given
by the forward map of apparent motion y(q, t ). Application of
the chain rule to the material time derivative therefore yields

İ (y, t ) = ∇yI (y, t ) · v(y, t )+ It (y, t ) , (26.8)

where ∇y is the gradient with respect to y and It (y, t ) is the
partial derivative of I with respect to t (holding y constant).
Equation 26.8 is the brightness constraint equation.

In order to use (26.8) for estimating the velocity field v(y, t ) it
is necessary to calculate spatio-temporal derivatives of the avail-
able image data. The spatial gradient ∇yI (y, t ) at each image
pixel is approximated using finite differences involving neigh-
boring pixels. The temporal derivative It (y, t ) is approximated
using the change in pixel intensity from one image to the next
in the sequence. Finally, a value for İ (y, t ) is needed. It is most
common in the computer vision literature to assume that a par-
ticle maintains a constant brightness [42], so that İ (y, t ) = 0,
an assumption that has been applied to tagged MRI [36]. In
tagged MRI, however, the brightness of a particle does change—
the so-called tag fading problem.1 To account for this effect,
Prince and McVeigh propose variable brightness optical flow
(VBOF) [35],which estimates İ (y, t )using a model based on the
imaging protocol and physical tissue properties. Alternatively,
the framework of Gennert and Neghadirapour’s optical flow

1 Through-plane motion also causes brightness variations, but this effect is

typically small compared to tag fading.
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(GNOF) [43] may be used, in which brightness variation is
assumed to satisfy the linear model

İ (y, t ) = I (y, t )mt (y, t )+ ct (y, t ).

Then, tag fading is estimated as part of the algorithm itself [37].
Regardless of the assumption made about brightness vari-

ation, the brightness constraint equation only provides one
equation, while the unknown v(y, t ) has two components. To
solve this ill-conditioned problem, optical flow is cast as a varia-
tional formulation involving the minimization of the following
functional

E =
∫ [

EBCE + α2Esmooth

]
dy , (26.9)

where

EBCE =
∣∣∇yI (y, t ) · v(y, t )+ It (y, t )− İ (y, t )

∣∣2 ,

which is a term that encourages agreement with the brightness
constraint equation, and Esmooth is a differential smoothness
penalty on v(y, t ), typically given by ‖∇yv(y, t )‖2. The regular-
ization parameter α determines the tradeoff between velocity

smoothness and agreement with the brightness constraint
equation.

Minimizing (26.9) can be done analytically to yield a set
of coupled partial differential equations. These, in turn, can
be solved numerically using the calculated spatio-temporal
image derivatives to yield a sequence of estimated velocity fields
(see [35]). It should be noted that in GNOF, the multiplier
and offset fields, mt (y, t ) and ct (y, t ), must be estimated along
with v(y, t ). Also, in VBOF İ (y, t ) is estimated recursively using
past estimates of v(y, t ). Details can be found in the respective
papers.

Gradient-based optical flow techniques are well-suited for
processing tagged MR images because tagging produces the
spatial brightness gradients on which the brightness constraint
equation depends. Best results are obtained when two SPAMM
patterns are applied using only 2 RF pulses per pattern and
orthogonal gradient pulse directions g1 and g2. The result is
a tag pattern that varies sinusoidally in both gradient direc-
tions, as shown in Figure 26.7. Also shown in Figure 26.7 is
the velocity field obtained by applying optical flow to the two
images. This motion pattern reveals the early rotation of the
left ventricle in this mid-ventricular cross-section. Within a
few frames (not shown), this rotation gives way to the strong

FIGURE 26.7 Results of optical flow techniques: The images on the left are two in a sequence of images depicting LV
contraction after tagging with bidirectional sinusoidal tags. Application of optical flow to these two images produces
the velocity field on the right, showing the region around the LV.
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radial contraction typical of normal motion. One charac-
teristic of these estimates is the smoothness of the velocity
field across object boundaries—endocardium and epicardium,
in particular—which is caused by the regularizing term in
(26.9). The use of bandpass optical flow, which uses Hilbert
transform techniques to shift the phase of the sinusoidal tag
patterns, has shown some success in reducing the effects of
regularization [44].

In addition to visualization of left-ventricular motion, there
are other potential uses for computed velocity field sequences.
These applications are identical to the uses described for phase
contrast MRI [45], which also produces a sequence of velocity
fields using a totally different approach. For one, it is possible
to compute spatial derivatives of the velocity fields and com-
pute the strain rate [46]. This quantity has shown promise in
the characterization of hypertrophic cardiomyopathy [47]. It is
also possible to numerically integrate the velocity fields through
time, obtaining an estimate of the motion map y(q, t ) [35, 45].
Lagrangian strain can be computed from this map.

26.4 Direct Encoding Methods

Although feature tracking has been the dominant approach
for tagged image analysis, the reliability of such methods can
be poor. More recent efforts have shown that tagging meth-
ods can be used to directly encode motion parameters within
the image pixels. Variations on this approach include harmonic
phase (HARP) imaging [48], displacement encoding with stim-
ulated echoes (DENSE) [49], and strain encoding (SENC) [50].
In these methods, phase information from complex images can
be used to directly compute displacement or strain. Although
each of these methods has unique features, the general approach
will be illustrated here using HARP.

26.4.1 Displacement Encoding

To illustrate displacement encoding via HARP, assume a
SPAMM sequence with two 90◦ RF pulses has been applied,
for which f0(p) = −cos gTp. Assuming the expression for the
deformed tag profile (26.6) is accurate, the resulting image is

I (y, t ) = I0(y, t )
[−β(t ) cos

(
gTp(y, t )

)+ (1− β(t ))] .

In this expression, the phase of the cosine, given by

φ(y, t ) = gTp(y, t ), (26.10)

is directly related to the desired motion map p(y, t ).
Furthermore, the spatial derivative of φ(y, t ) is related to the
deformation gradient by

∇yφ(y, t ) = H TF−1g , (26.11)

where, as a reminder, H = [h1 h2] defines the image
orientation in 3-D space. Thus, measuring φ(y, t ) provides
information regarding both the reference map and the defor-
mation gradient for every material point in the image.

To measure φ(y, t ), harmonic phase (HARP) images are
obtained [51–53]. HARP images utilize the presence of dis-
tinct spectral peaks in the Fourier transform of tagged images,
as illustrated in Figure 26.8. The locations of the peaks are, by
the modulation theorem, determined by the spatial frequency
of the tag pattern. In particular, there will be a spectral peak
located at w = H Tg. If all spectral information except the sin-
gle spectral peak centered at w is removed through filtering, and
the inverse Fourier transform is applied, the resulting image is
very nearly

IHARP(y, t ) ≈ b(t )I0(y, t )ejφ(y,t ) ,

where b(t ) is related to tag fading. Thus, the HARP image
takes on complex values with the phase of each pixel given
by φ(y, t ). HARP has the added benefit of potentially rapid
imaging because MR images are acquired in the Fourier
domain and a single spectral peak can be acquired rapidly
(see [27]).

To filter one spectral peak and obtain a HARP image, a stan-
dard tagged image is transformed into the Fourier domain (or
the raw image data are kept in the Fourier domain). Then, a
filter is selected with central frequency w and smooth rolloff,

such as exp{−( f−w
BW

)2}, where f is the position in Fourier space
and BW is the filter bandwidth. In practice, BW must be cho-
sen carefully to minimize the influence of other spectral peaks,
while maximizing information obtained from the desired peak.
Transforming back to the spatial domain results in the complex
HARP image.

Then, a phase measurement for each pixel in the HARP
image is easily obtained from the real and imaginary com-
ponents using the arctangent operator. This measurement is,
however, subject to wrapping (see Figure 26.8c) because the
range of the arctangent is only [−π,π). We refer to the wrapped
phase as φW(y, t ), which must be unwrapped to obtain φ(y, t ).
To unwrap φW(y, t ), points of constant phase are tracked by
identifying the nearest point in each subsequent image with
the same wrapped phase. The absolute phase at time t is then
determined by the known phase of the corresponding point
at t = 0. In the time between consecutive images, LV motion
is assumed to be small enough that phase ambiguity is not a
problem.

26.4.2 Strain Encoding

Alternatively, tracking and phase unwrapping may be avoided
by directly calculating the 2-D apparent strain associated with
the apparent motion (see Figure 26.8d). For this, the 2-D defor-
mation gradient Fapp of apparent motion is needed, the inverse
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(a) (b)

(c) (d)

FIGURE 26.8 In HARP processing, one spectral peak is extracted from the raw Fourier data of a tagged
MR image (a). Taking the inverse Fourier transform yields a complex image with a magnitude (b) and
wrapped phase value (c) for each pixel. The images show a close-up of the LV and in (c), black is a
phase of −π and white is +π. For clarity, the phase has been masked using a thresholded version of
the magnitude image. Combination of two HARP images with different tag directions allows apparent
strain to be depicted (d). In this case circumferential shortening is shown for an LV undergoing abnormal
contraction—evidenced by the red-colored region at the upper left that indicates stretching of the wall.
(See also color insert).

of which is given by

F−1
app = ∇yq(y, t ).

This 2-D deformation gradient is related to the 3-D deforma-
tion gradient F by

F−1
app = H TF−1H .

Comparison of this expression to that for ∇yφ(y, t ) (26.11),
shows them to be very similar. In fact, if two HARP images

are obtained with associated tag directions g1 and g2 that are
linearly independent combinations of h1 and h2, then we may
calculate

F−1
app = [∇φ1(y, t ) ∇φ2(y, t )]

[
g

T

1 h1 g
T

2 h1

g
T

1 h2 g
T

2 h2

]−1

,

where φ1(y, t ) and φ2(y, t ) are the associated phase maps of
the HARP images. The reason this calculation may be per-
formed without phase unwrapping is that the spatial derivatives
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of φ(y, t ) and φW(y, t ) are the same except at points of
discontinuity in the wrapped phase. Those points of discontinu-
ity are easily addressed by a local unwrapping procedure. Then,
determining phase gradients through finite difference approxi-
mations leads directly to apparent strain. The down side of this
approach is that apparent strain may not be closely related to
the true strain. For example, a strain-free rotation can produce
a non-zero apparent strain. In cardiac applications, however,
there is generally good correlation between apparent strain and
true strain.

26.5 3-D Motion Estimation

Up to this point, the methods presented have focused on
extracting the 2-D apparent motion from tagged images. A sub-
sequent task is to compile the information obtained from 2-D
images into a complete 3-D description of LV motion. HARP
also has the potential to provide out-of-image-plane motion
measurements because the phase of a HARP image is given
by (26.10) regardless of the direction of g. If three indepen-
dent tag directions are used that span 3-D space, HARP can,
in theory, estimate p(y, t ) completely. Ryf et al. [54], for exam-
ple, implemented a 3-D complementary SPAMM (CSPAMM)
imaging protocol [55, 56], and applied HARP to 3-D harmonic
peaks in order to track a large collection of material mark-
ers within the myocardium. The imaging protocol is extremely
time-consuming, however, and is unlikely to achieve clinical
practicality. Practical methods to achieve 3-D motion measure-
ments from tagged MR images use sets of 2-D acquisitions from
which the 3-D motion is estimated or interpolated. We describe
the basic approach in this section.

26.5.1 Displacement Estimates

The overall goal is to estimate the function

u(x, t ) = p(x, t )− x , (26.12)

which describes the displacement necessary to move a material
point from its deformed position x to its reference position p. To
estimate this function,we assume we have obtained images from
many spatial positions such as those depicted in Figure 26.3
and that those images contain various combinations of three
orthogonal tag orientations g1, g2, and g3.

From the images, the same fundamental information for
estimating u(x, t ) is available, regardless of whether tag line
tracking, optical flow, or HARP analysis is used for process-
ing the images. To explain what that information is, suppose a
measurement is obtained for a position y in an image with tag
direction gi . Then that measurement gives

ui(x, t ) = ei
Tu(x(y), t ) ,

where ei is the unit vector in the tag direction defined by

ei = gi

‖gi‖
.

The measurement ui(x, t ) is a 1-D component of the 3-D
displacement vector u(x, t ) evaluated at x(y). This concept is
readily apparent for tag line tracking by referring to Figure 26.4.
For optical flow methods, the displacement component is
obtained by backward integration of the velocity field and in
HARP the displacement component is obtained by relating a
phase measurement to a plane of constant phase at the ref-
erence time. We divide the measurements for all images into
three sets 
1,
2, and 
3 where 
i contains all points x at
which the component of displacement in the direction ei is
known.

Often, two components of displacement are measured for the
same point in the image. In tag line tracking this occurs at the
tag line intersections of Figure 26.6; in optical flow and HARP
methods, two components are normally available for every pixel
in the image. In general, though, it is not possible to simultane-
ously measure three components of motion for a given point.
Additionally, there is typically five to eight millimeters of separa-
tion between image planes such as those depicted in Figure 26.3,
accounting for large regions of space for which no measure-
ments are available. The estimate of u(x, t ) must therefore be
the map that best reconciles the known mechanical proper-
ties of the LV with the measured components of displacement
ui(x, t ), x ∈ 
i and interpolates between measurements.

Which image processing method to use for obtaining the sets
of measurements is open to debate. Existing methods for deter-
mining 3-D motion [4, 7, 9, 57] are tailored around tag line
tracking although they will readily incorporate data from opti-
cal flow or HARP processing techniques as well. The primary
advantage of tag line tracking is that it has the best demonstrated
accuracy. In comparison, optical flow suffers from accumu-
lating errors that result from numerical approximations of
derivatives and integrals. HARP has comparable accuracy to
tag line tracking methods, but suffers from artifacts due to
spectral peak interference. A newer method using Gabor filters
may provide robustness to large deformations and enhanced
accuracy [58].

The disadvantage of tag line tracking is the sparsity of data,
relative to optical flow, HARP, and Gabor filter methods, which
produce data for every pixel. To illustrate this sparsity, suppose it
were possible to view the deformation of an entire tag plane, not
just the tag line formed where it intersects with an image plane.
Then, use of three orientations of tag planes would induce a 3-D
grid that deforms with LV motion as depicted in Figure 26.9.
The motion of this grid would, however, be insufficient for
determining the exact 3-D motion of points except at the grid
intersections where all three components of motion are known.
This concept is, in fact, the basis of the MR markers method [59]
where the intersections are tracked using splines to reconstruct
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(a) (b) (c)

FIGURE 26.9 Tag line tracking actually amounts to tracking tag planes as they deform. Combining three
orthogonal sets of tag planes defines a deforming 3-D grid superimposed on the deforming LV (a). From
the grid, the 3-D motion of points is only known for the grid intersections shown at end-diastole (b) and
end-systole (c). Only those points within the LV myocardium are shown.

the deforming grid. For typical tagged MR images, however,
these intersections are spaced apart by several millimeters and
only a few hundred exist within the LV myocardium.

26.5.2 Model Fitting

Given the displacement measurements, several methods have
been proposed for estimating the dense displacement field
u(x, t ) throughout the LV [4, 7, 9, 57, 60]. Each method is
unique, but all share the same basic approach, including a sim-
ilar sequence of steps. In the initial step, the LV is segmented to
define its 3-D extent and it is registered to a standard coordi-
nate system. Then, a model framework for describing motion
is chosen and the parameters within that model are optimized
to fit the observed 1-D displacements. The approaches used to
perform these steps are what distinguishes the various proposed
methods.

In the segmentation and registration step, the boundaries of
the LV are first identified in the images and subsequently inter-
polated to approximate the 3-D shape of the LV. The accuracy of
this segmentation is not critical to the motion estimation pro-
cess. A coordinate system is also imposed on the LV to identify
the segmented points. A common choice of systems is prolate
spheroidal coordinates (see [7, 57, 60]) that reflect the ellipti-
cal shape of the LV. A disadvantage of this choice is that the
coordinate system has to be registered from time frame to time
frame to landmarks that move with the LV. A second coordi-
nate system option is a fixed Euclidean system defined by the
tag direction unit vectors e1, e2, and e3.

The most significant difference between methods is how the
displacement estimate û(x, t ) is defined mathematically and
fitted to the data. One approach is field fitting, in which scalar
functions of 3-D space are individually fit to each of the three
components of displacement corresponding to points in
1,
2,

and
3. The form of the field is generally a sum of basis functions
ψk(x) of the form

ûi(x, t ) =
K∑

k=1

ak(t )ψk(x) ,

where αk(t ) are coefficients determined from the observed dis-
placements and K is specified by the method. Such an approach
is proposed by O’Dell et al. [57] using some 50 Legendre
polynomial basis functions. Another choice is B-spline basis
functions [61]. To find the time varying coefficients of the
model, a least squares fit to the data is used that minimizes to

∑
x∈
i

(ûi(x, t )− ui(x, t ))2.

Finally, the estimates obtained for each i are compiled into a
single 3-D estimate

û(x, t ) = û1(x, t )e1 + û2(x, t )e2 + û3(x, t )e3 .

An alternative approach is to use finite element modeling,
in which the LV is broken down into individual elements. The
movement of material within each element is assumed to be
determined entirely by the movement of the element’s corners.
The displacement estimate is therefore given by

û(x, t ) =
K∑

k=1

ξk(x)û(xk , t ) ,

where x1, . . . , xK are the corners of the element within which x
lies and ξk(x) are weights determined by the position of x within
the element. In the finite element model of Young et al. [7] the
LV is divided into the 16 elements shown in Figure 26.10 and
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FIGURE 26.10 The finite element model of Young et al. [7] divides
the LV into 16 elements, shown here before and after deformation.

the weights are given by tensor product basis functions. Denney
and McVeigh [4], on the other hand, use numerous small cubic
elements (approximately 1 mm on a side) and simple trilinear
interpolation weighting. To fit the model to the data, the corner
points must be moved such that the model best matches the
observations. This is accomplished by minimizing an objective
function such as

3∑
i=1

∑
x∈
i

[ei
Tû(x, t )− ui(x, t )]2 + S ,

where S is a regularization parameter, typically a differential
smoothness penalty. This optimization problem is solved simul-
taneously for all corner points because different elements share
common corner points.

Finally, Park et al. [9] propose a hybrid method in which a few
global motions are defined as in field fitting, but the parame-
ters defining those motions vary from element to element. The
global motion terms reflect basic LV motions such as radial
contraction and twisting. The fine scale variation in motion
is determined by the spatial variation of the parameters. For
example, Figure 26.11 shows an example of the spatial varia-
tion of the twist parameter along the outer wall of the LV from
base to apex.

26.5.3 The Forward Map and Strain

Once the 3-D displacement field u(x, t ) is reconstructed, it
must be related to the useful motion functions defined in
Section 26.2. From the definition of u(x, t ) (26.12), we see
that the reference map p(x, t ) is easily obtained. However, the
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FIGURE 26.11 Example of a parameter from the Parks model [9],
here defining twist relative to both time and spatial position.

reference map is not convenient for tracking the motion of
material points over time or computing Lagrangian strains. For
those purposes, the forward map x(p, t ) is needed. To determine
the forward map from u(x, t ), we use the fact that displacement
of a material point from its deformed position x to its reference
position p may be turned around to provide the forward dis-
placement from p to x. After using any of the motion models to
reconstruct a set of displacements, the forward map is estimated
by fitting the same model to the turned around displacements
[4, 7, 57].

Then the Lagrangian strain is computed by differentiat-
ing the reconstructed forward map to obtain F , from which
any of the strain measures discussed in Section 26.2 may be
computed. Continuous strain functions may be found or the
value may be averaged over an element to provide regional-
ized strain measurements. For example, Figure 26.12 shows
the time progression of strain for 72 distinct regions within
the LV.

26.5.4 3-D Tracking Methods

Alternatively, the need to compute the reference map and then
the forward map of motion can be avoided by directly track-
ing the material point motion in 3-D. Kerwin and Prince [62]
combined the method of MR Markers with a Kriging filter to
automatically track the markers without prior knowledge of tag
line locations. For each time frame, the previous MR marker
locations are used to define a search region from which pos-
sible tag points are identified. Kriging filters then reconstruct
the deformed 3-D grid of tag planes, from which the next set
of MR markers are obtained. This approach is able to track the
3-D motion of these material points without knowledge of the
myocardial boundaries.

A 3-D extension of the HARP tracking method has also
been developed [63]. In this method, a simple “mesh” model
comprising points in space connected by lines (and shaped
something like a bowl in order to fit the LV) is initialized within
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FIGURE 26.12 Regionalized strain measurements for 72 regions in a canine LV shown from base
(top) to apex (bottom) and with anterior regions to the left and inferior regions to the right. Two
strain measurements are plotted over the course of contraction, before and after partial occlusion of
the left anterior descending (LAD) artery. Note the substantial differences between curves near the
anterior apex. (See also color insert).

the myocardium. Wherever the lines intersect an observed
tagged image plane, the apparent displacement is used to deter-
mine what the original pair of HARP phases were at the
reference frame. By comparing these values to those carried
within the mesh itself, forces can be determined and applied
to the mesh in order to move it so that the intersection points
match the reference HARP phases.

A novel tag-based imaging method that facilitates 3-D
tracking called zHARP has been recently reported [64]. In
this approach, a small phase-encoding gradient is applied in
the through-plane direction prior to image acquisition. The
CSPAMM tag pattern with slice following is used [55, 56], so
that this phase encode provides information about the slice
position within the imaging slab. An opposite phase encode is
used for the orthogonal tag direction. With this acquisition and
HARP processing, a 3-D track can be computed for every point
in the acquired image plane. Details are still being worked out
and the reliability of this technique has not been fully reported.

26.5.5 Direct Strain Encoding (SENC)

Another imaging technique has been developed from the basic
concepts of HARP to measure regional strain without post-
processing. The SENC technique utilizes tag patterns so that the
saturated planes are parallel to the imaging plane, rather than
the orthogonal ones [50, 65]. Because of this, there will be no tag
lines apparent on the acquired images; however, changes in tag

spacing due to strain will be manifested as changes in intensity.
The SENC technique detects the changes in intensity and mea-
sures the corresponding strain values. The advantages of SENC
are its high spatial-resolution of imaged strain, which is mea-
sured on a pixel-by-pixel basis, and no need for sophisticated
post-processing. On the other hand, the technique is limited
as it images only one strain component in the through-plane
direction.

26.6 Discussion

All of the methods discussed within this chapter are proven
research tools that effectively characterize LV motion and are
useful for assessing treatment options. Their strength comes
from the fact that tagged MR images are acquired virtually
without risk to the patient. Tagged MRI procedures have not,
however, become everyday tools for the clinician. The failure
to date of tagged MRI to move into the diagnostic mainstream
is not for lack of potential, but because many technical chal-
lenges exist. The combination of potential and challenge, in fact,
accounts for the many image processing and analysis techniques
that have been proposed. The long term impact of tagged MRI
processing hinges on the ability of such techniques to overcome
these technical challenges.

One challenge arises from the overwhelming volumes of
data associated with tagged MRI. How can data such as fine
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scale strain measurements be presented in a meaningful way to
the physician? One approach is the regionalized strain plots of
Figure 26.12. Alternatively, Park et al. [9] speculate that anoma-
lies in the spatial variation of parameters in their model (see
Figure 26.11) may be diagnostically valuable. Some approaches
use conventional cardiological “bulls eye” plots to present strain
data on a flat map representing relevant octants and longitudi-
nal positions within the LV. The future may bring anything from
stereoscopic 3-D displays of volumetric strain data to computer
aided diagnosis where the strain measurements are boiled down
to a single output.

In recent years, there has been considerable advancements
toward fast analysis and minimal human interaction in tagged
MRI analysis. These methods are proving more repeatable since
they largely remove the human from the processing pipeline.
They are also faster and therefore have more clinical potential.
There are many ongoing scientific studies relating strain mea-
surements produced by MR tagging methods to other clinical
measures produced by alternative technologies. Relating strain
measured by MR tagging to infarction and ischemia has been
established already and clinical protocols will not be far behind.

A remaining challenge is the integration and clinical incor-
poration of fully 3-D tagging technologies. Dense data can only
be acquired with long imaging times, which remain clinically
infeasible. Therefore, the effective utilization of relatively sparse
imaging data for cardiac strain imaging is a significant goal
that remains highly challenging. Novel image acquisition tech-
nologies together with novel image analysis methods (perhaps
derived from those methods presented in this chapter) are likely
to be needed in order to achieve this challenging goal.
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27.1 Introduction

In human pathology and cytology, nuclear features play an
important role in cell and tissue classification for clinical diag-
nostics as well as in pharmaceutical and medical research.
To increase efficiency and decrease subjectivity of cytological
results, users have pursued automation (fully or partly) of the
analytic process for decades.

Based on Heynen S, Hunter EA, Price JH. Review of cell nuclear features for classification from fluorescence images. Originally
published in: Farkas DL, Leif RC, eds. Optical Diagnostics of Living Cells III. Proceedings of SPIE. 2000;3921:54–65.

In addition to their significance for diagnostic cell classifi-
cation, nuclear features from fluorescently labeled images are
invaluable for image-based, high-content screening in drug
discovery, functional genomics, and cytomics. These screen-
ing systems characterize cell monolayer population behavior in
response to stimuli by systematically measuring feature sets for
all encountered objects and performing classification based on
the cell-by-cell data. Identification of the individual cell objects
for most of these applications is based on fluorescent nuclei
detection, because of the routine availability of bright DNA
dyes, the nuclei’s spatial separability, and the large number of

extractable features pertaining to artifact rejection, cytotoxicity,
and cell cycle information.

In spite of tremendous efforts, only moderate success has
been achieved in automating clinical diagnostic cytopathology.
In order for a fully automated diagnostic cytopathology instru-
ment to be successful, cell classification performance must be
equal to or better than that of human experts, assessing the
sample’s cellular composition and disease progression [3], at
less than or equal the cost of human analysis. To closely emu-
late the tasks of cytopathologists or cytotechnologists, the best
diagnostic instrument would start with correct cell-by-cell clas-
sification, build a database of cell-cell spatial associations, and
finally provide diagnoses both of each individual cell and the
entire lesion. To perform correct cell-by-cell classification on
millions of cells and identify cells to analyze their spatial associ-
ations, one has to thoroughly evaluate the cell nucleus. It is also
the most diagnostically important portion of the cell [46] and
will be the focus for the review of features we present here. These
features will be assumed to have been derived from images

Copyright © 2008 by Elsevier, Inc.
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of fluorescently labeled cells because fluorescence specificity
yields the most accurate image segmentation [44], and the
stoichiometry provides excellent quantification.

27.1.1 Conventional Features in Manual
Evaluation by Cytologists

In manual analysis of cytological material, cytotechnologists
and cytopathologists use several criteria for specimen eval-
uation. Five different aspects of the specimen are generally
evaluated: nucleus, cytoplasm, the cell as a whole, intercellular
relations, and background [46]. Because the nucleus is diag-
nostically most important and the complete task at hand is very
challenging, we will discuss primarily the features of the cell
nucleus here. For more detail on the other aspects, please refer
to Table 27.1 or a text on clinical pathology (e.g., [46] or [32]).
Nuclear features first considered in manual cell analysis are size,
shape, staining characteristics, chromatin pattern, chromatin
density, and chromatin distribution [46]. Next, the size, shape,
and number of nucleoli, as well as the thickness and contour of
the nuclear membrane are observed. Since nucleoli and nuclear
membrane require additional staining for fluorometric feature
extraction, they will not be covered here.

Similar to the manual diagnostic analysis of cytological sam-
ples, researchers in the biomedical or pharmaceutical field use
the same nuclear, cytoplasmic, and cellular features to manually
evaluate fluorescently labeled or conventional dye-labeled sam-
ples for cellular responses to chemical compounds, interference
RNAs, or environmental conditions.

But how exactly does the human observer determine if size,
shape, chromatin pattern, etc., are normal or abnormal or dis-
tinguish one cell type from another? For example, to determine
malignancy of a cell, the pathologist looks for enlargement of
the nucleus with variation in size and shape, irregular chro-
matin distribution with clearing and coarse clumping, and
abundant or abnormal mitotic figures. The human brain has
an advantage over conventional computers because of the abil-
ity to learn from experience. For example, a trained pathologist
can look at a microscope image of a specimen and analyze
it without specifically knowing, for example, the mean aver-
age radius of the nucleus or the standard deviation of nuclear

intensities. He or she may pinpoint specific features of a cell
or cytological specimen that lead to the diagnosis or classifi-
cation of the sample rather than exhaustively evaluating every
single object in the specimen. But the decision-making process
is inherently subjective, and reproducibility can sometimes be
problematic.

27.1.2 Automated Cell Classification

Automation of cytololgical analysis or image cytometry has the
potential to add objectivity and repeatability to the diagnostic
process. With the ever increasing speed of computers and elec-
tronic instrumentation, systems now are capable of exhaustive
high-speed scans, i.e., analysis of every cell on a slide at high dry
resolution [9]. These instruments can provide the cytopatholo-
gist with entirely new sets of quantitative microscopy data and
information upon which to base final diagnoses. The advent
of automated high-speed analysis of cellular samples has also
led to its application in biomedical research and pharmaceuti-
cal drug discovery. Here, large libraries of chemical compounds
or interference RNAs are applied to multiwell plates—typically
96, 384, or 1536 well format—and automated cell analysis is
performed to classify the phenotypic responses of the cell pop-
ulations or subpopulations. Because of the vast numbers of cells
that need to be analyzed for libraries with tens to hundreds of
thousands of entries, these image-based screens would not be
possible without automated cell analysis of microscopy images.

For automated cell classification, one approach is to take
the features that the human observer uses and find quantita-
tive analogs for computer analysis. This approach has resulted
in about 100 more or less different feature measurements for
automated cytology. But are these features different mathemat-
ically; i.e., are they independent? To approach this and similar
questions, one will find it useful to examine scene analysis
measurements and techniques from the machine vision com-
munity that have been carefully considered mathematically.
Such “vision” features may be better for a successful comput-
erized expert system and, if complete, are likely to incorporate
the same information as used by human experts even though a
pathologist might not recognize them. It should be possible to
compute conventional features that relate to the manual cues of

TABLE 27.1 Features commonly evaluated manually for cell diagnosis

Features

Nucleus Size, shape, staining characteristics, chromatin pattern and distribution and density; also size, shape, and number of nucleoli
and thickness and contour of the nuclear membrane

Cytoplasm Amount, shape, staining characteristics, texture, thickness (by focusing up and down), presence of cytoplasmic inclusions
(vacuoles and granules)

Cell as a whole Size, shape, nuclear/cytoplasmic ratio, mitotic activity

Intercellular relations Cell cohesiveness and formation of sheets, papillae, acini, or ducts

Background Presence of inflammatory cells, debris, microorganisms, and amorphous materials
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size, shape, and texture of the nucleus from a mathematically
efficient and complete set of features. It may be better, however,
to utilize a feature set designed specifically for the quantitative
nature, reproducibility, and massive data processing capabili-
ties of machines and computers, rather than one that is best
for humans. When a quantitative process is carefully designed
using definitive cell-by-cell classification performance measures
to compare different feature sets and algorithms, automated
cell analysis could reach correct classification rates exceed-
ing human performance in clinical diagnostics and rare-event
detection, and could enable increasingly more information to
be obtained from image-based screens.

27.1.3 Current Image Analysis Systems

Over the years there has been a myriad of automated image
cytometry systems aimed at the cytopathological analysis of
clinical samples [5–7,42,56], and research applications such as
rare-event detection [1] or image-based drug screening [49].1

Most clinical systems are based on the Papanicolaou (Pap) stain,
a qualitative, nonstoichiometric dye that has been used exten-
sively in manual cytology for the last 40 or so years. Although
there are nonfluorescent quantitative dyes, the Pap stain is
not one of them, cannot be used for quantitative measure-
ments such as DNA content, and does not yield completely
quantitative feature sets [7, 47]. Some of the research systems
have used nonfluorescent quantitative dyes, like Feulgen-based
stains [21,31,39,48], a DNA-stain that links to the acid nuclear
components. Most research and image-based screening systems
use stoichiometric fluorescent dyes because of the specificity of
the fluorescent molecular markers facilitating image proces-
sing and feature extraction [43].

27.2 Nuclear Features

27.2.1 Importance of Nuclear Features in
Fluorescence Microscopy Images

Computerized cell classification performance will depend on
the quality, precision, and accuracy of the underlying features,
regardless of the choice of classification algorithm. Both the
choice of features and the accuracy of each feature are impor-
tant. Cell nuclei stained with a quantitative fluorescent DNA
dye are the basis for nuclear feature sets for cell-by-cell clas-
sification, as discussed previously. This choice allows for the
conventional cytopathological features of size, shape, staining
characteristics, chromatin pattern, chromatin distribution, and
chromatin density of the nucleus (from Table 27.1) to be ana-
lyzed. It should be noted that fluorescent nuclear labels stain

1 This is not meant to be a complete list of available systems but should give

the reader some insight into existing systems.

only DNA, whereas in the routine clinical Pap staining, “chro-
matin” appearance may include histones and other intranuclear
components. Fluorescent techniques have the specificity to stain
a single intracellular constituent, and one task will be to find
the combinations of dyes that stain the right components for
classification. In addition, with DNA content measured from
the stoichiometric fluorescent nuclear dye, the cell cycle phases
may be automatically identified. The mitotic index (ratio of the
mitotic figures over the total number of cells) or the growth
fraction (ratio of the number of S-, M-, and G2-phase cells
over the number of G0-, and G1-phase cells) may be mea-
sured, and it should be simpler to perform object labeling,
e.g., for overlapping nuclei, out-of-focus objects, and artifacts
such as fluorescent debris or incorrectly segmented nuclei.
Sample images of DAPI-stained nuclei [23] from different obj-
ect labeling classes typically encountered during automated
analysis of large cell populations are shown in Figure 27.1.
Thus, a substantial and important set of features relevant
for automated cytology can be obtained using a single
nuclear dye.

27.2.2 Features for Computerized Image Analysis

The three primary categories of features for computer-
ized image cytometry are summarized in Table 27.2 [20, 25,

Single cells

Cell clusters

Mitotic figures

Out-of-focus
objects

Cytotoxic/
Apoptotic cells

FIGURE 27.1 Region-of-interest montages of different objects
encountered during image analysis of slide or well plate populations of
cells. Images of DAPI-stained cell nuclei were acquired using a 20× 0.5
NA objective on a Beckman Coulter IC100 HTM system.
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TABLE 27.2 List of features for computerized image analysisa

Feature Category Feature List

Morphometric Area, eccentricity (= aspect ratio= elongation= length-to-width ratio), ellipse fitting error, mean radius, minimum / maximum
radius, radius variance, roundness (= thinness ratio= circularity= 1/[irregularity]= 1/[compactness]= 4π area/perimeter2),
number of holes (related to Euler number= number of convexities – number of concavities), Fourier descriptors, projections
(horizontal, vertical, at certain angles), image moments, and derivations from image moments

Photometric (or Fluorometric) Normalized average gray level (= mean intensity ≈ median adjusted gray level), gray-level variance, total optical density (or
integrated optical intensity≈DNA content), optical density or intensity variance, maximum optical density or intensity, optical
density or intensity skewness, optical density or intensity kurtosis, gray-level entropy

Texture—Discrete Number and area and shape of high-/medium-/low-density chromatin regions, average distance between chromatin regions
of the same optical densities, average distance between geometrical center and all pixels or center of mass of a chromatin
condensation state

—Markovian/Haralick GLCOM energy, GLCOM correlation, GLCOM entropy, GLCOM homogeneity, GLCOM heterogeneity, gray-level
nonuniformity

—Run-length Short-run emphasis, long-run emphasis, run-length nonuniformity, run percentage

—Fractal Fractal dimension, fractal area

—Spectral Spectral region power (requires 2D Fourier transform)

a This list represents an overview of commonly used features. It is not a complete list of all features that have been published over the years, and the reader is asked to consider that some
features may have been published using a different name.

35,36,39] and include (1) morphometric features that describe
the shape and size of the nucleus; (2) photometric or fluo-
rometric features that describe the distribution of the optical
density or intensity; and (3) texture features that describe the
chromatin pattern and distribution. Texture features are fur-
ther divided into discrete, Markovian or Haralick, run-length,
and fractal textures. Discrete textures describe the spatial distri-
bution and the photometric properties of low-, medium-, and
high-density chromatin regions. Markovian or Haralick tex-
ture parameters measure the distribution of gray-level intensity
values between adjacent pixels or the gray-level co-occurrence
matrix (GLCOM). Some feature extraction systems replace the
GLCOM with a less computationally intensive sum and dif-
ference histogram. Run-length textures describe the length of
contiguous regions with constant intensity. The fractal texture
features, which have become popular more recently, describe
the 3D surface plot of intensity of the object, and one feature
derived from this is the surface area of the intensity [13]. Finally,
spectral analysis provides information about the coarseness and
directionality of textures by analysis of the power spectrum in
frequency space [11].

27.2.2.1 Morphometric Features

Most of the morphometric features are self-explanatory, and
their mathematical implementation is described in traditional
pattern recognition books (e.g., [15, 19]) as well as in several
papers (e.g., [8,10,37,53]). Not all of them are appropriate for
cell nuclei because they don’t exhibit the required properties
described in Section 27.3.3. For example, the axis of the least 2nd

moment is a descriptor for orientation of an object in an image.
But the orientation of cells in the image is not diagnostic, and

for cytology, features should be rotationally and translationally
invariant.

Some of the features from the vision literature apparently
have not been routinely applied to cells, and are described fur-
ther (see references for in-depth detail and derivations). In the
imaging and vision community, more complex moments than
just first and second order central moments (with rotation and
translation invariant versions assumed for cell analysis) have
been discussed for image analysis [33,50] (see also Chapter 15).
Moments, a combination of moments, or moments combined
with a feature are examples of complete feature sets from
which the image of an object can be regenerated. Additional
moments exhibiting advantageous mathematical properties
include Zernike moments based on the Zernike polynomials
[37,57],Legendre moments based on the Legendre polynomials,
complex moments, and more elaborate extensions of the regu-
lar geometric or central moments [45, 51]. Central moments
describe the geometry: the 0th order moment describes the
area of an object, the 1st order moment corresponds to its
center of mass, the 2nd order moment is the moment of the
inertia of the object, and 3rd and 4th order moments describe
projection skewness and kurtosis [45]. The 1st and 2nd order
moments combined define an elliptical disc that has the same
center of mass and 2nd order moment as the original object.
Different types of moments have different properties. Most
moments developed for image description are either natively
rotation-, scale-, and translation-invariant (RST-invariant), or
have RST-invariant versions. In addition to RST-invariance,
Zernike and Legendre moments are orthogonal, meaning that
the different order moments are independent of each other and
therefore contain no redundant information. Unfortunately,
the Legendre moments are very sensitive to image noise [45,51],
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so Zernike moments seem to have the most ideal properties.
Considering signal-to-noise ratios, the complex moments are
the least sensitive to noise, but they are not orthogonal. Since for
fluorescently stained nuclei noise is not a big problem, Zernike
moments may be most appropriate.

Other shape descriptors include eigenvalues of covariance
matrices [52] and Fourier descriptors. The Fourier series exp-
ansion is also a complete set of image moments. An exact
description of the shape of an object can be obtained by specify-
ing the curvature of the border as a function of the arc length as
seen from an arbitrary starting point. If this intrinsic function
is expanded by a Fourier series, then an appropriate number of
Fourier terms will approximate the shape of the object to the
desired accuracy [15] (Chapter 15). Instead of the curvature of
the border of an object, the covariance matrix of the points on
the border contains information about shape. The eigenvalues
of this covariance matrix allow conclusions about the shape
of the object [15]. These eigenvalues are scale-dependent, and
the approach needs further work before it can provide shape
descriptors for cell nuclei.

27.2.2.2 Photometric or Fluorometric Features

The photometric or fluorometric features rely on the stoichiom-
etry of the dye and use conventional statistical analysis tech-
niques described in many texts and applied to nuclear images
(e.g., [10]). Statistics are generally not complete descriptors.

27.2.2.3 Texture Features

For the mathematical definitions of the more conventional
texture features, see [13]. For details on GLCOM-based tex-
ture features using Markovian or Haralick coefficients, refer
to Chapter 15 or the literature [2, 17, 18, 26, 38]. Texture fea-
tures are usually designed to measure particular appearances,
and completeness is not usually considered or achieved. Texture
discrimination has been implemented using the Fourier trans-
form, spatial or finite impulse response filters and the Gabor
filter [58]. After a 2D-Fourier transform is performed on the
image, the Fourier power spectrum can be analyzed. The vari-
ance of the Fourier power spectrum defined on a ring-shaped
or wedge-shaped region can be used as a measure of coarseness
or directional characteristics, respectively [11]. As mentioned
previously, the feature set for cytology should be rotationally
independent, so directional characteristics will not be used.
Direction can, however, be important in, for example, cell fluid
shear experiments. The spatial and Gabor filter techniques
apply differently shaped filters to the image of the cell. For
spatial filtering, the variance of the filtered image describes
the coarseness with a ring-shaped filter (spatial frequency fil-
ter), and the directionality with a double-wedge-shaped filter
(orientation channel filter). The variance of the Gabor-filtered
image describes the coarseness along an axis defined by a spe-
cific angle (rotation dependence, unless an average value can be
calculated). The spatial and Gabor filter techniques are slightly

more accurate texture descriptors, but they are computationally
more intensive by more than a factor of 10.

27.2.3 Properties of Nuclear Features for
Cell-by-Cell Classification

Several properties are important for characterizing features and
in some cases guide the choice of the classifier:

• Completeness provides a measure of the ability of the fea-
ture set to also act as a compression technique for efficient
storage. Efficiency is greatest when the smallest feature set
that can perform the classification task is found.

• Independence ensures that redundant information, which
provides no classification advantage, does not compro-
mise efficiency. Feature independence also allows simpli-
fication of certain statistical decision-making techniques.
If the features xi are independent given a class A, the prob-
abilities of the various feature vectors P(x1, x2, . . . , xn|A)
can be estimated as the product of the single probabilities
P(x1|A)P(x2|A) . . . P(xn|A). Thus, independence imparts
many important advantages.

• Feature separability defines the ability of the set to per-
form the classification task and is discussed further in
Section 27.2.4.

Another important property of a feature is its distribution
or probability density function for a given class. Several classi-
fication techniques assume a normal density distribution that
can be either uni- or multivariate. If these classifiers are used,
it is important to choose features that are normally distributed
or can easily be transformed to achieve normal distribution in
order to preserve classification accuracy.

As already mentioned, cell orientation is random and nondi-
agnostic. Therefore, the features should be RST-invariant [53].
Object size (area) is diagnostically important but should be
represented by only a single independent feature that is also
invariant with respect to image magnification.

The features should be illumination independent. If this is
not the case, a calibration procedure should be utilized to nor-
malize the intensity. In this context it is also important to
eliminate the influence of slide preparation (i.e., fixation and
staining techniques) on the values of the features [16]. It is likely
that the features are not invariant to slide preparation, and
slide preparation protocols may require further development
to minimize variations.

Finally, in cytological applications where there may be
100,000 or more cells per specimen carrier, computational com-
plexity should be low enough for real-time use. Very complex
image moments, for example, may require significant compu-
tation time. If several hundred thousand cells are to be analyzed
in a relatively short time (e.g., less than 1 hour), feature extrac-
tion for each cell object must be on the order of tens of μ sec.
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In many cases, however, look-up tables or parallel computing
can mitigate these concerns, as may the inexorable progression
of computing power.

27.2.4 Feature Selection Procedure

With many different features available, how does one find the
most significant subset of features that is important for a par-
ticular classification problem? It is not enough just to use
a complete and independent set because these mathematical
properties are unlikely to create separate classes in feature space.
The set of features with the lowest classification error rate is also
the most separable. This property can be derived by plotting the
feature space and observing the clusters of classes. High separa-
bility occurs if there is minimal overlap between class clusters
in feature space. Exhaustively searching all combinations is also
difficult because for n features, there are a total of 2n − 1 sub-
sets to explore to find the optimal one. With increasing n, this
process rapidly becomes tedious and computationally inten-
sive. For n = 3, there are only 7 feature subsets to try. For 10
features, however, there are 1023 possible feature subsets. With
the large number of features published and utilized for image
pattern recognition, this approach is impossible. Because of this
complexity, feature selection procedures have been developed,
the simplest of which is the forward stepwise selection tech-
nique [19]. First, the single feature that produces the smallest
error rate for classification of the training set is chosen. This
first feature is then combined with each of the other features,
the classification process is repeated, and error rates are com-
puted for each of the feature pairs. The second feature chosen
is the one that produces the smallest paired error rate. This
pair of features is then tested with each of the leftover features
and so on. This is repeated until the error rate stops show-
ing a significant decrease with additional features. Using this
technique will reduce the classification trials from 2n − 1 to
n(n − 1)/2. For 10 features, the 1023 possible feature combi-
nations are reduced to 45. This method is provided only as
a simple example and does not necessarily produce the best
results. There are many other techniques of varying complexity
that can be used. Several of these, including principal compo-
nent analysis (PCA), linear discriminant analysis (LDA) with
stepwise addition of features, and genetic algorithms (GA), have
been applied to feature sets for cell classification from fluores-
cence microscopy images [30, 34, 55]. Feature selection is also
addressed in Chapter 22.

27.3 Classification Process

The classification algorithm processes the features to produce
a class decision or diagnosis. The process usually involves a
statistical algorithm that maps the different classes into dif-
ferent regions of feature space. However, various classifiers
using many different approaches have been designed, including

linear discriminant functions, neural networks, probability-
based Bayesian classifiers, nearest neighbor classifiers, clustering
techniques [3, 8, 14, 19, 27, 29, 31], genetic algorithms [22],
and support vector machine-based classifiers [12, 54, 55].
Only a few are discussed to provide general background.
Generally, in pattern recognition one distinguishes super-
vised from unsupervised learning techniques. The latter are
computationally complex and will be discussed only briefly.

27.3.1 Supervised Learning Techniques

In supervised learning techniques, error minimization is used
to best match classification performance to a standard that is
usually manually derived. A sufficiently large training set where
each object is correctly identified must be available. Additional
data not included in the training set—referred to as the test
set—is required to evaluate the classifier’s performance. While
“Leaving-One-Out” techniques, where the test data point is
excluded from the training set, are often utilized to expand the
available data for supervised learning, the ideal classifier test
set utilizes naïve data to avoid any overtraining of the classi-
fier. Errors in training or test sets annotated by human experts
can be substantial sources of automated misclassification, and
if nonsubjective training and test set data are available, they
should be preferred. There are two types of supervised tech-
niques: parametric or statistical, and nonparametric decision
making.

27.3.1.1 Parametric Decision Making

A classification procedure is called “parametric” if the gen-
eral form of the feature probability density function is known
for each class. The actual values of their parameters (e.g.,
mean and variance) are usually not known beforehand and
will be estimated. In this case, the most likely class is cho-
sen given certain values for the features, for example, using
Bayes nets (also more generally called probabilistic reason-
ing) [14, 24, 41]. The a priori probabilities (prior knowledge
of likeliness of an outcome) and the state-conditional probabil-
ities (conditional variability, e.g., image feature) are combined
to calculate the probability of a class membership [14, 15].
This kind of classifier is feasible for cell classification, since more
than one feature can be utilized, more than two classes can be
supported as outcomes, and actions other than a class decision
(e.g., rejection or delay of decision) are possible. Restrictions
for this type of classifier are that the classes have to be mutually
exclusive and that each sample has to belong to one class.

27.3.1.2 Nonparametric Decision Making

Nonparametric decision making deals with features that have
unknown probability distributions. There are several ways
to approach this problem. The histogram technique or the
window (kernel) technique can be used to estimate the prob-
ability density function [19]. Then parametric classifiers can
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be utilized to calculate the probability of class membership.
Another approach is to classify the samples without using prob-
ability density functions at all. Such techniques are the near-
est (k-nearest) neighbor classification techniques [14, 15, 19].
These techniques base class membership of an unknown sam-
ple on finding the training set samples with the most similar
feature vectors (nearest neighbors). The unknown sample will
then be assigned to the same class as the nearest neighbor
samples. Other nonparametric decision making techniques are
methods for obtaining adaptive decision boundaries or adaptive
discriminant functions [14, 15, 19]. Instead of using statistical
distributions and probabilities to determine class member-
ship, any linear or nonlinear discriminant function (D) can
be used to indicate if a pattern x with features (x1, . . . , xM )

belongs to a particular class. In the linear discriminant
function

D1 = w10 + w11x1 + w12x2 + · · · + w1M xM , (27.1)

(w10, . . . , w1M ) are feature weights for class 1 and the discrimi-
nant function value D1 indicates whether the pattern x belongs
to class 1. A training set of images can then be used to adapt
the weights to achieve correct classification. Discriminant func-
tions can also describe the geometrical boundaries for class
separation in feature space.

27.3.2 Other Techniques and General Remarks

Unsupervised learning techniques must be used when there is
only an unlabeled training set available. That means that none
or only a very small number of the samples are given with
information on their class membership. In this case a technique
called clustering can be used. Clustering occurs when a classifier
runs unsupervised and groupings of sample “clusters” can be
observed in feature space [14,15,40]. Those clusters are defined
by the classifier to represent a certain type of class.

Another important classification technique is the artificial
neural network approach, also discussed in Chapter 22. Neural
nets are not programmed to perform classifications but taught
to classify just like a human (or more specifically a brain) learns
how to classify. As such, they represent another class of super-
vised techniques. The parallel processing ability of the brain
and its neurons, along with the ability to recognize patterns, was
emulated by this technique [19, 29]. Neural networks have the
disadvantage of requiring very large training sets and represent
a“black box”that hides the decision process. On the other hand,
they can be used if the feature distributions are complex and
probability density functions or discriminant functions cannot
be estimated.

Classifiers based on support vector machines [12] have been
recently applied to bioarrays and cell classification [54, 55]
with good performance. Support vector classifiers are well
applicable to biological data because they can deal with a large
number of features and multiple classes.

27.3.3 Classifier Selection and Testing

The following steps provide a suggested guideline for choosing
a classifier [19]:

Step 1. Close study of training set by computing feature
histograms for each individual class.

Step 2. Choose features that seem to be most significant and
useful; if necessary, apply transforms to optimize feature
vectors.

Step 3. Create 2D or 3D scatterplots for pairs or triplets of best
single features.

Step 4. Analyze shape and location of the class groupings using
the scatterplots and determine overlap between classes.

Step 5.
a. If there is no overlap, use linear or nonlinear decision

boundaries for classification and check performance
using test set. No further classification technique is
necessary.

b. If there is some overlap but classes are easily sep-
arable, any of the previously described classifiers
described are likely to work well.

c. If there is considerable overlap or too many features,
check the feature histograms for normal distribution
and apply transforms as necessary to achieve nor-
mal distributions. There are widely available software
packages that will statistically analyze the features as
well as implement the multivariate normal classifiers.

The only reliable test of a classifier is its performance on a
relatively large and independent set of test data. The perfor-
mance should be analyzed by determining the true negative
and true positive rates of the designed classifier. It is often
displayed in a confusion matrix, such as the one shown in
Table 27.3, and sometimes also reported as sensitivity and speci-
ficity. Definitions for true positive and negative rates are given
in Equations 27.2 and 27.3, where TPR stands for true posi-
tive rate, TPs stands for number of true positives, FNs stands
for number of false negatives, TNR stands for true negative rate,
TNs stands for number of true negatives, and FPs stands for false
positives [29]:

TPR(%) = TPs/(TPs+ FNs) ∗ 100% (27.2)

TNR(%) = TNs/(TNs+ FPs) ∗ 100%. (27.3)

It is important that the test set be independent from the
training set to avoid overfitting problems. One can reduce

TABLE 27.3 Confusion matrix for cell cycle classification example

Classifier Label
G0/1 S/G2 M

Manual Label
G0/1 93.1% (2184) 2.9% (67) 4.1% (96)
S/G2 3.4% (41) 92.4% (1128) 4.3% (52)

M 0.5% (1) 0.5% (1) 98.9% (187)
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overfitting of the classifier by avoiding the temptation to sep-
arate classes perfectly using high-order decision boundary
functions. Using at least five times as many samples in the train-
ing set as there are variables in the decision-making technique
is recommended to prevent overfitting.

However, no classifier can compensate for the use of irrel-
evant or inaccurately measured features. Or, as explained in
the context of estimating error bounds in Pattern Recognition
and Image Analysis [19], if the mathematical criteria of the
classification method have been met without yielding “…an
acceptable error rate, there is no point in trying to find a
better decision making technique. The only way to improve
performance is to find better features.” This is the reason
it is important to choose mathematically correct features
that are also separable. Utilizing the best microscopy meth-
ods available and carefully selecting image resolution as well
as performing image acquisition optimal for the system’s
dynamic range of fluorescence intensities will ensure accu-
rate and repeatable measurements that will ultimately improve
separability.

27.4 Example of Feature Analysis for
Classification

To illustrate the feature evaluation and selection process,
this section includes a simple example. The images used for
the feature selection example originated from NIH 3T3 cells
cultured on slides and stained with 100ng/mL 4’,6-diamidino-
2-phenylindole dihydrochloride (DAPI) [23]. The image cyto-
metry system used to collect the cell images has been described
elsewhere in detail [28]. Image-based autofocus was performed
on every field under phase-contrast illumination, while the
nuclear images were acquired at the wavelength characteris-
tic for DAPI using a 100 W Hg vapor short arc lamp as
an epi-fluorescence light source. The microscope specimens
were imaged using a Nikon Plan Fluor 20× 0.5 NA Ph1 DLL
objective. Image segmentation was performed using contrast
enhancement, followed by adaptive thresholding as described
elsewhere [44]. Feature extraction and classification were per-
formed in MATLAB. Ground truth for classification was pro-
vided by a human observer manually assigning classes to each
cell image. The created training set contained 2361 G0/1-phase
cells, 1103 S/G2-phase cells, and 174 M-phase cells. The test
set consisted of 2347 G0/1-phase cells, 1221 S/G2-phase cells,
and 189 M-phase cells and was disjoint from the training set.
Examples of cell nuclei images for each class are provided in
Figure 27.2.

First, the feature distributions are evaluated as described
previously. To evaluate whether a feature is continuous or
discrete and what distribution it follows, a histogram is ana-
lyzed visually. Two examples are shown in the top panel
in Figure 27.3. A more quantitative approach is to create

G0/1-Phase

S/G2-Phase

M-Phase

FIGURE 27.2 Examples of cell nuclei images in the three different cell
cycle phase classes.

probability plots, where a Gaussian or normal distribution
would be indicated by a straight line. The goodness-of-fit of
the feature probability plot to a straight line quantifies the
deviation from the normal distribution. The probability plots
for two sample features are shown in the bottom panel in
Figure 27.3.

Feature separability was evaluated by analysis of the feature
distribution parameter plots and feature scatterplots, which are
shown for the two most significant features in Figure 27.4. One
can see that “Equivalent Diameter” (left)—an RST-invariant
size descriptor—separates the M-phase cells well from the
S/G2-phase cells, whereas “Integrated Intensity” (middle)—
corresponding to DNA content—clearly distinguishes the G0/1-
phase cells from the S/G2-phase cells. One can visualize the
separability achieved by combining those two features by exam-
ining the colored clouds in the scatterplot. Separability between
M-phase and G0/1-phase cells is fairly good using “Equivalent
Diameter” but can surely be improved by adding other features
to the feature set.

To select the optimal feature set, we applied the forward
stepwise selection technique described in Section 27.2.4 using
a linear discriminant function. The resulting feature set uti-
lized six features including size, shape, intensity, and chromatin
condensation cell metrics. This feature set was then applied to
the test dataset using a linear discriminant function classifier,
and the performance of the created classifier was evaluated.
The confusion matrix indicating correct classification rates is
shown in Table 27.3. As one can see, the classification accu-
racy was 93.1% for the G0/1-, 92.4% for the S/G2-, and 98.9%
for the M-phase cells. A few G0/1 and S/G2 phase cells (∼4%)
were misclassified by the linear discriminant function as M-
phase cells, but misclassification of M-phase cells was almost
negligible (1%).
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FIGURE 27.3 Histograms (top) and probability plots (bottom) for two features for cell classification. The feature on the left is Gaussian
distributed, whereas the feature on the right is significantly skewed.

27.5 Conclusion

There are many important criteria for choosing the cor-
rect feature set for classification of cell nuclei for fluores-
cence microscopy images. Many possible nuclear features were
reviewed and significant mathematical properties were dis-
cussed to help the reader determine the best possible feature
vectors for his or her specific cell classification application. It is
suggested that different combinations of complete feature sets
and intuitive feature sets in combination with the different clas-
sification methods should be compared for class separability to
determine the best set for cell-by-cell classification.

Although a tremendous amount of research has been per-
formed on automated cytology to date, many more combina-
tions of feature sets and classifiers can be tested. Particularly
for cells, it may be very important to test and monitor the
underlying error distribution of each feature to maintain con-
sistent preparation, staining, and microscopy measurement
techniques. Finding a good feature set for broad application
to automated cytology is a challenging task that will be greatly
aided by high throughput image cytometry capable of extract-
ing accurate features. The generation of publicly accessible
image and data repositories that encourage sharing of cyto-
logical images and their related information should advance
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FIGURE 27.4 Class separability plots for the two most significant features for cell cycle classification: 1 = ‘M-phase’, 2 = ‘S/G2-phase’,
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automated cell classification by providing test and training
data to researchers not only in the clinical, biomedical, and
pharmaceutical fields, but also in the computer vision com-
munity where most quantitative image analysis features and
classification methods are first developed.
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28.1 Introduction

Interpolation is a technique that pervades many applica-
tions. Interpolation is almost never the goal in itself, yet it
affects both the desired results and the ways to obtain them.
Notwithstanding its nearly universal relevance, some authors
give it less importance than it deserves, perhaps because consid-
erations on interpolation are considered paltry when compared
to the description of a more inspiring grand scheme of some
algorithm or method. Due to this indifference, it appears as
if the basic principles that underlie interpolation might be
sometimes cast aside or even misunderstood. The goal of this

chapter is to refresh the notions encountered in classical inter-
polation, as well as to introduce the reader to more general
approaches.

28.1.1 Definition

What is interpolation? Several answers coexist. One of them
defines interpolation as an informed estimate of the unknown
[1]. We prefer the following—admittedly less concise—
definition: model-based recovery of continuous data from
discrete data within a known range of abscissas. The reason
for this preference is to allow for a clearer distinction between

Copyright © 2008 by Elsevier, Inc.
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interpolation and extrapolation. The former postulates the exis-
tence of a known range where the model applies, and asserts
that the deterministically recovered continuous data are entirely
described by the discrete data, while the latter authorizes the
use of the model outside the known range, with the implicit
assumption that the model is “good” near data samples, and
possibly less good elsewhere. Finally, the three most important
hypotheses for interpolation are:

1. The underlying data are continuously defined.
2. Given data samples, it is possible to compute a data value

of the underlying continuous function at any abscissa.
3. The evaluation of the underlying continuous function

at the sampling points yields the same value as the data
themselves.

28.1.2 Scope

It follows from this definition that interpolation, in some form
or another, is needed each time the data to process is known only
by discrete samples, which is almost universally the case in the
computer era. This ubiquitous applicability is also the rule in
biomedical applications. In this chapter, we restrict the discus-
sion to the case where the discrete data are regularly sampled on
a Cartesian grid. We also restrict the discussion to exact inter-
polation, where the continuous model is required to take the
same values as the sampled data at the grid locations. Finally,
we restrict ourselves to linear methods, such that the sum of
two interpolated functions is equal to the interpolation of the
sum of the two functions. For this reason, we will only mention
Kriging [2, 3] and shape-based interpolation [4, 5] as examples
of nonlinear interpolation, and quasi-interpolation [6] as an
example of inexact interpolation, without discussing them fur-
ther. In spite of these restrictions, the range of applicability of
the interpolation methods discussed here remains large, espe-
cially in biomedical imagery, where it is very common to deal
with regularly sampled data.

28.1.3 Applications

Among biomedical applications where interpolation is quite
relevant, the most obvious are those where the goal is to modify
the sampling rate of pixels (picture elements) or voxels (volume
elements). This operation, named rescaling, is desirable when
an acquisition device—say, a scanner—has a nonhomogeneous
resolution, typically a fine within-slice resolution and a coarse
across-slice resolution. In this case, the purpose is to change
the aspect ratio of voxels in such a way that they correspond to
geometric cubes in the physical space [7, 8]. Often, the across-
slice resolution is modified to match the within-slice resolution,
which is left unchanged. This results in a volumetric representa-
tion that is easy to handle (e.g., to visualize or to rotate) because
it enjoys homogenous resolution.

A related operation is reslicing [9]. Suppose again that some
volume has a higher within-slice than across-slice resolution. In
this case, it seems natural to display the volume as a set of images
oriented parallel to the slices, which offers its most detailed pre-
sentation. Physicians may, however, be sometimes interested in
other views of the same data; for simplicity, they often request
that the volume be also displayed as a set of images oriented per-
pendicular to the slices. With respect to the physical space, these
special orientations are named axial, coronal, and sagittal, and
require at most rescaling for their proper display. Meanwhile,
interpolation is required to display any other orientation; in this
context, this is named reslicing.

The relevance of interpolation is also obvious in more
advanced visualization contexts, such as volume rendering.
There, it is common to apply a texture to the facets that com-
pose the rendered object [10]. Although textures may be given
by models (procedural textures), this is generally limited to
computer graphics applications; in biomedical rendering, it is
preferable to display a texture given by a map consisting of true
data samples. Due to the geometric operations involved (e.g.,
perspective projection), it is necessary to resample this map, and
this resampling involves interpolation. In addition, volumetric
rendering also requires the computation of gradients, which is
best done by taking the interpolation model into account [11].

A more banal use of interpolation arises with images (as
opposed to volumes). There, a physician may want both to
inspect an image at coarse scale and to study some detail at
fine scale. To this end, interpolation operations like zooming
in and out are useful [12, 13]. Related operations are (subpixel)
translation or panning, and rotation [14]. Less ordinary
transformations may involve a change of coordinates, for
example, the polar-to-Cartesian scan conversion function
that transforms acquired polar-coordinate data vectors from
an ultrasound transducer into the Cartesian raster image
needed for the display monitors. Another application of the
polar-to-Cartesian transform arises in the three-dimensional
reconstruction of icosahedral viruses [15].

In general, almost every geometric transformation requires
that interpolation be performed on an image or a volume. In
biomedical imaging, this is particularly true in the context of
registration, where an image needs to be translated, rotated,
scaled, warped, or otherwise deformed before it can match a
reference image or an atlas [16]. Obviously, the quality of the
interpolation process has a large influence on the quality of the
registration.

The data model associated with interpolation also affects
algorithmic considerations. For example, the strategy that goes
by the name of multiresolution proposes to solve a problem first
at the coarse scale of an image pyramid, and then to iteratively
propagate the solution at the next finer scale, until the problem
has been solved at the finest scale. In this context, it is desirable
to have a framework where the interpolation model is consistent
with the model upon which the image pyramid is based. The
assurance that only a minimal amount of work is needed at
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each new scale for refining the solution is present only when
the interpolation model is coherent with the multiresolution
model [17].

Tomographic reconstruction by (filtered) back-projection
forms another class of algorithms that rely on interpolation
to work properly. The principle is as follows: several X-ray
images of a real-world volume are acquired, with a different
relative orientation for each image. After this physical acquisi-
tion stage, one is left with X-ray images (projections) of known
orientation, given by data samples. The goal is to reconstruct
a numeric representation of the volume from these samples
(inverse Radon transform), and the means is to surmise each
voxel value from its pooled trace on the several projections.
Interpolation is necessary because the trace of a given voxel
does not correspond in general to the exact location of pix-
els in the projection images. As a variant, some authors have
proposed to perform reconstruction with an iterative approach
that requires the direct projection of the volume (as opposed to
its back-projection) [18]. In this second approach, the volume
itself is oriented by interpolation, whereas in the first approach
the volume is fixed and is not interpolated at all, but the projec-
tions are.

Interpolation is so intimately associated with its correspond-
ing data model that, even when no resampling operation seems
to be involved, it nevertheless contributes under the guise of
its data model. For example, we have defined interpolation as
the link between the discrete world and the continuous one. It
follows that the process of data differentiation (calculating the
data derivatives), which is defined in the continuous world, can
be interpreted in the discrete world only if one takes the interpo-
lation model into consideration. Since derivatives or gradients
are at the heart of many algorithms (e.g., optimizer, edge detec-
tion, contrast enhancement), the design of gradient operators
that are consistent with the interpolation model [19, 20] should
be an essential consideration in this context.

28.2 Classical Interpolation

Although many ways have been designed through the ages
to perform interpolation [21], we concentrate here on linear
algorithms of the form

f (x) =
∑
k∈Z q

fk ϕint(x − k) ∀x = (
x1, x2, . . . , xq

) ∈ Rq ,

(28.1)

where an interpolated value f (x) at some (perhaps noninteger)
coordinate x in a space of dimension q is expressed as a linear
combination of the samples fk evaluated at integer coordinates
k = (

k1, k2, . . . , kq

) ∈ Z q , the weights being given by the values
ϕint(x − k). Typical values of the space dimension correspond
to bidimensional images (2D), with q = 2, and tridimensional
volumes (3D), with q = 3. Without loss of generality, we assume

that the regular sampling step is unity. Since we restrict this
discussion to exact interpolation, we ask the function ϕint to
satisfy the interpolation property; as we shall soon see, it must
vanish for all integer arguments except at the origin, where it
must take a unit value. A classical example of the synthesis
function ϕint is the sinc function, in which case all synthesized
functions are band-limited.

As expressed in Equation 28.1, the summation is performed
over all integer coordinates k ∈ Z q , covering the whole of the
Cartesian grid of sampling locations, irrespective of whether or
not there actually exists a physically acquired sample fk0 at some
specific k0. In practice, however, the number of known samples
is always finite; thus, in order to satisfy the formal convention in
Equation 28.1, we have to extend this finite number to infinity
by setting suitable boundary conditions over the interpolated
function, for example, using mirror symmetries (see Appendix).
Now that the value of any sample fk is defined (that is, either
measured or determined), we can carry the summation all the
way to—and from—infinity.

The only remaining freedom lies in the choice of the syn-
thesis function ϕint. This restriction is but apparent. Numerous
candidates have been proposed: Appledorn [22], B-spline [23],
Dodgson [24], Gauss, Hermite, Keys [25, 26], Lagrange, lin-
ear, Newton, NURBS [27], o-Moms [28], Rom-Catmull, sinc,
Schaum [29], Thiele, and more. In addition to them, a large
palette of apodization windows have been proposed for the
practical realization of the sinc function, which at first sight is
the most natural function for interpolation. Their naming con-
vention sounds like a pantheon of mathematicians [30]: Abel,
Barcilon-Temes, Bartlet, Blackman, Blackman-Harris, Bochner,
Bohman, Cauchy, Dirichlet, Dolph-Chebyshev, Fejér, Gaussian,
Hamming, Hanning, Hanning-Poisson, Jackson, Kaiser-Bessel,
Parzen, Poisson, Riemann, Riesz, Tukey, de la Vallée-Poussin,
Weierstrass, and more.

28.2.1 Interpolation Constraint

Consider the evaluation of Equation 28.1 in the specific case
when all coordinates of x = k0 are integer:

fk0 =
∑
k∈Z q

fk ϕint(k0 − k) ∀k0 ∈ Z q . (28.2)

This equation is known as the interpolation constraint. Perhaps
the single most important point of this whole chapter about
interpolation is to recognize that Equation 28.2 is a discrete
convolution. Then, we can rewrite Equation 28.2 as

fk0 =
(

f ∗ p
)

k0
∀k0 ∈ Z q , (28.3)

where we have introduced the notation pk = ϕint(k) to put a
heavy emphasis on the fact that we discuss convolution only
between sequences that have the crucial property of being
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discrete. By contrast, Equation 28.1 is not a convolution in this
sense, because there ϕint is evaluated at possibly noninteger val-
ues. From now on, we shall use fk to describe the samples of
f , and pk to describe the values taken by ϕint for integer argu-
ment. Clearly, Equation 28.2 is equivalent to pk = δk , where
δk is the Kronecker symbol that is characterized by a central
value δ0 = 1, and by zero values everywhere else. This function
of integer argument takes the role of the neutral element for a
discrete convolution.

28.3 Generalized Interpolation

As an alternative algorithm, let us now consider the form

f (x) =
∑
k∈Z q

ck ϕ(x − k) ∀x ∈ Rq . (28.4)

The crucial difference between the classical formulation in
Equation 28.1 and the generalized formulation in Equation 28.4
is the introduction of coefficients ck in place of the sam-
ple values fk . This offers new possibilities, in the sense that
interpolation can now be carried out in two separate steps:
first, the determination of coefficients ck from the samples fk ,
and second, the determination of desired values f (x) from
the coefficients ck . The benefit of this separation is to allow
for an extended choice of synthesis functions, some with
better properties than those available in the restricted clas-
sical case where ck = fk . The apparent drawback is the need
for an additional step. We shall see later that this draw-
back is largely compensated by the gain in quality resulting
from the larger selection of synthesis functions to choose
from.

In the present approach, the synthesis function is not
necessarily finite-support, nor is it required to satisfy the inter-
polation property; in return, it becomes essential to assign a
specific value to those samples fk that are unknown because
they are out of the range of our data. In practice, this assign-
ment is implicit, and the unknown data are usually assumed to
be mirrored from the known data.

28.3.1 Determination of the Coefficients

Suppose we want to enforce a condition akin to Equation 28.2,
in the context of generalized interpolation. Considering again
only integer arguments x = k0, we write

fk0 =
∑
k∈Z q

ck pk0−k ∀k0 ∈ Z q , (28.5)

where pk = ϕ(k). Given some function ϕ that is known a
priori, this expression is nothing but a linear system of equa-
tions in terms of the unknown coefficients ck . According to
Equation 28.5, the dimension of this system is infinite, both

with respect to the number of equations (because all argu-
ments k0 ∈ Z q are considered), and with respect to the number
of unknowns (because all indexes k ∈ Z q are considered in the
sum). One way to reduce this system to a manageable size is
to remember that the number of known samples k0 is finite
in practice (which limits the number of equations), and at the
same time to constrain ϕ to be finite-support (which limits
the number of unknowns). We are now faced with a problem
of the form c = P−1 f , and a large part of the literature (e.g.,
[31]) is devoted to the development of efficient techniques
for inverting the matrix P in the context of specific synthesis
functions ϕ.

Another strategy arises once it is recognized that Equa-
tion 28.5 is again a discrete convolution equation that can be
written as

fk0 =
(
c ∗ p

)
k0

∀k0 ∈ Z q . (28.6)

It directly follows that the infinite sequence of coefficients {ck}
can be obtained by convolving the infinite sequence

{
fk

}
by the

convolution-inverse
(
p
)−1

. The latter is simply a sequence of

numbers
{(

p
)−1

k

}
such that

(
p ∗ (p)−1

)
k
= δk . This sequence

is uniquely defined and does generally exist in the cases of inter-

est. Convolving both sides of Equation 28.6 by
(
p
)−1

k
, we get

that

ck0 =
((

p
)−1 ∗ f

)
k0

∀k0 ∈ Z q . (28.7)

Since discrete convolution is nothing but a digital filtering
operation, this suggests that discrete filtering can be an alter-
native solution to matrix inversion for the determination of
the sequence of coefficients {ck} needed to enforce the desir-
able constraint (Equation 28.5). A very efficient algorithm for
performing this computation for an important class of syn-
thesis functions can be found in [19, 20]; its computational
cost for the popular cubic B-spline is two additions and three
multiplications per produced coefficient.

28.3.2 Reconciliation

Comparing Equation 28.1 with Equation 28.4, it appears that
classical interpolation is a special case of generalized interpola-
tion with ck = fk andϕ = ϕint. We show now that the converse is
also true, since it is possible to interpret the generalized interpo-
lation f (x) =∑

ck ϕ(x − k) as a case of classical interpolation
f (x) =∑

fk ϕint(x − k). For that, we have to determine the
interpolant ϕint from its noninterpolating counterpart ϕ. From
Equation 28.4 and Equation 28.7, we write

f (x) =
∑

k1∈Z q

((
p
)−1 ∗ f

)
k1

ϕ(x − k1)

=
∑

k1∈Z q

∑
k2∈Z q

(
p
)−1

k2
fk1−k2 ϕ(x − k1).
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We finally determine that the interpolant ϕint that is hidden
behind a noninterpolating ϕ is

ϕint(x) =
∑
k∈Z q

(
p
)−1

k
ϕ(x − k). (28.8)

It is crucial to understand that this equivalence allows the
exact and efficient handling of an infinite-support interpolant
ϕint by performing operations only with a finite-support, non-
interpolating function ϕ. The freedom to select a synthesis
function is much larger after the interpolation constraint has
been removed; this opens up the use of synthesis functions ϕ
that offer much better performance (for a given computational
cost) than any explicit interpolant ϕint.

28.4 Terminology and Other Pitfalls

Since the need for interpolation arises so often in practice,
its droning use makes it look like a simple operation. This is
deceiving, and the fact that the interpolation terminology is so
perplexing hints at hidden difficulties. Let us attempt to befud-
dle the reader: the cubic B-spline is a piecewise polynomial
function of degree 3. It does not correspond to what is generally
understood as the cubic kernel, the latter being a Keys’ function
made of piecewise polynomials of degree 3 (like the cubic B-
spline) and of maximal order 3 (contrary to the cubic B-spline,
for which the order is 4). No B-spline of sufficient degree should
ever be used as an interpolant ϕint, but a high-degree B-spline
makes for a high-quality synthesis function ϕ. The Appledorn
function of degree 4 is no polynomial and has order zero. There
is no degree that would be associated to the sinc function, but
its order is infinite. Any polynomial of a given degree can be
represented by splines of the same degree, but, when the spline
degree increases to infinity, the cardinal spline tends to the sinc
function, which can at best represent a polynomial of degree
zero. In order to respect isotropy in two dimensions, we expect
that the synthesis function itself must be endowed with rota-
tional symmetry; yet, the best possible function (sinc) is not.
Kriging is known to be the optimal unbiased linear interpola-
tor, yet it does not belong to the category of linear systems; an
example of a linear system is the Dodgson synthesis function
made of quadratic polynomials. Bilinear transformation and
bilinear interpolation have nothing in common. Your every-
day image is low-pass, yet its most important features are its
edges. And finally, despite more than 10 years of righteous
claims to the contrary [32], some authors (who deserve no
citation) persist in believing that every synthesis function ϕ

built to match Equation 28.4 can be used in Equation 28.1
as well, in the place of ϕint. Claims that the use of a cubic
B-spline blurs data, which are wrongly made in a great major-
ity of image processing textbooks, are a typical product of this
misunderstanding.

Confused?
We hope that the definitions of order and degree, given later

in this paper, will help to clarify this mess. We also hope to make
clear when to use Equation 28.1 and when to use the generalized
approach of Equation 28.4.

28.5 Artifacts

In most clinical situations, data are available once only, at a given
resolution (or sampling step). Thus, there exist no absolute
truths regarding the value of f between its samples fk ; more-
over, there is no rigorous way to check whether an interpolation
model corresponds to the physical reality without introducing
at least some assumptions. For these reasons, it is necessary to
resort to mathematical analysis for the assessment of the quality
of interpolation. The general principle is to define an interpo-
lated function fh as given by a set of samples that are h units
apart and that satisfy

fh(x) =
∑
k∈Z q

ck ϕ(
1
h x − k) ∀x ∈ Rq ,

with the interpolation constraint that fh(hk) = f (hk) for all
k ∈ Z q . The difference between fh(x) and f (x) for all x ∈ Rq

will then describe how fast the interpolated function fh con-
verges to the true function f when the samples that define fh

become more and more dense, or, in other words, when the
sampling step h becomes smaller and smaller. When this sam-
pling step is unity, we are in the conditions of Equation 28.4. The
details of the mathematical analysis address issues such as how
to measure the error between fh and f , and how to restrict—if
desired—the class of admissible functions f . Sometimes, this
mathematical analysis allows the determination of a synthe-
sis function with properties that are optimal in a given sense
[28]. A less rigorous approach is to perform experiments that
involve interpolation and resampling, often followed by visual
judgment. Some effects associated with interpolation have been
named according to the results of such visual experiments; the
most perceptible effects are called ringing, aliasing, blocking,
and blurring.

28.5.1 Resampling

Resampling by interpolation is generally understood as the
following procedure:

1. Take a set of discrete data fk .
2. Build by interpolation a continuous function f .
3. Perform a geometric transformation T that yields

f (T (x)) =∑
ck1 ϕ(T (x)− k1).

4. Summarize the continuous function f (T (x)) by a set of
discrete data samples f (T (k2)).

Often, the geometric transformation results in a change of
sampling rate. Irrespective of whether this change is global or
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only local, it produces a continuous function f (T (x)) that can-
not be represented exactly by the specific interpolation model
that was used to build f from fk . In general, given an arbi-
trary transformation T , no set of coefficients ck can be found
for expressing f (T (x)) as an exact linear combination of
shifted synthesis functions. By the resampling operation, what
is reconstructed instead is the function g (x) �= f (T (x)) that
satisfies

g (x) =
∑

k2∈Z q

f (T (k2)) ϕint(x − k2) ∀x ∈ Rq ,

where g (x) and f (T (x)) take the same value at the sample
locations x = k2, but not necessarily elsewhere.

It follows that the resulting continuous function g that could
be reconstructed is only an approximation of f (T (x)). Several
approaches can be used to minimize the approximation error
(e.g., least-squares error over a continuous range of abscissa
[33]). Since the result is only an approximation, one should
expect artifacts. Those have been classified in the four broad
categories called ringing, aliasing, blocking, and blurring.

28.5.2 Ringing

Ringing arises because good synthesis functions are oscillat-
ing. In fact, ringing is less of an artifact—in the sense that
it would correspond to a deterioration of the data—than the
consequence of the choice of a model: it may sometimes hap-
pen (but this is not the rule) that data are represented (e.g.,
magnified or zoomed) in such a way that the representation,
although appearing to be plagued with ringing “artifacts,” is
nonetheless exact, and allows the perfect recovery of the initial
samples. Ringing can also be highlighted by translating a sig-
nal by a noninteger amount where there is a localized domain
of constant samples bordered by sharp edges. After interpola-
tion, translation, and resampling, the new samples do no more
exhibit a constant value over the translated domain, but they
tend to oscillate. This is known as the Gibbs effect; its percep-
tual counterpart is the Mach bands phenomena. Figure 28.1
shows an occurrence of ringing in the outlined area due to the
horizontal translation of a high-contrast image by half a pixel.

28.5.3 Aliasing

Unlike ringing, aliasing is a true artifact because it is never pos-
sible to perform exact recovery of the initial data from their
aliased version. Aliasing is related to the discrete nature of the
samples. When it is desired to represent a coarser version of
the data using fewer samples, the optimal procedure is first
to create a precise representation of the coarse data that uses
every available sample, and then only to downsample this coarse
representation. In some sense, aliasing appears when this proce-
dure is not followed, or when there is a mismatch between the

coarseness of the intermediate representation and the degree
of downsampling (not coarse enough or too much downsam-
pling). Typical visual signatures of aliasing are Moiré effects and
the loss of texture. We illustrate aliasing in Figure 28.2.

28.5.4 Blocking

Blocking arises when the support of the interpolant is finite.
In this case, the influence of any given pixel is limited to
its surroundings, and it is sometimes possible to discern the
boundary of this influence zone. Synthesis functions with
sharp transitions, such as those in use with the method
named nearest-neighbor interpolation, exacerbate this effect.
Figure 28.3 presents a typical case of blocking.

28.5.5 Blurring

Finally, blurring is related to aliasing in the sense that it is also
a mismatch between an intermediate data representation and
their final downsampled or oversampled version. In this case,
the mismatch is such that the intermediate data are too coarse
for the task. This results in an image that appears to be out
of focus. When the filter associated with the synthesis func-
tion ϕ or ϕint is very different from an ideal filter, aliasing and
blurring can occur simultaneously (they usually do). Note that,
both for aliasing and blurring considerations, the intermediate
representation need not be explicitly available or computed. To
highlight blurring, it is enough to iterate the same interpolation
operation several times, thus effectively magnifying the effect.
Figure 28.4 has been obtained by the compound rotation of an
image by 36 steps of 10◦ each.

28.6 Desirable Properties

The quality of geometric operations on images or volumes is
very relevant in the context of biomedical data analysis. For
example, the comparison of images taken with two different
conditions requires that the geometric operation that aligns
one with the other be high quality in order to allow a detailed
analysis of their differences. That is to say, it is not enough that
the geometric alignment be correctly specified; it is also crucial
that it be correctly performed. Typical instances of that class
of problems involve functional magnetic resonance imaging
(f MRI), where the relative amplitude of the difference between
two conditions (e.g., active versus inactive) is very small. High
quality (fidelity to the original) is also a desirable trait in com-
mon display operations such as the reslicing of anisotropic data
or the change of scale and orientation of many pictorial rep-
resentations. Typically, a physician will request that rotating or
zooming (magnifying) a region of interest of an image intro-
duce no spurious features, while keeping all the minute details
he or she might be interested in.
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FIGURE 28.1 Ringing. Especially with high-quality interpolation, oscillations may appear after horizontal translation by half a pixel.
(left ) Original MRI. (Right ) Translated MRI.

The price to pay for high-quality interpolation is computa-
tion time. For this reason, it is important to select a synthesis
function that offers the best trade-off. There are several aspects
to consider. The most important deals with the support of ϕint

or ϕ, which is a measure of the interval in which ϕ(x) �= 0. The
larger the support, the more the computation time. Another
important aspect is the quality of approximation inherent in
the synthesis function. Often, the larger the support, the better
the quality; but it should be noted that the quality of synthe-
sis functions with identical support may vary. Other aspects
involve the ease of analytical manipulation (when useful), the
ease of computation, and the efficiency of the determination of
the coefficients ck when ϕ is used instead of ϕint.

28.6.1 Separability

Consider Equation 28.1 or 28.4 in multidimensions, with q> 1.
To simplify the situation, we restrict the interpolant ϕint or
the noninterpolating ϕ to be finite-support. Without loss of

generality, we assume that this support is of size Sq (e.g., a
square with side S in two dimensions, a cube in three dimen-
sions). This means that the equivalent of 1D interpolation with
a synthesis function requiring, say, 5 evaluations, would require
as many as 125 function evaluations in 3D. Figure 28.5 shows
what happens in the intermediate 2D situation. This large com-
putational burden can be reduced only by imposing restrictions
on ϕ. An easy and convenient way is to ask that the synthesis
function be separable, as in

ϕsep(x) =
q∏

i=1

ϕ(xi) ∀x = (
x1, x2, . . . , xq

) ∈ Rq .

The very beneficial consequence of this restriction is that the
data can be processed in a separable fashion, line-by-line,
column-by-column, and so forth. In particular, the deter-
mination of the interpolation coefficients needed for gen-
eralized interpolation is separable, too, because the form
(Equation 28.4) is linear. In the previous example, the 53 = 125
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FIGURE 28.2 Aliasing. (Top) Low quality introduces a lot of aliasing. (Bottom) Better quality results in less aliasing. (Both) At too coarse scale,
the structural appearance of the bundles of cells is lost.

FIGURE 28.3 Blocking. After low-quality magnification, the highlighted area (left ) appears pixellated (center). Better-quality magnification
results in less pixellation (right ).
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FIGURE 28.4 Blurring. Iterated rotation may lose many small-scale structures when the quality of interpolation is insufficient (center). Better
quality results in less loss (right ). (left ) Original.

evaluations needed in 3D reduce to 3× 5 = 15 evaluations of
a 1D function when it is separable. We show in Figure 28.5 how
the 52 = 25 evaluations needed in the 2D nonseparable case
become 2× 5 = 10 in the separable case. For the rest of this
chapter, we concentrate on separable synthesis functions; we
describe them and analyze them in one dimension, and we use
the preceding expression to implement interpolation efficiently
in a multidimensional context.

28.6.2 Symmetry

Preserving spatial relations is a crucial issue for any imag-
ing system. Since interpolation can be interpreted as the
filtering (or equivalently, convolution) operation proposed in
Equation 28.3, it is important that the phase response of the
involved filter does not result in any phase degradation. This
consideration translates into the well-known and desirable
property of symmetry such that ϕ(x) = ϕ(−x) or ϕint(x) =
ϕint(−x). Symmetry is satisfied by all synthesis functions con-
sidered here, at the possible minor and very localized exception
of nearest-neighbor interpolation. Symmetry implies that the
only coefficients ck that are needed in Figure 28.5 are those that
are closest to the coordinates x corresponding to the computa-
tion of ϕ(x − k). In the specific case of Figure 28.5, there are 25
of them, both for a separable ϕsep and a nonseparable ϕ.

28.6.3 Partition of Unity

How can we assess the inherent quality of a given synthesis
function? We answer this question gradually, developing it more
in the next section, and we proceed at first more by intuition
than by a rigorous analysis. Let us consider that the discrete
sequence of data we want to interpolate is made of samples
that all take exactly the same value fk = f0 for any k ∈ Z q . In
this particular case, we intuitively expect that the interpolated

continuous function f should also take a constant value (prefer-
ably the same f0) for all arguments x ∈ Rq . This desirable
property is called the reproduction of the constant. Its relevance
is particularly high in image processing because the spectrum
of images is very often concentrated toward low frequencies.
From Equation 28.1, we derive

1 =
∑
k∈Z q

ϕint(x − k) ∀x ∈ Rq .

This last equation is also known as the partition of unity.
It is equivalent to impose that its Fourier transform satisfies
some sort of interpolation property in the Fourier domain (see
Appendix). The reproduction of the constant is also desirable
for a noninterpolating synthesis function ϕ, which is equivalent
to asking that it satisfies the partition of unity condition, too.
To see why, we remember that the set of coefficients ck used
in the reconstruction equation (Equation 28.4) is obtained by
digital filtering of the sequence of samples

{
. . . , f0, f0, f0, . . .

}
.

Since the frequency representation of this sequence is exclu-
sively concentrated at the origin, filtering will simply result
in another sequence of coefficients {. . . , c0, c0, c0, . . .} that also
have a constant value. We have

1

c0
=

∑
k∈Z q

ϕ(x − k) ∀x ∈ Rq .

It is common practice to impose that ϕ be given in a normalized
(or scaled) form, such that f0 = 1 implies that c0 = 1.

28.7 Approximation Theory

So far, we have only two types of synthesis functions: those
that do reproduce the constant and those that do not. We
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FIGURE 28.5 (Left ) Nonseparable 2D interpolation with a square support of side 5 (25 function evaluations). Large central black dot: coordinate
x at which f (x) =∑

ckϕ(x − k) is computed. All black dots: coordinates x corresponding to the computation of ϕ(x − k). (Right ) Separable
2D interpolation (10 function evaluations). Large central black dot: coordinate x where the value f (x) =∑

(
∑

ck1,k2
ϕ(x1 − k1))ϕ(x2 − k2) is

computed. All black dots: coordinates xi corresponding to the computation of ϕ(xi − ki). (Left and Right ) The white and gray dots give the
integer coordinates k where the coefficients ck are defined. Gray dots: coefficients ck that contribute to the interpolation.

now introduce more categories. First, we perform the following
experiment:

1. Take some arbitrary square-integrable function f and
select a sampling step h > 0.

2. Create a set of samples f (hk).
3. From this sequence, using either Equation 28.1 or 28.4,

build an interpolated function fh(x) =∑
ck ϕ(

1
h x − k).

4. Compare f and fh using some norm, for example, the
mean-square (or L2) norm

ε2(h) = ∥∥f − fh

∥∥2

L2
=
∫ ∞

−∞
· · ·

∫ ∞

−∞

(
f (x)− fh(x)

)2

× dx1 · · · dxq .

When the sampling step h gets smaller, more details of f can
be captured; it is then reasonable to ask that the approximation
error ε(h) gets smaller, too. The fundamental questions are:
how much smaller, what influence has the free choice of the
arbitrary function f , and what role does the synthesis function
ϕ play that is used to build fh?

We respond to these questions by introducing a formula
for predicting the approximation error in the Fourier domain
[34–36]

η2(h) = 1

2π

∫ ∞

−∞
· · ·

∫ ∞

−∞

∣∣∣f̂ (ω)∣∣∣2 E(ωh) dω1 · · · dωq ,

(28.9)

where f̂ is the Fourier transform of the arbitrary function f (see
Appendix), and where E is an error kernel that depends on the
synthesis function only, and that is given by

E(ω) =
⎛
⎝
∣∣∣∣∣∣
∑
k∈Z

q∗

ϕ̂(ω + 2π k)

∣∣∣∣∣∣
2

+
∑
k∈Z

q∗

∣∣ϕ̂(ω + 2π k)
∣∣2
⎞
⎠

/∣∣∣∣∣
∑
k∈Z q

ϕ̂(ω + 2π k)

∣∣∣∣∣
2

. (28.10)

Here, Z represents the set of non-negative integers and Z∗
represents the set of positive integers. The equivalence ε = η
holds for bandlimited functions. For those functions that do
not belong to that class, the estimated error η(h) must be
understood as the average error over all possible sets of sam-
ples f (h k +�), where � = (

�1,�2, . . . ,�q

)
is some phase

term with �i ∈ [0, h]. When q = 1, for bandlimited functions
f and when the synthesis functionϕint is interpolating, this error
kernel reduces to the kernel proposed in [37].

On the face of Equation 28.9, a decrease in the sampling step
h will result in a decrease of the argument of E . Since the func-
tion f is arbitrary, and since it is desired that the approximation
error ε(h) vanishes for a vanishing sampling step h, the error
kernel itself must also vanish at the origin. It is thus interesting
to develop E in a Maclaurin series around the origin (for sim-
plicity, we consider only the 1D case here). Since this function
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is even (i.e., symmetric), only even factors need be considered,
and the Maclaurin development is

E(ω) =
∑
n∈N

E (2n)(0)

(2n)!
ω2n ,

where E (2n) is the (2n)th derivative of the error kernel. By defi-
nition, the order of differentiation L for which E (2L)(0) �= 0 and
E(2n)(0) = 0 ∀n ∈ [0, L−1] is called the order of approxima-
tion of ϕ. Thus, for a synthesis function of order L, the infinite
Maclaurin expansion is given by

E(ω) = (
Cϕ

)2
ω2L +

( ∞∑
n=L+1

E (2n)(0)

(2n)!
ω2n

)
,

where the constant Cϕ depends on ϕ only. When the sampling
step is small enough, we can neglect the high-order terms of
this expansion. The introduction of the resulting expression of
E into Equation 28.9 yields

η2(h) = (
Cϕ

)2
h2L

(
1

2π

∫ ∞

−∞

∣∣∣ωL f̂ (ω)
∣∣∣2 dω

)
as h → 0,

where the parenthesized expression is recognized as being the
norm of the Lth derivative of the smooth function f we started
from.

Finally, for a synthesis function with order of approximation
L, we get that

η(h) = ∥∥f − fh

∥∥
L2
= Cϕ hL

∥∥f (L)
∥∥

L2
as h → 0. (28.11)

This result expresses that we can associate with any ϕ a number
L and a constant Cϕ such that the error of approximation ε
predicted by η decreases like hL , when h is sufficiently small.
Since this decrease can be described as being O(hL), the number
L is called the order of approximation of the synthesis function
ϕ. This process happens without regard to the specific function
f that is first being sampled with step h, and then reincarnated
as fh .

• Thesis: This analysis is relevant to image processing
because most images have an essentially low-pass char-
acteristic, which is equivalent to say that they are over-
sampled, or in other words, that the sampling step h is
small with respect to the spatial scale over which image
variations occur. In this sense, the number L that measures
the order of approximation is a relevant parameter.

• Antithesis: Is the order of approximation really impor-
tant? After all, the effect of a high exponent L kicks in
only when the sampling step h gets small enough; but, at
the same time, common sense dictates that the amount
of data to process grows like h−1. The latter consideration
(efficiency, large h) often wins over the former (quality,

small h)when it comes to settle a compromise. Moreover,
the important features of an image reside in its edges
which, by definition, are very localized, thus essentially
high-pass. Most of the time anyway, there is no debate at
all because h is simply imposed by the acquisition hard-
ware. Thus, the relevance of L is moot when efficiency
considerations lead to critical sampling.

• Synthesis: Equations 28.9 and 28.10 describe the evo-
lution of the error for every possible sampling step h;
thus, the error kernel E is a key element when it comes
to the comparison of synthesis functions, not only near
the origin, but over the whole Fourier axis. In a certain
mathematical sense, the error kernel E can be under-
stood as a way to predict the approximation error when
ϕ is used to interpolate a sampled version of the infinite-
energy function f (x) = sin(ω x). Being a single number,
but being also loaded with relevant meaning, the approx-
imation order is a convenient summary of this whole
curve.

28.7.1 Strang-Fix Equivalence

Suppose we are interested in just the approximation order L of
a synthesis function ϕ, without caring much about the details
of E . In this case, the explicit computation of Equation 28.10
is not necessary. Instead, Strang and Fix [38] have proposed a
series of conditions that are equivalent to Equation 28.11. The
interest of these equivalent conditions is that they can be readily
tested. They are valid for all synthesis functions with sufficient
decay; sinc is one of the very rare cases where these conditions
are not satisfied. We mention three equivalent 1D Strang-Fix
conditions as:

1. Lth order zeros in the Fourier domain{
ϕ̂(0) = 1

ϕ̂(n)(2πk) = 0 k ∈ Z∗ n ∈ [0, L − 1] .

2. Reproduction of all monomials of degree n ≤ N = L − 1

∀n ∈ [0, N ] ∃
{
. . . , c (n)−1 , c (n)0 , c (n)1 , . . .

}
|
∑
k∈Z

c (n)k ϕ(x − k) = xn .

3. Discrete moments∑
k∈Z

(x − k)n ϕ(x − k) = μn ∀n ∈ [0, L − 1],

where μn depends on n only.

Under mild hypothesis, any one of these conditions is
equivalent to ε(h) ≤ Const × hL

∥∥f (L)
∥∥

L2
.
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These three equivalences are given in terms of a general syn-
thesis function ϕ that may or may not be interpolating. But
because Equivalence (1) is expressed in the Fourier domain,
and since Fourier is a linear transformation, it stands to reason
that any sum

∑
wkϕ(x − k) of weighted and shifted syn-

thesis functions ϕ would satisfy the Strang-Fix equivalences
too, provided the weights wk are constant—in the sense that
they do not depend on the argument x of ϕ(x). In par-
ticular, we have seen in Equation 28.8 that the interpolant
ϕint that is hidden behind any noninterpolating ϕ takes just
this form; therefore, we finally observe that, if a noninter-
polating synthesis function ϕ satisfies the Strang-Fix equiva-
lences up to some order L, then so does its associated inter-
polant ϕint.

The existence of ringing is a necessary—though
unwelcome—consequence of the Strang-Fix equivalences, as
soon as the order of approximation grows enough to satisfy
L > 2. To see it, we focus on interpolants ϕint since we know
from the previous considerations that conclusions drawn
on interpolants will be representative of noninterpolating
synthesis functions as well. We then consider Equivalence
(3) with L = 3 and n = L − 1 = 2. Setting x = k0 ∈ Z , we
write that

∑
(k0 − k)2 ϕint(k0 − k) = μ2 = 0. Since μ2 ought

not to depend on x if the synthesis function is to possess an
order of approximation L > 2, we conclude that the equality∑
(x − k)2 ϕint(x − k) = 0 has to be true for any x ∈ R.

But this can happen only if some terms in the sum have
compensating signs. From 0 ≤ (x − k)2, we conclude that
ϕint necessarily oscillates when it is endowed with an order of
approximation L > 2. This is an unavoidable source of ringing
for any high-quality interpolation.

28.7.2 Reproduction of the Polynomials

We have already discussed the fact that the approximation order
L is relevant only when the data are oversampled, and we men-
tioned that this is indeed broadly true for typical images. The
new light brought by the Strang-Fix theory is that it is equiv-
alent to think in terms of frequency contents or in terms of
polynomials—apart from some technical details. Intuitively, it
is reasonable to think that, when the data are smooth at scale h,
we can model it by polynomials without introducing too much
error. This has been formalized as the Weierstrass approxima-
tion theorem. What the Strang-Fix theory tells us is that there
exists a precise relation between the order of approximation
and the maximal degree of the polynomials that the synthesis
function can reproduce exactly. For example, we started this
discussion on the theoretical assessment of the quality of any
synthesis function by investigating the reproduction of the con-
stant. We have now completed a full circle and are back to the
reproduction of polynomials, of which the constant is but a
particular case.

28.7.3 Regularity

Consider sampling a smooth function f . From the samples
f (h k), and by interpolation, reconstruct a function fh that is
an approximation of f . Since f is smooth, intuition tells us
that it is desirable that fh be smooth as well; in turn, intuition
dictates that the only way to ensure this smoothness is that
ϕ be smooth, too. These considerations could lead one to the
following syllogism:

1. The order of approximation L requires the reproduction
of monomials of degree L − 1.

2. Monomials of degree N = L − 1 are functions that are at
least N -times differentiable.

3. An N -times differentiable synthesis function is required
to reach the Lth order of approximation.

Intuition is sometimes misleading.
A function that is at least n-times continuously differen-

tiable is said to have regularity Cn . A continuous but otherwise
nondifferentiable function is labeled C0, while a discontinuous
function is said to possess no regularity. Some authors insist
that the regularity of the synthesis function is an important
issue [40]. This may be true when the differentiation of fh is
needed, but differentiating data more than, say, once or twice, is
uncommon in everyday applications. Often, at most the gradi-
ent of an image is needed; thus, it is not really necessary to limit
the choice of synthesis functions to those that have a high degree
of regularity. In fact, the conclusion of the preceding syllogism is
incorrect, and a synthesis function does not need to be N -times
differentiable to have an N + 1 order of approximation.

For example, Schaum [29] has proposed a family of inter-
polants inspired by Lagrangian interpolation. A member of this
family is shown in Figure 28.6; it is made of pieces of quadratic
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FIGURE 28.6 Interpolant without regularity but with third-order
approximation.
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polynomials patched together. Despite the fact that this func-
tion is discontinuous, it possesses an order of approximation
L = 3. Thus, a linear sum of those shifted functions with well-
chosen coefficients is able to exactly reproduce a constant, a
ramp, and a parabola as well. In this specific case, the synthesis
function is interpolating; thus, we have

∀k ∈ Z

⎧⎨
⎩

fk = 1 ⇒ f (x) = 1 ∀x ∈ R
fk = k ⇒ f (x) = x ∀x ∈ R
fk = k2 ⇒ f (x) = x2 ∀x ∈ R

.

28.7.4 Approximation Kernel Example

Comparing the sinc to the nearest-neighbor interpolation pro-
vides a good test case to grasp the predictive power of E . Since
the Fourier transform of the sinc function is simply a rectan-
gular function that takes a unit value in [−π,π] and is zero
elsewhere, the denominator in Equation 28.10 is unity for any
frequency ω (because a single term of the main domain con-
tributes to the infinite sum). On the other hand, since the
summation is performed over non-null integers k ∈ Z∗, there is
no contributing term on the numerator side and E is zero in the
main domain [−π,π]. By a similar reasoning, it takes the value
2 outside the main domain. This corresponds to the well-known
fact that a sinc synthesis function can represent a band-limited
function with no error, and at the same time suffers a lot from
aliasing when the function is not band-limited.

Nearest-neighbor interpolation is characterized by a rect-
angular synthesis function, the Fourier transform of which is
a sinc function (this situation is the converse of the previ-
ous case). Unfortunately, expression (Equation 28.10) is now
less manageable. We can nevertheless plot a numeric estimate
of Equation 28.10. The resulting approximation kernels are
represented in Figure 28.7.

At the origin, whenω = 0, it is apparent from Figure 28.7 that
both sinc and nearest-neighbor interpolation produce no error;
thus, they reproduce the constant. More generally, the degree
of “flatness” at the origin (the number of vanishing deriva-
tives) directly gives the approximation order of the synthesis
function—it being a straight line in the sinc case, this flatness is
infinite, and so is the order of approximation. When ω grows,
interpolation by nearest-neighbor is less good than sinc inter-
polation, the latter being perfect up to Nyquist’s frequency. Less
known, but apparent from Figure 28.7, is the fact that nearest-
neighbor interpolation is indeed better than sinc for some (not
all) of the part (if any) of the function to interpolate that is not
band-limited.

28.8 Specific Examples

In this section, we present several synthesis functions and
discuss some of their properties. We give their explicit form
and their support, we graph their shape and we show their
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FIGURE 28.7 Approximation kernel in the Fourier domain. Solid
line: nearest-neighbor. Dotted line: sinc.

equivalent interpolating form when they are not interpolant
themselves. We also give their approximation order and their
approximation kernel, along with their regularity. Some syn-
thesis functions are summarized in Appendix A. 4.

28.8.1 Nearest-Neighbor

The synthesis function associated with nearest-neighbor inter-
polation is the simplest of all, since it is made of a square pulse
(Figure 28.8). Its support is unity; it is an interpolant, and it
satisfies the partition of unity, provided a slight asymmetry
is introduced at the edges of the square pulse. The approx-
imation order is 1 (it reproduces at most the constant). It
is discontinuous, and thus has no regularity; its expression is
given by

ϕ0(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 x < −1

2

1 −1

2
≤ x <

1

2
.

0
1

2
≤ x

The main interest of this synthesis function is its simplicity,
which results in the most efficient of all implementations. In
fact, for any coordinate x where it is desired to compute the value
of the interpolated function f , there is only one sample fk that
contributes, no matter how many dimensions q are involved.
The price to pay is a severe loss of quality.

28.8.2 Linear

The linear interpolant enjoys a large popularity because the
complexity of its implementation is very low, just above that of
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FIGURE 28.8 Synthesis functions. (Left ) Nearest-neighbor. (Right ) Linear.

the nearest-neighbor; moreover, some consider that it satisfies
Occam’s razor principle by being the simplest interpolant one
can think of that builds a continuous function f out of a
sequence of discrete samples

{
fk

}
. It is made of the (continuous-

signal) convolution of a square pulse with itself, which yields
a triangle, sometimes also named a hat or a tent function
(Figure 28.8). Its support covers two units; it is an interpolant,
and its order of approximation is 2 (it reproduces straight
lines of any finite slope). Its regularity is C0, which expresses
that it is continuous but not differentiable. In 1D, this inter-
polant requires at most two samples to produce an interpolated
value. In 2D, also called bilinear interpolation, its separable
implementation requires four samples, and six in 3D (eight
in the nonseparable case, where it is called trilinear inter-
polation [9, 41]). The expression for the 1D linear synthesis
function is

β1(x) =
{

1− |x| |x| < 1
0 1 ≤ x

.

28.8.3 B-splines

There is a whole family of synthesis functions made of
B-splines. By convention, their symbolic representation is βn ,
where n ∈ N is not a power, but an index called the degree
of the spline. These functions are piecewise polynomials of
degree n; they are globally symmetric and (n − 1)-times con-
tinuously differentiable. Thus, their regularity is Cn−1. They are
given by

βn(x) = �n+1ςn

(
x + n + 1

2

)
,

where the finite backward-difference operator�f (x) = f (x)−
f (x − 1) is applied (n + 1) times to the polynomial simple

element ςn of degree n defined as

ςn(x) = 1

2 (n!) sign(x) xn .

Both the support and the order of approximation of these func-
tions are one more than their degree. They enjoy many other
interesting properties that fall outside the scope of this chap-
ter, except perhaps the fact that a B-spline derivative can be
computed recursively by

d

dx
βn(x) = βn−1

(
x + 1

2

)
− βn−1

(
x − 1

2

)
n > 0.

Then, computing the exact gradient of a signal given by a dis-
crete sequence of interpolation coefficients {ck} can be carried
out as

d

dx
f (x) =

∑
k∈Z

ck
d

dx
βn(x − k)

=
∑
k∈Z

(ck − ck−1) β
n−1

(
x − k + 1

2

)
,

where the n-times continuous differentiability of B-splines
ensures that the resulting function is smooth when n ≥ 3, or
at least continuous when n ≥ 2.

• Degree n = 0: The B-spline of smallest degree n = 0 is
almost identical to the nearest-neighbor synthesis func-
tion. They differ from one another only at the transition
values, where we ask that β0 be symmetrical with respect
to the origin (ϕ0 is not), and where we ask that β0

satisfies the partition of unity. Thus, contrary to the
nearest-neighbor case, it happens in some exceptional
cases (evaluation at half-integers) that interpolation with
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β0 requires the computation of the average between two
samples. Otherwise, this function is indistinguishable
from nearest-neighbor.

• Degree n = 1: The B-spline function of next degree β1 is
exactly identical to the linear case.

• Degrees n > 1: No splineβn of degree n > 1 benefits from
the property of being interpolating; thus, great care must
be exerted never to use one in the context of Equation 28.1,
and Equation 28.4 must be used instead. Unfortunately,
those who fail to observe this rule obtain disastrous exper-
imental results that are absurd. To help settle this issue, we
give in the Appendix an efficient routine that transforms
the sequence of data samples

{
fk

}
into coefficients {ck} by

the way of in-place recursive filtering.

A cubic B-spline is often used in practice. Its expression is
given by

β3(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3 − 1

2 |x|2 (2− |x|) 0 ≤ |x| < 1

1
6 (2− |x|)3 1 ≤ |x| < 2.

0 2 ≤ |x|

This synthesis function is not interpolant. As explained in
Equation 28.8, it is nonetheless possible to exhibit an infinite-
support synthesis function ϕint = β3

card that allows one to build
exactly the same interpolated function f . To give a concrete
illustration of this fact, we show in Figure 28.9 both the non-
interpolating cubic B-spline β3 and its interpolating equivalent
synthesis function. The latter is named a cubic cardinal spline
β3

card. Graphically, the B-spline looks similar to a Gaussian; this
is not by chance, since a B-spline can be shown to converge to a
Gaussian of infinite variance when its degree increases. Already

for a degree as small as n = 3, the match is amazingly close
since the maximal relative error between a cubic B-spline and
a Gaussian with identical variance is only about 3.5%. On the
right side of Figure 28.9, the cardinal spline displays decaying
oscillations, which is reminiscent of a sinc function. This is not
a coincidence, since a cardinal spline can be shown to converge
to a sinc function when its degree increases [42, 43]. We give in
Figure 28.10 the approximation kernel for B-splines of several
degrees. Clearly, the higher the degree, the closer to a sinc is the
equivalent cardinal spline, and the better is the performance.

The B-spline functions enjoy the maximal order of approx-
imation for a given integer support; conversely, they enjoy the
minimal support for a given order of approximation. Thus, they
belong to the family of functions that enjoy Maximal Order and
Minimal Support, or Moms. It can be shown that any of these
functions can be expressed as the weighted sum of a B-spline
and its derivatives [28].

Momsn(x) = βn(x)+
n∑

m=1

cm
dm

dxm
βn(x).

B-splines are those Moms functions that are maximally dif-
ferentiable. We present in the following subsections two other
members of this family. The o-Moms functions are such that
their least-squares approximation constant Cϕ is minimal,
while Schaum’s functions are interpolating but have a subop-
timal approximation constant that is worse than those of both
o-Moms and B-splines.

28.8.4 o-Moms

The o-Moms functions are indexed by their polynomial degree
n. They are symmetric and their knots are identical to those
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FIGURE 28.9 B-spline of third degree. (Left ) Function shape. (Right ) Equivalent interpolant.
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FIGURE 28.10 B-spline synthesis function. Approximation kernel for several degrees.

of the B-spline they descend from. Moreover, they have the
same support as βn , that is, W = n + 1; this support is the
smallest achievable for a synthesis function with the order of
approximation L = n + 1. Although their order is identical to
that of a B-spline of the same degree, their approximation error
constant Cϕ is much smaller. In fact, the o-Moms functions
are such that their least-squares constant reaches its smallest
possible value. In this sense, they are asymptotically optimal
approximators, being the shortest for a given support, with the
highest order of approximation and the smallest approximation
error constant [28].

These functions are not interpolating; thus, we need a way
to compute the sequence of coefficients {ck} required for the
implementation of Equation 28.4. Fortunately, the same routine
as for the B-splines can be used (see Appendix).

The o-Moms functions of degree zero and one are identical to
β0 and β1, respectively. The o-Moms functions of higher degree
can be determined recursively in the Fourier domain [28]; we
give here the expression for n = 3:

oMoms3(x) = β3(x)+ 1

42

d2

dx2
β3(x)

=

⎧⎪⎪⎨
⎪⎪⎩

1
2 |x|3 − |x|2 + 1

14 |x| + 13
21 0 ≤ |x| < 1

− 1
6 |x|3 + |x|2 − 85

42 |x| + 29
21 1 ≤ |x| < 2.

0 2 ≤ |x|

As a curiosity, we point out in Figures 28.11 and 28.12 that this
synthesis function has a slope discontinuity at the origin; thus,
its regularity is C0 (in addition, it has other slope discontinuities
for |x| = 1 and |x| = 2). It is nevertheless optimal in the sense
described.

28.8.5 Schaum’s Functions

Like the o-Moms, the pseudo-Lagrangian kernels proposed by
Schaum in [29] can also be represented as a weighted sum
of B-splines and their even-order derivatives. They have the
same order and same support as B-splines and o-Moms. Their
main advantage is that they are interpolants. Their main draw-
back with respect to both o-Moms and B-splines is a worse
approximation constant Cϕ: for the same order of approxi-
mation L = 4, the minimal value is reached by o-Moms with
Cϕ = 0.000627; the constant for the cubic spline is more than
twice with Cϕ = 0.00166, while the cubic Schaum loses an addi-
tional order of magnitude with Cϕ = 0.01685. They have no
regularity (are discontinuous) for even degrees, and are C0 for
odd degrees. Figure 28.6 shows the quadratic member of that
family.

28.8.6 Keys’ Function

The principal reason for the popularity enjoyed by the family
of Keys’ functions [25] is the fact that they perform better than
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FIGURE 28.11 o-Moms of third degree. (Left ) Function shape. (Right ) Equivalent interpolant.
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FIGURE 28.12 o-Moms of third degree (central part ).

linear interpolation, while being interpolating. Thus, they do
not require the determination of interpolation coefficients,
and Equation 28.1 can be used. These functions are made of
piecewise cubic polynomials and depend on a parameter a
(Figure 28.13). Their general expression is

ua(x) =

⎧⎪⎨
⎪⎩
(a + 2)|x|3 − (a + 3)|x|2 + 1 0 ≤ |x| < 1

a|x|3 − 5a|x|2 + 8a|x| − 4a 1 ≤ |x| < 2.

0 2 ≤ |x|

Comparing this expression to that of the cubic spline, it is appar-
ent that both require the computation of piecewise polynomials
of the same support. However, their approximation orders dif-
fer: the best order that can be reached by a Keys’ function is 3,
for the special value a = − 1

2 , while the cubic spline has order
4. This extra order for β3 comes at the cost of the computation
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FIGURE 28.13 Keys’ interpolant with a = −1
2

.

of a sequence {ck}, for use in Equation 28.4. However, when a
recursive filtering approach is used, this cost can be made neg-
ligible. Altogether, the gain in speed offered by Keys’ function is
not enough to counterbalance the loss in quality when compar-
ing β3 and u− 1

2
. Moreover, the regularity of Keys is C1, which

is one less than that of the cubic spline.

28.8.7 Piecewise-Polynomial Synthesis
Functions

Up to now, we have seen several synthesis functions of various
computational costs, performance, and suitability for tasks that
may or may not require differentiability. Are there many more
around? Many a designer of synthesis functions has proposed
to answer this question by brewing yet another ϕ. We give here
a recipe to cook them all.
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On one hand, we know from the Strang-Fix Equivalence (2)
in Section 28.7.1 that it is desirable to reproduce monomials up
to degree (L − 1). On the other hand, as evidenced by Sections
28.1 through 28.6, many synthesis functions reach this goal
by concatenating unit-length pieces of polynomials. When one
is following this natural strategy, four design parameters are
of paramount importance: (i) the maximal polynomial degree
N ≥ 0 one is willing to consider; (ii) the maximal support W ≥
1 of the synthesis function; (iii) the minimal regularity R ≥ −1
that is desired; and (iv) the minimal order of approximation
L ≥ 0 to achieve. Given these four design requirements, it has
been shown in [39] that, up to a global shift, the following
formula captures every possible piecewise-polynomial synthesis
function:

ϕ(x) =
N−max(R+1,L)∑

l=1

N−L−1∑
k=0

ak,l

(
βL+k−1
+ ∗ γN−L−k

l

)
(x)

+
N−max(R+1,L)∑

l=0

W−N+l−1∑
k=0

bk,l β
N−l
+ (x − k)

+
L−R−2∑

l=0

W−L∑
k=0

ck,l �
lβL−l−1
+ (x − k).

(28.12)

Conversely, any arbitrary choice of the free sets of coefficients
ak,l , bk,l , and ck,l corresponds to a synthesis function that satisfies
the design parameters {N , W , R, L}. Thus, the representation
(Equation 28.12) is complete and encompasses every piecewise-
polynomial synthesis function with unit knots one may ever
design.

However, some configurations of design parameters are
absurd, such as attempting to reproduce the monomial x2 with
the aid of a synthesis function made of piecewise-constant
building blocks—i.e., attempting to create a smooth parabola
out of broad angular staircases. Fortunately, the conditions of
admissibility over the parameters {N , W , R, L} is easy to state; as
detailed in [39], it turns out that the existence of ϕ is guaranteed
whenever N ≥ max(L − 1, R + 1) and W ≥ max(N , L). More
generally, especially when W < N , the existence is guaranteed
for (N − R) (W − L)+ L − R ≥ 2, although uniqueness may
be lost when W < N , in the sense that several configurations of
ak,l , bk,l , and ck,l may perhaps give rise to the same ϕ. But every
piecewise-polynomial synthesis function with regular knots is
guaranteed to always have at least one associated representation
given in Equation 28.12.

Here, the causal B-spline βn+ is defined as βn+(x) = βn(x −
n+1

2 ). The function γn
k is given by

γn
k (x) =

1

λk,n−k+1

(
ςn−k(x)−

n−k∑
l=0

λk,l �
k+lςn(x)

)
,

where 1 ≤ k ≤ n and where the coefficients λk,l satisfy(− log(1− x)
)k =∑k−1

l=0 λk,l xk+l + o(x2 k−1). A table of those

coefficients is available in [39]. While Equation 28.12 may look
formidable at first sight, one has to remember that it boils down
to nothing more complicated than W pieces of polynomials,
each of degree no greater than N .

28.8.8 Sinc

For a long time, sinc interpolation—which corresponds to
ideal filtering—has been the Grail of geometric operations.
Nowadays, researchers acknowledge that, while sinc inter-
polation can be realized under special circumstances (e.g.,
translation of a periodic signal by discrete Fourier transform
operations), in general it can only be approximated, thus rein-
troducing a certain amount of aliasing and blurring, depending
on the quality of the approximation. Another drawback of the
sinc function is that it decays only slowly, which generates a lot
of ringing. In addition, there is no way to tune the performance
to any specific application: it is either a sinc (or approximation
thereof), or it is something else.

The sinc function provides error-free interpolation of the
band-limited functions. There are two difficulties associated
with this statement. The first one is that the class of band-limited
functions represents but a tiny fraction of all possible functions;
moreover, they often give a distorted view of the physical reality
in an imaging context—think of the transition air/matter in a
CT scan: as far as classical physics is concerned, this transition
is abrupt and cannot be expressed as a band-limited function.
Further, there exists obviously no way at all to perform any kind
of antialiasing filter on physical matter (before sampling). Most
patients would certainly object to any attempt of the sort.

The second difficulty is that the support of the sinc function
is infinite. An infinite support is not too bothersome, even in
the context of Equation 28.8, provided an efficient algorithm
can be found to implement interpolation with another equiva-
lent synthesis function that has a finite support. This is exactly
the trick we used with B-splines and o-Moms. Unfortunately,
no function can be at the same time band-limited and finite-
support, which precludes any hope of finding a finite-support
synthesis function ϕ for use in Equation 28.8. Thus, the classical
solution is simply to truncate sinc itself by multiplying it with
a finite-support window; this process is named apodization.
A large catalog of apodizing windows is available in [30], along
with their detailed analysis.

By construction, all these apodized functions are inter-
polants. While the regularity of the nontruncated sinc function
is infinite, in general the regularity of its truncated version
depends on the apodization window. In particular, regularity
is maximized by letting the edges of the window support coin-
cide with a pair of zero-crossings of the sinc function. This
results in reduced blocking artifacts. In theory, any apodization
window is admissible, including, say, a window wu such that
wu(x) sinc(x) = u− 1

2
(x), where u− 1

2
(x) is Keys’ function. In

practice, the only windows that are considered have a broadly
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Gaussian appearance and are often built with trigonometric
polynomials. We investigate two of them next.

28.8.9 Dirichlet Apodization

Dirichlet apodization is perhaps the laziest approach, since the
window of total width W is simply an enlarged version of β0,
which requires no more computational effort than a test to
indicate support membership. The apodized synthesis function
is given by

sinc D
W (x) =

sin(πx)

πx
β0

( x

W

)
,

where W is an even integer. The price to pay for laziness is bad
quality. First, the regularity of this function is low since it is not
differentiable. More important, its order of approximation is as
bad as L = 0, and this function does not even satisfy the parti-
tion of unity. This means that a reduction of the sampling step
does not necessarily result in a reduction of the interpolation
error. Instead of Equation 28.11, we have

∥∥f − fh

∥∥
L2
→ Cϕ

∥∥f (L)
∥∥

L2
as h → 0.

28.8.10 Hanning Apodization

Apodization, being defined as the multiplication of a sinc func-
tion by some window, corresponds in the Fourier domain to a
convolution-based construction. The Hanning window is one
out of several attempts to design a window that has favorable
properties in the Fourier domain. The result is

sinc H
W (x) = sinc D

W (x)

(
1

2
+ 1

2
cos

(
2πx

W

))
.

With L = 0, the order of approximation of Hanning inter-
polation is no better than that of Dirichlet interpolation; the
constant Cϕ is significantly improved, though. Whereas it was
Cϕ = 0.1076 for sinc D

4 , it is now Cϕ = 0.0153 for sinc H
4 . Being

continuously differentiable, Hanning is also more regular than
Dirichlet (Figure 28.14).

28.9 Cost-Performance Analysis

As seen in Figure 28.5, the single most influential parameter that
dictates the computational cost is the size W of the support
of the synthesis function ϕ. Second to it, we find the cost of
evaluating ϕ(x − k) for a series of arguments (x − k). Lastly,
there is a small additional cost associated with the computation
of interpolation coefficients ck in the context of Equation 28.4.
We want to mention here that the importance of this overhead
is negligible, especially in the practical case where it needs to be
computed only once before several interpolation operations are
performed. This situation arises often in the context of iterative
algorithms, and in the context of interactive imaging; moreover,
it disappears altogether when the images are stored directly as
a set of coefficients {ck} rather than a set of samples

{
fk

}
. Thus,

we shall ignore this overhead in the theoretical performance
analysis that follows.

28.9.1 Cost

Let us assume that we want to compute the interpolated value
f (x) of an image f at argument x, using a separable synthe-
sis function of finite-support W . For each output value, we
first need to perform W multiplications and W additions to
compute ck2 =

∑
ck1,k2 ϕ(x1 − k1), with an inner loop over k1.

This computation is embedded in a similar outer loop over k2
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FIGURE 28.14 Sinc apodization with W = 4. (Left ) Dirichlet. (Right ) Hanning.
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that is executed W times and that involves the computation
of f (x) =∑

ck2 ϕ(x2 − k2). Finally, we need W 2 mult-and-
adds in 2D; more generally, we need (2W q) operations in q
dimensions, where we consider that a multiplication is worth
an addition.

To this cost, one must add
(
qW

)
times the cost of the

evaluation of the separable synthesis function. When the lat-
ter is piecewise polynomial, on average we need W/4 tests
to determine which of the polynomial pieces to use. Once a
polynomial is selected, evaluation by the Horner’s scheme fur-
ther requires (W − 1)mult-and-adds. Putting all that together,
the magnitude of the global cost of all operations for a piece-
wise polynomial synthesis function is O(W q), more precisely
2W q + qW

(
9
4 W − 2

)
.

In the case of the sinc family, the synthesis function is no poly-
nomial. Then, each evaluation requires the computation of a
transcendental function and the multiplication by the apodiza-
tion window. This cost does not depend on the support W ;
hence, the magnitude of the global cost of all operations for
an apodized sinc synthesis function is also O(W q), more pre-
cisely

(
2 W q + λ q W

)
, where λ = 12 operations are spent in

the evaluation of a Hanning apodization window (we consider
that the transcendental functions sine or cosine are worth two
multiplications each), λ = 9 for a Bartlet window and λ = 6 in
the Dirichlet case.

It follows from these theoretical considerations that the sup-
port for which a sinc-based synthesis function (e.g., Hanning)
comes at a lesser computational cost than a polynomial-based
one is about W = 6 in two dimensions. For images or volumes,
where q > 1, it is important to realize that this result does not
imply that the use of sinc functions is more efficient than that
of polynomials, because sinc typically requires a larger support
than polynomials to reach the same quality. Since the global
cost is O(W q), and since q > 1, any increase in W dominates
over the other terms.

28.9.2 Performance

We present in Figure 28.15 a comparison of the error kernel
for several synthesis functions of the same support W = 4. It
includes cubic B-spline, cubic o-Moms, and cubic Schaum as
examples of polynomial functions, and Dirichlet and Hanning
as examples of apodized sinc.

We observe that the sinc-based synthesis functions do not
reproduce the constant. Since most of the energy of virtually
any image is concentrated at low frequencies, it is easy to pre-
dict that these functions will perform poorly when compared
to polynomial-based synthesis functions. We shall see in the
experimental section that this prediction is fulfilled; for now,
we limit our analysis to that of the more promising polynomial
cases.

On the grounds of Equation 28.9, we can select a specific
function f to sample-and-interpolate, and we can predict the
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FIGURE 28.15 Comparison of synthesis functions of same support
W = 4.

TABLE 28.1 Performance index for white noise

Synthesis function ∈2 (dB) L

β7 16.10 8
β6 15.54 7
β5 14.88 6
β4 14.14 5
o-Moms3 14.03 4
β3 13.14 4
μ−1 12.33 1
β2 12.11 3
μ −1

2
11.02 3

Cubic Schaum 10.98 4
μ −1

4
10.14 1

Dodgson 9.98 1
β1 9.23 2
ϕ0 5.94 1

amount of resulting squared interpolation error. As a conve-
nient simplification, we now assume that this function f has
a constant-value power spectrum; in this case, it is trivial to
obtain the interpolation error by integrating the curves in
Figure 28.15. We report in Table 28.1 the resulting values as
a signal-to-noise ratio expressed in dB, where the integration
has been performed numerically over the domain ω ∈ [−π,π].
These results have been obtained by giving the same democratic
weight to all frequencies up to Nyquist’s rate; if low frequencies
are considered more important than high frequencies, then the
approximation order L and its associated constant Cϕ are the
most representative quality indexes.

28.9.3 Trade-off

Figure 28.16 presents the combination of the theoretical results
of computation time and those of interpolation quality. In
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FIGURE 28.16 Theoretical performance index for a first-order
Markov model with p = 0.9. Triangles: Interpolating functions.
Circles: noninterpolating functions.

order to show the versatility of the approximation kernel, we
have changed the function f from white noise (Table 28.1) to a
band-limited function that satisfies a first-order Markov model
[44, p. 34] parameterized by ρ = 0.9 (Figure 28.16). This model
is representative of a large variety of real images.

28.10 Experiments

To magnify the degradation that results from interpolation, we
adopt the following strategy that aims to highlight—rather than
avoid—the deleterious effects of interpolation: We apply a suc-
cession of r = 15 rotations of 2π

15 = 24◦ each to some image,
such that the output of any given step is used as input for
the next step; then we compare the initial image with the final
output. To limit potential boundary effects, we perform the
final comparison on the central square of the image only. Also,
we avoid any interaction between interpolation and quantiza-
tion by performing all computations in a floating-point format.
Figure 28.17 shows the image we want to rotate. It is made of
a radial sinusoidal chirp with a spatial frequency that decreases
from center to edge.

28.10.1 Nearest-Neighbor and Linear
Interpolation

We show in Figure 28.18 the result of this experiment when
using the two most commonly found interpolants: nearest-
neighbor and linear. Clearly, nearest-neighbor interpolation
results in a lot of data shuffling; as a curiosity, we mention that
perfect unshuffling is sometimes possible under special circum-
stances, such that reversing the order of operations restores the

FIGURE 28.17 Synthetic image. (Left ) Whole. (Right ) Central square.
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initial data without error [13]. No other interpolation methods
proposed here are reversible. For example, linear interpola-
tion results in strong attenuation of high frequencies, as can
be inferred from the visual comparison of Figure 28.17 with
Figure 28.18. This loss cannot be compensated. It corresponds
to the prediction made in Figure 28.10, according to which lin-
ear interpolation, or β1, performs poorly when compared to
other cases.

28.10.2 Cubic Interpolation

We give in Figure 28.19 the results obtained with three syn-
thesis functions of identical support that have essentially the
same computational cost. On the left, despite the use of the
optimal parameter a = −1

2 , Keys offers the poorest visual per-
formance, since the central part of the figure is blurred. In
addition, close inspection (particularly on a monitor screen)
discloses blocking artifacts that betray themselves as Moiré

patterns. Those are absent with cubic spline and cubic o-Moms
interpolation, although patterns unrelated to interpolation may
eventually be present on paper, due to the dithering process
inherent in printing these figures. More important, cubic spline
interpolation results in less blurring, and cubic o-Moms in
even less.

28.10.3 Sinc-Based Interpolation

Figure 28.20 shows the result of using two different truncated
and apodized approximations of sinc, where the support is the
same as in the functions of Figure 28.19. The test image of
Figure 28.17 has been built with a non-null average; since an
apodized version of sinc does not reproduce this constant value
faithfully, each incremental rotation results in a small drift of
the average value of the image. This would be true of any inter-
polation function that would not satisfy the partition of unity.
This drift manifests itself as images that appear too dark or too

FIGURE 28.18 Some visual results. (Left ) Nearest-neighbor interpolation. (Right ) Linear
interpolation.

FIGURE 28.19 Some visual results. (Left ) Keys. (Center) Cubic spline. (Right ) Cubic o-Moms.
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FIGURE 28.20 Some visual results. (Left ) Dirichlet (W = 4). (Right ) Hanning (W = 4).

light. We conclude that sinc performs poorly when compared
to other synthesis functions of the same support, and not only
drift of the mean value, but also both blocking and excessive
blurring artifacts are present.

28.10.4 Discussion

Table 28.2 presents in succinct form the numeric results of these
experiments, along with some additional ones. In particular,
we also provide the results for the standard Lena test image.
The execution time is given in seconds; it corresponds to the
duration of a single rotation of a square image 512 pixels on a
side. The computer is a Power Macintosh 9600/350. The column
ε2 shows the signal-to-noise ratio between the central part of the
initial image of Figure 28.17 and the result of each experiment,
while the column “Lena” gives qualitatively similar results for
this standard test image. The measure of signal-to-noise ratio
is defined as

SNR = 10 log

⎛
⎝∑

k∈Z 2

f 2
k

/∑
k∈Z 2

(
fk − gk

)2

⎞
⎠ ,

where f is the original data and where g is obtained by chaining
the rotation r times.

These results point out some of the difficulties associated
with the analysis of the performance of a synthesis function
ϕ. For example, the computation time should ideally depend
on the number of mathematical operations only. In reality, the
optimization effort put into implementing each variation with
one synthesis function or another also has some influence. For
instance, our fastest implementation of the cubic spline and the
cubic o-Moms runs in shorter time than reported in Table 28.2
(namely, 0.91 seconds instead of 1.19). We have nevertheless

TABLE 28.2 Experimental results in numerical form

Synthesis function Time (s) Circular (ε2, dB) Lena (ε2, dB)

ϕ0 0.24 4.96 18.57
β1 0.43 7.13 21.98
Dodgson 0.54 9.49 24.23
u−1 0.92 3.60 19.33
u −1

2
0.92 15.00 28.16

u −1
4

0.92 10.06 24.73
cubic Schaum 0.92 14.09 27.61
β2 0.97 19.65 30.56
β3 1.19 23.22 31.98
oMoms3 1.21 32.76 34.29
β4 1.40 30.25 33.90
β5 1.66 35.01 34.81
sinc Dirichlet W = 4 1.71 –0.54 0.34
sinc Bartlet W = 4 1.74 0.38 0.41
β6 1.93 40.17 35.54
sinc Hamming W = 4 2.10 12.58 17.66
sinc Hanning W = 4 2.10 7.13 6.76
sinc Dirichlet W = 6 2.10 –13.62 –15.24
β7 2.23 44.69 36.05
sinc Bartlet W = 6 2.53 1.03 1.08
sinc Hamming W = 6 3.08 22.11 24.06
sinc Hanning W = 6 3.08 18.59 19.32

shown the result of the slower implementation because it cor-
responds to a somewhat unified level of optimization in all
considered cases.

We propose in Figure 28.21 a graphic summary of the most
interesting results (circular pattern, quality better than 0 dB
and execution time shorter than 2 seconds). It is interesting to
compare this figure to Figure 28.16; the similarity between them
confirms that our theoretical ranking of synthesis functions was
justified. The difference between the interpolation methods is
more pronounced in the experimental case because it has been
magnified by the number of rotations performed. Additional
results are available in [46].
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hollow circles correspond to an accelerated implementation.

28.11 Conclusion

We have presented two important methods for the exact
interpolation of data given by regular samples: in classical
interpolation, the synthesis functions must be interpolants,
while noninterpolating synthesis functions are allowed in gen-
eralized interpolation. We have tried to dispel the too commonly
held belief according to which noninterpolating functions (typ-
ically, cubic B-splines) should be avoided. This misconception,
present in many books or reports on interpolation, arises
because practitioners failed to recognize the difference between
classical and generalized interpolation, and attempted to use
in the former setting synthesis functions that are suited to the
latter only. We have provided a unified framework for the the-
oretical analysis of the performance of both interpolating and
noninterpolating methods. We have applied this analysis to spe-
cific cases that involve piecewise polynomial functions as well
as sinc-based interpolants. We have performed 2D experiments
that support the 1D theory.

We conclude from both theoretical and practical concerns
that the most important index of quality is the approxima-
tion order of the synthesis function, its support being the
most important parameter with respect to efficiency. Thus,
the class of functions with Maximal Order and Minimal
Support, or Moms, stands apart as the best achievable trade-
off between quality and speed. We have observed that many
formerly proposed synthesis functions, such as Dodgson, Keys,
and any of the apodized versions of a sinc, do not belong
to this class. Experiments have confirmed that these syn-
thesis functions do indeed perform poorly. In particular, no
sinc-based interpolation results in an acceptable quality with
regard to its computational demand. In addition, this family

of synthesis functions is difficult to handle analytically, which
leads to unnecessary complications for simple operations such
as differentiation or integration.

The more favorable class of Moms functions can be further
divided into subclasses, the most relevant being B-splines,
Schaum, and o-Moms. Of those three, Schaum’s functions are
the only representatives that are interpolating. Nevertheless,
experiments have shown that this strong constraint is detri-
mental to the performance; we observe that the time spent
in computing the interpolation coefficients required by
B-splines and o-Moms is a small, almost negligible investment
that offers a high payoff in terms of quality. For this reason, we
discourage the use of Schaum and promote generalized interpo-
lation instead, with noninterpolating synthesis functions such
as B-splines and o-Moms. For a better impact, we include in
the Appendix an efficient routine for the computation of the
required interpolation coefficients.

Finally, comparing B-splines to o-Moms, we conclude that
the lack of continuity of the latter makes them less suitable than
B-splines for imaging problems that require the computation
of derivatives, for example, to perform operations such as edge
detection or image-based optimization of some sort (e.g., snake
contouring, registration). These operations are very common in
medical imaging. Thus, despite a poorer objective result than o-
Moms, B-splines are very good candidates for the construction
of an image model. Moreover, they enjoy additional properties,
such as easy analytical manipulation, several recursion rela-
tions, the m-scale relation (of great importance for wavelets, a
domain that has strong links with interpolation [47, 48]), min-
imal curvature for cubic B-splines, easy extension to inexact
interpolation (smoothing splines, least-squares [6]), simplicity
of their parameterization (a single number—their degree—
is enough to describe them), and possible generalization to
irregular sampling, to cite a few.

A property that has high relevance in the context of inter-
polation is the convergence of the cardinal spline to the
nontruncated sinc for high degrees [42, 43]. Throughout the
chapter, we have given numerous reasons why it is more
profitable to approximate a true sinc by the use of noninter-
polating synthesis functions rather than by apodization. Even
for moderate degrees, the spline-based approximations offer
a sensible quality improvement over apodization for a given
computational budget.

None of the other synthesis functions, such as Schaum,
Dodgson, Keys, or sinc-based, offers enough gain in quality
to be considered. We note, however, that the study presented in
Table 28.2 and Figure 28.21 relies on two images only; more-
over, these images are not truly representative of your genuine
biomedical data. In addition, the comparison criterion is mean-
square, which is precisely the form for which o-Moms are
optimal. Perhaps other conclusions would be obtained by the
use of more varied images or a different criterion, for example,
a psycho-visual one.
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Appendix

A.1 Fourier Transform and Fourier Series

By convention of notation, f̂ is the continuous Fourier trans-
form of f and is defined by

f̂ (ω) =
∞∫

−∞
f (x) e−jωx dx and f (x) = 1

2π

∞∫
−∞

f̂ (ω) ejωx dω.

The Fourier-series decomposition of a 1-periodic function
s(x) = s(x + 1) is

s(x) =
∑
k∈Z

Sk ej2πkx , where Sk =
1
2∫

− 1
2

s(x) e−j2πkx dx .

A.2 Partition of Unity

Let ϕ(x) be a continuous function and let us define

s(x) =
∑
k∈Z

ϕ(x − k) ∀x ∈ [0, 1].

Clearly, the resulting function s is periodic and satisfies s(x) =
s(x + 1). Thus, under wide conditions, its Fourier series can be
expressed as

s(x) =
∑
n∈Z

Sn ej2πnx

with

Sn =
1
2∫

− 1
2

∑
k∈Z

ϕ(x − k) e−j2πnx dx

=
∞∫
−∞

ϕ(x) e−j2πnx dx = ϕ̂(2πn).

By substitution into the Fourier series, we have

s(x) =
∑
n∈Z

ϕ̂(2πn) ej2πnx ,

from which it is possible to deduce the equivalence between
s(x) = 1 and ϕ̂(2π n) = δn . Note that a rigorous demonstra-
tion of this equivalence requires that s converges uniformly.

A.3 Recursive Filtering

The following routine performs the in-place determination of a
1D sequence of interpolation coefficients {ck} from a sequence
of data samples

{
fk

}
. The returned coefficients {ck} satisfy

fk =
∑
k∈Z

ck ϕ(x − k) ∀k ∈ Z ,

where the synthesis function ϕ is represented by its poles. The
values of these poles for B-splines of degree n ∈ {2, 3, 4, 5} and
for cubic o-Moms are available in Table 28.3. (The B-spline
poles of any degree n > 1 can be shown to be real and lead to
a stable implementation.) This routine implicitly assumes that
the finite sequence of physical samples, known over the support
X = [0, N − 1], is extended to infinity by the following set of
boundary conventions:{

f (x) = f (−x) ∀x ∈ R
f (N − 1+ x) = f (−x + N − 1) ∀x ∈ R

.

This scheme is called mirror (or symmetric) boundaries. The
first relation expresses that the extended signal is symmetric
with respect to the origin, and the second mirrors the extended
signal around x = N − 1. Together, these relations associate
to any abscissa y ∈ R\X some specific value f (y) = f (x) with
x ∈ X . The resulting extended signal is (2N − 1)-periodic, and
has no additional discontinuities with respect to those that
might already exist in the finite-support version of f . This
is generally to be preferred to both zero-padding and sim-
ple periodization of the signal because these latter introduce
discontinuities at the signal extremities.

The following routine is really a digital filter. The z-transform
of its transfer function is given by

B−1(z) =
n/2�∏

i=1

z (1− zi)
(
1− z−1

i

)
(z − zi)

(
z − z−1

i

) .

TABLE 28.3 Value of the B-spline poles required for the recursive filtering routine

z1 z2

β2
√

8− 3 N/A

β3
√

3− 2 N/A

β4
√

664−√438976+√304− 19
√

664+√438976−√304− 19

β5
1

2

(√
270−√70980+√105− 13

) 1

2

(√
270+√70980+√105− 13

)
oMoms3(x)

1

8
(
√

105− 13) N/A
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TABLE 28.4 Appendix A.4. Some synthesis functions

Name Expression W L Regularity Interpol. Fourier transform

Nearest-neighbor 1x ∈
[−1

2
,

1

2

]
1 1 None Yes sinc(ω/2π)

Linear β1(x) = 1− |x|x ∈ [−1, 1] 2 2 C 0 Yes (sinc(ω/2π))2

Dodson 2β2(x)− 1

2

(
β1

(
x − 1

2

)
+ β1

(
x + 1

2

))
3 2 C 0 Yes (2sinc(ω/2π)− cos(ω/2π))(sinc(ω/2π))2

Keys (a = − 1

2
) 3β3(x)−

(
β2

(
x − 1

2

)
+ β2

(
x + 1

2

))
4 3 C1 Yes (3sinc(ω/2π)− 2 cos(ω/2π))(sinc(ω/2π))3

Cubic Schaum β3(x)− 1

6
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1+ 1

6
ω2

)
(sinc(ω/2π))4
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⎪⎩

2

3
− 1

2
|x|2(2− |x|) 0 ≤ |x| < 1

1

6
(2− |x|)3 1 ≤ |x| < 2

4 4 C2 No (sinc(ω/2π))4

Cubic o-Moms β3(x)+ 1

42

d2

dx2
β3(x) 4 4 C 0 No

(
1− 1

42
ω2

)
(sinc(ω/2π))4

B-spline (n > 1)

∫ x+ 1
2

x− 1
2

βn−1(t )dt n + 1 n + 1 Cn−1 No (sinc(ω/2π))n+1

Sinc sin(πx)/(πx) ∞ ∞ C∞ Yes 1ω ∈ [−π,π]

Dirichlet β0
( x

W

)
sin(πx)/(πx) W 0 C 0 Yes W

∫ π

−π
sinc(W (ω − ϑ)/2π)dϑ

As is apparent from this expression, the poles of this filter are
power-conjugate, which implies that every second pole is out-
side the unit circle. To regain stability, this meromorphic filter

is realized as a cascade of causal filters that are implemented as
a forward recursion, and anticausal filters that are implemented
as a backward recursion. More details are available in [19, 20].

#include <math.h>
/*--------------------------------------------------------------------------*/
void GetInterpolationCoefficients

(
double c[], /* input samples --> output coefficients */
int DataLength, /* number of samples or coefficients */
double z[], /* poles */
int NbPoles, /* number of poles */
double Tolerance /* admissible relative error */

)
{

double Lambda = 1.0;
int n, k;
/* special case required by mirror boundaries */
if (DataLength == 1)

return;
/* compute the overall gain */
for (k = 0; k < NbPoles; k = k + 1)

Lambda = Lambda * (1.0 - z[k]) * (1.0 - 1.0 / z[k]);
/* apply the gain */
for (n = 0; n < DataLength; n = n + 1)

c[n] = c[n] * Lambda;
/* loop over all poles */
for (k = 0; k < NbPoles; k = k + 1) {
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/* causal initialization */
c[0] = InitialCausalCoefficient(c, DataLength, z[k], Tolerance);
/* causal recursion */
for (n = 1; n < DataLength; n = n + 1)

c[n] = c[n] + z[k] * c[n-1];
/* anticausal initialization */
c[DataLength-1] = InitialAntiCausalCoefficient(c, DataLength, z[k]);
/* anticausal recursion */
for (n = DataLength-2; n >= 0; n = n - 1)

c[n] = z[k] * (c[n+1] - c[n]);
}

}
/*--------------------------------------------------------------------------*/
double InitialCausalCoefficient

(
double c[], /* coefficients */
int DataLength, /* number of coefficients */
double z, /* actual pole */
double Tolerance /* admissible relative error */

)
{

double Sum, zn, z2n, iz;
int n, Horizon;
int TruncatedSum;

/* this initialization corresponds to mirror boundaries */
TruncatedSum = 0;
if (Tolerance > 0.0) {

Horizon = (int)ceil(log(Tolerance) / log(fabs(z)));
TruncatedSum = (Horizon < DataLength);

}
if (TruncatedSum) {

/* accelerated loop */
zn = z;
Sum = c[0];
for (n = 1; n < Horizon; n = n + 1) {

Sum = Sum + zn * c[n];
zn = zn * z;

}
return(Sum);

}
else {

/* full loop */
zn = z;
iz = 1.0 / z;
z2n = pow(z, DataLength-1);
Sum = c[0] + z2n * c[DataLength-1];
z2n = z2n * z2n * iz;
for (n = 1; n <= DataLength - 2; n = n + 1) {

Sum = Sum + (zn + z2n) * c[n];
zn = zn * z;
z2n = z2n * iz;

}
return(Sum / (1.0 - zn * zn));

}
}
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/*--------------------------------------------------------------------------*/
double InitialAntiCausalCoefficient

(
double c[], /* coefficients */
int DataLength, /* number of samples or coefficients */
double z /* actual pole */

)
{

/* this initialization corresponds to mirror boundaries */
return((z / (z * z - 1.0)) * (z * c[DataLength-2] + c[DataLength-1]));

}

Interpolation coefficients. Didactic and efficient C-code
(we hope). This code is available for download at
http://bigwww.epfl.ch/
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IV
Registration

Roger P. Woods
David Geffen School of Medicine at UCLA

The goal of image registration is to determine a spatial transformation that will bring homologous points in images being registered
into correspondence. In the simplest cases, the mathematical form of the desired spatial transformation can be limited by simple
physical principles. For example, when registering images acquired from the same subject, it is often possible to assume that
the body part being imaged can be treated as a rigid body, which leads to a highly constrained spatial transformation model.
Unfortunately, physical processes involved in the acquisition and reconstruction of medical images can cause artifacts and lead
to violations of the rigid body model, even when the object being imaged adheres strictly to rigid body constraints. Potential
sources of such distortions are prevalent in magnetic resonance (MR) and positron emission tomography (PET) images. So far
as is practical, these distortions should be corrected explicitly using methods that estimate the appropriate correction parameters
independent of the registration process itself, since this will improve both the speed and the accuracy with which rigid body
movements can be estimated. The chapter “Physical Basis of Spatial Distortions in Magnetic Resonance Images” addresses sources
of distortion in MR images and has been updated to include discussions of Maxwell term effects (pertinent for echo planar imaging,
spiral scanning, and fast spin echo imaging) and eddy currents (pertinent for diffusion tensor imaging). The chapter “Physical and
Biological Bases of Spatial Distortions in Positron Emission Tomography Images” similarly describes the physical processes that
lead to distortions in PET scannng. Distortions of soft tissues can also lead to nonlinear effects that violate rigid body assumptions,
a topic addressed in the chapters “Physical and Biological Bases of Spatial Distortions in Positron Emission Tomography Images”
and “Image Registration Using Chamfer Matching.” Such distortions are governed by complex properties such as tissue elasticity
that are much more difficult to model than the physical factors associated with image acquisition or reconstruction. Registration
of images acquired from different subjects represents the extreme end of the spectrum, where developmental factors including
genetics, environment, and random influences all contribute to the complex differences between subjects. The chapter “Biological
Underpinnings of Anatomic Consistency and Variability in the Human Brain” provides an overview of the complexity of this
most difficult registration problem in the context of the human brain. Although brain anatomy might seem to be a static topic,
the rapidity of new developments in this area is reflected by the many new findings since the first edition that are discussed and
cited in this chapter.

Much of the work that has been done on image registration to date has concerned itself with spatial transformations that are
subject to linear constraints. The rigid body model is the set of linear constraints most commonly utilized, but more relaxed
linear models are also well suited for dealing with certain types of image distortions such as errors in distance calibration. Even in
the context of intersubject registration, where highly nonlinear transformations would be required for perfect registration, linear
transformations can provide useful approximations. The mathematical and geometric properties of linear spatial transformations
are discussed in detail in the chapter “Spatial Transformation Models”, which has been updated to include a new section discussing
quaternions as an alternative to matrices for representing rigid-body rortations and a new section describing methods for averaging
linear transformations. One of the key attributes of linear models is that only a small amount of information is required to define
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a spatial transformation. For example, the identification of three point landmarks in each of two different tomographic image
data sets is sufficient to estimate the three-dimensional rigid body transformation needed to register the two sets of images with
reasonable accuracy. Medical images commonly contain far more spatial information than this minimal requirement, and this
redundancy can be exploited to achieve highly accurate registration results with errors often smaller than the size of a voxel. The
redundancy also provides a mechanism whereby registration accuracy can be objectively evaluated. As the appropriate spatial
transformation model becomes less constrained for example, in the case of intersubject registration the redundancy is reduced or
even eliminated entirely. Validation becomes much more complicated when the mathematical form of the spatial transformation
model is nonlinear and entails many degrees of freedom. Various strategies for evaluating registration accuracy are discussed in
the chapter “Validation of Registration Accuracy”, which has been updated to include new statistical developments in estimating
registration errors using landmark based fiducials.

Another consequence of the redundancy of spatial information for deriving linear spatial transformations is the fact that
diverse approaches can be successfully used for registration. Historically, identification of point landmarks has been the most
straightforward strategy employed. Most commonly, human intervention has provided the anatomic expertise needed to identify
homologous structures in the images to be registered, and the mathematics for converting a set of point landmarks into an
optimal spatial transformation is straightforward. More recent work with point landmarks has focused on eliminating the need
for human intervention by identifying unique features within the data sets and defining homologies among these features using
computerized methods. Work in this area is reviewed in the chapter “Landmark-Based Registration Using Features Identified
Through Differential Geometry.” This novel approach to landmark identification produces a much higher degree of redundancy
of spatial information than can be practically achieved by a human observer, and has produced marked improvements in accuracy
over those routinely achieved using manually identified landmarks. This chapter has been updated to reflect recent developments
in the use ridges as features. As a method for extracting spatial information, an alternative to the explicit identification of point
landmarks is the identification of curves or surfaces. Although they lack explicit one-to-one correspondences of landmark points,
surface matching algorithms are nonetheless able to minimize the distances between corresponding curves or surfaces to achieve
accurate registration. The distance between surfaces at each point varies in a complex manner as the parameters of the spatial
transformation model are varied, and efficient strategies for computing these distances have a substantial impact on performance
of such algorithms. Chamfer matching represents one approach to streamlining the computation of distances, and variations of
this strategy are discussed in the chapter “Image Registration Using Chamfer Matching.” The use of contours for registration can
be viewed as being a somewhat more abstract strategy than point landmarks for tapping into the spatial information contained
within images. Registration methods that are based on image intensities represent an even more abstract strategy. Instead of
minimizing a real-world distance that has an obvious and intuitive link to the notion of an optimal set of registration parameters,
intensity-based methods substitute a “cost function” that reflects similarities in image intensities. Since no anatomic features are
explicitly identified, intensity-based methods must include some intrinsic model of how various intensities in one image should
correspond to intensities in the other image. For registration of images acquired with the same imaging modality, the selection and
optimization of a suitable cost function is fairly straightforward, as discussed in the chapter “Within-Modality Registration Using
Intensity-Based Cost Functions.”When the problem is generalized to include registration of images from different modalities, more
sophisticated cost functions and minimization strategies are needed, as discussed in the chapter “Across-Modality Registration
Using Intensity-Based Cost Functions.”

Intersubject registration warrants separate consideration because of the complex nature of this problem. Current work in this
area is largely restricted to the brain, reflecting the tremendous interest in the relationships between structure and function in
this complex organ. Unlike other organs where function is not highly differentiated, brain regions separated by small distances
often have highly distinct functions. Consequently, improvements in methods for registering homologous regions have important
implications for research and for clinical applications. Linear spatial transformation models provided much of the initial framework
for research in this area, and the notion of “Talairach space,” which was originally defined in terms of linear transformations,
remains an important concept in brain research. The chapter “Talairach Space as a Tool for Intersubject Standardization in the
Brain” reviews the origins and modern applications of this particular frame of reference for describing brain locations. Currently
research on intersubject registration in the brain is focused on the use of nonlinear warping strategies, and an overview of many
of the diverse methods under investigation is provided in the chapter “Warping Strategies for Intersubject Registration.”

In many instances, the primary focus of image registration is to quantify movements so that their influence on the data can be
minimized or even eliminated. The registration process is essentially a process for removing the effects of an unwanted confounding
movement from the data. Once the desired spatial transformation has been derived, image resampling and interpolation models
must be utilized to compensate for the movement and create registered images. Although image interpolation can be viewed as
an issue in image quantification (see the Quantification section, “Image Interpolation and Resampling”), certain unique issues
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arise only in the context of image registration. These issues are addressed in the chapter “Optimizing the Resampling of Registered
Images.”

Advances in registration methods are closely linked to advances in clinical and research applications. In many ways, the advances
are reciprocal, with improved imaging methods leading to improved registration techniques, which in turn lead to the recognition
of new clinical and research applications for the methods. This in turn leads to increased demand for registration methods that are
even more accurate and efficient. The diversity of registration problems to be solved, together with the performance requirements
imposed by diverse clinical and research contexts, accounts in part for the large number of registration strategies that have been
published in the medical literature. Meanwhile, the clinical importance of image registration has led scanner manufacturers to
begin to address the problem by developing hardware capable of simultaneously acquiring images from different modalities such
as PET and CT as discussed in the updated chapter “Clinical Applications of Image Registration”. New developments driven by
clinical or research requirements are likely to persist long into the future, and the final three chapters in this section, “Clinical
Applications of Image Registration,” “Registration for Image-Guided Surgery,” and “Image Registration and the Construction of
Multidimensional Brain Atlases,” provide an overview of the types of problems currently being addressed by image registration
techniques, as well as problems that will need to be addressed through image registration in the future.
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29.1 Introduction

The quality of data that can be acquired using magnetic res-
onance imaging (MRI) is constantly improving. Historically,
much effort has been invested into optimizing image quality
and into minimizing the level of signal artifact in the images.
Nevertheless, some level of artifact is inevitable in data from
even the most modern MRI scanners. This chapter seeks to
highlight the most common distortions and signal corrup-
tions that are encountered in MRI data. Some of these artifacts
can be minimized during acquisition—others may be solved
during image reconstruction or as a post-hoc processing step.
Regardless, it is important for the image analyst to be able to
recognize common artifacts and, ideally, to be able to minimize,
eliminate, or avoid them.

29.2 Review of Image Formation

It is not the purpose of this chapter to survey the theory of image
formation in the MRI scanner. Excellent descriptions are given
in, for example, Morris [37], Stark and Bradley [48], Callaghan
[9], and Haacke et al. [19]. However, it is useful to summarize
the basic equations involved in magnetic resonance imaging.
Many artifacts in MRI can be understood simply in terms of
their linear additive effect on the signal or its Fourier transfor-
mation. For this reason a formalism for the construction of the
nuclear magnetic resonance signal is provided.

The fundamental equation when considering the MRI sig-
nal from an elemental volume of a sample of spin density
ρ(x , y , z) is

δS(t ) = ρ(x , y , z) exp
[−iφ(x , y , z)

]
, (29.1)

Copyright © 2008 by Elsevier, Inc.
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where φ(x , y , z) is the phase of the elemental volume of the
sample. In most MRI studies the spin density term, ρ(x , y , z),
is simply the density of mobile water molecules (bound water
is not generally seen in conventional images). The phase of the
elemental signal is dictated by the time history of the local mag-
netic field at position (x , y , z). Following demodulation of the
background static magnetic field component to the signal (the
radio-frequency carrier signal), the phase term is thus given by

φ(x , y , z) = 2πγ

∫
Bz (x , y , z)dt , (29.2)

with Bz (x , y , z) being the net static magnetic field in Tesla at
position (x , y , z), which is defined to point along the z−axis,
and γ being the gyromagnetic ratio that relates the magnetic
field strength to the frequency of the NMR resonance. For 1H
nuclei this is 42.575 MHz/Tesla.

In order to generate an image, the net magnetic field must
be made spatially varying. This is accomplished by passing
current through appropriately wound “gradient” coils that are
able to generate the terms Gx = dBz/dx , Gy = dBz/dy , and
Gz = dBz/dz to modulate the magnetic field. Thus, in a perfect
magnet the total signal detected from the sample at an arbitrary
time t following radio-frequency excitation of the signal into
the transverse detection plane is

S(t ) =
∫∫

ρ(x , y) exp

[
−2πγ i

{∫
Gx(x , y)x dt

+
∫

Gy(x , y)y dt

}]
dxdy . (29.3)

The simplification of considering a two-dimensional plane
has been made in Equation 29.3, since the radio-frequency exci-
tation pulse typically selects a single slice of spins rather than
an entire volume.

It is convenient to make the substitutions kx = γ
∫

Gx xdt
and ky = γ

∫
Gy ydt in which kx and ky represent the Fourier

space of the image (and also represent the field gradient
history). This can easily be seen if Equation 29.3 is rewritten as

S(kx , ky) =
∫∫

ρ(x , y)exp
[−2πi(kx x + ky y)

]
dxdy . (29.4)

In most modern MRI pulse sequences, the raw signal is
generated by sampling the (kx , ky) space in a rectilinear fashion
by appropriately pulsing the currents in the gradient coils (and
thus by generating a series of gradient histories that sample
all points in k-space). Once the points in k-space have been
acquired, the image is generated by inverting Equation 29.4
through Fourier transformation to yield a map of spin density,
ρ(x , y).

29.2.1 Nuclear Magnetic Relaxation
Times, T1, T2

Two principal nuclear magnetic relaxation time constants affect
the signal in the image. The longitudinal relaxation time, T 1,

defines the time constant for acquisition of longitudinal
magnetization in the sample. Although longitudinal magne-
tization cannot be observed directly, since it lies entirely along
the z-axis and is time invariant, it is necessary to allow enough
time for longitudinal magnetization to build up before any
sampling of signal can occur. Moreover, when repeated excita-
tions of the spins are made with a repeat interval TR (as would
be the case for almost all MRI pulse sequences), then a reduction
in the maximum possible magnetization will generally result.
This manifests in the ρ(x , y) in Equation 29.4 being scaled
according to

ρ′(x , y) = ρ(x , y)[1− exp(−TR/T 1)] /

[1+ cos θ exp(−TR/T 1)] , (29.5)

where cos θ is the flip angle for the pulse sequence. Clearly,
when TR�T 1, the spin density term is unaffected, and“proton
density” contrast in the image can result. However, when TR≤
T 1, the contrast in the final image can be significantly affected
by the T 1 value of the different tissue types in the sample,
resulting in “T 1–weighted” images. For example, in the human
brain at 1.5 Tesla, the T 1 values of gray matter, white matter,
and cerebrospinal fluid are, respectively, 1.0 s, 0.7 s, and 4 s.
A short TR will thus show CSF as very dark, gray matter as mid
intensity and white matter as brightest.

Once a component of the longitudinal magnetization is
tipped by angle θ into the transverse plane (the plane in which
signal is induced in the MRI coil), it precesses about the main
static field direction and the transverse component decays with
a time constant T 2. The T 2 time is shorter than T 1, often sub-
stantially so. In human soft tissue the T 2 values range from
20 ms to 200 ms. The effect of T 2 decay is to further scale the
signal in Equation 29.4 by a factor exp(−T 2/TE), where TE is
the time between the excitation of the magnetization and the
time of the echo when the signal is read out. Thus, an image
collected with a long TE will be T 2–weighted.

A secondary effect of the T 2–related decay of signal in the
transverse plane is to modulate the k-space data by a term
exp(−t /T 2) where t = 0 is the time that the spins are excited
into the transverse plane. This time modulation results in a
Lorentzian point spread broadening (convolution) of the image
profile in the dimension in which the signal modulation occurs.
Because most conventional images are acquired by sampling
each line of k-space following a separate excitation of the spins,
the point spread broadening is generally only in one dimen-
sion (the read-out dimension). This is shown schematically in
Figure 29.1.

The preceding mathematical formalism can be quite useful in
understanding the effects of various imperfections in the hard-
ware, or problems with the pulse sequence during acquisition.
In general, however, any processes that introduce unwanted
amplitude or phase imperfections to Equation 29.4 will generate
artifacts in the image.
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FIGURE 29.1 Schematic diagram showing the conventional method
for collecting MRI data. Longitudinal magnetization is tipped into
the transverse detection plane (a). The signal decays with a T 2
(spin-echo) or T 2∗ (gradient-echo) decay constant (b). M excita-
tions of the spin system are made to collect all phase-encode lines
in k-space (c). Fourier transformation of the filled k-space gives
the image (d). The T 2(∗) modulation in the read-out dimension
of k-space is equivalent to a Lorentzian convolution in the image
domain.

29.3 Hardware Imperfections

29.3.1 Gradient Coil Linearity

From the perspective of the imaging scientist, one source of
error that is important to appreciate is the geometric distortion
that is introduced in the image of the sample by the scanning
device. There are several mechanisms by which magnetic res-
onance images can be spatially distorted. The principal causes
are poor magnetic field homogeneity, which will be dealt with
in Section 29.3.4, and imperfect gradient coil design, which will
be addressed here.

As outlined previously, the ideal gradient coil consists of
a cylindrical former inside the magnet, on which are wound
various current paths designed to produce the pure terms
Gx = dBz/dx , Gy = dBz/dy , and Gz = dBz/dz . Additionally,
the perfect field gradient coil would have high gradient strength,
fast switching times, and low acoustic noise. In practice it is very
difficult to achieve these parameters simultaneously. Often, the
linearity specification of the coil is compromised in order to
achieve high gradient strength and fast switching times. This
affects all MRI sequences, whether conventional or ultra fast.
Romeo and Hoult [47] have published a formalism for express-
ing gradient nonlinearity in terms of spherical harmonic terms.

The coefficients to these terms should be obtainable from the
manufacturer if they are critical.

The practical effect that nonlinear field gradients have is to
distort the shape of the image and to cause the selection of slices
to occur over a slightly curved surface, rather than over recti-
linear slices. Most human gradient coils have specifications of
better than 2% linearity over a 40 cm sphere (meaning that the
gradient error is within 2% of its nominal value over this vol-
ume). It should be noted, however, that a 2% gradient error
can translate into a much more significant positional error
at the extremes of this volume, since the positional error is
equal to

∫
�Gx dx . In the case of head insert gradient coils, the

distortions may be significantly higher over the same volume,
given the inherently lower linearity specifications of these coils.
Correction of in-plane distortion can be achieved by apply-
ing the precalibrated or theoretical spherical harmonic terms
to remap the distorted reference frame (x ′, y ′, z ′) back into
a true Cartesian frame (x , y , z). Indeed, many manufacturers
perform this operation in 2D during image reconstruction.
Automatic correction of slice selection over a curvilinear surface
is, however, rarely made.

A second related problem that can occur is if the gradient
strength is not properly calibrated. Generally, systems are cali-
brated to a test phantom of known size. Over time, though, these
calibrations can drift slightly or may be inaccurately performed.

For both of the preceding reasons, great care should be
taken when making absolute distance measurements from MRI
data. Manufacturers strongly discourage the use of MRI scan-
ners in stereotactic measurement because it is very difficult to
eliminate all forms of geometric distortion from magnetic res-
onance images. Similarly, if accurate repeat measurements of
tissue volume are to be made (e.g., to follow brain atrophy),
then similar placement of the subject in the magnet should be
encouraged so that the local gradient-induced anatomical dis-
tortions are similar for each study. If this is not the case, then
a rigid body registration between datasets collected in different
studies is unlikely to match exactly even when no atrophy has
occurred. A similar problem can occur during significant sys-
tem upgrades, particularly when the gradient coil is replaced.
Careful phantom data should be collected before/after such
an upgrade in order to calibrate any differences in gradient
linearity.

29.3.2 Maxwell Term Effects

A related problem is the effect of “Maxwell terms” (also known
as concomitant gradients) in the magnetic field generated by
the coils. These are error gradient terms that are a consequence
of the fundamental laws of electromagnetism described in
Maxwell’s equations. In particular, Maxwell’s equations require
the following conditions to be satisfied:

∂Bz

∂z
= −

(
∂Bx

∂x
+ ∂By

∂y

)
(29.6a)
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∂Bz

∂x
− ∂Bx

∂z
= 0, (29.6b)

where ∂Bz/∂z is the desired z-direction field gradient and
∂Bz/∂x is the desired x-direction field gradient. The other terms
induce second order modulations in the desired field gradients.
While, for most imaging sequences, the error terms produce a
negligible effect, for certain sequences the Maxwell terms can
result in noticeable geometric distortions in the data. Examples
of sequences that can be sensitive to these effects include echo
planar imaging [11, 40], spiral scanning [27], and fast spin echo
imaging [54]. The effects are most prominent at low static mag-
netic field strength or high field gradient strength. In some
cases the artifacts are removed during EPI reconstruction on
the scanner, but this is not always guaranteed.

29.3.3 Eddy Currents

Eddy currents result from the switching of magnetic field gra-
dients in the vicinity of conducting structures (e.g., the magnet
dewar, radio-frequency coils, or even the structures in the
gradient coil itself). These induced eddy currents cause field
gradients that oppose the intended field gradient but that decay
away once the gradient switching is ceased. The general form of
the induced eddy currents is

GEC(t ) = −dG(t )

dt
⊗ e(t ), (29.7)

where G(t ) is the desired gradient waveform and e(t ) is the
impulse response function for the eddy current, which is
generally in the form of a series of discrete exponentials:

e(t ) =
∑

i

Aie
−t/τi . (29.8)

The time constants τi can range from microseconds (for eddy
currents induced on room temperature conducting surfaces)
to several seconds (for eddy currents induced on cryo-cooled
conducting surfaces). Also, a given desired gradient waveform
G(t ) will in general induce not just a direct linear eddy cur-
rent (e.g., Gx(t )→GEC,x(t )), but also a spatially invariant eddy
current BEC,0(t ) and potentially cross terms Gx(t )→GEC,y(t )
and GEC,z (t )). These terms add to (or strictly speaking subtract
from) the intended gradient waveform G(t ), in effect leading
to a low-pass filtering of the desired shape.

Eddy currents cause little problem in most MRI pulse seq-
uences, due to modern methods of gradient coil construction
and effective preemphasis of the gradient waveforms (in which
the currents sent to the gradient coils are preconvolved with a
function that compensates for the subsequently induced eddy
currents). However, there are cases in which the eddy current
compensation can be inadequate and hence where postprocess-
ing correction is necessary. A prominent example of this is the

case of diffusion tensor imaging, in which various diffusion-
weighted images are collected with gradients that are played
out along different physical directions (see Section 29.4.4). This
can result in geometric distortions that vary with the direction
and strength of the diffusion field gradients that are applied.
The typical form that these distortions take is to yield trans-
lations, compressions/expansions, or shearing, especially when
echo planar imaging sequences are used for image acquisition
[26]. Such artifacts can be minimized by accurate eddy-current
preemphasis correction and by good pulse sequence design.
However, it is usually necessary to perform a post-processing
reregistration of the data that allows for the forms of geometric
distortion described previously.

29.3.4 Static Field Inhomogeneity

29.3.4.1 Spatial Distortion

The theoretical framework described in Section 29.2 assumed
that the only terms contributing to the magnetic field at posi-
tion (x , y , z) were the main static magnetic field (assumed to
be perfectly homogeneous in magnitude at all points in the
sample and demodulated out during signal detection) and the
applied linear field gradients Gx , Gy , and Gz . As was shown
in Section 29.3.1, the linear field gradient terms may in fact
contain nonlinear contributions. An additional source of geo-
metric distortion is caused by the static magnetic field itself
being spatially dependent. This may result from imperfections
in the design of the magnet or from geometric or magnetic
susceptibility properties of the sample. Practically, offset cur-
rents can be applied to “shim” coils wound on the gradient
former that seek to optimize the homogeneity of the magnetic
field within the volume of interest. Shim coils are rarely sup-
plied beyond second order spatial polynomial terms, however.
This leaves a high-order spatially varying field profile across
the sample, which is dominated both by the magnetic suscepti-
bility differences between the sample and the surrounding air,
and the magnetic susceptibility differences between the various
component tissues. An example of this is shown in Figure 29.2,
which shows a 2D field map through the brain of a normal
volunteer. The low order static magnetic field variations have
been minimized using the available shim coils, but anatomically
related high spatial frequency magnetic field variations remain.
These are particularly prominent around the frontal sinuses
(air–tissue boundary) and the petrous bone.

The result of the residual magnetic field inhomogeneities is
that Equation 29.3 is modified to give

S(t ) =
∫∫

ρ(x , y) exp

[
−2πγ i

{∫
Gx(x , y)x dt

+
∫

Gy(x , y)y dt +
∫
�B(x , y)dt

}]
dxdy , (29.9)

where�B(x , y) is the magnetic field inhomogeneity in units of
Tesla.
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(a) (b)

175 Hz

275 Hz

FIGURE 29.2 Axial slice through the brain of a well-shimmed vol-
unteer (a). An MRI field map (b) in the same slice as (a). The field
map is scaled to show the range ±75 Hz. Note that the residual field
variations are caused by tissue-air (frontal sinuses) and tissue-bone
(petrous) interfaces in the head.

In a conventional 2D Fourier MRI pulse sequence (standard
spin echo, standard gradient echo, etc.), a poor magnetic field
inhomogeneity will result in displacement of pixels in only one
of the two dimensions of the image. To understand why this is
so, it is necessary to define the difference between the read-out
(first) dimension and the phase-encode (second) dimension
in k-space for a conventional MRI pulse sequence. In the case
of the read-out dimension, gradient history points are sam-
pled by incrementing time and maintaining a constant gradient
strength, i.e.,

kn
x = γGx nDW, n ∈ −N/2, N/2− 1. (29.10)

Thus, the read-out dimension of k-space is sampled following
the spin excitation by digitizing N (typically 128 or 256) points
separated by dwell time DW while simultaneously applying a
steady field gradient, Gx . Conversely, the phase-encode dimen-
sion of k-space is sampled by repeating the experiment M times
and applying a brief gradient pulse of varying amplitude for a
constant time. Thus,

km
y = γm�Gy tpe, m ∈ −M/2, M/2− 1, (29.11)

where �Gy is the phase-encode increment size and tpe is the
duration of the phase-encode gradient. Under this scheme
an N ×M pixel image will result and will have isotropic
field of view if �kn

x = �km
y . This principle is shown in

Figure 29.3a, demonstrating how k-space is filled by successive
spin excitations, each with a different phase-encode gradient
step.

A consequence of the difference between variable-time/
constant-gradient (read-out) and variable-gradient/constant-
time (phase-encode) sampling is that the magnetic field inho-
mogeneities cause pixel shifts only in the read-out dimension
of the image. The magnitude of the 1D pixel shift at position
(x , y) is given by γ�B(x , y)N DW pixels. Typically, γ�B(x , y) is

rarely greater than± 50 Hz at 1.5 Tesla, and DW is in the range
25–40 μs, resulting in up to a 0.5 pixel shift for a 256× 256
image. At high magnetic field strengths (> 1.5 Tesla) the shift
will be proportionately greater.

No pixel shifts are observed in the phase-encode dimen-
sion due to the zero time increment in the gradient history
of adjacent points in ky , i.e., no phase evolution,

∫
�B(x , y)dt ,

is possible in this dimension.
For the echo planar image (EPI) pulse sequence [34], which

is commonly used in neuro-functional and cardiac MRI appli-
cations, the situation is further complicated by the fact that the
phase-encode lines are collected sequentially following a single
excitation of the spin system. Indeed, this is the reason that EPI
is such a rapid imaging sequence and why it is favored by the
neuro-functional and cardiac MRI communities. The impli-
cation of collecting all k-space lines sequentially following a
single excitation of the spin system is that it is no longer the
case for EPI that the time evolution between adjacent points in
the second dimension of k-space is 0. This is shown schemati-
cally in Figure 29.3b, revealing that the time increment between
successive phase-encode lines is approximately equal to N DW.
Thus, for EPI the sensitivity to magnetic field inhomogeneities
in the phase-encode dimension is significantly greater than in
the read-out dimension by an approximate factor N . Putting
numbers to this, the DW values used in EPI are generally in
the range 5–10 μs, and N is in the range 64–128. This leads to
negligible pixel shifts in the read-out dimension (< 0.1 pixels),
but substantial pixel shifts in the phase-encode dimension (1–8
pixels). This gross difference is a simple consequence of the long
effective dwell time between the acquisition of adjacent points
in the phase-encode dimension of k-space. These effects can be
corrected if knowledge of the field map distribution through
the sample is obtained [25].

29.3.4.2 Intensity Distortion

Field inhomogeneities throughout the sample also lead to inten-
sity changes in the data. The nature of the intensity changes
depends on the pulse sequence being performed. Broadly, the
intensity of pixel (xn , ym) in a conventional spin-echo image is
modulated according to the amount of signal in the ym phase-
encode line contributing to the frequency interval γGx xn →
γGx xn+1. When the magnetic field homogeneity is perfect, the
pixel value should be equal to ρ(x , y). In the presence of field
inhomogeneities, though, the pixel intensity may be artifactu-
ally increased if signal is relocated into pixel (xn , ym), or may
be artifactually decreased if signal is relocated out of pixel
(xn , ym). Gradient-echo images may be further modulated by
intrapixel destructive phase interference. This can result in sig-
nal dropout (low signal intensity) in gradient-echo images in
the same locations that might result in high signal intensity in
spin-echo images. Details of the difference between spin-echo
and gradient-echo MRI pulse sequences may be found in the
introductory texts listed in Section 29.2.
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FIGURE 29.3 Schematic pulse sequences and k-space filling patterns for a conventional gradient echo sequence (a) and an echo planar imaging
sequence (b). For the conventional sequence M excitations of the spins are made to build up the M phase-encode lines. For the EPI sequence a
single excitation of the spins is made. A rapidly oscillating read-out gradient sweeps back and forth across k-space, enabling all phase-encode
lines to be collected. Note that a given point in kx (horizontal) is always sampled at the same time following the excitation pulse in (a) but is
sampled at increasing times,�τpe, following the excitation pulse in (b).

29.3.5 Radio-Frequency Coil Inhomogeneity

As described in Section 29.2, the NMR signal is generated
by exciting the longitudinal magnetization into the transverse
plane so that a signal can be detected. This is accomplished using
a copper resonant coil, which is used to generate an oscillat-
ing or rotating radio-frequency (B1) magnetic field transverse
to the static magnetic field. Classically, the longitudinal mag-
netization vector may be thought to rotate about the applied
B1 field by an angle 2πγB1τ, where τ is the duration of
the radio-frequency pulse. When 2πγB1τ corresponds to 90◦,
the longitudinal magnetization is fully tipped into the trans-
verse plane and will subsequently precess about the static field
until the transverse signal decays and the magnetization vector
recovers along the longitudinal direction. Many gradient-echo
pulse sequences use flip angles less than 90◦ so that only a
small disturbance is made to the longitudinal magnetization
component—preserving it for subsequent excitations. Clearly,
if the B1 field is not homogeneous (due to imperfect coil design
or sample interactions), then the MRI signal intensity will be
affected by variations in the B1 radio-frequency magnetic field.
For a gradient-echo pulse sequence, the signal is modulated in
proportion to B1 sin(2πγB1τ). For a spin echo pulse sequence,
the signal is modulated in proportion to B1 sin3(2πγB1τ). The
linear term in B1 appears for those cases in which the NMR
signal is received using the same radio-frequency resonant coil.

Increasingly, different coils are used for transmission and
reception. Typically, this takes the form of a large volume coil

(often the body coil) being used for transmit, and a closer fit-
ting coil or array of coils being used for reception. Such an
approach has benefits for signal-to-noise and for rapid imaging
(e.g., parallel imaging), but complicates the issue of homogene-
ity of the image intensity. In such cases a highly nonuniform
signal intensity profile is created in the receiver coil, leading
to high intensities near to the elements of the receive array coil
and to lower intensities far away from the elements of the receive
array coil. It is possible to collect calibration images that allow
the receive field to be mapped, but such data may not be avail-
able in routine images that have been collected for diagnostic
purposes.

Methods have been published in the literature to deal with
these problems, at least to some extent [5, 46, 50]. It is pos-
sible either to calibrate the B1 inhomogeneities (both in the
transmit coil and, where relevant, in the receive coil) as a func-
tion of position in the sample and to apply a correction for
the intensity variations, or to fit a polynomial surface to the
image data from which a post-hoc “bias field” can be deduced.
Again, an intensity correction can then be applied. Note that
the latter method may partly be influenced by other signal
intensity variations across the image, such as those caused by
static field inhomogeneities or different tissue types. Note also
that the details of calibrating B1 field effects at ultra-high fields
(e.g., 7 Tesla) are further complicated by the complex dielectric
effects that result from the high frequencies used at these field
strengths.
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29.4 Effects of Motion

Bulk motion of the patient or motion of components of the
image (e.g., blood flow) can lead to ghosting in the image. In
MRI, motion artifacts are most commonly seen in the abdomen
(as respiratory-related artifact) and thorax (as cardiac- and
respiratory-related artifacts). The origin of these artifacts is easy
to appreciate, since the phase of the signal for a particular line
of k-space is no longer solely dependent on the applied imag-
ing field gradients but now also depends on the time varying
position or intensity of the sample and on the motion through
the field gradients.

29.4.1 Pulsatile Flow Effects

The most common pulsatile flow artifact is caused by blood
flowing perpendicular to the slice direction (i.e., through
plane). Under conditions of partial spin saturation, in which
the scan repeat time, TR, is shorter than allows for full recov-
ery of longitudinal magnetization of blood, the spin density
term in areas of pulsatile flow will become time dependent. For
periods when the flow is low, the blood spins will be heavily
saturated by the slice selection. Conversely, when the flow is
high, unsaturated blood spins will flow into the slice of inter-
est, yielding a high signal in those areas. The modulation of
the flow will have some frequency, f . Haacke and Patrick [17]
have shown how the spin density distribution can be expanded
into a Fourier series of time-dependent terms ρ(x , y , t ′) =
�am(x , y)exp(2πimft′), where f is the fundamental frequency
of the pulsatile flow (e.g., the cardiac R-R interval), and
m ∈ 0,±1,±2, etc. Their analysis shows that ghosted images of
the pulsatile region appear superimposed on the main image.
The ghosts are predominantly in the phase-encode direction
and are displaced from the main image by�y = mf TR× FOV.
An example of an image with pulsatile flow artifact is shown in
Figure 29.4.

Even when long TR values are used, so that spin saturation
effects are minimized, artifacts can still result from pulsatile
flow. The reason for this is the phase shift induced in the flow-
ing spins as they flow through the slice-select and read-out field
gradients. Again, ghosted images displaced by �y = mf TR×
FOV in the phase-encode direction result [44]. This form of
image artifact can be dealt with at source by use of gradient
moment nulling [13, 18, 43]. That technique uses a gradient
rephasing scheme that zeroes the phase of moving spins at the
time of the spin-echo or gradient-echo. An alternative strategy
that can be used to suppress both the phase shifts as spins move
through the applied field gradients and intensity fluctuations
as the spins attain a variable degree of magnetization recov-
ery is to presaturate all spins proximal to the slice of interest.
In this way, the signal from blood spins is suppressed before
it enters the slice of interest and should contribute minimal
artifact.

FIGURE 29.4 Pulsatile flow artifact in an image of the knee. Note
the periodic ghosting in the phase-encode dimension (vertical) of the
popliteal artery.

29.4.2 Respiratory Motion

A particularly profound form of motion artifact in MRI data is
the phase-encode direction ghosting that results from motion
of the anterior wall of the abdomen as the patient breathes.
This superimposes a slowly varying modulation of the posi-
tion term inside the double integral of Equation 29.4. For
motion in the x direction of amplitude δx and frequency f , this
gives

S(kx , ky) =
∫∫

ρ(x , y)exp
[−2πi

{
kx(x + δx sin(2πft ))

+ ky y
}]

dxdy . (29.12)

Haacke and Patrick [17] show how motions of this form (in
x or y) also lead to ghosts in the phase-encode direction. Once
again the ghosts appear at discrete positions �y = mf TR×
FOV away from the main image. The amplitude of the ghosts
is proportional to the amplitude of the motion δx . Solutions
include breath hold, respiratory gating, or phase-encode order-
ing such that the modulation in k-space becomes smooth
and monotonic rather than oscillatory [4]. Signal averaging
of the entire image will also reduce the relative intensity of
the ghosts. An example of an image corrupted by respira-
tory artifact is shown in Figure 29.5. The image shows an
image of the lower abdomen collected from a 1.5 Tesla scanner.
Periodic bands from the bright fatty layers are evident in the
image.
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FIGURE 29.5 Respiratory artifact in an image of the lower abdomen.

29.4.3 Cardiac Motion

The heart presents the most problematic organ to image in
the body. In addition to gross nonlinear motion throughout
the cardiac cycle, the heart also contains blood that is mov-
ing with high velocity and with high pulsatility. In the absence
of motion correction, any imaging plane containing the heart
will be significantly degraded. Often the heart is blurred and
ghosted.

The simplest solution is to gate the acquisition of the MRI
scanner to the cardiac cycle. Indeed, when a controlled delay is
inserted following the cardiac trigger, any arbitrary point in the
cardiac cycle can be imaged. For the highest quality, cardiac gat-
ing should be combined with respiratory gating or with breath
hold. Another solution is to use very fast imaging methods so
that the motion of the heart is “frozen” on the time scale of the
acquisition. A hybrid combination of fast imaging methods and
cardiac gating is often used as the optimum approach.

29.4.4 Bulk Motion

Random bulk motion, as the patient moves in the magnet
or becomes uncomfortable, will also introduce phase-encode
ghost artifacts in conventional MRI sequences or in interleaved
hybrid MRI sequences. Since the motion is not periodic, the
ghosts do not occur at discrete intervals and are much more
random in appearance.

Diffusion imaging [30] is the technique most sensitive to
random bulk motions of the patient. In this technique a large
field gradient is applied to dephase the spins according to their

position. A time � later a second field gradient is applied in
the opposite direction. Stationary spins should be refocused
by the second gradient pulse such that all the spins along the
direction of the field gradient constructively add to give an
echo. If there have been random diffusion processes along the
field gradient direction, however, then some spins will find
themselves in a different magnetic field for the second gra-
dient pulse and will not be fully refocused. The amount of
destructive interference can be related to the self-diffusion coef-
ficient of water molecules in the tissue, and when the experi-
ment is repeated with a number of different gradient strengths,
the absolute value of the self-diffusion coefficient can be
obtained.

The problem occurs if there is bulk motion of the patient
between application of the dephasing and rephasing gradient
pulses. Because small diffusion distances are being measured,
this motion need not be large to produce a problem. The effect
is to induce an artifactual phase in the k-space line being col-
lected equal to γGθ·(r1 − r2)δ, where Gθ is the field gradient,
δ is its duration, and (r1 − r2) is the vector displacement of
the patient. An example of ghosting from a diffusion imaging
dataset is shown in Figure 29.6a. Gross phase-encode ghosting
is observed, rendering the image useless. Two solutions to this
problem exist. One is to use ultra-fast single-shot imaging meth-
ods (e.g., snapshot EPI), since for these sequences the phase shift
will be the same for all lines of k-space and so will not Fourier
transform to give an artifact. The other solution is to use naviga-
tor echoes [2, 3, 12, 42] in which an extra MRI signal is collected
before the phase-encode information has been applied. In the
absence of bulk motions of the patient, the phase of the nav-
igator information should be the same for each phase-encode
step. Any differences may be ascribed to artifact and may be
corrected for. Figure 29.6b shows the same data as Figure 29.6a
after the navigator correction information has been applied.
A substantial correction can be realized.

(a) (b)

FIGURE 29.6 Diffusion-weighted images collected in the human
brain without (a) and with (b) navigator echo correction for micro-
scopic bulk motions of the patient. A gradient b-value of 900 s/mm2

was used in the anterior-posterior direction. Note the substantial
correction made by the navigator echo information.
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29.5 Chemical Shift Effects

Historically, NMR has been used in isolated test tubes for
measuring the frequency shift of nuclei in different chemical
environments for far longer than for mapping the spatial distri-
bution of those species. In MRI the nucleus of most interest is
1H, usually in the form of water. In human tissue the H2O peak
dominates, but close examination reveals a multitude of lower
intensity resonant lines in the 1H spectrum (i.e., in the data
acquired without any spatial encoding field gradients). Second
to water, the largest contribution in humans is from the 1H
nuclei in the lipid chains of the fatty tissues. This group of res-
onances is centered at a frequency displaced 3.4 ppm from that
of water (e.g., at 1.5 Tesla this corresponds to a 220 Hz shift).
The signal from fat is sufficiently large that it can lead to a low-
intensity “ghosted” image of the fat distribution that is offset
relative to the main water image.

29.5.1 Implications for Conventional MRI

The fat signal artifact that is generated may be understood quite
easily using the same theory and approach as in Section 29.3.4.1.
Separating the signal into an on-resonance water spin density
distribution, ρw(x , y), and an off-resonance fatty spin density
distribution, ρf (x , y), the signal that is acquired is given by

S(kx , ky) =
∫∫ {

ρw(x , y)+ ρf (x , y)exp(−2πiνt )
}

exp
[−2πi(kx x + ky y)

]
dxdy . (29.13)

In this equation ν is the fat–water frequency separation and
t is the time following spin excitation. Again, it is clear that
for a conventional image, there is no phase evolution between
adjacent points in the phase-encode dimension of k-space, since
�t = 0 for those points. In the read-out direction, however, a
fat image is expected; this image is shifted with respect to the
main image by νN DW pixels. For a fat–water frequency shift
corresponding to 1.5 Tesla and a typical dwell time range of
25–40 μs, the shift will be 1.5–2.5 pixels.

There are various MRI methods for suppressing the fatty
signal so that it never appears in the image. This is accom-
plished either by saturating the fat resonance with a long
radio-frequency pulse directly at the fat frequency (fat satu-
ration) or by selectively exciting the water resonant frequency
and leaving the fat magnetization undetected along the longi-
tudinal axis (selective excitation). Nevertheless, it is rare to get
a complete suppression of the fat signal in the image even when
these techniques are employed.

29.5.2 Implications for Ultra-Fast MRI

The effect of the fat signal in the case of ultra-fast MRI pulse
sequences is more significant than for conventional sequences.

In particular, in echo planar imaging sequences, the fat image
can be significantly displaced from the main image. For a 64×
64 pixel snapshot imaging sequence with a typical dwell time
of 8 μs, the shift of the fat image relative to the main water
image will be 7 pixels at 1.5 Tesla (i.e., 11% of the field of view).
When interleaved k-space EPI methods [8, 35] are used, the
pixel shift will be proportionately reduced. Note also that for EPI
the shift will be predominantly in the phase-encode direction
rather than in the read-out direction for the reasons discussed
in Section 29.3.4. Because of the large shift in the fat image,
it is important to use fat suppression techniques in EPI data
whenever possible. Be aware that total suppression is difficult to
achieve.

Spiral images [1, 36] are also sensitive to the fat signal, but
the artifact appears in a different way. The reason for this is
the very different acquisition protocol for spiral scans, in which
k-space is sampled in a spiral pattern. The result is a blurring
and shifting of the fat image, which is off-resonance with respect
to the scanner center frequency, superimposed on the main
image, which is on-resonance. The extent of the blurring is
given roughly by 2νTacq, where Tacq is the duration of the signal
acquisition. For example, at 1.5 Tesla with a 30 ms acquisition
time, the blurring is approximately 14 pixels in extent. Often
this appears as a halo around regions of high fat content. Once
again, fat suppression techniques should be employed when
using spiral imaging sequences.

Examples of the fat ghost image for a conventional image of
the leg collected at 1.5 Tesla and an EPI spin-echo image of the
brain collected at 3 Tesla are shown in Figure 29.7.

(a) (b)

FIGURE 29.7 Images showing the chemical-shift artifact from super-
imposed lipid and water images. (a) A conventional 1.5 Tesla image
of the leg in which no fat suppression was employed. Note the hori-
zontal misalignment of the surface fatty tissue and the bone marrow
relative to the water signal from the muscle. (b) A 3 Tesla spin-echo
EPI image, also collected without fat saturation. The lipid image is
shifted in the read-out dimension by 7 pixels (220 Hz) in a 256–pixel
matrix (8 kHz bandwidth) in (a) and in the phase-encode dimen-
sion by 20 pixels (410 Hz) in a 64–pixel matrix (1.29 kHz effective
bandwidth) in (b).
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29.6 Imperfect MRI Pulse Sequences

A class of image artifact exists that is caused by imperfect design
or execution of the MRI pulse sequence. In a well-engineered
scanner with carefully crafted pulse sequences that is operated
by an expert technologist, few of these problems should arise.
But inevitably there will be occasions when practical constraints
require that compromises are made, and image artifacts of the
sort described in the following paragraphs can occur. The aim
of this section is to briefly describe the origin of such artifacts
and show examples that should enable their presence to be
recognized.

29.6.1 Truncation Artifacts

Truncation of the MRI data may occur both in the extent to
which k-space is sampled, and in the way the signal is digitized
by the scanner receiver. Examples of both types of truncation
are shown in Figure 29.8. Clearly, it is always necessary to trun-
cate the coverage of k-space, since one cannot practically sample
an infinite space! But if the number of lines of k-space sampled
has been reduced and zero-filled in either the read-out or phase-
encode dimensions, then a ringing artifact will be observed in
the image. An example of this is shown in Figure 29.8b, which
shows ringing in the vertical (phase-encode) dimension. The
reason is that only 128 lines were collected in the phase-encode
dimension, whereas 256 points were collected in the read-out
dimension. Thus, in the phase-encode (vertical) dimension, the
effect is to multiply the k-space data, S(kx ,ky), by a top hat
function, (ky), in the ky dimension. Standard Fourier trans-
form theory predicts that when the resulting k-space data are
Fourier transformed, one obtains FT{S(kx ,ky)} ⊗ FT{(ky)}.
The Fourier transform of the ideal S(kx ,ky) is ρ(x ,y), and the
Fourier transform of (ky) is a sinc function. This results in
a Gibbs ringing of the image in the undersampled dimen-
sion, an effect that is particularly prominent close to a sharp
intensity transition in the data. Figure 29.8b clearly shows
this Gibbs ringing in the vertical dimension when compared
with an image of the ideal Shepp–Logan phantom shown in
Figure 29.8a. The intensity of the Gibbs ringing may be min-
imized by preapodization of the truncated k-space data by a
smoothly varying function (e.g., a Gaussian). This reduces the
sharpness of the top-hat function but degrades the point-spread
function in the resulting image.

A truncation of the k-space data can also be caused when the
signal that is sent to the receiver is too large to be represented by
the analogue-to-digital converter (ADC). If the receiver gain
has been correctly set up on the scanner, then this artifact
should never be seen in the image data. But it is surprising
how often this artifact is seen. An example of ADC overflow
is shown in Figure 29.8c. The image background has been
intentionally raised to reveal the presence of a slowly modu-
lating pattern in the background of the image (and also in the

image itself). The artifact is easily understood as a misrepre-
sentation of the low spatial frequency regions of k-space. The
reason is that the low spatial frequencies (around the center
of k-space) contain the bulk of the signal and are, therefore,
those regions most likely to be clipped by an incorrectly set
ADC gain. Once present in the data, this is a difficult artifact to
correct.

29.6.2 Non-Steady-State Effects

The purpose of magnetic resonance imaging is to obtain spa-
tially determined information on some contrast mechanism of
interest. The contrast may simply be the spin density of the
nucleus, ρ(x , y), or some manipulation to the spin density may
be made to induce some other contrast mechanism of inter-
est (e.g., T 1 weighting, T 2 weighting, diffusion weighting).
Regardless, it is vital in a modern scanning environment to
optimize the quality of data at acquisition and to minimize the
duration of the scan itself. To this end, many pulse sequences
are run in a partially saturated state. In other words, a state
in which only partial recovery of longitudinal magnetization
is allowed between subsequent excitations of the spin sys-
tem. When this is the case, any variation in the repeat time
between spin excitations, TR, will lead to varying amounts of
longitudinal magnetization recovery. It is this longitudinal mag-
netization that is tipped into the transverse observation plane
for detection. Hence, any line-to-line fluctuations in k-space in
the amplitude of the signal that are not related to the applied
field gradients will generate Fourier noise in the image. Since
any given read-out row in k-space is generated from a sin-
gle spin excitation, there should be no artifact in the read-out
dimension of the image. However, in the phase-encode direc-
tion, where any given column in k-space is generated from M
different excitations of the spins, substantial artifact can result
if the TR time varies randomly. Under these conditions, the
available longitudinal magnetization available for the jth exci-
tation of the spins (and hence the jth row in k-space) will be
given by

M j
z = M 0

z +
[
M j−1

z cos θ −M 0
z

]
exp(−TRj−1/T1), (29.14)

where M 0
z is the equilibrium longitudinal magnetization of the

spins, θ is the excitation flip angle, and TR j−1 is the duration of
the (j − 1)th TR delay. (Note that when TR � T 1, the expo-

nential term is close to 0, and so M
j
z is always given by M 0

z .)
Normally, the TR period is accurately controlled and does not
vary. However, if some form of gating is used, particularly
cardiac gating, then the starting longitudinal magnetization
can be modulated with the varying duration of the cardiac
period. This will lead to randomly appearing phase-encode
noise.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 29.8 ‘Rogues’ gallery of acquisition artifacts. (a) The computer-generated 256× 256 pixel Shepp-Logan head phantom. (b) Gibbs
ringing caused by collecting only 128 lines of k-space in the phase-encode direction and zero-filling up to 256. (c) Effect of clipping the data
in the ADC process (receiver overflow). The background has been intentionally raised. (d) The zipper artifact caused by adding an unwanted
FID decay from a mis-set spin echo sequence. (e) Phase-encode direction aliasing resulting from an off-isocenter subject. (f) The aliasing effect
of reducing the phase-encode direction field of view in a spin echo sequence. (g) Additional Moire fringes induced in the aliased regions of a
gradient-echo sequence. (h) Effect of an unwanted phase-encoded echo (stimulated echo, etc.) that is predominantly shifted in kx only. (i) Effect
of an unwanted phase-encoded echo that is shifted both in kx and ky .

Another implication of Equation 29.14 is that if a very short
TR time is to be used, even when the TR time is rigorously
constant, then enough “dummy” excitations of the spin system
should be allowed that the spins attain a steady-state start-
ing magnetization. If the spin system starts from complete

equilibrium (M (t = 0) = M 0
z ), then

M 1
z = M 0

z cos θ,

M 2
z = [M 1

z cos θ −M 0
z ] exp(−TR/T 1), (29.15)

M 3
z = [M 2

z cos θ −M 0
z ] exp(−TR/T 1), etc.
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The initial longitudinal magnetization will oscillate according
to Equation 29.15 until eventually a steady-state longitudinal

magnetization is reached in which M
j
z = M

j−1
z . The steady-

state longitudinal magnetization will thus be given by (c.f.,
Equation 29.5):

M ss
z = M 0

z [1− exp(−TR/T1)]/[1− cos θ exp(−TR/T1)].
(29.16)

A well-designed pulse sequence will incorporate enough
“dummy scan” acquisitions that when the image signal is
detected, the spins have reached a steady state. This may not
always be the case, though.

29.6.3 Unwanted NMR Echoes

Another implication of repeatedly exciting the spins, or of
invoking multiple “spin echoes” from a single excitation, is that
unwanted echoes may be generated in the signal. The details
of how these unwanted signal echoes are generated are beyond
the scope of this article. Further details may be found in the
papers of Crawley et al. [10], Majumdar et al. [32], and Liu
et al. [31]. However, it is possible to categorize the artifacts
into two broad classes. In the first class the unwanted echo is
induced after the phase-encode field gradient has been played
out, implying that the unwanted signal is not spatially encoded
in y . In the second class the unwanted echo is induced before the
phase-encode gradient has been played out, implying that the
unwanted signal is spatially encoded in y . The resulting artifacts
will be commensurately different. Figure 29.8d shows a simu-
lated dataset indicating the appearance of an image in which an
artifactual signal was generated by an imperfect 180◦ refocusing
pulse in a spin-echo sequence. This caused additional signal to
be tipped into the transverse plane that occurs after the phase-
encode gradient has been played out. The image is thus formed
by the desired signal, S(kx ,ky), given by Equation 29.4, plus an
unwanted signal S′(kx ,0), given by

S′(kx , 0) = a

∫∫
ρ(x , y) exp[−2πi(kx + kmax)x] dxdy .

(29.17)

The extra term kmax is included because the signal from the
unwanted magnetization is a maximum at the edge of k-space
rather than in the center of k-space. The term a is a scaling
term to account for the different intensity of the artifactual sig-
nal. When Fourier transformed, the two complex signals add to
give the true image plus a band of artifactual signal through the
center of the image in the read-out direction. Close inspection
of the artifactual band in Figure 29.8d reveals an alteration in
signal intensity in adjacent pixels (the so-called zipper artifact).
This is simply caused by the kmax term in Equation 29.15, which
shifts the center of the unwanted “echo” (actually a free induc-
tion decay) to the edge of k-space, thus leading to a first order
phase shift of 180◦ per point in the Fourier transformed data
for the unwanted echo. The presence of such “zipper” artifacts

through the center of the image is indicative of poor refocus-
ing pulse behavior. This can be ameliorated either by accurate
setting of the radio-frequency pulse power, or by employment
of crusher field gradient pulses on either side of the radio-
frequency refocusing pulse, designed to reject any spuriously
induced transverse magnetization.

The second class of unwanted echo artifact can be recognized
by its different appearance. For this class of unwanted echo, the
signal has been spatially encoded by the phase-encode pulse,
with the resulting effect of mixing the desired signal, S(kx ,ky),
with an artifactual signal, S′′(kx ,ky), given by

S′′(kx , ky) = a

∫∫
ρ(x , y)exp[−2πi {(kx + dkx)x

+ (ky + dky)y
}]

dxdy . (29.18)

The terms dkx and dky account for the slightly different gradient
histories of the unwanted signal relative to the desired signal. If
dkx and dky happen to be 0, then no artifact will be observed in
the image, but the signal intensity will be enhanced by a factor
(1+ a). Generally, however, the effect of the complex addition
of S(kx ,ky)+ S′′(kx , ky) is to cause interference fringes to be
generated in the image, as is shown in Figures 29.8h and 29.8i.
Once again, appropriate use of crusher field gradients can help
to suppress such undesired effects.

Note that if the ripples are absolutely straight (corduroy) or
checkered, rather than slightly curved as schematically shown
in Figures 29.8h and 29.8i, then hardware “spiking” should be
suspected. This is caused by static electric discharges occurring
in the magnet room, leading to a high spike in the k-space data.
Analysis of the raw k-space data should reveal if this is the case.
A field engineer should be contacted if spiking is present.

29.6.4 Signal Aliasing

Another example of artifact that is frequently encountered in
MRI datasets is the effect of signal aliased from regions outside
the field of view back into the image. Aliasing is rare in the
frequency-encoding (read-out) direction of the image, since
analogue or digital filters are often used to filter frequencies
outside the desired field of view. Conversely, aliasing in the
phase-encode direction is quite common.

The Nyquist sampling theory dictates that a signal that is
sampled with a dwell time DW can accurately represent signals
only up to a maximum frequency±fN,where fN = 1/(2×DW).
In the absence of filtering, frequencies outside this Nyquist
threshold will fold back into the spectrum such that a signal
of frequency fN + δf will be represented in the spectrum at
position −fN + δf . This often happens in the phase-encode
direction of the MRI image when signal extends outside the
phase-encode direction field of view. Three examples of this
are shown in Figure 29.8e, 29.8f, and 29.8g. Figure 29.8e shows
the effect of positioning the sample off-center with respect to
the MRI field of view. Signal from the bottom of the image has
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aliased to the top of the field of view. Clearly, signal can alias to
a sufficient extent that it overlaps the main image. Figure 29.8f
shows a simulated spin-echo image in which the folded signal
simply adds to the main image. In the case of gradient-echo
sequences the phase of the aliased signal will generally be dif-
ferent from the phase of the main image, due to different shim
environments in the sample. Interference (Moire) fringes will
therefore be induced in the image, the severity of which will
increase with gradient-echo time (TE). An example of Moire
fringes is shown in Figure 29.8g. Spatial saturation of signal
from outside the field of view (with special spatial saturation
pulses) can help to avoid phase-encode aliasing.

29.7 fMRI Artifacts

Magnetic resonance imaging has recently found application in
mapping human brain function. The contrast mechanism used
is the dependence of the signal intensity on the local tissue con-
centration of deoxyhemoglobin. The relationship is approxi-
mately loge{S/S0}∝ −[deoxyHb]. During neuronal activity, the
brain locally consumes more oxygen, but because of an even
greater increase in local blood flow, the venous blood becomes
less deoxygenated and the signal increases. These subtle changes
in signal (1–5%) can be detected using gradient-echo pulse
sequences [28, 41]. Because the signal changes are small, it is
desirable to collect many MRI volumes and to alternate several
times between the neurological task stimulus and the control
stimulus. For this reason fast imaging sequences such as EPI
and spiral imaging are used, capable of sampling up to 10 slices
of the brain per second.

29.7.1 Echo Planar Imaging and Spiral Imaging
Artifacts

Echo planar imaging, or EPI, is the most common pulse
sequence used in functional MRI studies. Developed in 1977,
it is only in recent years that improvements in scanner hard-
ware have enabled EPI to be used widely. Impressive speed is
attainable with EPI. Up to 10 slices per second may be sampled,
although the pixel resolution is usually limited to 64× 64 pixels
or 128× 128 pixels. However, EPI suffers from two significant
artifacts, as described in the following paragraphs.

29.7.1.1 Nyquist Ghost

The principle of scanning k-space in a single shot was described
in Section 29.3.4 and in Figure 29.3b. In EPI all the lines of
k-space are sampled following a single excitation of the spin
system. As is evident in Figure 29.3b, half the k-space lines are
acquired under a positive read-out field gradient (left to right)
and half are collected under a negative read-out field gradient
(right to left). This is in contrast to conventional imaging where

all lines are collected under a field gradient of the same polarity
(Figure 29.3a). During image reconstruction the lines collected
right to left are time-reversed to match the lines collected left to
right. Despite this, discrepancies in phase, timing, and ampli-
tude will remain between the two sets of k-space lines. Since,
for snap-shot EPI, every alternate line in k-space is collected
with a gradient of opposite polarity, any differences in timing
or receiver response between the odd and even lines will alter-
nate with the Nyquist frequency. This induces a ghost of the
main image, which is displaced by half the field of view in the
phase-encode direction.

Figure 29.9a shows an example of an EPI ghost in a simulated
phantom. An incorrectly set receiver delay results in system-
atic phase and timing differences between the odd and even
k-space lines. Figure 29.9b shows the result of calibrating and
correcting for the phase difference between the odd and even
k-space lines. This is often carried out by collecting a reference
scan (or embedded set of calibration k-space lines) without
any phase-encode gradient pulses [6, 22, 51]. It is also possi-
ble to apply a correction without a reference scan [7]. Use of a
reference scan provides a substantial correction, but it is diffi-
cult to achieve ghosts that are less than 5% of the main image
intensity. Finally, if the complex time domain data are avail-
able from the scanner, it is possible to perform an empirical
post-hoc minimization of the ghosting by searching for appro-
priate zeroth and first order phase shifts in the semi-Fourier
transformed data S(x , ky) that minimize the Nyquist ghost
in ρ(x , y).

(a) (b)

FIGURE 29.9 Illustration of the combined effects of Nyquist ghost
and geometric distortion in an EPI pulse sequence. The computer-
generated phantom is a disk with a regular grid running through it.
A poor field homogeneity with a (x2−y2 + xy) dependency was also
simulated. (a) The result of simply time-reversing alternate lines in
k-space and Fourier transforming. Significant geometric distortion
(from the poor shim) and Nyquist ghosting (from mis-set timing) is
evident. (b) The result after phase correcting the semi-Fourier trans-
formed data with a reference scan (collected without phase-encode
gradients). The Nyquist ghost is substantially suppressed, although
the geometric distortion remains. The details of the phase correction
strategy used may partially correct for geometric distortions but will
not completely remove them.
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29.7.1.2 Field Inhomogeneity Effects

Field inhomogeneity effects in EPI data were discussed in
Section 29.3.4. The effect of field inhomogeneity is to distort
both the geometry of the sample and also distort the intensity.
The most prominent effect is usually the geometric distor-
tion, which will cause a static magnetic field inhomogeneity,
�Bz (x ,y), to mislocate pixels in the phase-encode dimension
of the image according to y = y0 + γ�Bz (x , y)τpe, where τpe is
the effective phase-encode dwell time (approximately N DW).
This mislocation can be up to 10% of the field of view. The
most important implication of this mislocation is that it must
be allowed for when registering EPI data with images collected
using a more conventional pulse sequence. Either a nonlinear
spatial warp must be allowed for in registration, or information
from the measured field inhomogeneity distribution must be
used [25].

Spiral imaging sequences are affected differently by field
inhomogeneity. For spiral pulse sequences, k-space is sampled
in a spiral that starts from the center of k-space and spirals
out until reaching the desired kmax radius. A regridding proce-
dure is next performed to interpolate the acquired points onto
a rectilinearly sampled equidistant grid. A 2D FFT then pro-
vides the image. The effect of local field inhomogeneities is to
broaden the point-spread function of the signal in both Fourier
dimensions. The spiral image therefore becomes locally blurred.
Strategies to correct for this problem include using knowledge
of the measured field inhomogeneity distribution to provide a
correction [38], or deducing the distribution from the data to a
low polynomial order [23, 33]. Some local spatial blurring will
inevitably remain, as well as some streaking artifacts introduced
during k-space regridding.

29.7.2 Physiological Noise Effects

The magnitude of signal changes observed in the various func-
tional MRI techniques are quite small. Even for functional tasks
involving primary sensory or primary motor areas, the frac-
tional change in MRI signal attributable to neuronal activity
is usually less than ≈ 4%. For more subtle cognitive tasks, for
example, working memory tasks, or for single-event fMRI stud-
ies, the magnitude of the signal changes can be on the order
of 1% or less. Once the scanner hardware is optimized and
head motion of the subject has been corrected [16, 24, 52], the
most significant residual source of noise (or more precisely the
temporal instability) in the images is the effect of physiologi-
cal processes. These mainly consist of respiratory and cardiac
effects.

Often, the largest source of physiological artifact in fMRI time
series is caused by respiration. This is revealed as signal changes
that correlate with the breathing cycle. Experiments which have
been performed to determine the origin of respiration-related
artifacts have indicated that the effect is largely ascribable to
small magnetic field shifts induced in the brain, which in

turn are caused by gross magnetic susceptibility changes as
the lungs in the chest cavity expand and contract. These mag-
netic field shifts have been measured [39, 40, 53] and have
values for maximum inspiration minus maximum expiration
of 0.01 ppm at the most superior part of the brain, increas-
ing to 0.03 ppm at the base of the brain (closest to the chest
cavity).

The cardiac-related noise effects are largely caused by
motions of the brain, which in turn result from cerebral blood
volume and pressure fluctuations [15]. Poncelet et al. [45] and
Enzmann and Pelc [14] used motion-sensitive MRI methods
with high temporal resolution to characterize the bulk motions
of the brain that correlate with the cardiac cycle. The motions
detected using these techniques showed that brain structures
close to the brain stem moved with excursions of up to 0.5 mm
over the cardiac cycle, whereas cortical regions of the brain
moved with excursions that are less than ≈ 0.05 mm. This
implies that bulk motion of the brain caused by cardiac contrac-
tion could be a source of artifact particularly in the deeper brain
structures. Also, the varying effects of inflow of fresh blood spins
into the slice of interest over the heart cycle can lead to signal
fluctuations (see Section 29.4.1).

Numerous correction strategies have been proposed to
minimize physiological signal fluctuations in fMRI datasets.
Methods based on navigator echo approaches have been used
[20, 22, 29, 40]. Another approach is to externally monitor
the physiological processes themselves and to fit a low-order
polynomial function to the “unit cycle” that describes the
point-by-point phase and amplitude modulation of the sig-
nal throughout the cardiac and respiratory cycles. Those effects
can then be removed by vector subtraction [21]. A substantial
improvement in the statistical power of the data can be realized
using these methods.

29.8 Concluding Remarks

Magnetic resonance imaging is a very powerful tool, able to
access and measure many parameters of morphological, patho-
logical, and physiological importance. Yet it is, to some extent,
this very power that makes MRI sensitive to a number of image
artifacts of diverse origin. Diligent data acquisition should over-
come many of these problems. But inevitably artifacts will
remain in the data, and it is important to be able to recog-
nize all and deal with at least some of these remaining problems.
I hope that this article has served to aid in this respect.

Acknowledgments

I thank John Talbot of the John Radcliffe Hospital Department
of Radiology for providing sample images. I also thank
Dr. Douglas C. Noll of the University of Michigan for helpful
discussions.



29 The Physical Basis of Spatial Distortions in Magnetic Resonance Images 513

29.9 References

1. Ahn CB, Kim JH, Cho ZH. High speed spiral-scan echo
planar NMR imaging—I. IEEE Trans Med Imag, 1986;
MI-5:2–7.

2. Anderson AW, Gore JC. Analysis and correction of
motion artifacts in diffusion weighted imaging. Magn
Reson Med. 1994;32:379–387.

3. Asato R, Tsukamoto T, Okumura R, Miki Y, Yoshitome
E, Konishi J. A navigator echo technique effectively elim-
inates phase shift artifacts from the diffusion-weighted
head images obtained on conventional NMR imager. Proc
11th Soc Magn Reson Med Meeting. 1992;3:1226.

4. Bailes DR, Gilderdale DJ, Bydder GM, Collins AG,
Firmin DN. Respiratory ordering of phase encoding
(ROPE): A method for reducing respiratory motion arti-
facts in MR imaging, J. Comput. Assist. Tomogr. 1985;
9:835–838.

5. Brechbühler C, Gerig G, Székely G. Compensation of spa-
tial inhomogeneity in MRI based on a multi-valued image
model and a parametric bias estimate. Technical Report
BIWI-TR-170, Communication Technology Laboratory,
Image Science, Swiss Federal Institute of Technology
(ETH); 1996.

6. Bruder H, Fischer H, Reinfelder H-E, Schmitt F. Image
reconstruction for echo planar imaging with nonequidis-
tant k-space sampling. Magn Reson Med. 1990;23:
311–323.

7. Buonocore MH, Gao L. Ghost artifact reduction for echo
planar imaging using image phase correction. Magn Reson
Med. 1997;38:89–100.

8. Butts K, Riederer SJ, Ehman RL, Thompson RM,
Jack CR. Interleaved echo planar imaging on a standard
MRI system. Magn Reson Med. 1994;31:67–72.

9. Callaghan PT. Principles of Nuclear Magnetic Resonance
Microscopy. Oxford: Clarendon Press; 1993.

10. Crawley AP, Wood ML, Henkelman RM. Elimination of
transverse coherences in FLASH MRI. Magn Reson Med.
1984;8:248–260.

11. Du YPP, Zhou XHJ, Bernstein MA. Correction of con-
comitant magnetic field-induced image artifacts in non-
axial echo-planar imaging. Magn Reson Med. 2002;48:
509–515.

12. Ehman RL, Felmlee JP. Adaptive technique for high-
definition MR imaging of moving structures. Radiology.
1989;173:255–263.

13. Ehman RL, Felmlee JP. Flow artifact reduction in MRI:
A review of the roles of gradient moment nulling and
spatial presaturation. Magn Reson Med. 1990;14:293–307.

14. Enzmann DR, Pelc NJ. Brain motion: Measurement
with phase-contrast MR imaging. Radiology. 1992;185:
653–660.

15. Feinberg D. Modern concepts of brain motion and
cerebrospinal flow. Radiology. 1992;185:630–632.

16. Friston KJ, Williams S, Howard R, Frackowiak RS,
Turner R. Movement-related effects in fMRI time-series.
Magn Reson Med. 1996;35:346–355.

17. Haacke EM, Patrick JL. Reducing motion artifacts in
two-dimensional Fourier transform imaging. Magn Reson
Imag. 1986;4:359–376.

18. Haacke EM, Lenz GW. Improving MR image quality in
the presence of motion by using rephasing gradients.
Am J Roentgenol. 1987;148:1251–1258.

19. Haacke EM, Brown RW, Thompson MR, Venkatesan R.
Magnetic Resonance Imaging: Physical Principles and Seq-
uence Design. New York: Wiley, 1999.

20. Hu X, Kim S-G. Reduction of signal fluctuation in func-
tional MRI using navigator echoes. Magn Reson Med.
1994;31:595–503.

21. Hu X, Le TH, Parrish T, Erhard P. Retrospective estimation
and correction of physiological fluctuation in functional
MRI. Magn Reson Med. 1995;34:201–212.

22. Hu X, Le T-H. Artifact reduction in EPI with phase-
encoded reference scan. Magn Reson Med. 1996;36:
166–171.

23. Irarrazabal P, Meyer CH, Nishimura DG, Macovski A.
Inhomogeneity correction using an estimated linear field
map. Magn Reson Med. 1996;35:278–282.

24. Jenkinson M, Bannister PR, Brady JM, Smith SM.
Improved optimization for the robust and accurate linear
registration and motion correction of brain images.
Neuroimage. 2002;17:825–841.

25. Jezzard P, Balaban RS. Correction for geometric distortion
in echo planar images from B0 field variations. Magn Reson
Med. 1995;34:65–73.

26. Jezzard P, Barnett AS, Pierpaoli C. Characterization of
and correction for eddy currents in echo planar diffusion
imaging. Magn Reson Med. 1998;39:801–812.

27. King KF, Ganin A, Zhou XHJ, et al. Concomitant gradi-
ent field effects in spiral scans. Magn Reson Med. 1999;41:
103–112.

28. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE,
Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE,
Cohen MS, Turner R, et al. Dynamic magnetic reso-
nance imaging of human brain activity during primary
sensory stimulation. Proc Natl Acad Sci USA. 1992;89:
5675–5679.

29. Le TH, Hu X. Retrospective estimation and correction
of physiological artifacts in fMRI by direct extraction of
physiological activity from MR data. Magn Reson Med.
1996;35:290–296.

30. LeBihan D (ed.). Diffusion and Perfusion Magnetic Reso-
nance Imaging. Raven Press, New York; 1995.

31. Liu G, Sobering G, Olson AW, van Gelderen P, Moonen CT.
Fast echo-shifted gradient-recalled MRI: Combining a
short repetition time with variable T 2∗ weighting. Magn
Reson Med. 1993;30:68–75.



514 Handbook of Medical Image Processing and Analysis

32. Majumdar S, Orphanoudakis SC, Gmitro A, O’Donnell M,
Gore JC. Errors in the measurements of T 2 using multiple-
echo MRI techniques. I. Effects of radiofrequency pulse
imperfections. Magn Reson Med. 1986;3:397–417.

33. Man L-C, Pauly JM, Macovski A. Improved automatic
off-resonance correction without a field map in spiral
imaging. Magn Reson Med. 1997;37:906–913.

34. Mansfield P. Multi-planar image formation using NMR
spin echoes. J. Phys. C. 1977;10:L55–L58.

35. McKinnon GC. Ultrafast interleaved gradient-echo-
planar imaging on a standard scanner. Magn Reson Med.
1993;30:609–616.

36. Meyer CH, Macovski A. Square spiral fast imaging:
Interleaving and off-resonance effects. Proc 6 th Soc Magn
Reson Med. 1987;1:230.

37. Morris PG. NMR Imaging in Medicine and Biology.
Oxford: Oxford University Press; 1986.

38. Noll DC, Meyer CH, Pauly JM, Nishimura DG. A homo-
geneity correction method for magnetic resonance imag-
ing with time varying gradients. IEEE Trans Med Im.
1991;10:629–637.

39. Noll DC, Schneider W. Respiration artifacts in functional
brain imaging: Sources of signal variation and compensa-
tion strategies. Proc 2nd Soc Magn Reson. 1994a;2:647.

40. Noll DC, Schneider W. Theory, simulation, and compen-
sation strategies of physiological motion artifacts in func-
tional MRI. Proc IEEE Int Conf on Image Proc. 1994b;3:
40–44.

41. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG,
Merkle H, Ugurbil K. Intrinsic signal changes accompany-
ing sensory stimulation: Functional brain mapping with
magnetic resonance imaging. Proc Natl Acad Sci USA.
1992;89:5951–5955.

42. Ordidge RJ, Helpern JA, Qing ZX, Knight RA, Nagesh V.
Correction of motional artifacts in diffusion-weighted
MR images using navigator echoes. Magn Reson Imaging.
1994;12:455–460.

43. Pattany PM, Phillips JJ, Chiu LC, Lipcamon JD, Duerk JL,
McNally JM, Mohapatra SN. Motion artifact suppres-
sion technique (MAST) for MR imaging. J Comput Assist
Tomogr. 1987;11:369–377.

44. Perman WH, Moran PR, Moran RA, Bernstein MA.
Artifacts from pulsatile flow in MRI. J Comput Assist
Tomogr. 1986;10:473–483.

45. Poncelet BP, Wedeen VJ, Weisskoff RM, Cohen MS. Brain
parenchyma motion: Measurement with cine echo-planar
MR imaging. Radiology. 1992;185:645–651.

46. Rajapakse J, Kruggel F. Segmentation of MR images with
intensity inhomogeneities. Image and Vision Computing.
1998;16:165–180.

47. Romeo F, Hoult DI. Magnet field profiling: Analysis
and correcting coil design. Magn Reson Med. 1984;1:
44–65.

48. Stark DD, Bradley WG (eds.). Magnetic Resonance
Imaging. St. Louis, MO: Mosby Year Book; 1992.

49. Weisskoff RM, Cohen MS, Rzedzian RR. Nonaxial
whole-body instant imaging. Magn Reson Med. 1993;29:
796–803.

50. Wells W, Grimson W, Kikinis R, Jolesz F. Adaptive seg-
mentation of MRI data. IEEE Trans on Medical Imaging.
1996;15:429–442.

51. Wong EC. Shim insensitive phase correction for EPI using
a two echo reference scan. Proc SMRM, 11th Annual
Meeting. 1992;2:4514.

52. Woods R, Cherry SR, Mazziotta JC. Rapid automated algo-
rithm for aligning and reslicing PET images. J Comput
Assist Tomogr. 1992;16:620–33.

53. Wowk B, Alexander ME, McIntyre MC, Saunders JK.
Origin and removal of fMRI physiological noise: A multi-
modal approach. Proc 5th Int Soc Magn Reson Med. 1997;
3:1690.

54. Zhou XJ, Tan SG, Bernstein MA. Artifacts induced by con-
comitant magnetic field in fast spin-echo imaging. Magn
Reson Med. 1998;40:582–591.



30
Physical and Biological Bases of

Spatial Distortions in Positron
Emission Tomography Images

Magnus Dahlbom
Sung-Cheng (Henry) Huang
Department of Molecular and
Medical Pharmacology,
UCLA School of Medicine

30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
30.2 Physical Distortions of PET . . . . . . . . . . . . . . . . . . . . . . . . . . 515

30.2.1 Nonuniform Sampling • 30.2.2 Nonuniform Spatial Resolution Variations
• 30.2.3 Axial Sampling • 30.2.4 Attenuation Correction

30.3 Anatomical Distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
30.3.1 Elastic Deformations • 30.3.2 Different Image Distributions • 30.3.3 Motion
• 30.3.4 Movement • 30.3.5 Intersubject Variability

30.4 Methods of Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
30.4.1 Physical Factors • 30.4.2 Elastic Mapping to Account for Deformation and
Intersubject Variability

30.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
30.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

30.1 Introduction

There are two main source categories that can distort or deform
medical images and create problems and challenges for accurate
alignment/coregistration of two different image sets. One is due
to physical factors (including mathematical reconstruction of
the images) in the imaging device/instrument. The second cate-
gory is due to anatomical/biological characteristics of patients.
In this chapter, we will go over a few of these factors in these
two categories. The physical factors, although we only focus on
those of position emission tomography (PET), are similar for
single photon emission computed tomography (SPECT). We
will also discuss some correction methods to illustrate some
general approaches to address the problems.

30.2 Physical Distortions of PET

The physical distortions seen in PET images can be divided
into two main groups. First, there are artifacts produced by the
scanner geometry and the detection system itself, and second,
distortions introduced by the various processing steps applied
to the data before the final image is produced. The result of
both types of distortions is images where the activity distribu-
tion is distorted, which in the end will affect how well the PET

image volume can be coregistered to a second data set. Some
of these physical distortions can to a great extent be minimized
by proper data handling; however, some artifacts cannot be
removed and must be considered in the registration algorithm.

30.2.1 Nonuniform Sampling

Most modern PET systems use a circular detector geometry
where a large number of discrete detector elements make up
the detector ring. A number of these detector rings are typi-
cally placed next to each other to cover an extended axial field
of view (FOV), which allows imaging of an entire organ. In
the latest generations of PET systems, the detectors are made
sufficiently small such that this geometry allows the collection
of a complete tomographic data set without the need for any
mechanical motion to improve spatial sampling. However, this
geometry introduces a nonuniformity in spatial sampling that
may introduce image artifacts if not corrected for in the chain
of processing steps required in PET. In Figure 30.1, nonuni-
form sampling is illustrated. In the center of the FOV, the
lines of response (LOR) (or sampling lines) are approximately
equidistant; however, toward the edge of the FOV, the sam-
pling becomes denser. When the events collected by the PET
scanner are sorted into the sinogram, the radial offset is not

Copyright © 2008 by Elsevier, Inc.
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FIGURE 30.1 Nonuniform sampling across the FOV in a PET system
using a circular detector geometry. At the center of the FOV the coin-
cidence or sampling lines are approximately equidistant, whereas at
the edge of the FOV (dashed circle) the sampling becomes more
dense.

the absolute radial offset measure in distance but rather a rela-
tive offset measured in number of LORs from the center. Thus,
if the assumption is made (in the reconstruction algorithm)
that the distance between the LORs is the same, events towards
the edge of the FOV are incorrectly positioned too far away
from the center [12, 15]. The resulting distortions from this
effect for a set of circular objects in the reconstructed image
are shown in Figure 30.2. As can be seen, the source located
at the edge of the FOV has become triangular in shape and
the center of the object has also been shifted from the actual
center.

This problem is less severe if the imaged object boundary is
located within the center of the FOV (or ∼ 1/4 of the system
diameter). Therefore, this problem may not be easily visual-
ized in, for instance, brain studies on PET systems designed to
accommodate whole-body scans.

30.2.2 Nonuniform Spatial Resolution Variations

The nonuniform spatial resolution variation seen in PET sys-
tems is well understood and can be described by the physical
characteristics of the specific scanner (e.g., system geometry,
detector materials, collimation [14]). The geometrical com-
ponent of resolution variation is mainly determined by the
dimensions of detector elements and the detector diameter
of the scanner. The resolution loss is typically limited to a
widening of the line spread function at off-center positions in

FIGURE 30.2 Example of distortion seen if the data are not corrected
for nonuniform sampling. (Top) The true positions of the circular
objects across the FOV. (Bottom) The resulting image if uniform sam-
pling is assumed in the image reconstruction. Note both the distortion
in shape of the objects and a shift in the position towards the periphery.
The sources are located at 0, 5, 10, 15, 20, and 25 cm radial offsets in
an 80 cm diameter system.

the field of view. This widening is also symmetric around the
center of the LSF and does not introduce any distortions of the
reconstructed image that might produce any mispositioning of
the data.

A more complex resolution loss to characterize in PET is
the detector penetration or detector parallax problem [29].
This resolution loss occurs at radial off-center positions in
the FOV, where the detector elements in the system are posi-
tioned at a slight angle relative to each other (see Figure 30.1).
When a photon enters the detector elements at these off-center
positions, there is a high probability that the photon pene-
trates the detector and deposits its energy in a neighboring
detector. The probability of this increases toward the edge of
the FOV, since the path length through the primary detec-
tor becomes shorter. The result of the detector penetration
is a resolution loss that is also asymmetrical. Because of this
asymmetry the reconstructed images not only have a loss in
resolution, but also have a spatial distortion where objects
located in the periphery have a shift toward the center of
the FOV.
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30.2.3 Axial Sampling

In order to accurately register two data sets with a minimal
loss of information, it is necessary that the two image volumes
both be adequately sampled in all three spatial dimensions
(sampling distance is less than ∼ 1/2 the spatial resolution).
For all tomographic image modalities, this is in general true in
the transaxial direction; however, axially this is not always the
case. For instance, in CT and MRI, the axial resolution may be
on the order of 1–2 mm, whereas the separation of the planes
may be of the order of several millimeters, in order to reduce
scanning time and the amount of data produced. Although
the axial sampling has improved in recent generations of PET
scanners, it is only the high-resolution systems that fulfill the
sampling criterion [5].

Most registration algorithms are, however, in general not very
sensitive to coarse axial sampling and are capable of aligning the
data sets to a precision on the order of 2–3 mm [1, 2, 27, 39, 42].
The reason for this accuracy is that most algorithms are based on
the realignment of large structures or volumes (e.g., the whole
brain, brain surface, gray and white matter), and any undersam-
pling can be compensated by interpolation [42]. However, the

interpolation cannot recover any anatomical information that
is lost due to undersampling (i.e., structures that are located
in the areas between the measured slices). It is therefore not
unusual that, for a pair of perfectly spatially registered image
volumes, smaller structures might be visualized in one image set
and missing in the second. In Figure 30.3 this is illustrated for
a PET study where the two image rows are perfectly registered
with a plane separation of 10 mm. The top row shows measured
cross-sections, whereas the bottom row shows images that were
generated by interpolation from slices between those in the top
row. As one can see, there is an overall good agreement in the
activity distribution; however there are differences in some of
the finer details (e.g., cortex and basal ganglia).

30.2.4 Attenuation Correction

In PET (and also SPECT), correction for photon attenuation
is necessary to provide images that reflect the true activity dis-
tribution in the subject. A transmission scan of the subject is
typically acquired in addition to the emission scan to correct
for photon attenuation. The ratio of a reference or blank scan

FIGURE 30.3 The effect of axial undersampling of a pair of perfectly registered image sets, where the missing data are estimated by interpolation.
The top row shows images sampled 10 mm apart. The bottom row shows the registered data set generated from interpolation of slices measured
at the midpoint between the images in the top row. In general there is a good agreement in appearance of the images; however, there are
discrepancies in smaller structures such as the cortex and the basal ganglia.
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and the transmission scan then forms the attenuation correc-
tion of the emission data for photon attenuation. In order to
reduce the contamination of the emission data of statistical
noise from the transmission scan, the blank-transmission ratio
is filtered relatively heavily. This filtering does not in general
introduce artifacts in the emission image where the attenua-
tion is relatively homogenous. However, it has been shown that
the filtering may introduce distortions in the activity distribu-
tion, in particular at boundaries where there is a large change in
attenuation coefficient (e.g., lung and soft tissue, soft tissue and
air [17, 31]). Distortions due to the filtering can also be seen on
reconstructed transmission images, where shifts in the location
of boundaries between different tissue types could occur. This
type of distortion may be of concern in registration algorithms
where the transmission images are used for alignment [37].

Some algorithms for attenuation correction process the
reconstructed transmission images rather than the blank-
transmission sinogram. In these algorithms, the CT-like trans-
mission image is segmented into three or more discrete tissue
types with corresponding attenuation coefficients [16, 31, 43,
44]. From the noise-free, segmented transmission images, the
appropriate attenuation correction can be calculated for each
LOR. To minimize distortions in the final emission image, it
is necessary to take into account the nonuniformity in sam-
pling described in Section 30.2.1. First, in the reconstruction
of the transmission images, it is necessary to take the sampling
nonuniformity into account to avoid a distortion in shape of
the transmission image. Second, when the attenuation correc-
tions are derived, these are calculated along the actual LORs of
the system (i.e., the nonuniform samples) to avoid introduction
of image artifacts. The same care should also be taken in calcu-
lated attenuation correction algorithms, where the attenuation
is derived from an object of a simple geometrical shape (e.g.,
an ellipse) or the outline of the object derived from emission
data.

30.3 Anatomical Distortions

Many anatomical and biological factors can affect the PET and
SPECT images. Some affect the shape of the organ/structural
outline, some affect the relative distributions, and some affect
both. These factors need to be taken into consideration when
one tries to align two sets of images to examine the similarities/
differences/changes. They impose very challenging problems
for image coregistration and distinguish medical image coreg-
istration from registrations in other imaging areas. In the
following, a few major factors are discussed.

30.3.1 Elastic Deformations

Since the human body is not a “rigid body,” an image taken at
one time point with one imaging device will not be identical to

another image taken at a different time. Also, different imaging
devices frequently require that the patient/subject be positioned
differently to achieve the optimal imaging condition. For exam-
ple, imaging of the thorax with X-ray computed tomography
(CT) requires the patient’s arms to be up to avoid their attenua-
tion in optimizing the signal-to-noise level of the chest images.
On the other hand, for PET and SPECT, the imaging time is
longer and “arms down” is the more comfortable patient posi-
tion commonly used. With the patient’s arms at two extreme
positions, the shape of the cavity in the thorax is different, and
the relative positions of the heart, lung, and chest wall are not
the same. Even the shape of the lung, for example, is changed
when one raises one’s arms [38, 39]. Figure 30.4 shows the dif-
ferent shapes and positions of the lung when imaged with“arms
up” in CT and with “arms down” in PET. Therefore, one cannot
align the CT thorax images with PET/SPECT images using rigid
body transformation.

The thorax is not the only part of the body that easily deforms.
Imaging of the abdomen and the head-and-neck area of the
body is similar in this aspect. Relative positions of the organs or
tissue structures and the shapes of the organ/tissue structures
cannot be assumed to be the same at two different times when
they are imaged with different imaging devices. Even for brain
images, the extracerebral tissue could be compressed differ-
ently during different imaging sessions, although the skull can
generally be considered as a rigid body. With possible changes
in size/shape of tumors/trauma and in some cases after sur-
gical operations on the brain/skull, the configuration of brain
structures in many cases cannot be expected to remain the same
over time.

Adding to the problem of nonrigid anatomy is the prob-
lem of undersampling, since most medical imaging modal-
ities provide three-dimensional information with a series of
two-dimensional images taken at consecutive cross-sectional
planes. The plane separation sometimes is not small enough
to capture, without distortion, the variation along the cross-
plane direction. Also, this distortion due to undersampling is
heavily dependent on the sampling position (see Section 30.2).
Therefore, in general, even with the same imaging device and
trying to keep the same patient position, it is difficult to repro-
duce exactly the same images. One thus definitely needs to take
this into consideration when coregistering two sets of images
from the same patient/subject and/or assessing their alignment
accuracy.

30.3.2 Different Image Distributions

It is obviously clear that different imaging modalities provide
different anatomical or biological information and give differ-
ent kinds of images (e.g., see Figure 30.4 for CT and PET images
of the thorax). In Chapters 34, 35, and 37 of this Handbook
(those by Pennec et al., by Van Herk, and by Hill and Hawkes),
the need to register images of different distributions has been
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FIGURE 30.4 An example of elastic anatomical deformation. Top
image is an X-ray CT image of a cross-section of the chest of a patient
with his arms raised above his head during the imaging. Images in
the middle row are PET chest images of the same subject with his
arms resting on the sides of his chest. The image on the left is a trans-
mission PET image showing the attenuation coefficient of tissues; the
image on the right is an emission PET image of FDG uptake in tis-
sues. With different arm positions (between the CT image and the
PET images), the shape of the chest and lung are seen to be quite
different. After the PET images are elastically mapped (see Section
30.4.2 and the paper of Tai et al. [39] for more details) to the CT
image, the results are shown in the bottom row to better match the
configuration of the CT image. (Figure is taken from Tai et al. [39].
© 1997 IEEE.)

addressed extensively, and many approaches and methods have
been developed to solve the problem [1, 9, 25–27, 42]. Most
approaches deal with coregistering images of different modali-
ties (e.g., CT, MRI, PET, SPECT). However, even with the same
imaging modality, the imaging conditions (e.g., the KVp and
beam filtering of X-ray CT, the pulse sequence of MRI, and the
tracers of PET/SPECT) could determine dominantly the relative
brightness and appearance of different tissues/structures on the
images. Figure 30.5 illustrates this phenomenon. Both images
in the figure are PET images of about the same cross-section
of the brain, but one was obtained using FDG (an analogue
of glucose) as the tracer and the other one was obtained using
FDOPA (an analogue of L-DOPA). Since different tracers have
different biochemical properties, they trace different biological

FIGURE 30.5 Illustration of different image distributions of the same
imaging modality. Both are PET images through a mid-section of the
brain. Although the images are from two different subjects, the image
distributions are clearly different when two different PET tracers are
used. The image at left used FDG, a glucose analogue, and reflected
glucose metabolic rate in tissue (with higher rates in lighter shades).
The image at right used FDOPA, an analog of L-DOPA, and indi-
cated dopaminergic function in tissue. The regions of high uptake of
FDOPA (brighter areas in the middle of the right image) clearly delin-
eate the striatum, a brain structure known to be rich in dopaminergic
neurons.

processes. FDG indicates the glucose utilization of brain tis-
sues [19, 34] (higher utilization rate in gray matter than in
white matter) and FDOPA reflects the functional state of the
dopaminergic neuronal terminals (mostly in the striatum of
the brain) [4, 18]. If one wants to examine the correlation
between glucose utilization rate and dopaminergic terminal
function in the striatum, one needs to coregister these two sets
of images of markedly different distributions. This illustrates
another challenge of medical image coregistration even when
there is minimal anatomical deformation.

A similar problem occurs when one needs to correct the posi-
tional shifts of the images of different time frames that are due
to patient movement during the course of a dynamic study
[46]. Image distributions in the early and late frames could be
quite different, because usually the early frame images reflect
the tracer delivery and transport and the late images represent
tracer uptake that is related to the biochemical process specific
to the tracer. The two processes could be quite different. For
example, in the case of FDOPA, the early frame images have a
relative distribution quite similar to those of FDG, except with a
much higher noise level. Therefore, using image coregistration
to correct for possible positional shifts between the early and
late frames of a FDOPA dynamic study would involve the same
kind of problem as coregistering FDG to FDOPA images. An
added problem in this case is the high noise level of early frame
images, which usually correspond to short frames (10 to 30 sec
as compared to 5 to 10 min of late frames) to catch the fast
kinetic changes shortly after the tracer is administered.
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30.3.3 Motion

Heartbeat and breathing are among the involuntary motions
in our bodies that are difficult to suppress during imaging. For
the cardiac motion due to the rhythmic beating of the heart, a
general method to alleviate the problem is to synchronize the
image data collection with the heartbeat. With this mode of
image acquisition, the acquired imaging data is gated by the
electrocardiograph (EKG), which is usually divided into 8 or 16
phases or gates per cycle. The acquired data corresponding to
the same gate are then pooled together to reduce the noise level.
The acquired image for each gate would then appear to have
fixed the heart in that phase of the heartbeat. With images of
multiple gates through the cardiac cycle displayed in sequence,
the beating motion of the heart can be visualized.

For respiration motion, a similar strategy can be adopted
in principle, except that respiration motion is not usually as
regular as cardiac motion. Also, the cardiac and the respiration
motions are not synchronized, so the combined motion in the
thorax is not periodic and cannot be easily “gated.” Although it
is also possible to hold one’s breath for a short time, the imaging
time of most medical imaging techniques is too long for one to
do it comfortably, especially considering the frail condition of
some patients. These motions could thus cause image artifacts,
loss of spatial resolution, and distortion of shape or image level
of body structures on the resulting images.

30.3.4 Movement

In addition to the involuntary movements mentioned in
Section 30.3.3, voluntary movements occur frequently during
an imaging session. Especially for long imaging sessions of more
than 10 minutes, it is difficult for anyone to be completely
motionless and to stay in the same position over such a long
period of time. Most of these movements (e.g., moving arms
relative to the body) cannot be accounted for by a simple rigid
transformation, not to mention the image artifacts and blurring
that could be caused by the movements.

30.3.5 Intersubject Variability

One of the unique characteristics of humans is the large dif-
ference and variability in size, height, shape, and appearance
between individuals. However, in many cases (e.g., for detection
of abnormality), it is desirable to compare the images of one
subject with those of another to see if the size/shape/intensity
of certain substructures is affected. A common way in medi-
cal practice is to normalize a measurement (e.g., the size of a
liver) with respect to the weight or surface area of the subject
[20, 47]. Age and gender could also be taken into consideration
in this normalization procedure. This method is very useful for
the diagnosis of many diseases. However, variations in relative
image intensities (e.g., radiotracer distributions/patterns) that

might be more sensitive to abnormal or early changes are more
difficult to evaluate by such simple normalization procedures.
Therefore, if one wants to align images from different subjects
to examine their differences in distribution/pattern, one needs
to address the problem of intersubject variability.

30.4 Methods of Correction

30.4.1 Physical Factors

Most of the described distortions due to physical factors can to a
great extent be corrected for by appropriate preprocessing of the
raw data prior to image reconstruction or directly incorporated
into the image reconstruction. For instance, the correction for
the problem of nonuniform sampling depends on the image
reconstruction method that is used. If a conventional filtered
back-projection algorithm is used, each projection needs to
be interpolated into equidistant sampling points prior to the
filtering step. By doing this, the filtering can be done in the fre-
quency domain using conventional FFTs. On the other hand,
interpolation should be avoided if a statistically based image
reconstruction is used in order to maintain the statistical nature
of the original data. Instead, the nonuniform sampling should
be incorporated into the forward-and back-projection steps in
the algorithm.

The losses in image information due to sampling and lim-
ited spatial resolution caused by the system geometry and the
detector systems are factors that typically cannot be corrected
for. There are approaches to reduce these losses in the design of
a PET system. Axial sampling can be improved by either the use
of smaller detector elements, or using a mechanical motion in
the axial direction. Both methods have the drawback of increas-
ing the overall scan time in order to maintain noise levels. By
increasing the system diameter, resolution losses become more
uniform for a given width of the FOV. However, a large system
diameter is not always practical or desirable for several rea-
sons: A large-diameter system reduces the detection efficiency;
there is an additional loss in resolution caused by the noncol-
inearity of the annihilation photons; and there is a substantial
increase in cost of the system due to more detector material,
associated electronics, and data handling hardware. For these
reasons, later generation systems tend to have a relatively small
system diameter, which on the other hand makes the detector
penetration problem more severe. This problem can be resolved
to a certain degree by using more shallow detectors, which has
the drawback of reduction in detection efficiency. A more desir-
able approach to resolve this problem is to design a system that
has the ability to accurately measure the depth of interaction in
the detector, which allows a more accurate localization of the
events. Over the years there have been several proposed designs
for depth of interaction systems. These include multilayered
detection systems [7, 8, 41], detectors with additional photode-
tector readouts [30, 32], and detectors with depth-dependent
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signals [28, 33, 36]. Although all these ideas have been shown to
work in principle, their actual implementation in a full system
needs to be shown.

Although there are ways to reduce the physical resolution
losses by careful subject positioning, there is in general not
much one can do about the resolution losses in a given system.
Qi et al. [35] has shown that resolution losses due to depth of
interaction and other processes can be recovered, if the phys-
ical properties of the PET system are properly modeled into
the reconstruction algorithm. Like most iterative image recon-
struction algorithms, this method is computationally expensive;
however, it may be an immediate and practical solution to
overcome the problems of resolution losses and distortions
in PET.

30.4.2 Elastic Mapping to Account for
Deformation and Intersubject Variability

Because of the many different sources and factors that could
cause medical images to have different shapes or distribu-
tions/patterns that cannot be adjusted retrospectively by a
rigid body transformation, methods to address the problem
vary greatly, depending not only on the originating source
but also on the final goal one wants to achieve. However,
one type of method that elastically maps (or warps) one set
of images to another is of particular interest to scientists in
many fields (e.g., mathematics, computer sciences, engineering,
and medicine). This type of method, commonly called elastic
mapping, can be used to address the elastic deformation and
intersubject variability problems discussed in Section 30.3. In
the following, an elastic mapping method is described to illus-
trate the general characteristics and objective of this type of
method.

An elastic mapping method generally consists of two major
criteria, regardless of what algorithm is used to achieve them.
One is to specify the key features that need to be aligned (or
to define the cost function to be minimized); the other is to
constrain the changes in relative positions of adjacent pixels
that are allowed in the mapping. In our laboratory, we have
used the correlation coefficient or sum of square of differences
between image values at the same locations in subregions of
the two image sets. Figure 30.6 shows a schematic diagram of
the procedure. The entire image volume of one image set is
first subdivided into smaller subvolumes. Each subvolume of
this image set is moved around to search for a minimum of
the cost function (e.g., sum of squares of differences) in match-
ing with the reference image set. The location with the least
squares is then considered to be the new location of the center
of the subvolume, thus establishing a mapping vector for the
center of the subvolume. After this is done for all subvolumes,
a set of mapping vectors is obtained for the center pixels of all
subvolumes. A relaxation factor can also be applied to the mag-
nitude of the mapping vectors to avoid potential overshoot and

Input images

Reslice into new
images and repeat

Move cubes for
best local fit

Find displacement
for each voxel

Divide into
small cubes

Reference
images

FIGURE 30.6 Schematic diagram illustrating the major steps of a
3D elastic mapping algorithm that can be used to correct for elastic
anatomical deformation and for intersubject differences. A set of 3D
images (upper left) is first divided into smaller subvolumes. Each sub-
volume of this image set is moved around to search for a minimum
of the cost function (e.g., sum of squares of differences) in matching
with the reference image set (center of figure). The location with the
least squares is then considered to be the new location of the center
of the subvolume, thus establishing a mapping vector for the center
of the subvolume. The mapping vectors for all the pixels can then be
obtained as a weighted average of mapping vectors of the neighboring
subvolume centers. The sequence of steps can be repeated over and
over until some convergence criterion is met. (From Tai et al. [39].
© 1997 IEEE.)

oscillation problems. The mapping vectors for all the pixels can
then be defined as a weighted average of mapping vectors of
the neighboring subvolume centers. The weightings should be
chosen such that no mapping vectors will intersect or cross one
another. The selections of the relaxation factor and the weight-
ing function provide the constraint on the allowable changes in
relative positions between adjacent pixels. The sequence of steps
just described can be repeated over and over until some conver-
gence criterion is met. The relaxation factor and the weighting
function can also vary from iteration to iteration. This elas-
tic mapping method was first proposed by Kosugi et al. [21]
for two-dimensional image mapping and was later extended
to three-dimensional mapping by Lin and Huang [24], Lin et
al. [22, 23], and Yang et al. [45]. Figure 30.7 shows the results
of applying this method to coregister MR brain images of five
individuals to a common reference image set. The method has
also been used by Tai et al. [39] to align thorax images of X-ray
CT to PET FDG images of the same subject to aid in accurate
localization of lung tumors detected on PET FDG images.

Many other elastic mapping methods have also been pro-
posed and used, and have specific features and limitations
[3, 6, 9–11, 13, 40, and this Handbook]. For a specific appli-
cation, one needs to define the requirements first and then look
for a method that can satisfy the need.
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(a) (b)

FIGURE 30.7 An example of intersubject image coregistration. Images in each row of (a) are MR images (T1 weighted) of four brain cross-
sections of an individual. Different appearance of the images in different rows reflects the shape and size differences among the five subjects. After
the elastic mapping method of Figure 30.6 is applied to match the images of different subjects (using images of subject 1 as the reference set),
the results are shown in (b). The images of different subjects are seen to match well in shape and configuration after the elastic coregistration.
(Figure is taken from a Ph.D. dissertation by K.P. Lin [27].)

30.5 Summary

Two main source categories (physical and anatomical) that can
distort or deform medical images to affect accurate alignment/
coregistration of two different image sets are discussed in this
chapter. Methods to correct for these practical problems to
improve image coregistration are also addressed.
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31.1 Introduction

One of the major goals of modern human neuroscience research
is to establish the relationships between brain structures and
functions. Although such a goal was considered unrealistic
a decade ago, it now seems attainable, thanks to the advent
of anatomical and functional three-dimensional (3D) neu-
roimaging techniques. There remain, however, a number of key
questions that will need to be resolved before a complete human
brain map can be realized.

First of all, brain structures and functions are characterized
by considerable between-subject variability, which motivates
the topic of spatial registration and normalization of brain
images taken from different individuals. Second, the human
brain exhibits several levels of structural and functional orga-
nization, both in time and space, ranging from synapses to
large-scale distributed networks. Integrating these various levels
is both a difficult theoretical neuroscience problem and a major
technical challenge for neuroimagers. In this chapter, we will
thus try to answer the following questions: Why is anatomy a
concern for functional imaging of the brain? How can anatom-
ical landmarks be accurately identified and used as tools for
researchers in the domain of functional brain imaging? What

are the relationships between gross anatomy, microanatomy,
and function?

In the first section, we summarize the basic knowledge about
the sulcal and gyral cortical anatomy that we think is a pre-
requisite for anyone who wants to develop registration and
normalization tools based on brain anatomical landmarks. In
the second section, we investigate the issue of brain anatomical
variability. Interestingly, this issue has emerged from popula-
tion studies in functional imaging where the low signal-to-noise
ratio of positron emission tomography (PET) images made it
necessary to average functional images of different subjects. In
the third section, we focus on the question of structure/function
relationships in the human brain, both at the macroscopic and
microscopic levels, to underscore the importance of the link
between anatomy and function at the individual level. The
development of database projects integrating several sources
of information such as cytoarchitectony, electrical stimulation,
and electrical recordings, as well as information from func-
tional imaging methods, including PET, functional magnetic
resonance imaging (fMRI), event-related potentials, magne-
toencephalography, and electro encephalography, renders ever
more critical the need for a common neuroanatomical reference
frame.

Copyright © 2008 by Elsevier, Inc.
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31.2 Cerebral Anatomy at the
Macroscopic Level

Although first described by the ancient Egyptians, the cere-
bral cortex was considered functionless until the beginning of
the 19th century. For centuries, observers of the brain believed
that this convoluted surface was unlikely to be the seat of any
important function and localized mental activity within the
ventricular structures, now known to contain only physiologi-
cal fluid [14]. The gyri were compared to macaroni, or drawn
like small intestines, without any precise pattern or organiza-
tion. The only part of the cerebral hemisphere surface that was
given a name was the Sylvian fissure.

In fact, most of the knowledge concerning the macroscopic
architecture of the human brain came from the work of
anatomists working at the end of the 19th century. At that
time, these investigators had at their disposal only a few cadaver
brains and no method of resectioning a brain in a differ-
ent direction after an initial dissection. Therefore, they had
to describe the coronal views using one hemisphere, the axial
using another, and needed a second brain to describe the sagittal
views. Additionally, removal of the brain from the skull resulted
in deformations, and there was no formally standardized way
to cut the brain into slices. Despite all these limitations, these
anatomists did pioneering work and established the basis of
modern brain anatomic labeling [18].

The beginning of modern cerebral anatomy can be set with
the French neurological school and, in particular, with the brain
descriptions given by Déjerine [18], who started a systematic
anatomical nomenclature. Note, however, that heterogeneity of
nomenclature is still present and obscures anatomical labeling.
In particular, the same structure can be found labeled with
different names. For example, the angular gyrus is also called
“pli courbe” or inferior parietal gyrus and is often referred to as
Brodmann’s area 39, although this latter designation does not
correspond to a macroscopic anatomical structure but rather to
a cytoarchitectonic area that can be defined only on the basis of
microscopic characteristics.

31.2.1 Brain Size and Gross Morphology

The human brain is a relatively small organ (around 1400g)
sitting within the skull and protected by membranes called the
meninges, which include an external dense outer layer, called
the dura mater, a thin inner layer, called the pia mater, and an
intermediate layer, the arachnoid, constituted as a layer of fibers.
The brain floats in a clear fluid, the cerebrospinal fluid (CSF),
which has a protective role against trauma, as well as nourishing
and draining functions.

The brain’s basic subdivisions are the two cerebral hemi-
spheres, the brainstem, and the cerebellum. The two cerebral
hemispheres are separated from one another by a longitudinal
fissure, also called the interhemispheric fissure, which contains

the falx cerebri, a membranous septum that separates the hemi-
spheres. The cerebral hemispheres are symmetrical to casual
inspection, and their surfaces, called the cortex or gray mat-
ter, contain the cellular bodies of the neurons. The surfaces of
the hemispheres are highly convoluted and can be described as a
succession of crests, called the gyri, and fissures separating them,
called the sulci. Underlying this gray mantle is the white matter,
which is made of bundles of fibers emerging from the bodies of
neurons. These fibers are the axons enveloped by their myelin.
The two hemispheres are connected by a broad commissure of
white-matter tracts: the corpus callosum. One should note that
additional gray matter not belonging to the cortex is also found
in the interior depths of the brain. This deep gray matter con-
sists of large clusters of neurons, called the gray nuclei. These
include the caudate nucleus and the lenticular nucleus, which
can be subdivided into the putamen and pallidum, bilaterally
within each hemisphere. Additional prominent deep gray mat-
ter nuclei include the thalamus and some smaller nuclei such as
the subthalamic nucleus and the red nucleus.

The hemispheres are commonly subdivided into six lobes,
four of which were named after the bones of the skull overlying
them [11]. Here starts the kind of trouble one can meet with
anatomical nomenclature: the limits between these lobes are
partly arbitrary. We give here a description of the five lobes that
constitute the human brain as seen on the external surface of
one hemisphere (see Figure 31.1a). The frontal lobe, located at
the anterior tip of the brain, is clearly delimited both posteriorly
by the Rolandic sulcus and inferiorly by the Sylvian fissure. In
contrast, some boundaries of the parietal, temporal, and occip-
ital lobes are not based on such clear anatomical landmarks.
For example, as illustrated in Figure 31.1a, the limit between
the occipital lobe and the parietal and temporal lobes is usually
defined as a straight virtual line (yellow dashed line) that starts
at the parieto-occipital sulcus (visible only on the internal sur-
face of the brain) and runs downward to the incisure of Meynert
[18]. Similarly, the boundary between the temporal lobe and the
parietal lobe must be based on an arbitrary convention: Here
we choose to draw a horizontal line starting from the point
where the Sylvian fissure becomes vertical (blue dashed line)
[50]. We must emphasize that these virtual limits do not have
anatomical, histological, or functional support. The fifth lobe is
the insula, a small triangular cortical area buried in the depth
of the Sylvian fissure and therefore not visible in Figure 31.1.
The sixth lobe is the limbic lobe, which consists of large con-
volutions of the medial part of the hemisphere and includes
the cingulate and subcallosal gyri as well as the hippocampal
and parahippocampal gyri and the dentate gyrus, according to
Broca [8] (Figure 31.1b).

31.2.2 Sulcal and Gyral Anatomy

In this subsection, we will first give a short description of
the sulci necessary to obtain the brain’s lobar parcellation,
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FIGURE 31.1 (a) Lobar parcellation of the external surface of a brain hemisphere. Red: frontal lobe, blue: temporal lobe, green: parietal lobe,
yellow: occipital lobe. (b) Lobar parcellation of the internal surface of the hemisphere. The cingulate gyrus, which spans the hemisphere’s entire
internal boundary and which is part of the limbic lobe, is drawn in pink. The corpus callosum is the crescent-shaped structure nested just
beneath the cingulate gyrus. The lobe known as the insula is not visible in this figure. The cerebellum, abutting the inferior surface of the brain,
is in gray. (c) External hemisphere major sulci (to, transverse occipital; tl, superior temporal; sy_hor, horizontal branch of the Sylvian fissure;
sy_asc, vertical branch of the Sylvian fissure; f2, inferior frontal sulcus; f1, superior frontal sulcus; post, postcentral sulcus; rol, Rolando; prec,
precentral sulcus; ips, interparietal sulcus). (d) Internal hemisphere major sulci (rol, Rolando; pos, parieto-occipital sulcus; cal, calcarine fissure;
cm, callosomarginal sulcus, including the cingulate sulcus and its marginal ramus; sps, subparietal sulcus). (See also color insert).

namely the Sylvian fissure and the Rolandic sulcus. We will then
enter into the parcellation of each lobe, describing the major
constant sulci, so as to provide the reader with a working knowl-
edge of anatomical landmarks. This landmark definition was
used to parcellate the Montreal Neurological Institute (MNI)
single subject with the aim to provide a tool for activation
labeling [82].

31.2.2.1 Sylvius and Rolando Sulci

The Sylvian Fissure: The Sylvian fissure (Figure 31.1a, c), the
second sulcus to appear during ontogenesis, is a very deep and

broad sulcus. It is easy to identify, moving across the brain
from the bottom toward the top as following an anteroposterior
course. Its start marks the limit between the temporal pole and
the frontal lobe, and, after an uninterrupted course, it ends pos-
teriorly with a bifurcation into two sulci. One of these is a very
small one with a downward curvature. The other larger one,
which is called the terminal ascending segment of the Sylvian
fissure, makes almost a 90◦ angle as it ascends upward into the
parietal lobe.

The Rolandic Sulcus: The Rolandic sulcus, also called
Rolando or the central sulcus, is a very important sulcus because
it delimits the boundary between motor and the sensory
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FIGURE 31.2 Illustration of the characteristics of the Rolandic sulcus on different MRI sections. (a) Identification of Rolando on upper axial
slices. Rolando is in red, the precentral sulcus in yellow, the postcentral sulcus in blue, the intraparietal sulcus in light blue, the superior frontal
sulcus in green, and the callosomarginal sulcus in orange. (b) Identification of the Rolandic sulcus on a paramedial sagittal slice. (c) Identification
of the inferior part of the Rolandic sulcus on external parasagittal slices. (See also color insert).

cortices, as well as the boundary between the frontal and parietal
lobes. There are several ways to identify it, and Figure 31.2
shows three recipes that can be used to identify the Rolandic
sulcus along its course in individual anatomical magnetic res-
onance images. On upper axial slices, the Rolandic sulcus is
characterized by a typical notch [60, 62] and never connects
with any of surrounding sulci that run in a different direc-
tion such as the superior frontal sulcus or the intra parietal
sulcus [43]. It is always located between two parallel sulci,
namely the precentral and the post central sulci. These three
sulci make a very typical pattern at the level of the vertex (see
Figure 31.2a). On the paramedial sagittal slices, at the top of
the hemisphere, the Rolandic sulcus forms a notch just in front
of the end of the ascending part of the callosomarginal sul-
cus [6, 66, 69] (see later subsection and Figure 31.2b). On
lateral sagittal slices, the Rolandic sulcus is the third sulcus
encountered when starting from the ascending branch of the
Sylvian fissure (which is located in the frontal lobe near the
most anterior part of the Sylvian fissure) and moving back-
ward (see Figure 31.2c, top). One should note that the lower

portion of the Rolandic sulcus never actually intersects the
Sylvian fissure but instead terminates just short of it, as shown in
Figure 31.1c [21].

Once the Rolandic sulcus has been identified, it becomes
easy to locate the precentral and postcentral sulci that both
run parallel to Rolando, anteriorly and posteriorly, respectively
(Figures 31.2a and c, bottom). One should note that the precen-
tral sulcus is frequently composed of two parts, with an inferior
segment lying more anteriorly (Figure 31.1c) and often inter-
secting the superior frontal sulcus. This arrangement is often
reflected posteriorly on the other side of the Rolandic sulcus,
where the post central sulcus often intersects the intraparietal
sulcus (Figure 31.2a).

31.2.2.2 Sulci for Parcellation of the Different Lobes

Frontal Lobe: Considering its size, the frontal lobe has relatively
few constant sulci and gyri (Figure 31.1a). The most posterior
gyrus is the precentral gyrus, which lies between the Rolandic
and the precentral sulci and contains the motor cortex and part
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of the premotor cortex. In addition to the precentral sulcus,
two other major constant sulci can be identified in the frontal
lobe: the superior frontal sulcus (f1) and the inferior frontal sul-
cus (f2), allowing the delineation of three gyri—the superior,
middle, and inferior frontal gyri. The superior frontal sulcus is
very deep on axial slices and frequently intersects the precentral
sulcus (Figure 31.2a). It is very symmetrical and can be easily
identified on an external hemispheric surface reconstruction
(Figure 31.1c). The inferior frontal sulcus merges with the pre-
central gyrus posteriorly on parasagittal slices (Figure 31.2c)
and from this point follows a horizontal course before end-
ing low in the inferior frontal pole. The inferior frontal gyrus,
located below the inferior frontal sulcus, corresponds to Broca’s
area on the left [27]. The ascending and horizontal branches
of the Sylvian fissure divide it into three parts (Figure 31.1c):
the pars opercularis, located posterior to the ascending branch;
the pars triangularis, located between the two branches;
and the pars orbitaris, located below the horizontal branch.

Parietal Lobe: The parietal lobe is the region that shows the
greatest interhemispheric and interindividual sulcal variabil-
ity. It contains two main gyri: the superior parietal gyrus and
the inferior parietal gyrus. The superior parietal gyrus (also
called P1; see Figure 31.3b) is easy to identify since it is limited
anteriorly by the postcentral sulcus, internally by the internal
limit of the two hemispheres, and inferiorly by the intrapari-
etal sulcus. In contrast, the inferior parietal gyrus, also called
P2, is very complex and highly variable. It contains the supra-
marginal gyrus, which is the circumvolution surrounding the
ending of the Sylvian fissure, the angular gyrus, and sometimes
some intervening cortex [61]. The angular gyrus, also called the

“pli courbe”by French anatomists such as Déjerine [18] or called
Brodmann’s area 39 by scientists accustomed to cytoarchitec-
tonic nomenclature, exemplifies this variability and provides a
good example of the difficulties one may encounter when try-
ing to define homologies between subjects and even between
hemispheres.

The angular gyrus can be quite easily identified when the
superior temporal sulcus has a single posterior termination. In
this case, it simply surrounds this single ending of the superior
temporal sulcus (t1) at the limit between temporal, parietal,
and occipital cortices. However, in 50% of cases the superior
temporal sulcus has a double parallel ending in the left hemi-
sphere. In that configuration, the angular gyrus is, according
to some authors [18], centered around the more posterior of
the two endings, known as the anterior occipital sulcus (see
Figure 31.3b), with the more anterior ending of the superior
temporal sulcus defining the anterior limit of the angular gyrus.
Meanwhile, according to other authors, the more anterior paral-
lel ending is considered to be the angular sulcus, around which
the angular gyrus is centered [52] (Figure 31.3a). These dif-
ferences in anatomical definitions are important, since in one
configuration the angular gyrus is within the parietal lobe, while
in the other it lies within the occipital lobe. Even Brodmann
himself encountered difficulties in giving a cytoarchitectonic
definition of the angular gyrus, and stated,“Its boundaries with
occipital and temporal regions are ill-defined”[10]. In the brain
figure constructed by Brodmann that so popularized cytoarchi-
tectony as a basis for functional anatomy, Brodmann’s area 39 is
located in the parietal lobe, limited posteriorly by the anterior
occipital sulcus.

(a) (b)

FIGURE 31.3 An example of difficulties in defining homologies between subjects or hemispheres: the angular gyrus. (a) The angular gyrus,
also named the “pli courbe” or Brodmann’s area 39, lies around the ending of the superior temporal sulcus (light blue). When the superior
temporal sulcus has a single ending it is easy to identify, but in 50% of cases in the left hemisphere, it shows a double parallel ending (solid green
and yellow). Some authors consider the anterior parallel ending to be the angular sulcus (solid green) that centers the angular gyrus (dashed
green). (b) Other authors center the angular gyrus around the posterior parallel ending, namely the anterior occipital sulcus (yellow). In one
configuration the angular gyrus is within the parietal lobe; in the other it lies within the occipital lobe. (See also color insert).
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31.2.2.3 Sulci for Parcellation of the Temporal Lobe

Two sulci, the superior and inferior temporal sulci, divide the
temporal lobe into three gyri: the superior, middle, and inferior
temporal gyri. The superior temporal sulcus, although often
separated into two different segments, is always present and
quite easily identified by its horizontal course, parallel to the
Sylvian fissure (Figure 31.1c). The inferior temporal sulcus is
divided into numerous segments, three on average [52], and can
have different posterior endings: In 30% of the cases its ending
on the right corresponds to a pli de passage between the two
gyri it separates; it can also end at the preoccipital incisure of
Meynert (Figure 31.1c); and in 30% of the cases it can contribute
to the anterior occipital sulcus, or continue with the lateral
occipital sulcus. This exemplifies a case in which it can be very
difficult to define a standard way to recognize a sulcus and thus
to find homologies between subjects and between hemispheres.
As a consequence, the limits, especially posteriorly, between the
middle and the inferior temporal gyri and between these and
the inferior occipital gyrus will not be clear-cut. This sulcus
should consequently not be considered as a reliable landmark
for alignment between brains.

31.2.2.4 Constant Sulci of the Internal Surface
of the Brain

On the internal surface of the hemisphere, three major sulci
can be reliably identified: the callosomarginal or cingulate sul-
cus, the parieto-occipital sulcus, and the calcarine sulcus. As
discussed in more detail later, they are primary sulci and do
not present major variability. They are deep, follow a very typ-
ical course in the hemispheres, and can be identified using an
isolated sagittal section, making their identification quite easy.

Parieto-Occipital Sulcus: The parieto-occipital sulcus is a
very deep sulcus that crosses the posterior part of the hemi-
sphere and divides the internal occipital lobe from the parietal
and internal temporal lobes (Figure 31.1d). It forms a notch
on the external surface of the brain that serves as a landmark
to draw the line that arbitrarily limits the occipital and parietal
lobes externally (Figure 31.1b) and from there goes downward
and anteriorly following a linear path. At its midpoint it merges
with the terminus of the calcarine sulcus.

Calcarine Sulcus: The calcarine sulcus also follows a linear
course, running from the tip of the occipital lobe to the mid-
point of the parieto-occipital sulcus. It can end in the occipital
pole with a T shape, as is illustrated in Figure 31.1d.

Callosomarginal or Cingulate Sulcus: The callosomarginal
or cingulate sulcus is parallel to the superior surface of the cor-
pus callosum. It starts under the rostrum of the corpus callosum
(its most anterior part, which looks like a beak) and takes a pos-
terior course to the posterior part of the corpus callosum, where
it angles orthogonally to join the upper edge of the internal sur-
face of the hemisphere just behind the Rolandic sulcus. It is
often duplicated in the left hemisphere, and this second sulcus
is called the paracingulate sulcus [54]. The subparietal sulcus

continues the original course of the cingulate sulcus posteriorly
along the corpus callosum (Figure 31.1d).

31.3 Cerebral Anatomical Variability

Even to describe a basic standard scheme of nomenclature for
the cortical surface, we had to enter into the most difficult aspect
of cerebral anatomy: the individual anatomical variability. This
variability is a major point of consideration for anyone who
wants to evaluate the quality of intersubject registration and
normalization into a common space [86].

The degree of sulcal and gyral variability is partly related
to timing of the genesis of the sulci during development [12].
The primary and secondary sulci appear early during brain
development; they are constant and show a smaller variability
than those that appear later during gestation. The earlier sulci
are the inter hemispheric fissure (8th gestational week), the
Sylvian fissure and the callosal sulcus (14th gestational week),
the parieto-occipital sulcus, and the Rolandic sulcus and cal-
carine fissure (16th gestational week). The precentral, middle
temporal,postcentral, intra parietal, superior frontal, and lateral
occipital sulci develop between the 24th and 28th gestational
weeks, together with the corresponding gyri. The latest sulci,
which appear after the 28th gestational week, present the largest
variability. For example, in the temporal lobe, the inferior tem-
poral sulcus appears only during the 30th week of gestation
and shows very large variability in the number of segments and
duplications, making it difficult to identify, as discussed ear-
lier. During the final trimester of fetal life, tertiary gyri showing
greater complexity develop, including the transverse tempo-
ral gyrus, the inferior temporal gyrus, the orbital gyri, and
most especially the angular and supramarginal gyri, which, as
discussed earlier, can be particularly difficult to define.

A thorough description of sulcal variability requires access to
numerous brain specimens, and a very interesting approach has
been taken by Ono, whose work we have already cited exten-
sively. Ono made the only comprehensive atlas of the cerebral
sulci, a first attempt to define sulcal variability statistically based
on 25 autopsy brain specimens [52]. This author described the
sulcal variability of the main constant sulci in terms of their
incidence rate in each hemisphere; the number of interrup-
tions, side branches, and connections; variations of shape, size,
and dimensions; and the relationship to parenchymal struc-
tures. This descriptive work gives very valuable information
but remains limited by the methodology used: the illustrations
provided are photographs of the brain surfaces, and no infor-
mation is given concerning the depth of the sulci. Furthermore,
since it is a paper atlas, no 3D description is available. To over-
come these limitations, one needs to use a method that allows
any brain to be described in a common fashion. Such a method
has been developed by Jean Talairach [71, 73, 74], and variants
of this method are described in Chapter 38, “Talairach Space as
a Tool for Intersubject Standardization in the Brain.”
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31.3.1 Sulcal Variability in Stereotactic Space

In the early 1970s, Jean Talairach finalized a methodology
originally designed to allow neurosurgeons to practice func-
tional surgery, especially thalamic surgery, in cases of serious
Parkinsonian tremors (Figure 31.4). This method was based on
the identification of two structures: the anterior commissure
(AC) and the posterior commissure (PC), to serve as land-
marks defining a reference space into which any brain could
be fitted. To define these landmarks, at a time when no tomo-
graphic imaging was available, Talairach combined a system
of teleradiography, which maintained the true dimensions of
the brain, together with ventriculography, which allowed the
locations of the anterior and posterior commissures to be
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FIGURE 31.4 Talairach coordinate system. Individual volumes are
first reoriented and translated into a common frame of reference
based on two specific cerebral structures: the anterior and the pos-
terior commissures (AC and PC, respectively). This system was built
on the observation that the positions of these subcortical structures
were relatively invariant between subjects. A bicommissural frame of
reference is then formed by three planes orthogonal to the interhemi-
spheric plane of the brain: a horizontal one passing through the AP and
the PC (the AC-PC plane) and two vertical ones passing, respectively,
through the AC and the PC (the ACV and the PCV planes). Once reori-
ented, the subject’s brain is rescaled in that orientation along the three
principal axes to adjust its global size and shape to that of a specific
brain (generally referred to as the template) in this frame of reference.
Finally, cerebral structures are represented by three coordinates (x , y , z)
indicating their position in the Talairach system. (See also color insert).

identified, to describe the relationship between these landmarks
and individual anatomy. He did preliminary work on cadavers
that led him to the conclusion that there was extensive vari-
ability in brain sizes but that the relationships of structures in
the telencephalon to the AC, the PC, and the AC-PC line were
stable. He then defined a proportional grid localization system,
allowing him to describe anatomy in a statistical way, a very pio-
neering idea [72]. Within this system, it is possible to attribute
to any structure in the brain three coordinates (x, y, z) and to
refer to an atlas to assist in defining the structure (Figure 31.4).

This proportional system makes it possible to describe the
statistical anatomy of sulci, work first done by Talairach him-
self [72], providing an initial evaluation of the anatomical
sulcal variability in his Stereotactic space: approximately
20 mm for the left Rolandic sulcus. More modern estimates
of sulcal variability in this Stereotactic space, based on tomo-
graphic magnetic resonance images, remain large, around 12
to 20 mm [69]. A major point to emphasize is that a crucial
component of this variation is the Stereotactic space itself.
Structures near the AC or PC exhibit smaller variations than
structures at the outer limit of the cortex [76]. These two
points are illustrated in Figure 31.5. This means that accuracy of
localization in the Stereotactic space remains limited to around
1 to 2 cm, a result both of intrinsic sulcal and gyral variability
and of bias in the normalization procedure. This study used
linear deformations to enter into the common space. New algo-
rithms allowing a more precise alignment of one brain to the
target brain have been developed, leading to a reduction of inter-
subject sulcal variability in the Stereotactic space [35, 70, 86].
These have been validated using anatomical landmarks such as
sulci, to demonstrate their impact on anatomical variability (see
Figure 31.6). This is an example of how anatomy can be used
within the framework of brain averaging, and also a demonstra-
tion that the residual sulcal variability after normalization into
the Stereotactic space can be reduced by tools allowing better
brain registration.

The major point of the Talairach system is that it allows
a statistical description of anatomy, a topic that has been
rediscovered with the advent of anatomical magnetic reso-
nance imaging (aMRI). A nice example can be found in the
work of Paus [54], using midbrain sagittal slices of normal
volunteers. In a group of 247 subjects, he manually drew
in each subject the calloso-marginal sulcus (also called the
cingulate sulcus) and the paracingulate sulcus when it was
present. He then normalized these regions of interest (ROIs)
into the Talairach space. This allowed him to generate proba-
bilistic maps of these sulci, one per hemisphere, as shown in
Figure 31.7. He discovered that there was a striking asymmetry
in the prominence of the paracingulate sulcus favoring the
left hemisphere, which he related to the participation of the
anterior part of the left cingulate cortex during language
tasks. Another study in Stereotactic space showed a leftward
asymmetry in the white matter amount of Heschl’s gyrus,
which is the location of the primary auditory area in each
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hemisphere [55], and related this asymmetry to the left tem-
poral cortex specialization for language in right-handers. As an
alternative to the post-mortem reference brain of the Talairach
space atlas, neuroanatomical volumes are now often normal-
ized to the templates provide by the Montreal Neurological
Institute. Although these templates, both the single subject
template used for anatomical labeling or the average tem-
plate used for spatial normalization, are roughly based on
the Talairach space, they do not match the Talairach brain
size and shape. The MNI stereotaxic space has now become
a gold standard and serves as a reference system for the analy-
sis of functional and anatomical datasets (Statistical Parametric
Mapping: SPM, http://www.fil.ion.ucl.ac.uk/spm/ [25]) or for
the constitution of a multimodal probabilistic atlas of the
human brain (International Consortium for Brain Mapping:
ICBM, http://www.loni.ucla.edu/ICBM/ [48]). Statistical neu-
roanatomy studies based on this reference system have been
generalized and have led to the creation of probabilistic
maps and atlas of sulci and gyry with complex morphology
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FIGURE 31.5 Sulci of the internal surface of the brain individually
drawn in six postmortem human brains (PAOC, parietoccipital sul-
cus; CALC, calcarine sulcus; CALL, callosal sulcus; CING, cingulate
sulcus; adapted from Thompson et al. [77]). This figure illustrates
the directional bias in sulcal variability, in the horizontal and vertical
directions, given in millimeters in the left hemisphere (after trans-
formation into stereotactic space). The profile of variability changes
with distance from the posterior commissure, ranging from 8–10 mm
internally to 17–19 mm at the exterior cerebral surface. Moreover, the
spatial variability is not isotropic, since the variability of the occipital
sulcus is greater in the vertical direction, while that of the paralim-
bic sulcus is larger in the horizontal direction. This is partly due to
developmental effects, but is also related to the type of spatial trans-
formation model used for normalization. For example, the calcarine
sulcus is bounded anteriorly by the PC point and posteriorly by the
posterior tip of the brain, constraining its variability in the anteropos-
terior direction. Reprinted with permission from P. M. Thompson, C.
Schwartz, R. T. Lin, A. A. Khan, and A. W. Toga, Three-dimensional
statistical analysis of sulcal variability in the human brain. J Neurosd
Vol. 16, pp. 4261–4274, 1996. (See also color insert).
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FIGURE 31.6 Illustration of the utilization of anatomical land-
marks to evaluate algorithms for deformation into a stereotactic
space. The probabilistic maps of the precentral and central sulci,
the Sylvian fissure, the parieto-occipital sulcus, and the calcarine
sulcus are given after two different normalization procedures. The
warmer the color, the more frequent the sulcal recovery. The non-
linear method shows better segregation of the Rolandic and precentral
sulci, especially in the right hemisphere. Reprinted with permission
from R. P. Woods, S. T. Grafton, J. D. G. Watson, N. L. Sicotte, and
J. C. Mazziotta, Automated image registration: II. Intersubject valida-
tion of linear and nonlinear methods. J Comput Assist Tomogr. vol. 22,
pp. 153–165, 1998. (See also color insert).

and a large intersubject variability, such as the inferior frontal
gyrus [37]. The accuracy of these probabilistic sulci maps
depends on the intersubject variability of the selected anatom-
ical component, but depends also on the way these anatomical
landmarks are obtained. In most cases, these landmarks are
manually defined on high-resolution MRIs. However, the
assessment of new efficient algorithms during the last years
allows the automatic detection and labeling of major sulci
and gyri [19, 47]. The continuous improvement of neu-
roanatomical analysis procedures has also contributed to the
development of the statistical neuroanatomy. New proce-
dures such as the Voxel-Based Morphometry (VBM) have
been designed to study the anatomical variations, at a voxel
level, between populations over the whole cortex, and not
only on a priori selected anatomical landmarks [5]. This
approach allows one to objectively, automatically, and repro-
ducibly characterize the regional differences of cerebral com-
partment density. Using this generic approach, Sowell has
illustrated that young adults (age= 25.6 years) present lower
frontal and temporal mean gray matter density compared
to adolescents (age= 13.8 years), reflecting the myelinization
increase of the frontal cortex that allows better efficiency of
the cognitive process in adults [67]. VBM is nowadays also
used to statistically exploit very large polymorphous databases
including biological, clinical, behavioral, and neuroanatomic
datasets in search of potential markers of nonpathological
neuroanatomical factors such as age and sex [34, 46], as well
as genetic factors of neurodegenerative diseases [45].
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FIGURE 31.7 Probabilistic map of cingulate and paracingulate sulci of the internal surfaces of both hemispheres in 247 subjects [17]; the
left hemisphere is on the left. The larger the probability, the warmer the color. The main result is that in the left hemisphere one may identify
the paracingulate sulcus, showing a larger development of the left anterior cingulate. The authors relate this result to the left hemisphere
specialization for language. Reprinted with permission from T. Paus, F. Tomainolo, N. Otaky, D. MacDonald, M. Petrides, J. Atlas, R. Morris,
and A.C. Evans, Human cingulate and paracingulate sulci: Pattern, variability, asymmetry, and probabilistic map. Cerebral Cortex, vol. 6,
pp. 207–214, 1996. (See also color insert).

31.3.2 Brain Asymmetries

The gyrification of the two cerebral hemispheres is a highly
variable process, and it is not surprising that differences are
established between the two hemispheres during development.
Yet, their occurrence is not due to chance, as inspection of
several brains indeed reveals that many of these cerebral asym-
metries are systematic, and further, many are present at birth
[13, 28]. At this point, it becomes tempting to draw a link
between the well-known functional asymmetries of the human
brain and these asymmetries, particularly as the region sur-
rounding the termination of the Sylvian fissure, traditionally
associated with Wernicke’s area, is one the most asymmetric
loci in the human brain. The earliest accurate report of brain
asymmetry in this area dates back to the end of the 19th century,
when Eberstaller (1881) or Cunningham (1892) observed that
the Sylvian fissure was shorter in the right hemisphere. However,
this finding was not, according to the latter, related to the
functional asymmetry of language: similar anatomical obser-
vations in some species of monkeys, lacking human language,
dismissed this hypothesis [38]. Anatomical asymmetries were
actually considered anecdotal until Geschwind and Levitsky
reexamined the issue in 1968 [33]. Exposing the superior sur-
face of the temporal lobe by cutting through the Sylvian fissures,
they measured the length of the planum temporale, the triangu-
lar plane of secondary auditory cortex situated behind the first
Heschl’s gyrus. They revealed a leftward asymmetry in 65 out
of 100 brains, versus 11 showing rightward asymmetry. They
also cited previous studies that had found no asymmetry in that
region in monkeys. For Geschwind and Levitsky, and Galaburda

later, the planum temporale could thus be considered a struc-
tural marker of the left hemispheric specialization for language
[27]. Eighteen years later, the advent of aMRI allowed Steinmetz
to develop a method to measure the planum temporale surface in
normal volunteers. He first confirmed the existence of a leftward
asymmetry in right-handers [28] and later demonstrated that
this asymmetry was diminished in left-handers [29], consistent
with the lesser frequency of left-hemispheric specialization in
this group. Researchers studying the primate brain with similar
MRI planimetry techniques eventually rediscovered the pres-
ence of asymmetries of the Sylvian fissure in great apes. It was
inferred that this asymmetry would reveal the presence of a pre-
cursor of human language in great apes, rather than contradict
Geschwind’s hypothesis [31].

The study of cerebral anatomical asymmetry is motivated
by a higher goal, namely the comprehension of the relation-
ship between structural and functional variability that may be
graspable through these asymmetries. But anatomical asym-
metry is not limited to the sole planum temporale, nor is
functional asymmetry restrained to language. The advent of
whole brain automated aMRI analysis techniques allowed us
to build a clear picture of the pattern of cortical asymmetries
in humans, frequently confirming previous findings from post-
mortem or radiographic findings. This pattern is dominated
by a torsion, the “Yakovlevian torque”: the left occipital lobe is
more salient, its pole most often crossing the sagittal line, and
the right frontal lobe protrudes at the level of the orbito-frontal
region [44, 84]. These two features are called the occipital and
frontal petalia, from the imprints they leave on the endocranial
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surface [28]. They are associated with volume asymmetries of
the frontal and occipital lobes. Several other asymmetries are
related to this large-scale phenomenon: the occipital horn of
the lateral ventricle extends farther back in the left hemisphere
[78], as demonstrated first with pneumoencephalography [49].
Analysis of sulcal patterns further revealed upwards and ante-
rior shifts of several sulci in the left temporo-parieto-occipital
region,what notably concerns the posterior ascending branch of
the superior temporal sulcus, and the end of the Sylvian fissure
[7, 68]. The superior temporal sulcus is also deeper in the right
hemisphere, but longer in the left [51]. The asymmetry of the
central sulcus would depend on sex and handedness: it tends to
be deeper in the left hemisphere in male right-handers, but not
in females or left-handers [1, 2]. The development of Diffusion
Tensor Imaging also allowed us to investigate the asymmetries
in white matter tracts in large samples. An interesting finding
is that the arcuate fascicle, an important communication path
between the production and comprehension language poles,
appears leftward asymmetric [36, 53].

Microstructural asymmetries have also been evidenced with
histological techniques. The columnar organization is different
in the auditory cortex of the two hemispheres, with neuronal
ensembles (columns) being more distant from each other in
the left hemisphere, interpreted as a sign of enhanced process-
ing capabilities [30]. Others showed a greater number of large
pyramidal cells, involved in long-range cortico-cortical connec-
tions, in the left hemisphere [40]. An asymmetry in the degree
of myelinization of the superior temporal lobe, favoring the
left hemisphere, could also support the rapid processing of lan-
guage sounds [4]. These asymmetries may be coherent with
macrostructural findings of leftward asymmetries in the size of
language-related bundles or cortical areas.

31.4 Anatomical Variability and
Functional Areas

31.4.1 Relationships Between Macroscopic
Anatomy and Cytoarchitectonic
Microanatomy

Prior to the advent of functional imaging, the microscopic
anatomy, or cytoarchitecture, of a brain region was assumed
to be a direct indication of the function of that region. This
assumption holds true if one considers the brain region desig-
nated as Brodmann’s area 4, also known as the primary motor
area, lesions of which produces motor deficits. But even for pri-
mary cortical regions (those regions that either receive direct
sensory input or generate direct motor output), there is not
an exact overlay of cytoarchitectonic anatomy and function,
as demonstrated for the primary visual area located in the cal-
carine sulcus [15]. Nonetheless, microanatomy represents a step
toward a better understanding of the functional organization of

the cortex. In pursuit of this improved understanding, some
authors have investigated not only the precise relationship
between function and cytoarchitecture, but also the relation-
ships between function and neurotransmitter receptor densi-
ties, enzyme densities, and myeloarchitecture. Based on their
observations, they have reached the conclusion that a functional
cortical field should be defined on multiple criteria [59].

If consideration is restricted to architectonic fields as defined
on the basis of neuronal density, very nice work has been
conducted by Rademacher et al., who studied the relation-
ships between macroanatomy and cytoarchitecture ([56],
Figure 31.8). In 20 hemispheres, they showed that the architec-
tonic fields often bear a characteristic relationship to sulcal and
gyral landmarks that can be defined with aMRI. The variability
of these relationships could be divided into two classes: In one
class the variability was closely predictable from visible land-
marks, and the interindividual variability of gross individual
landmarks was prominent. This was the case for the four
primary cortical fields they studied: Brodmann’s areas 17, 41,
3b, and 4. However, within these same cortical fields, a second
class of cytoarchitectonic variability could not be predicted
from visible landmarks, for example, area 4 at the level of
the paracentral lobule. A consistent relationship between
cytoarchitecture and macroanatomy also applies to the planum
temporale, which almost covers the cytoarchitectonic area
Tpt [29], although Tpt extends beyond the boundaries of
the planum toward the external and posterior part of the
superior temporal gyrus. Finally, in the inferior frontal gyrus,
some authors suggest that there is a good agreement between
Brodmann’s area 44 and the pars opercularis of the inferior
frontal gyrus and between Brodmann’s area 45 and the pars
triangularis of the inferior frontal gyrus [27]. In higher-order
cortices, such as more frontal regions, no strong relationship
has been found between cytoarchitectural variations and
individual anatomical landmarks. For instance, the individ-
ual variability in terms of anatomical extent and position of
Brodmann’s areas 9 and 46 has been found to be very large [57].

As a generalization, variations in macroanatomy seem to par-
allel those in microanatomy in the primary cortical regions and
in language areas, but this close relationship becomes looser in
higher-order, integrative cortical regions. This may be related to
the fact that higher functions develop later than primary ones
and may be more extensively influenced by the environment or
by plasticity induced through learning. However, this point of
view is disputed by Zilles and Roland, who consider the evidence
supporting a relationship between macro- and microanatomy
to be very scarce [58]. To approach the question of relationships
between function and microarchitecture, they seek to eliminate
macroscopic anatomic variability as a factor by using powerful
registration software that can transform a three-dimensional
MRI brain volume into a single standard brain, even within the
depths of the sulci [64]. The underlying idea is that any brain
can be fitted onto a template brain that they have chosen as
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the most representative of their MRI database. Their approach
is very important, since these authors developed it to bring
myeloarchitectonic, cytoarchitectonic, and receptor images into
a common database. One of the principal prerequisites for
the construction of such a database was the assessment of an
observer-independent method for microstructural parcellation
of cerebral cortex [63]. This procedure, identifying auto-
matic boundaries between cortical areas, allows a quantitative
approach to cytoarchitectonics, as opposed to the qualitative
nature of the classical visual microscopic inspection of histolog-
ical sections. The latter has contributed to differences between
maps of different authors in terms of number, localization, and
contours of cortical areas. Moreover, in contrast to classical
individual cytoarchitectonic maps, probabilistic cytoarchitec-
tonic maps provide strereotaxic information on the location
and variability of microstructural areas in a reference space like
MNI [3]. The resulting probabilistic maps of microarchitec-
ture can then be directly compared with functional probabilistic
maps to enhance the structural information behind functional
imaging experiments [23, 59, 85]. In order to facilitate the inte-
gration and confrontation of multiscale neuroimaging datasets,
Zilles’s group has developed a dedicated toolbox integrated
into standard neuroimaging software packages like SPM. This
toolbox provides an easy-to-use tool for combining a prob-
abilistic cytoarchitectonic map with functional imaging data
[22] and magnetoencephalographic source analysis [17].

31.4.2 Relationships Between Macroscopic
and Microscopic Anatomical Variability
and Functional Areas

Early methods that were developed to study brain function with
positron emission tomography (PET) used skull teleradiogra-
phy within the PET suite to transform the individual brains
into a common space, the so-called Talairach stereotactic space,
using constrained affine transformations [24]. Subsequently,
methods were developed to normalize PET images directly into
this stereotactic space using anatomical information contained
within the images themselves [26]. Once the functional images
had been placed into this common space, localization of the
detected activations relied on a brain atlas, usually the Talairach
atlas [75], but the accuracy of such localization depended on
interindividual variability after normalization. At this stage,
the available methodology required researchers in the func-
tional imaging field to overlook any possible functional impact
of anatomical variability. Subsequently, however, the develop-
ment of improved normalization procedures has allowed this
question of interindividual variability and the effects of nor-
malization on individual and averaged images to come to the
foreground.

Within this context, some teams chose to account for individ-
ual variability by developing interindividual averaging methods
that parcellated the brain of each individual into anatomical
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regions of interest [81]. The intersubject averaging was then
performed using an anatomical filter, defined by these manually
delineated ROIs. These methods were rarely used with PET
because the time required to perform the parcellation was large,
the spatial resolution was limited to the size of the ROI, and
direct comparisons with other results reported in stereotac-
tic coordinates were not possible. However, with the advent in
the 1990s of functional MRI (fMRI), detection of activations in
individual subjects has become commonplace, and these activa-
tions are often localized within the context of the subject’s own
anatomy. Anatomically defined ROIs and individually identified
anatomic sites of functional activation now both provide com-
plementary approaches that can be used to directly investigate
the links between structure and function.

Most of the works dealing with this question have studied
the spatial relationship between a precise anatomical landmark
and a related function in primary cortical areas. We shall begin
with two studies concerning the Rolandic sulcus. The first one
was based on a hypothesis generated by anatomists who had
manually measured the length of the Rolandic sulcus on a
three-dimensional reconstruction of its surface. They hypoth-
esized that a curve, known as the genu of the Rolandic sulcus,
which corresponded to a particularly large measured surface
area, might be the cortical representation of the hand. To test
this hypothesis they used a vibration paradigm with PET, and
after two-dimensional registration of the activated areas onto
the corresponding MRI axial slices, they demonstrated in each
subject that the hand area was indeed located at the level of the
Rolandic genu [60, 62, 87]. Using three-dimensional extraction
and visualization of the Rolandic sulcus after it was manually
outlined on T1 weighted axial MRI slices, another group has
established that this sulcus could be divided into three differ-
ent regions that were linked with functional anatomy, since the
middle segment, which includes the genu of Rolando, corre-
sponded to the hand area detected using this same vibration
paradigm with PET [62].

In the visual system, a very illustrative study of structure/
function relationships was conducted by Watson et al. on area
V5, the visual motion area in humans [83]. In a first report [88],
this team identified the location of color and motion areas in a
group of subjects and noticed that considerable individual vari-
ability remained in the location of V5 in stereotactic space. They
pursued this work with identification of V5 in each individual
and, after registration onto each individual’s MRI, studied the
relationship between this functional area and the underlying
anatomy. They demonstrated that V5 bears a consistent rela-
tionship to the posterior continuation of the inferior temporal
sulcus within the occipital lobe, while emphasizing in their arti-
cle that this portion of the sulcus shows a variety of anatomic
forms. This macroanatomic variability is consistent with the
fact that this sulcus was shown by Bailey and von Bonin to
appear during the 30th week of gestation [83]. In keeping with
the assertion mentioned earlier, that a cortical field should be

defined on the basis of numerous markers [59], Watson et al.
also noted that this sulcus corresponds precisely to the field of
early myelination in the developmental atlas of Fleschig. This
result is thus very consistent with the idea that functions that
develop early, such as vision, maintain strong relationships with
both macro- and microanatomy, even when the macroanatomy
alone shows considerable variability.

When one is moving into high-order cognitive functions,
the link between gross anatomical landmarks and functional
anatomy is less obvious. However, the frontal language areas
are an exception where close linkage is maintained. Within the
framework of a coordinated European project, several PET cen-
ters studied six right-handed male volunteers using the same
verb generation paradigm. In our laboratory, the average result
demonstrated an activation site restricted to the left inferior
frontal gyrus. However, individual analysis revealed that one
subject among the six had significantly activated only the right
inferior frontal gyrus. The study of the spatial relationship
of this activation with surrounding sulci revealed that it was
located in an area that was the exact symmetric homologue of
the left hemisphere area activated in the other subjects, located
near the ascending branch of the Sylvian fissure [16]. Using the
same task, another European group used an individual atomo-
functional analysis to demonstrate a consistent relationship of
the activation with this branch in five subjects of the seven they
studied [39].

Another way to explore a possible relationship between struc-
tural and functional images is to consider that anatomy may be
an imprint of the developmental precursors to cognitive func-
tions and to search for relationships that might not be limited
to the immediate vicinity. This is what we have done concerning
the hemispheric organization for language. Since the asymme-
try of the planum temporale is present after the 32nd gestational
week [12], and since the common leftward asymmetry can be
absent in non-right-handers, this early anatomical asymmetry
might reflect the functional hemispheric dominance for lan-
guage. To test this hypothesis, we conducted a correlation study
between the planum temporale surface area and the functional
maps for language comprehension in 10 subjects, including
5 non-right-handers. We showed that the larger the left planum
temporale, the larger the functional responses measured with
PET in left temporal regions, particularly in the temporal pole,
which is located far from the planum [80]. This result makes
the anatomical variability more than just a statistical variable
that blurs functional or anatomical image averaging. The find-
ing concerning the impact of left planum temporale surface on
asymmetries of the language comprehension areas was repli-
cated in a second group of 20 subjects [41]. Moreover, we
observed that a combination of handedness, left planum tempo-
rale surface, and brain volumes explained 60% of the variance
of the asymmetry of activations during story listening [42],
emphasizing the importance of anatomical constraint in the
formation of functional networks.
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31.5 Conclusion

The importance of anatomy is indisputable, since the study of
function isolated from structure loses its meaning. Macroscopic
anatomy can be considered as a confounder that blurs the infor-
mation obtained from microscopic or functional studies, but
can also be viewed as a very useful and promising tool at many
different levels of functional image analysis. In fact, anatomy
can be seen as a generic framework for any approach to brain
functions and can be used as a common language for different
disciplines. However, use of neuroanatomy must not be reduced
to that of a landmark system. Investigations of interindividual
variability of brain anatomy per se can reveal important keys
of brain organization as demonstrated, for example, by vari-
ation in gray matter density with learning [20] or expertise
[32, 65]. Moreover, investigation of functional and anatomical
covariation is a very promising approach for the understand-
ing of large-scale organization in the brain. For instance, the
fact that both individual size of the left planum temporale
and brain volume explain part of the interindividual functional
variability during language tasks demonstrates that anatomical
constraints shape the brain functional architecture. We believe
that this approach, which calls for “tedious anatomy” as well as
multimodal atlases of the human brain [79], will contribute to
reestablishing neuroanatomy in its illustrious path [9, 18].

Acknowledgment

The authors wish to express their gratitude to Georges Salamon
(CHU Timone, Marseille) for introducing them several years
ago to the wonderful world of neuroanatomy.

31.6 References

1. Amunts K, Jäncke L, Mohlberg H, Steinmetz H, Zilles K.
Interhemispheric asymmetry of the human motor cor-
tex related to handedness and gender. Neuropsychologia.
2000;38(3):304–312.

2. Amunts K, Schlaug G, Schleicher A, Steinmetz H,
Dabringhaus A, Roland PE, Zilles K. Asymmetry in
the human motor cortex and handedness. Neuroimage.
1996;4:216–222.

3. Amunts K, Weiss PH, Mohlberg H, Pieperhoff P, Eickhoff
SB, Gurd JM, Marshall JC, Shah NJ, Fink GR, Zilles K.
Analysis of neural mechanisms underlying verbal flu-
ency in cytoarchitectonically defined stereotaxic space—
The roles of Brodmann areas 44 and 45. Neuroimage.
2004;22(1):42–56.

4. Anderson B, Southern BD, Powers RE. Anatomic asym-
metries of the posterior superior temporal lobes: A post-
mortem study. Neuropsychiatry Neuropsychol Behavioral
Neurology. 1999;12(4):247–254.

5. Ashburner J, Friston KJ. Voxel-based morphometry—The
methods. Neuroimage. 2000;11:805–821.

6. Berger MS, Cohen WA, Ojemann GA. Correlation of
motor cortex brain mapping data with magnetic reso-
nance imaging. Journal of Neurosurgery. 1990;72:383–387.

7. Blanton RE, Levitt JG, Thompson PM, Narr KL,
Capetillo-Cunliffe L, Nobel A, Singerman JD, McCracken
JT, Toga AW. Mapping cortical asymmetry and com-
plexity patterns in normal children. Psychiatry Research.
2001;107(1):29–43.

8. Broca P. Anatomie comparée des circonvolutions
cérébrales: Le grand lobe limbique et la scissure limbique
dans la série des mammifères. Revue d’Anthropologie
serie 2. 1878;1:384–398.

9. Brodmann K. Vergleichende Lokalisationslehre der Gross-
hirnrinde in Ihren Prinzipien Dargestellt auf Grund des
Zellenbaues. Leipzig: 1909.

10. Brodmann K. Localisation in the Cerebral Cortex. London:
Smith-Gordon; 1994.

11. Carpenter MB, Sutin J. Human Neuroanatomy. Baltimore:
Williams & Wilkins; 1983.

12. Chi JG, Dooling EC, Gilles FH. Gyral development of the
human brain. Annals of Neurology. 1977;1:86–93.

13. Chi JG, Dooling EC, Gilles FH. Left-right asymmetries of
the temporal speech areas of the human fetus. Archives of
Neurology. 1977;34:346–348.

14. Clarke E, Dewhurst K. An Illustrated History of Brain
Function. Oxford: Sandford Publications; 1972.

15. Clarke S, Miklossy J. Occipital cortex in man: Organization
of callosal connections, related myelo- and cytoarchitec-
ture, and putative boundaries of functional visual areas.
Journal of Comparative Neurology. 1990;298:188–214.

16. Crivello F, Tzourio N, Poline JB, Woods RP, Mazziotta JC,
Mazoyer B. Intersubject variability in functional anatomy
of silent verb generation: Assessment by a new activa-
tion detection algorithm based on amplitude and size
information. Neuroimage. 1995;2:253–263.

17. Dammers J, Mohlberg H, Boers F, Tass P, Amunts K,
Mathiak K. A new toolbox for combining magnetoen-
cephalographic source analysis and cytoarchitectonic
probabilistic data for anatomical classification of dynamic
brain activity. Neuroimage. 2007;34:1577–1587.

18. Déjerine J. Anatomie des Centres Nerveux. Paris: 1895.
19. Desikan RSH, Ségonne F, Fischl B, Quinn B, Dickerson

BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman
BT, Albert MS, Killiany RJ. An automated labelling system
for subdividing the human cerebral cortex on MRI scans
into gyral based regions of interest. Neuroimage. 2006;
31:968–980.

20. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U,
May A. Neuroplasticity: Changes in grey matter induced
by training. Nature. 2004;427(6972):311–312.



538 Handbook of Medical Image Processing and Analysis

21. Ebeling U, Steinmetz H, Huang Y, Kahn T. Topography
and identification of the inferior precentral sulcus
in MR imaging. American Journal of Neuroradiology.
1989;10:937–942.

22. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink
GR, Amunts K, Zilles K. A new SPM toolbox for combin-
ing probabilistic cytoarchitectonic maps and functional
imaging data. Neuroimage. 2005;25:1325–1335.

23. Eickhoff SB, Weiss PH, Amunts K, Fink GR, Zilles K.
Identifying human parieto-insular vestibular cortex using
fMRI cytoarchitectonic mapping. Human Brain Mapping.
2006;27:611–621.

24. Fox PT, Burton H, Raichle ME. Mapping human soma-
tosensory cortex with positron emission tomography.
Journal of Neurosurgery. 1987;67:34–43.

25. Friston KJ, Holmes AP, Worsley KJ, Poline JB, Frith CD,
Frackowiak RSJ. Statistical parametric maps in functional
imaging: A general approach. Human Brain Mapping.
1995;2:189–210.

26. Friston KJ, Passingham RE, Nutt JG, Heather JD, Sawle
GV, Frackowiak RSJ. Localisation in PET images: Direct
fitting of the intercommissural (AC-PC) line. Journal of
Cerebral Blood Flow & Metabolism. 1989;9:690–695.

27. Galaburda AM. La région de Broca: Observations
anatomiques faites un siècle après la mort de son décou-
vreur. Revue Neurologique. 1980;136(10):609–616.

28. Galaburda AM, LeMay M, Kemper TL, Geschwind N.
Right-left asymmetries in the brain. Science. 1978; 199:
852–856.

29. Galaburda AM, Sanides F. Cytoarchitectonic organization
of the human auditory cortex. Journal of Comparative
Neurology. 1980;190:597–610.

30. Galuske RAW, Schlote W, Bratzke H, Singer W.
Interhemispheric asymmetries of the modular struc-
ture in human temporal cortex. Science. 2000;289(5486):
1946–1949.

31. Gannon PJ, Holloway RL, Broadfield DC, Braun
AR. Asymmetry of chimpanzee planum temporale:
Humanlike pattern of Wernicke’s brain language area
homolog. Science. 1998;279(5348):220–222.

32. Gaser C, Schlaug G. Brain structures differ between
musicians and non-musicians. Journal of Neurosciences.
2003;23(27):9240–9245.

33. Geschwind N, Levitsky W. Human brain left-right asym-
metries in temporal speech region. Science. 1968;161:
186–187.

34. Good C, Johnsrude IS, Ashburner J, Henson RNA, Friston
KJ, Frackowiak RSJ. A voxel-based-morphometry study of
ageing in 465 normal adult human brains. Neuroimage.
2001;14:21–36.

35. Grachev ID, Berdichevsky D, Rauch SL, Heckers S,
Kennedy DN, Caviness VS, Alpert NM. A method for
assessing the accuracy of intersubject registration of the

human brain using anatomical landmarks. Neuroimage.
1999;9:250–268.

36. Hagmann P, Cammoun L, Martuzzi R, Maeder P,
Clarke S, Thiran JP, Meuli R. Hand preference and sex
shape the architecture of language networks. Human Brain
Mapping. 2006;27(10):828–835.

37. Hammers A, Chen CH, Lemieux L, Allom R, Vossos S,
Free SL, Myers R, Brooks DJ, Duncan JS, Koepp MJ.
Statistical neuroanatomy of the human inferior frontal
gyrus and probabilistic atlas in a standard stereotaxic
space. Human Brain Mapping. 2007;28:34–48.

38. Harrington A. Unfinished business: Models of laterality in
the nineteenth century. In: Davidson RJ, Hugdahl K (eds.),
Brain Asymmetry. Cambridge, MA: MIT Press; 1995:
3–27.

39. Herholz K, Thiel A, Wienhard K, Pietrzyk U, von
Stockhausen H-M, Karbe H, Kessler J, Burckbauer T,
Halber M, Heiss W-D. Individual functional anatomy of
verb generation. Neuroimage. 1996;3:185–194.

40. Hutsler J, Galuske RA. Hemispheric asymmetries in cere-
bral cortical networks. Trends in Neurosciences. 2003;
26(8):429–435.

41. Josse G, Mazoyer B, Crivello F, Tzourio-Mazoyer N.
Left planum temporale: An anatomical marker of left
hemispheric specialization for language comprehension.
Cognitive Brain Research. 2003;18:1–14.

42. Josse G, Herve PY, Crivello F, Mazoyer B, Tzourio-Mazoyer
N. Hemispheric specialization for language: Brain volume
matters. Brain Research. 2006;1068(1):184–193.

43. Kido DK, LeMay M, Levinson AW, Benson WE.
Computed tomographic localization of the precentral
gyrus. Radiology. 1980;135:373–377.

44. Lancaster JL, Kochunov PV, Thompson PM, Toga AW,
Fox PT. Asymmetry of the brain surface from deformation
field analysis. Human Brain Mapping. 2003;19(2):79–89.

45. Lemaître H, Crivello F, Dufouil C, Grassiot B, Tzourio C,
Alpérovitch A, Mazoyer BM. No ε4 gene dose effect on
hippocampal atrophy in a large MRI database of healthy
elderly subjects. Neuroimage. 2005;24:1205–1213.

46. Lemaître H, Crivello F, Grassiot B, Alpérovitch A,
Tzourio C, Mazoyer BM. Age- and sex-related effects on
the neuroanatomy of healthy elderly. Neuroimage. 2005;
26:900–911.

47. Mangin JF, Rivière D, Cachia A, Duchesnay E, Cointepas Y,
Papadopoulos-Orfanos D, Scifo P, Ochiai T, Brunelle F,
Régis J. A framework to study the cortical foldings
patterns. Neuroimage. 2004;23:S129–S138.

48. Mazziotta JC, Toga AW, Evans AC, Fox PT, Lancaster
JL, Zilles K, Woods RP, Paus T, Simpson G, Pike
B, Holmes CJ, Collins L, Thompsom PJ, MacDonald
D, Iacoboni M, Schormann T, Amunts K, Palomero-
Gallagher N, Geyer S, Parsons LM, Narr KL, Kabani N,
LeGoualher G, Boomsma DI, Cannon TD, Kawashima R,



31 Biological Underpinnings of Anatomic Consistency and Variability in the Human Brain 539

Mazoyer BM. A probabilistic atlas and reference system
for the human brain: International Consortium for Brain
Mapping (ICBM). Philosophical Transactions Royal Society
London B. 2001;356:1293–1322.

49. McRae DL, Branch CL, Milner B. The occipital horns and
cerebral dominance. Neurology. 1968;18:95–98.

50. Nieuwenhuys R, Voogd J, van Huijzen C. The Human
Central Nervous System. A Synopsis and Atlas. 3rd ed.
Berlin: Springer-Verlag, 1988.

51. Ochiai T, Grimault S, Scavarda D, Roch G, Hori T,
Riviere D, Mangin JF, Regis J. Sulcal pattern and morphol-
ogy of the superior temporal sulcus. Neuroimage. 2004;
22(2):706–719.

52. Ono M, Kubik S, Abernathey CD. Atlas of the Cerebral
Sulci. New York: Thieme Medical Publishers, Inc.; 1990.

53. Parker GJ, Luzzi S, Alexander DC, Wheeler-Kingshott CA,
Ciccarelli O, Lambon Ralph MA. Lateralization of ven-
tral and dorsal auditory-language pathways in the human
brain. Neuroimage. 2005;24(3):656–666.

54. Paus T, Tomaiuolo F, Otaky N, MacDonald D, Petrides
M, Atlas J, Morris R, Evans AC. Human cingulate and
paracingulate sulci: Pattern, variability, asymmetry, and
probabilistic map. Cerebral Cortex. 1996;6:207–214.

55. Penhune VB, Zatorre RJ, MacDonald D, Evans AC.
Interhemispheric anatomical differences in human pri-
mary auditory cortex: Probabilistic mapping and volume
measurement from magnetic resonance scans. Cerebral
Cortex. 1996;6(5):661–672.

56. Rademacher J, Caviness VS, Steinmetz H, Galaburda
AM. Topographical variation of the human primary cor-
tices: Implications for neuroimaging, brain mapping, and
neurobiology. Cerebral Cortex. 1993;3:313–329.

57. Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic def-
inition of prefrontal areas in the normal human cortex: I.
Remapping of areas 9 and 46 using quantitative criteria.
Cerebral Cortex. 1995;5:307–322.

58. Roland PE, Zilles K. Brain atlases—A new research tool.
Trends in Neurosciences. 1994;17(11):458–467.

59. Roland PE, Zilles K. Structural divisions and func-
tional fields in the human cerebral cortex. Brain Research
Reviews. 1998;26(2–3):87–105.

60. Rumeau C, Tzourio N, Murayama N, Peretti-Vitton P,
Levrier O, Joliot M, Mazoyer B, Salamon G. Location of
hand function in the sensorimotor cortex: Magnetic res-
onance and functional correlation. American Journal of
Neuroradiology. 1994;15:425–433.

61. Salamon G, Gelbert F, Alicherif A, Poncet M,
Khalil R, Sobel D,Von Einseidel O, Morel M, Corbaz JM. Le
repérage in vivo des aires du langage. Rev Neurol. 1987;143:
580–587.

62. Sastre-Janer F, Regis J, Belin P, Mangin J-F, Dormont D,
Masure MC, Remy P, Frouin V, Samson Y. Three dimen-
sional reconstruction of the human central sulcus reveals a

morphological correlates of the hand area. Cerebral Cortex.
1999;8:641–647.

63. Schleicher A, Amunts K, Geyer S, Morosan P, Zilles K.
Observer-independent method for microstructural par-
cellation of cerebral cortex: A quantitative approach to
cytoarchitectonics. Neuroimage. 1999;9:165–177.

64. Schormann T, Zilles K. Three-dimensional linear and
nonlinear transformation: An integration of light micro-
scopical and MRI data. Human Brain Mapping. 1998;6:
339–347.

65. Sluming V, Barrick T, Howard M, Cezayirli E, Mayes A,
Roberts N. Voxel-based morphometry reveals increased
gray matter density in Broca’s area in male sym-
phony orchestra musicians. Neuroimage. 2002;17(3):
1613–1622.

66. Sobel DF, Gallen CC, Schwartz BJ, Waltz TA,
Copeland B,Yamada S, Hirschkoff EC, Bloom FE. Locating
the central sulcus: Comparison of MR anatomic and mag-
netoencephalographic functional methods. AJNR. 1993;
14:915–925.

67. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL,
Toga AW. In vivo evidence for post-adolescent brain matu-
ration in frontal and striatal regions. Nature Neuroscience.
1999;2(10):859–861.

68. Sowell ER, Thompson PM, Rex D, Kornsand D,
Tessner KD, Jernigan TL, Toga AW. Mapping sulcal pattern
asymmetry and local cortical surface gray matter distribu-
tion in vivo: Maturation in perisylvian cortices. Cerebral
Cortex. 2002;12(1):17–26.

69. Steinmetz H, Fürst G, Freund H-J. Variation of left
perisylvian and calcarine anatomical landmarks within
stereotaxic proportional coordinates. American Journal of
Neuroradiology. 1990;11:1123–1130.

70. Sugiura M, Kawashima R, Sadato N, Senda M, Kanno I,
Oda K, Sato K, Yonekura Y, Fukuda H. Anatomic valida-
tion of spatial normalization methods for PET. Journal of
Nuclear Medicine. 1999;40:317–322.

71. Talairach J, De Ajuriaguerra J, David M. Etudes
stéréotaxiques des structures encephaliques profondes
chez l’homme. Technique—Intérêt physiopathologique et
thérapeutique. La Presse Médicale. 1952;60:605–609.

72. Talairach J, Szikla G, Tournoux P. Altas d’Anatomie
Stéréotaxique du Téléencéphale. Paris: Masson, 1967.

73. Talairach J, Szikla G, Tournoux P, Prossalentis A, Bordas-
Ferrer M, Covello L, Iacob M, Mempel E. Atlas d’Anatomie
Stéréotaxique du Télencéphale. Paris:1967.

74. Talairach J, Tournoux P. Co-planar Stereotaxic Atlas of
the Human Brain. 3-Dimensional Proportional System: An
Approach to Cerebral Imaging. Stuttgart-New York: 1988.

75. Talairach J, Tournoux P. Co-planar Stereotaxic Atlas of
the Human Brain. 3-Dimensional Proportional System: An
Approach to Cerebral Imaging. Stuttgart: Georg Thieme
Verlag, 1988.



540 Handbook of Medical Image Processing and Analysis

76. Thompson PM, Schwartz C, Lin RT, Khan AA,
Toga AW. Three-dimensional statistical analysis of sulcal
variability in the human brain. Journal of Neurosciences.
1996;16:4261–4274.

77. Thompson PM, Schwartz C, Lin RT, Khan AA,
Toga AW. Three-dimensional statistical analysis of sulcal
variability in the human brain. Journal of Neurosciences.
1996;16(13):4261–74.

78. Toga AW, Thompson PM. Mapping brain asymmetry. Nat
Rev Neurosci. 2003;4(1):37–48.

79. Toga AW, Thompson PM, Mori S, Amunts K, Zilles K.
Towards multimodal atlases of the human brain. Nature
Reviews Neurosciences. 2006;7(12):952–966.

80. Tzourio N, Nkanga-Ngila B, Mazoyer BM. Left planum
temporale surface correlates with functional dom-
inance during story listening. Neuroreport. 1998;9:
829–833.

81. Tzourio N, Petit L, Mellet E, Orssaud C, Crivello F,
Benali K, Salamon G, Mazoyer BM. Use of anatomical
parcellation to catalog and study structure function rela-
tionships in the human brain. Human Brain Mapping.
1997;5(4):228–232.

82. Tzourio-Mazoyer N, Landeau B, Papathanassiou D,
Crivello F, Etard O, Delcroix N, Mazoyer BM, Joliot M.
Automated anatomical labelisation of activations in SPM
using a macroscopic anatomical parcellation of the MNI
MRI single subject Brain. Neuroimage. 2002;15:273–289.

83. Watson JDG, Myers R, Frackowiak RSJ, Hajnal JV,
Woods RP, Mazziotta JC, Shipp S, Zeki S. Area V5 of
the human brain: Evidence from a combined study using
positron emission tomography and magnetic resonance
imaging. Cerebral Cortex. 1993;3:79–94.

84. Weinberger DR, Luchins DJ, Morihisia J, Wyatt RJ.
Asymmetrical volumes of the right and left frontal and
occipital regions of the human brain. Annals of Neurology.
1982;11:97–100.

85. Wohlschläger AM, Specht K, Lie C, Mohlberg H,
Wohlschläger A, Bente K, Pietrzyk U, Stöcker T, Zilles K,
Amunts K, Fink GR. Linking retinotopic fMRI mapping
and anatomical probability maps of human occipital areas
V1 and V2. Neuroimage. 2005;26:73–82.

86. Woods RP, Grafton ST, Watson JDG, Sicotte NL,
Mazziotta JC. Automated image registration: II. Inter-
subject validation of linear and nonlinear models. Journal
of Computed Assisted Tomography. 1998;22:153–165.

87. Yousry TA, Schmid UD, Jassoy AG, Schmidt D, Eisner W,
Reulen H-J, Reiser M, Lissner J. Topography of the cortical
motor hand area: Prospective study with functional MR
imaging an direct motor mapping at surgery. Radiology.
1995;195:23–29.

88. Zeki S, Watson JDG, Lueck CJ, Friston KJ, Kennard C,
Frackowiak RSJ. A direct demonstration of func-
tional specialization in human visual cortex. Journal of
Neurosciences. 1991;11:641–649.



32
Spatial Transformation Models

Roger P. Woods
UCLA School of Medicine

32.1 Homogeneous Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 541
32.2 Rigid-Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

32.2.1 Two-Dimensional Case • 32.2.2 Three-Dimensional Case

32.3 Global Rescaling Transformation . . . . . . . . . . . . . . . . . . . . . . . 555
32.4 Nine-Parameter Affine Model . . . . . . . . . . . . . . . . . . . . . . . . . 558
32.5 Other Special Constrained Affine Transformations . . . . . . . . . . . . . . 561
32.6 General Affine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
32.7 Perspective Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 563
32.8 Spatial Transformations Using Quaternions . . . . . . . . . . . . . . . . . 564
32.9 Nonlinear Spatial Transformation Models . . . . . . . . . . . . . . . . . . 566
32.10 Averaging Spatial Transformations . . . . . . . . . . . . . . . . . . . . . . 567
32.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

Spatial transformation models play a central role in any image
registration procedure. These models impose mathematical
constraints on the types of geometric distortions that can be
imposed during the process of registration. It is fair to say that
useful registration cannot be accomplished without some type
of formal spatial transformation model. This chapter focuses
on spatial transformation models that are linear in nature. A
variety of linear models can be used, ranging from rigid-body
transformations that preserve all internal angles and distances
to perspective models that distort all distances and angles while
preserving colinearity. All linear spatial transformations can
be expressed using matrix notation, and this chapter details
the relationship between the formal parameters of the spatial
transformation model and the elements of the corresponding
matrix. Useful tools from matrix algebra are described, includ-
ing singular value decomposition, eigenvector analysis, Schur
decomposition, and computation of matrix logarithms and
matrix exponentials. These tools are available in most matrix
analysis software packages, and algorithms for their implemen-
tation are detailed in Golub and Van Loan [1]. These tools
clarify the relationships between the transformation matrices
and the underlying geometry and provide powerful strate-
gies for diagnosing the geometric constraints imposed by any
transformation matrix.

32.1 Homogeneous Coordinates

Any two-dimensional linear transformation can be expressed
as a three-by-three matrix, and any three-dimensional linear

transformation can be expressed as a four-by-four matrix. In
two dimensions, any coordinate (x , y) can be assigned to the
vector ⎡

⎣ x
y
1

⎤
⎦,

and in three dimensions, any point (x , y , z) can be assigned to
the vector ⎡

⎢⎢⎣
x
y
z
1

⎤
⎥⎥⎦.

In each case, the extra final element can be viewed as a prag-
matic placeholder that makes the mathematics work properly,
though in fact, it turns out to have a meaningful geometric
interpretation that is discussed later in the section on perspec-
tive transformations. In the event that a matrix computation
generates a vector ending with a nonzero value other than
unity, the entire vector can be rescaled by a scalar value and
then interpreted as a homogeneous coordinate. For example,
the three-dimensional vector

⎡
⎢⎢⎣

a
b
c
k

⎤
⎥⎥⎦

Copyright © 2008 by Elsevier, Inc.
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can be rescaled to ⎡
⎢⎢⎣

a/k
b/k
c/k

1

⎤
⎥⎥⎦

and interpreted as corresponding to the coordinate
(a/k, b/k, c/k). Any vector that ends with a zero cannot be
rescaled in this manner. Consequently, vectors ending with
zero cannot be viewed as homogeneous coordinate locations.
However, since they can be added to or subtracted from homo-
geneous coordinates, vectors ending with a zero can be viewed
as classical vectors. The vector⎡

⎢⎢⎣
i
j
k
0

⎤
⎥⎥⎦

can therefore be interpreted as a three-dimensional vector
passing from the origin to the point (i, j , k).

Using this notation, the two-dimensional linear transforma-
tion of a coordinate (x , y) to some new coordinate (x ′, y ′) can
be written as follows:⎡

⎣ x ′
y ′
1

⎤
⎦ =

⎡
⎣ e11 e12 e13

e21 e22 e23

e31 e32 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦.

Similarly, the three-dimensional linear transformation of a
coordinate (x , y , z) to some new coordinate (x ′, y ′, z ′) can be
written as ⎡

⎢⎢⎣
x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

e11 e12 e13 e14

e21 e22 e23 e24

e31 e32 e33 e34

e41 e42 e43 e44

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦.

Similar to homogeneous coordinates, transformation matri-
ces should have a final element that is equal to unity. If a
computation produces a matrix with a nonzero value other than
unity in the final position, the entire matrix can be rescaled by
the appropriate scalar value. Transformation matrices with a
zero in the final position map real coordinates to vectors and
are not discussed further here.

It is assumed throughout this chapter that transformations
describing spatial inversions (i.e., mirror imaging) are not of
interest. In two dimensions, this means that the upper left
two-by-two submatrix must have a determinant greater than
0. Similarly, in three dimensions, the upper left three-by-three
submatrix must have a determinant greater than 0. Many of
the approaches described here will fail if this assumption is
incorrect.

32.2 Rigid-Body Model

For medical imaging, the most constrained spatial transfor-
mation model is the rigid-body model. This model asserts
that distances and internal angles within the images cannot be
changed during registration. As the name implies, this model
assumes that the object behaves in the real world as a rigid
body, susceptible to global rotations and translations, but inter-
nally immutable. This model is well suited to objects such as
individual bones, which cannot be deformed. To a reasonable
approximation, this model is also applicable to the brain, which
is encased in bones that protect it from forces that might lead to
deformations. However, it is well established that this is only an
approximation, since parts of the brain, such as the brainstem,
are subject to distortions induced by cardiac and respiratory
cycles. For images accumulated over many cardiac and res-
piratory cycles, these movements may result in a blurred but
highly consistent signal that follows the rigid-body assump-
tions quite well. However, for images acquired with a very short
time frame, these movements can produce very clear violations
of the rigid-body model assumptions.

Medical images often consist of voxels that differ in the real-
world distances that they represent along the x-, y-, and z-axes.
For example, it is common for the slice thickness in magnetic
resonance imaging data to be larger than the size of individ-
ual pixels within each slice. If ignored, these anisotropies in
voxel size will clearly lead to apparent violations of the rigid-
body model, even for solid structures that accurately follow the
rigid-body assumptions in the real world. Consequently, any
implementation of a rigid-body model must explicitly correct
for voxel sizes to ensure that the real-world distances and angles
that are being represented do not change. In a worst-case sce-
nario, six different voxel sizes may be involved: three isotropic
voxel sizes from one image and three different isotropic voxel
sizes from the other image. A properly implemented rigid-body
model for transforming such images may choose any one of
these voxel sizes or may even select some other arbitrary voxel
size. However, calculations must be included to rescale distances
to compensate for the various voxel sizes. For the rigid-body
model to be applicable, all six of the voxel sizes must be known
accurately. If the voxel sizes are not known with certainty, the
best strategy is to scan a phantom with known dimensions to
determine the true voxel dimensions since errors in specifica-
tion of the voxel dimensions will lead to unnecessary errors in
registrations produced using a rigid-body model [2]. If this is
not possible, the calibration errors can be estimated by adding
additional parameters to augment the rigid-body model as
discussed in subsequent sections of this chapter.

In three dimensions, the rigid-body model requires speci-
fication of six independent parameters. It is traditional (but
not necessary) for three of these parameters to specify a three-
dimensional translation that is either preceded or followed by
the sequential application of specified rotations around each of
the three primary coordinate axes. However, before considering
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the three-dimensional model, it is useful to consider the sim-
pler case of two dimensions. In two dimensions, the rigid-body
model requires only three independent parameters.

32.2.1 Two-Dimensional Case

Two of the parameters that specify a two-dimensional rigid-
body transformation can be viewed as translations along the
primary axes, and the third can be viewed as a pure rotation
around the origin. Although this particular parameterization is
not unique, translations along each axis and rotations around
the origin will be referred to here as elementary transforma-
tions. If a two-dimensional point (x , y) is to be transformed
by one of these elementary transformations to some new
point (x ′, y ′), the following equations describe the elementary
transformations:

x-translation: x ′ = x + p

y ′ = y

y-translation: x ′ = x

y ′ = y + q

Rotation: x ′ = x × cos(θ)+ y × sin(θ)

y ′ = −x × sin(θ)+ y × cos(θ),

where, p, q, and θ are the parameters of the rigid-body model.
Note that if the x-axis is defined as horizontal with positive
values to the right and the y-axis is defined as vertical with
positive values to the top, a positive θ here defines a clockwise
rotation. A 90◦ rotation maps the positive end of the y-axis
onto the positive end of the x-axis. If positive θ were defined as
a counterclockwise rotation, the signs of the two terms involving
sin(θ) would need to be reversed. These elementary transfor-
mations can be rewritten in a homogeneous coordinate matrix
formulation as follows:

x-translation:

⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ 1 0 p

0 1 0
0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦

y-translation:

⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 q
0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦

Rotation :

⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦.

Although the three necessary elementary parameters have
been defined, at this point the two-dimensional rigid-body
transformation is still ambiguous. This is due to the fact that the
order of the three elementary operations has not been specified.
Two reasonable orderings are:

1. The application of translations before rotations:⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

⎤
⎦×

⎡
⎣ 1 0 0

0 1 q
0 0 1

⎤
⎦

×
⎡
⎣ 1 0 p

0 1 0
0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦

=
⎡
⎣ cos(θ) sin(θ) p × cos(θ)+ q × sin(θ)
−sin(θ) cos(θ) −p × sin(θ)+ q × cos(θ)

0 0 1

⎤
⎦

×
⎡
⎣ x

y
1

⎤
⎦ . (32.1)

2. The application of rotations before translations:⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣1 0 0

0 1 q
0 0 1

⎤
⎦×

⎡
⎣1 0 p

0 1 0
0 0 1

⎤
⎦×

⎡
⎣ cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

⎤
⎦

×
⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ cos(θ) sin(θ) p
−sin(θ) cos(θ) q

0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦ .

(32.2)

Note that the results from the two different orders are not the
same. Note also that the three independent parameters of the
rigid-body model are dispersed across six variable elements of
the transformation matrix. The two variables in the third col-
umn are free to take on any arbitrary value, while the elements
of the two-by-two submatrix in the upper left are all constrained
to be functions of the rotational angle θ.

For a concrete example, consider a transformation that
rotates an object clockwise by 10◦ around the origin of the
coordinate system and then translates it 4 units along x and 9
units along y (see Figure 32.1). The net transformation matrix
can be derived by computing the appropriately ordered product
of the elementary transformation matrices:⎡

⎣ x ′
y ′
1

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 9
0 0 1

⎤
⎦×

⎡
⎣ 1 0 4

0 1 0
0 0 1

⎤
⎦

×
⎡
⎣ cos(10◦) sin(10◦) 0
−sin(10◦) cos(10◦) 0

0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦

=
⎡
⎣ 0.9848 0.1736 4
−0.1736 0.9848 9

0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦.

This matrix can be decomposed back into the original
sequence of elementary transformations or alternatively can
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Rotate 10°

Rotate 10°

Translate
x by 2.3764
y by 9.5579

Translate
x by 4
y by 9

FIGURE 32.1 Illustration of the numerical example of two-
dimensional rigid-body movements. To achieve a given result, one
must apply different translations depending on whether transla-
tions are done before or after rotations. In the two-dimensional
case, the amount of rotation is invariant, regardless of the order of
transformations.

be decomposed into the reverse sequence. If translations are
applied before rotations, the magnitude and direction of the
rotation around the origin are unchanged, but it must be pre-
ceded by a translation of 2.3764 units along x and 9.5579 units
along y .

⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ 0.9848 0.1736 4
−0.1736 0.9848 9

0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦

=
⎡
⎣ cos(10◦) sin(10◦) 0
−sin(10◦) cos(10◦) 0

0 0 1

⎤
⎦×

⎡
⎣ 1 0 0

0 1 9.5579
0 0 1

⎤
⎦

×
⎡
⎣ 1 0 2.3764

0 1 0
0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦.

Both orders of transformation are illustrated in Figure 32.1.
Note that in either case, the total distance of translation (9.8489
units) remains unchanged.

One of the advantages of the matrix formulation of the
two-dimensional rigid-body transformation is that it elimi-
nates the need to specify whether rotations precede or follow
translations. Indeed, for any given rigid-body transformation
specified in matrix form, it is possible to use Equations 32.1
and 32.2 to respecify the transformation using either of the

orders of elementary transformation. If you envision the trans-
formation process as being displayed as a movie, the matrix
formulation represents only the beginning and the ending of
the movie and omits all the details about what route might
have been taken in between. In fact, the intervening details as
described by a particular sequence of elementary transforma-
tions are almost certainly irrelevant to the registration problem,
since rotations are conceptualized as taking place around the
origin of the chosen coordinate system. Medical applications
of rigid-body transformations involve real biological subjects
who will be unaware of and unconstrained by the point in
space that will correspond to the origin when images are reg-
istered. Furthermore, biological subjects are not constrained
to move from one position to another by applying sequences
of pure translations and pure rotations in any coordinate sys-
tem. Motions decomposed into such sequences would appear
mechanical rather than biological.

A second advantage of the matrix formulation is that it
allows the use of standard linear algebraic methods for inverting
or combining transformations. Given a rigid-body transfor-
mation matrix for registering one image to a second image,
simple matrix inversion derives a matrix for registering the sec-
ond matrix to the first. This inverted matrix is guaranteed to
describe a rigid-body transformation and, if necessary, can be
decomposed into elementary transformations. Similarly, given
a rigid-body transformation matrix for registering the first
image to the second and another rigid-body transformation
matrix for registering the second image to a third, simple matrix
multiplication gives a rigid-body transformation matrix for reg-
istering the first image directly to the third. Matrix inversion
and multiplication can also be usefully combined. For exam-
ple, given a rigid-body transformation matrix for registering
one image to a second image and another rigid-body transfor-
mation matrix for registering the first image to a third image,
the product of the inverse of the first matrix and the second
matrix will produce a rigid-body transformation matrix that
will register the second image to the third.

One disadvantage of the matrix formulation is that it is not
always easy to verify that a particular transformation matrix
actually does describe a rigid-body transformation. In two
dimensions, the obvious symmetries of the two-by-two subma-
trix in the upper left corner of the transformation matrix are
helpful, but it is still generally necessary to make computations
to detect imposter matrices of the form⎡

⎣ x ′
y ′
1

⎤
⎦ =

⎡
⎣ cos(θ) sin(φ) p
−sin(φ) cos(θ) q

0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦,

where θ �= φ.
When the two-by-two submatrix has the form[

a b
−b a

]
,
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the simplest way to confirm that a rigid-body transformation is
described is to compute the determinant of the matrix, a2 + b2,
and confirm that it is equal to 1. In the three-dimensional
case to be described later, simple inspection for symmetry
and computation of the determinant are not sufficient. A
more general way to determine whether a transformation
matrix describes a rigid-body transformation is to use sin-
gular value decomposition of the two-by-two submatrix. Any
real two-by-two matrix can be decomposed into the prod-
uct of three two-by-two matrices—U , S, and V —that have
special properties. The U and V matrices have the prop-
erty that they are orthonormal, which means that they can
be viewed as describing rigid-body rotations. The S matrix
has the property that all of its off-diagonal elements are 0.
The product U × S × V ′ gives the original matrix that was
decomposed.

For the two-by-two submatrix of the example described
earlier, the singular value decomposition gives

[
0.9848 0.1736
−0.1736 0.9848

]
=
[

0.1736 0.9848
0.9848 −0.1736

]
×
[

1 0
0 1

]
×
[

1 0
0 1

]
= U × S × V ′.

Each of these two-by-two matrices can be augmented back
to a three-by-three matrix as follows without disrupting the
validity of the equality:

⎡
⎣ 0.9848 0.1736 0
−0.1736 0.9484 0

0 0 1

⎤
⎦ =

⎡
⎣0.1736 0.9848 0

0.9848 −1.736 0
0 0 1

⎤
⎦×

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

×
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ =

⎡
⎣ 0

U
0

0 0 1

⎤
⎦

×
⎡
⎣ 0

S
0

0 0 1

⎤
⎦ =

⎡
⎣ 0

V ′
0

0 0 1

⎤
⎦ .

Premultiplying both sides of the equation on the left by
elementary rigid-body translation matrices allows the original
matrix to be expressed in terms of U , S, and V ′:

⎡
⎣ 0.9848 0.1736 4
−0.1736 0.9484 9

0 0 1

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 9
0 0 1

⎤
⎦×

⎡
⎣ 1 0 4

0 1 0
0 0 1

⎤
⎦

×
⎡
⎣ 0.9848 0.1736 0
−0.1736 0.9484 0

0 0 1

⎤
⎦

=
⎡
⎣ 1 0 0

0 1 9
0 0 1

⎤
⎦×

⎡
⎣ 1 0 4

0 1 0
0 0 1

⎤
⎦×

⎡
⎣ 0.1736 0.9848 0

0.9848 −0.1736 0
0 0 1

⎤
⎦

×
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦×

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦

=
⎡
⎣ 1 0 0

0 1 9
0 0 1

⎤
⎦×

⎡
⎣ 1 0 4

0 1 0
0 0 1

⎤
⎦

×
⎡
⎣ 0

U
0

0 0 1

⎤
⎦×

⎡
⎣ 0

S
0

0 0 1

⎤
⎦×

⎡
⎣ 0

V ′
0

0 0 1

⎤
⎦.

Of the five matrices in a decomposition such as the one just
illustrated, the matrix containing U , the matrix containing
V ′, and the two transnational matrices are all guaranteed to
describe rigid-body transformations. Consequently, if the orig-
inal matrix describes a rigid-body transformation, the matrix
containing S must also describe a rigid-body transformation.
Since the singular value decomposition ensures that all the non-
diagonal elements of S are 0, the matrix containing S can only
describe a rigid-body transformation if

S =
[

1 0
0 1

]
or if S =

[ −1 0
0 −1

]
.

Consequently, singular value decomposition of the upper left
two-by-two submatrix, followed by inspection of the result-
ing matrix S, provides a trivial way to determine whether a
two-dimensional transformation matrix describes a rigid-body
rotation. As discussed later, an analogous approach is suit-
able for three-dimensional rigid-body rotations. It should be
emphasized that the final row of the two-dimensional transfor-
mation matrix must have elements 0, 0, and 1 for this approach
to be valid.

To this point, all of the methods for describing or decom-
posing a two-dimensional rigid-body transformation have
relied upon sequences of more elementary or more funda-
mental transformations that combine to give the same end
result as the original transformation. As mentioned previ-
ously, these sequences give rise to very artificial intermediate
transformations that are more strongly tied to the under-
lying coordinate system than to the rigid-body movement
itself. The resulting descriptions are not particularly helpful
in visualizing the fundamental geometry of the transforma-
tion. From the geometric standpoint, it turns out that any
two-dimensional rigid-body transformation that includes a
rotational component can be fully described as a simple rota-
tion around some fixed point in space. Knowing this, one can
easily envision the halfway point of a 10◦ clockwise rotation
about a point as being a 5◦ clockwise rotation about that same
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point. The entire transformation can be envisioned as one
continuous, smoothly evolving process that involves the simul-
taneous, rather than the sequential, application of elementary
movements.

The point in space that remains fixed during a two-
dimensional rotational rigid-body transformation can be
derived by computing the real eigenvectors of the transforma-
tion matrix. Given any transformation matrix T (this is even
true for transformation matrices that do not describe rigid-
body movements), a real eigenvector of T must satisfy the
following equation, where k is a scalar and is referred to as
the eigenvalue of the eigenvector:

k ×
⎡
⎣ a

b
c

⎤
⎦ = T ×

⎡
⎣ a

b
c

⎤
⎦.

If c is not equal to 0, the eigenvector can be rescaled by an
arbitrary scalar quantity without altering this relationship, so it
must also be true that

k ×
⎡
⎣ a/b

b/c
1

⎤
⎦ = T ×

⎡
⎣ a/c

b/c
1

⎤
⎦.

Consequently, in the two-dimensional case, a real eigenvector
with any value other than 0 as its final element can be viewed as
a point (a/c , b/c) that is mapped by the transformation to the
point (k × a/c , k × b/c). It can be shown mathematically that
any rigid-body transformation that involves a rotation must
have one real eigenvalue with a nonzero final element and that
the eigenvalue of this eigenvector must be 1. As a result, for such
rigid-body transformations, the point (a/c , b/c) is mapped
back to itself by the transformation.

Using a standard eigenvector routine to compute the eigen-
vectors of the sample transformation shown earlier gives
a = 0.9456, b = −0.3249, and c = 0.0177, so the point that
is unchanged by the transformation is (53.4352,−18.3601),
which can be confirmed as follows:⎡
⎣ 53.4352
−18.3601

1

⎤
⎦ =

⎡
⎣ 0.9848 0.1736 4
−0.1736 0.9848 9

0 0 1

⎤
⎦×

⎡
⎣ 53.4352
−18.3601

1

⎤
⎦ .

Consequently, this two-dimensional rigid-body transforma-
tion can be viewed geometrically as involving a rotation around
the fixed point (53.4352,−18.3601).

A useful method for describing a rigid-body movement
within the framework of a given coordinate system is to use
a decomposition based on the matrix logarithm of the trans-
formation matrix. By definition, the matrix logarithm of a
matrix has eigenvectors that are identical to those of the
original matrix, but all of the eigenvalues are the natural log-
arithms of the eigenvalues of the original matrix. The inverse

matrix function, the matrix exponential, is defined similarly.
Although defined here with reference to the eigenvalues and
eigenvectors of a matrix, both of these matrix functions can be
computed without explicit computation of the corresponding
eigenvectors.

For the rigid-body sample transformation, the matrix loga-
rithm of the transformation is

⎡
⎣ 0 0.1745 3.2044
−0.1745 0 9.3262

0 0 0

⎤
⎦

=
⎡
⎣ 0 (10◦ × π/180◦) 3.2044
−(10◦ × π/180◦) 0 9.3262

0 0 0

⎤
⎦

= log m

⎛
⎝
⎡
⎣ 0.9848 0.1736 4

0.1736 0.9848 9
0 0 1

⎤
⎦
⎞
⎠

= log m

⎛
⎝
⎡
⎣ cos(10◦) sin(10◦) 4
−sin(10◦) cos(10◦) 9

0 0 1

⎤
⎦
⎞
⎠.

Note in the preceding example that the rotation angle of the
original transformation, θ, expressed in radians, defines the
upper left two-by-two submatrix as

[
0 θ

−θ 0

]
.

This is true for any two-dimensional rigid-body transforma-
tion, and this form (with zeros on the diagonal) can be used as
an alternative to singular value decomposition for proving that
a matrix defines a rigid-body transformation.

The matrix logarithm can be decomposed into more elemen-
tary transformations. Analogous to the situation that applies
with scalar values, the decomposition is based on the notion
that the component matrices should be sum to the matrix
logarithm being decomposed. The decomposition strategy
anticipates the consequences of subsequent matrix exponenti-
ation to define instantaneous elementary transformations that
act simultaneously to produce the original matrix.

For the sample matrix, a suitable decomposition is

⎡
⎣ 0 0.1745 3.2044
−0.1745 0 9.3262

0 0 0

⎤
⎦ =

⎡
⎣ 0 0.1745 0
−0.1745 0 0

0 0 0

⎤
⎦

+
⎡
⎣ 0 0 3.2044

0 0 9.3262
0 0 0

⎤
⎦.
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Matrix exponentiation of the two component matrices pro-
duces an instantaneous elementary rotational transformation

⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ 0.9848 0.1736 0

0.1736 0.9848 0
0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦

= exp m

⎛
⎝
⎡
⎣ 0 0.1745 0
−0.1745 0 0

0 0 0

⎤
⎦
⎞
⎠×

⎡
⎣ x

y
1

⎤
⎦

=
⎡
⎣ cos(10◦) sin(10◦) 0
−sin(10◦) cos(10◦) 0

0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦

and an instantaneous translational transformation

⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ 1 0 3.2044

0 1 9.3262
0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦

= exp m

⎛
⎝
⎡
⎣ 0 0 3.2044

0 0 9.3262
0 0 0

⎤
⎦
⎞
⎠×

⎡
⎣ x

y
1

⎤
⎦ .

In the two-dimensional case, the instantaneous elementary
rotational transformation will always be identical to the con-
ventional elementary rotational transformation obtained by
sequential compositions. However, the instantaneous elemen-
tary translational matrix provides information that is directly
related to the movement of the origin of the coordinate system
as it is rotated around the fixed point by the original transfor-
mation. The vector defined by this translation is exactly tangent
to the path traveled by the origin around the fixed point derived
earlier, and the total length of the translation describes the total
length of the circular arc that the origin would travel in rotating
as part of a rigid body around the fixed point. The term “instan-
taneous elementary transformation” is used here to denote the
fact that the rotations and translations must be viewed as occur-
ring progressively and simultaneously to produce a trajectory
that leads to the correct final transformation.

In the numerical example, the origin travels 9.8614 units as
it rotates around the fixed point at (53.4352,−18.3601). The
transformation is illustrated in Figure 32.2.

32.2.2 Three-Dimensional Case

Issues in three dimensions are similar to those in two dimen-
sions but include additional subtleties. Six independent param-
eters are required to describe a general three-dimensional
rigid-body rotation, and the ones typically used are three
translations (along the x-, y-, and z-axes) and three rotations

Rotate
10°

around
x 5 53.4352

y 5 2 18.3601

FIGURE 32.2 Demonstration that the transformation illustrated in
Figure 32.1 can also be achieved by a single rotation around an appro-
priately chosen fixed point in space. The location of this point can be
determined by computing the real eigenvectors of the transformation.
The intermediate transformations shown in light gray can be derived
using matrix logarithms and matrix exponentials.

(around the x-, y-, and z-axes). For brain images, the x-axis
is often defined as the axis that passes from left to right, the
y-axis as the axis from back to front, and the z-axis as the axis
from bottom to top. In this case, rotation around the x-axis is
also referred to as pitch, rotation around the y-axis as roll, and
rotation around the z-axis as yaw. None of these conventions
should be considered universal, but they will be the definitions
used here. Readers should also be aware that defining the pos-
itive and negative ends of the x-, y-, and z-axes requires an
arbitrary choice between two different coordinate systems that
are effectively three-dimensional mirror images of one another.
If the origin is viewed from one end of the z-axis such that the
x-axis is oriented horizontally with positive values to the right
and the y-axis oriented vertically with positive values to the top,
a right-handed coordinate system will place positive z-values in
front of the origin and negative z-values behind the origin. The
opposite arrangement defines a left-handed coordinate system.
Knowing the handedness of the coordinate system is vital for
interpreting displayed medical images (e.g., for distinguishing
which side of the brain or body is right and which side is left
in the real world). However, for the purposes of registration,
the issue can be ignored so long as all the images are known to
follow the same convention.

If a three-dimensional point (x , y , z) is to be transformed by
an elementary transformation to some new point (x ′, y ′, z ′), the
following equations describe the elementary transformations:

x-translation: x ′ = x + p

y ′ = y

z ′ = z

y-translation: x ′ = x

y ′ = y + q

z ′ = z
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z-translation: x ′ = x

y ′ = y

z ′ = z + r

Pitch: x ′ = x

y ′ = y × cos(θ)+ z × sin(θ)

z ′ = −y × sin(θ)+ z × cos(θ)

Roll: x ′ = x × cos(ω)− z × sin(ω)

y ′ = y

z ′ = x × sin(ω)+ z × cos(ω)

Yaw: x ′ = x × cos(φ)+ y × sin(φ)

y ′ = −x × sin(φ)+ y × cos(φ)

z ′ = z .

Note that these equations arbitrarily define a positive yaw
as the direction such that a positive 90◦ rotation will map
the positive end of the y-axis onto the positive end of the
x-axis. Similarly, a positive roll of 90◦ is defined to map the
positive end of the x-axis onto the positive end of the z-axis.
Finally, a positive pitch of 90◦ is defined to map the positive
end of the z-axis onto the positive end of the y-axis. These
relationships are illustrated in Figure 32.3. Any one, two, or
three of these arbitrary definitions can be reversed by simply
reversing the sign of the corresponding sin( ) terms, but the
definitions used here will turn out to have certain advantages
when interpreting instantaneous elementary transformations.
Note that none of these arbitrary definitions have any bear-
ing on the handedness of the coordinate system, and they

1y

1�

1�

1z

1x

1�

FIGURE 32.3 Coordinate axes used to define three-dimensional ele-
mentary rotations. To be consistent with the legends for Figures 32.4–
32.6, the x- and y-axes should be viewed as coming out of the page.
If the x- and y-axes are viewed as going into the page, all axes and
angles still remain consistent with the equations used here, since only
the handedness of the coordinate system is changed.

cannot be used to deduce the handedness without additional
information.

These elementary transformations can be rewritten in a
convenient matrix formulation as follows:

x-translation:

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 p
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

y-translation:

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 q
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

z-translation:

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 r
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

Pitch:

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 cos(θ) sin(θ) 0
0 −sin(θ) cos(θ) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

Roll :

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(ω) 0 −sin(ω) 0
0 1 0 0

sin(ω) 0 cos(ω) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

Yaw :

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(φ) sin(φ) 0 0
−sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

As in the two-dimensional case, the last row of each vec-
tor (i.e., coordinate location) is always one and the ltimes row
of the matrix (i.e., transformation) always consists of zeros
except for a 1 in the last column. These fixed elements serve
as placeholders to ensure that the matrices can be inverted or
multiplied to obtain appropriate results. A complete specifi-
cation of the parameterization of the model requires explicit
designation of the sequence in which these transformations are
applied. As with the two-dimensional model, different results
will be obtained depending on whether rotations precede or
follow translations. However, a new sequence issue also arises
because the order in which the three rotations are applied alters
the result. All of the following orders are reasonable:

pitch× roll× yaw

pitch× yaw× roll

roll× pitch× yaw

roll× yaw× pitch

yaw× pitch× roll

yaw× roll× pitch.
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Combined with the possibility of performing translations
before or after rotations, 12 different orders are possible. The

transformation resulting from one of these 12 orders, the
application of pitch, roll, and yaw, followed by translations, is

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ = translations× yaw× roll× pitch×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 p
0 1 0 q
0 0 1 r
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

cos(φ) sin(φ) 0 0
−sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

cos(ω) 0 −sin(ω) 0
0 1 0 0

sin(ω) 0 cos(ω) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

1 0 0 0
0 cos(θ) sin(θ) 0
0 −sin(θ) cos(θ) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(φ)× cos(ω)
(sin(φ)× cos(θ)

+ cos(φ)× sin(ω)× sin(θ))
(sin(φ)× sin(θ)
− cos(φ)× sin(ω)× cos(θ))

p

−sin(φ)× cos(ω)
(cos(φ)× cos(θ)
−sin(φ)× sin(ω)× sin(θ))

(cos(φ)× sin(θ)
+ sin(φ)× sin(ω)× cos(θ))

q

sin(ω) − cos(ω)× sin(θ) cos(ω)× cos(θ) r

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

If the order of transformations is reversed, a different final result
is obtained:

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ = pitch× roll× yaw× translations×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 0
0 cos(θ) sin(θ) 0
0 −sin(θ) cos(θ) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

cos(ω) 0 −sin(ω) 0
0 1 0 0

sin(ω) 0 cos(ω) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

cos(φ) sin(φ) 0 0
−sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

1 0 0 p
0 1 0 q
0 0 1 r
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(ω)× cos(φ) cos(ω)× sin(φ) −sin(ω) 0

(sin(θ)× sin(ω)× cos(φ)
− cos(θ)× sin(φ))

(sin(θ)× sin(ω)× sin(φ)
+ cos(θ)× cos(φ))

sin(θ)× cos(ω) 0

(cos(θ)× sin(ω)× cos(φ)
+ sin(θ)× sin(φ))

(cos(θ)× sin(ω)× sin(φ)
−sin(θ)× cos(φ))

cos(θ)× cos(ω)
0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎣

1 0 0 p
0 1 0 q
0 0 1 r
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

The six independent parameters end up dispersed across 12
variable elements of the transformation matrix. The constraints
among the transformation matrix elements all pertain to the
three-by-three submatrix in the upper left, which is fully deter-
mined by the three rotational parameters. The matrix formula-
tion avoids potential ambiguities associated with specification

of elementary transformations. As with the two-dimensional
case, matrix inversion and multiplication can be used to derive
a new matrix that describes the results of sequential application
of other rigid-body transformations or their inverses.

As a numerical example, consider a sequence of transforma-
tions in which an image is first rotated around the x-axis by
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7◦, then rotated around the y-axis by 11◦, then rotated around
the z-axis by 13◦, and finally translated 2 units along x , 3 units
along y , and 5 units along z :

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

cos(13◦) sin(13◦) 0 0
−sin(13◦) cos(13◦) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

cos(11◦) 0 −sin(11◦) 0
0 1 0 0

sin(11◦) 0 cos(11◦) 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 0 0 0
0 cos(7◦) sin(7◦) 0
0 −sin(7◦) cos(7◦) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0.9565 0.2459 −0.1571 2
−0.2208 0.9619 0.1613 3
0.1908 0.1196 0.9743 5

0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦.

This sequence is illustrated schematically in Figure 32.4.
Trigonometric computations allow rotational angles and trans-
lational distances to be computed for any of the many other
possible sequences of elementary transformations. For example,
the identical transformation can be achieved by first translat-
ing by 2.2045 units along x , 2.7793 units along y , and 5.0414
units along z , then rotating around the z-axis by 14.4198◦,
then rotating around the y-axis by 9.0397◦, and finally rotating
around the x-axis by 9.4030◦. This sequence is illustrated in
Figure 32.5.

Unlike the two-dimensional case, where only translations
change when the order of the sequence of elementary transfor-
mations is altered, in the three-dimensional case the rotational
angles are altered as well. A movie of the sequence of trans-
formations would show that these sequences of elementary
transformations all correspond to very mechanical-looking
movements, none of which are likely to describe the real move-
ments of a biological system (see Figures 32.4 and 32.5). The
matrix formulation omits the irrelevant intervening move-
ments and simply describes the final results of the sequence.
As in the two-dimensional case, matrix inversion and matrix
multiplication can be used to derive other related rigid-body
transformations.

In the three-dimensional case, it is more difficult than in
the two-dimensional case to determine whether a given matrix
describes a rigid-body transformation. The interaction of the
three rotational angles eliminates the simple symmetries of the

Starting
position

View
along
z-axis

View
along
x-axis

View
along
y-axis

View
along

fixed axis

Rotate
7°

around
x-axis

Rotate
11°

around
y-axis

Rotate
13°

around
z-axis

FIGURE 32.4 Rotational component of the numerical example
illustrating three-dimensional rigid-body movements. Here, the rota-
tions are applied sequentially around the x-axis, the y-axis, and then
the z-axis. Note that the initial and final positions are identical to
those in Figures 32.5 and 32.6, but the intervening positions are dif-
ferent. Wire-frame models of a brain undergoing transformation are
shown as viewed along the coordinate axes in the first three rows. The
view portrayed in the fourth row is parallel to the axis of rotation
of the complete transformation, here called the “fixed axis” because
it is unchanged in the absence of translations. The right hemisphere
is shown in red and the left hemisphere in blue. The view along the
z-axis is seen looking down on the brain from above. The view along
the x-axis is seen looking toward the right hemisphere from the right.
The view along the y-axis is seen looking at the back of the brain from
behind. The view along the fixed axis looks down on the right frontal
lobe from a right super-anterior position. The two small round dots
associated with each figure lie on the fixed axis. As a result, they are
both superimposed over the origin in the starting and final positions
on the fourth row. Note that these two points are in identical posi-
tions before and after the complete transformation, but that they are
moved to other positions by the intermediate steps. The orientation
of the fixed axis can be determined by finding the real eigenvectors of
the complete transformation. The repositioning required to compose
a view along the fixed axis is given by the transpose of the U matrix
obtained by Schur decomposition of the original transformation. (See
also color insert).

matrix that are present in two dimensions. Singular-value
decomposition of the upper left three-by-three submatrix
provides a quick way to verify that a rigid-body transfor-
mation is described. The earlier discussion of singular value
decomposition of the upper left two-by-two submatrix in the
two-dimensional case generalizes fully to the three-dimensional
case.
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Starting
position

View
along
z-axis

View
along
x-axis

View
along
y-axis

View
along

fixed axis

Rotate
14.4198˚
around
z-axis

Rotate
9.0397˚
around
y-axis

Rotate
9.4030˚
around
x-axis

FIGURE 32.5 Alternative decomposition of the rotational compo-
nent of the numerical example illustrating three-dimensional rigid-
body movements. Here, the rotations are applied sequentially around
the z-axis, the y-axis, and then the x-axis. This is the reverse order of
the rotations in Figure 32.4, and the magnitudes of the rotations have
been adjusted so that the final results are identical. See Figure 32.4
legend for additional details. (See also color insert).

For the numerical example, singular-value decomposition
gives

⎡
⎢⎢⎣

0.9565 0.2459 −0.1571 2
−0.2208 0.9619 0.1613 3
0.1908 −0.1196 0.9743 5

0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0.9565 −0.1571 0.2459 0
−0.2208 0.1613 0.9619 0
0.1908 0.9743 −0.1196 0

0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

0
U 0

0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0
S 0

0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0
V ′ 0

0
0 0 0 1

⎤
⎥⎥⎦ .

The translational matrix, the matrix containing U , and the
matrix containing V ′, are all guaranteed to describe rigid-body
transformations, and the matrix containing S has elements

only along the diagonal. It follows that the original matrix can
describe a rigid-body transformation only if

S =
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ , S =

⎡
⎣ −1 0 0

0 −1 0
0 0 1

⎤
⎦ , S =

⎡
⎣ −1 0 0

0 1 0
0 0 −1

⎤
⎦ ,

or S =
⎡
⎣ 1 0 0

0 −1 0
0 0 −1

⎤
⎦ .

Similarly to the two-dimensional case, this analysis requires that
the final row of the original four-by-four matrix have elements
0, 0, 0, and 1.

For two-dimensional rigid-body rotations (excluding the
case of pure translation), some point in space must remain
fixed after transformation. This is not the case for three-
dimensional rigid-body rotations. However, the underlying
geometry is surprisingly simple. It turns out that any rota-
tional three-dimensional rigid-body transformation (i.e., any
rigid-body transformation that does not consist of pure trans-
lations) can be described geometrically as a rotation around
some axis in space, combined with translation along that
same axis. If the translation along that axis happens to be
exactly 0, points along the entire rotational axis will map to
themselves. Otherwise, points along the rotational axis are
translated appropriately and are completely unaffected by the
rotation. The fact that the three independent rotational angles
that are used to parameterize a three-dimensional rigid-body
motion actually produce a single rotation is nonintuitive and
can be related to the existence of a real Schur decomposi-
tion [1] for every real matrix. This decomposition generates
a real orthonormal matrix U and a real block upper triangu-
lar matrix V with diagonal blocks no larger than two-by-two,
such that the matrix product U × V× U ′ is the matrix being
decomposed.

For the numerical example:

⎡
⎢⎢⎣

0.9565 0.2459 −0.1571 2
−0.2208 0.9619 0.1613 3
0.1908 −0.1196 0.9743 5

0 0 0 1

⎤
⎥⎥⎦ = U × V × U ′

=

⎡
⎢⎢⎣

0.7124 −0.5509 −0.4347 0
−0.6960 −0.4753 −0.5382 0
0.0899 0.6860 −0.7221 0

0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

0.9463 −0.3232 0 −0.2135
0.3232 0.9463 0 0.9020

0 0 1 −6.0943
0 0 0 1

⎤
⎥⎥⎦
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×

⎡
⎢⎢⎣

0.7124 −0.6960 0.08899 0
−0.5509 −0.4753 0.6860 0
−0.4347 −0.5382 −0.7221 0

0 0 0 1

⎤
⎥⎥⎦ = U

×

⎡
⎢⎢⎣

cos(−18.8571◦) sin(−18.8571◦) 0 −0.2135
−sin(−18.8571◦) cos(−18.8571◦) 0 0.9020

0 0 1 −6.0943
0 0 0 1

⎤
⎥⎥⎦×U ′.

For all rigid-body transformations, the matrix U must not
only be orthonormal (as guaranteed by the Schur decompo-
sition), but can also be constrained to have all nondiagonal
elements of the fourth row and fourth column equal to 0 and
the corresponding diagonal element in the fourth row and
fourth column equal to 1. As a result, the matrix U ′ can be
viewed as simply defining a new set of coordinate axes with the
same origin as the original set. The transformation V is applied
in this new coordinate system and then the matrix U reverts
the results to the original coordinate system (the inverse of an
orthonormal matrix is always equal to its transpose). The Schur
decomposition ensures that the matrix V must always be of the
form ⎡

⎢⎢⎣
e11 e12 e13 e14

e21 e22 e23 e24

0 e32 e33 e34

0 0 e43 e44

⎤
⎥⎥⎦ ,

and the constraints on U added earlier in the case of rigid-body
transformations imply that it is always possible to define U such
that V will have a more restrictive form:⎡
⎢⎢⎢⎣

cos(φ) sin(φ) 0 e14

−sin(φ) cos(φ) 0 e24

0 0 1 e34

0 0 0 1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

cos(φ) sin(φ) 0 e14

−sin(φ) cos(φ) 0 e24

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 e34

0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 e34

0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎢⎣

cos(φ) sin(φ) 0 e14

−sin(φ) cos(φ) 0 e24

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ .

As a result, V can be viewed as a two-dimensional rigid-body
motion constrained to the new xy plane defined by U ′ and a
translation along the new z-axis defined by U ′. Note that the
order of these two transformations does not matter. It should be
noted that routines to perform Schur decomposition will not

necessarily automatically produce a V matrix in this specific
format, but methods are available to ensure that this is the
case [1, 3].

For the numerical example:

⎡
⎢⎢⎣

0.9565 0.2459 −0.1571 2
−0.2208 0.9619 0.1613 3
0.1908 −0.1196 0.9743 5

0 0 0 1

⎤
⎥⎥⎦

= U ×

⎡
⎢⎢⎣

cos(−18.8571◦) sin(−18.8571◦) 0 −0.2135
−sin(−18.8571◦) cos(−18.8571◦) 0 0.9020

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −6.0943
0 0 0 1

⎤
⎥⎥⎦× U ′

= U ×

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 −6.0943
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

cos(−18.8571◦) sin(−18.8571◦) 0 −0.2135
−sin(−18.8571◦) cos(−18.8571◦) 0 0.9020

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦×U ′.

The rotation within the xy plane of this new coordinate sys-
tem can be decomposed analogously to the two-dimensional
rotations described earlier.

For the numerical example, computation of the real eigen-
vectors of the rotational matrix shows that the vector

⎡
⎢⎢⎣
−2.8227
−0.1917

0
1

⎤
⎥⎥⎦

corresponding to the point (−2.8227,−0.1917, 0) is unchanged
by the transformation. Another eigenvector,

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦,

does not correspond to a point since its last value is zero, but
this vector can be multiplied by any real scalar k and added to
the original point to find another point that is unchanged by
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the transformation. This can be confirmed as follows:⎡
⎢⎢⎣
−2.8227
−0.1917

k
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.9463 −0.3232 0 −0.2135
0.3232 0.9463 0 0.9020

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣
−2.8227
−0.1917

k
1

⎤
⎥⎥⎦.

Consequently, the component of the transformation con-
strained to lie within the newly defined xy plane can be viewed as
a rotation of−18.8571◦ around the axis (−2.8227,−0.1917, k),
where k can be any real value. In addition, an orthogonal trans-
lation of −6.0943 units along the newly defined z-axis must be
applied to account for the other component of matrix V .

Points and vectors in the newly defined coordinate system
can be converted back to the original coordinate system using
the matrix U .

The point (−2.8227, −0.1917, 0) is the point on the rota-
tional axis closest to the origin and corresponds to the point
(−1.9053, 2.0556,−0.3853) in the original coordinate system:

⎡
⎢⎢⎣
−1.9053
20.556
−0.3853

1

⎤
⎥⎥⎦ = U ×

⎡
⎢⎢⎣
−2.8227
−0.1917

0
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0.7124 −0.5509 −0.434 0
−0.6960 −0.4753 −0.5382 0
0.0899 0.6860 −0.7221 0

0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣
−2.8227
−0.1917

0
1

⎤
⎥⎥⎦.

Similarly, the other real eigenvector of V in the newly
defined coordinate system can be mapped back into the original
coordinate system:

⎡
⎢⎢⎣
−0.4347
−0.5382
−0.7221

0

⎤
⎥⎥⎦ = U ×

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0.7124 −0.5509 −0.4347 0
−0.6960 −0.4753 −0.5382 0
0.0899 0.6860 −0.7221 0

0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦

So, the line described by the parametric description (−1.9053,
2.0556, −0.3853) + k ∗ (−0.4347, −0.5382, −0.7221) corre-
sponds to the axis of rotation of the original transformation.

Points that lie on this line are translated −6.0943 units along
the unit vector (−0.4347, −0.5382, −0.7221), which is to say,
translated 2.6490 units along x , 3.2802 units along y , and 4.4004
units along z . The geometric description can be restated in
matrix format:

⎡
⎣ −1.9053− 0.4347× k + 2.6490

2.0556− 0.5382× k + 3.2802
−0.3853− 0.7221× k + 4.4004

⎤
⎦

=

⎡
⎢⎢⎣

0.9565 0.2459 −0.1571 2
−0.2208 0.9619 0.1613 3
0.1908 −0.1196 0.9743 5

0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣
−1.9053− 0.4347 × k
2.0556− 0.5382 × k
−0.3853− 0.7221 × k

1

⎤
⎥⎥⎦.

In summary, the original transformation can be described as a
rotation of –18.8571◦ around an axis that passes through the
point (–1.9053, 2.0556, –0.3853) running parallel to the unit
vector

⎡
⎢⎢⎣
−0.4347
−0.5382
−0.7221

0

⎤
⎥⎥⎦,

combined with a translation of –6.0934 units along that same
vector. Alternatively, the direction of the unit vector can be
reversed by multiplying it by –1, in which case the rotation
and translation become positive. Figures 32.4–6 illustrate the
transformation from the vantage point of this reversed unit
vector.

As in the two-dimensional case, the matrix logarithm pro-
vides a method for decomposing a rigid-body transformation
into a set of simultaneous elementary transformations rather
than the traditional sequential transformations.

For the numerical example, the matrix logarithm is

⎡
⎢⎢⎣

0 0.2376 −0.1771 2.0923

−0.2376 0 0.1431 2.8825

0.1771 −0.1431 0 5.0320

0 0 0 0

⎤
⎥⎥⎦

= log m

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

0.9565 0.2459 −0.1571 2

−0.2208 0.9619 0.1613 3

0.1908 −0.1196 0.9743 5

0 0 0 1

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎣

0 0 0 0

0 0 0.1431 0

0 −0.1431 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0 0 −0.1771 0

0 0 0 0

0.1771 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦



554 Handbook of Medical Image Processing and Analysis

+

⎡
⎢⎢⎢⎣

0 0.2376 0 0

−0.2376 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0 0 0 2.0923

0 0 0 2.8825

0 0 0 5.0320

0 0 0 0

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

0 0 0 0

0 0 8.1966◦ 0

0 −8.1966◦ 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0 0 −10.1496◦ 0

0 0 0 0

10.1496◦ 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎣

0 13.6159◦ 0 0
−13.6159◦ 0 0 0

0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 0 0 2.0923
0 0 0 2.8825
0 0 0 5.0320
0 0 0 0

⎤
⎥⎥⎦.

A matrix describing a three-dimensional rigid-body trans-
formation can undergo simple arithmetic decomposition to
generate four matrices, each of which is the matrix logarithm
of an instantaneous elementary transformation. Conversion of
the rotational components from radians to degrees anticipates
the results of computing the corresponding matrix exponentials
to derive the instantaneous elementary transformations.

The instantaneous elementary rotational transformation
around the x-axis is⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 cos(8.1966◦) sin(8.1966◦) 0
0 −sin(8.1966◦) cos(8.1966◦) 0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

The instantaneous elementary rotational transformation
around the y-axis is

⎡
⎢⎢⎣

x ′

y ′

z ′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(10.1496◦) 0 −sin(10.1496◦) 0
0 1 0 0

sin(10.1496◦) 0 cos(10.1496◦) 0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

The instantaneous elementary rotational transformation
around the z-axis is⎡
⎢⎢⎣

x ′

y ′

z ′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos(13.6159◦) sin(13.6159◦) 0 0
−sin(13.6159◦) cos(13.6159◦) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

The instantaneous elementary translational transformation is

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 2.0923
0 1 0 2.8825
0 0 1 5.0320
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

The instantaneous elementary rotations can be combined to
produce a vector. If the coordinate axes have been defined

as they were here, this vector will be parallel to the axis
around which the original transformation produces rotations.
Furthermore, the length of the vector will be the same as the
rotation produced around this axis.

The instantaneous elementary rotations around the x−, y-,
and z-axes are 8.1966˚, 10.1496◦, and 13.6159◦. Based on the
conventions used here to define rotations, all of these instanta-
neous elementary rotations are in the positive direction. If these
elementary rotations are treated as a vector

⎡
⎢⎢⎣

8.1966◦
10.1496◦
13.6159◦

0

⎤
⎥⎥⎦,

the length of this vector is 18.8571◦, and a corresponding unit
vector is ⎡

⎢⎢⎣
0.4347
0.5382
0.7221

0

⎤
⎥⎥⎦.

Similarly to the two-dimensional case, the elementary instan-
taneous translational matrix describes a translational vector
with a direction that corresponds to the initial instantaneous
path that would be taken by the origin as it simultaneously spi-
raled around and translated along the axis of the transformation
in a continuous movement that would end at the correct final
position. The total length of this vector corresponds to the total
distance that the origin would follow along this corkscrew-like
path.

The matrix logarithm provides an alternative to singular
value decomposition for determining whether a given matrix
represents a rigid-body transformation. If the diagonal ele-
ments are all 0 and the upper left three-by-three submatrix
has the property of being equal to its transpose multiplied by
–1, the matrix represents a rigid-body transformation.

The matrix logarithm also provides a simple mechanism for
decomposing a transformation into a smooth continuous path.
If the matrix logarithm is divided by some integer, the matrix
exponential of the result will describe a transformation that is
an integer fraction of the original. Repeated sequential appli-
cation of this transformation will eventually generate the same
result as the original transformation. Furthermore, if the object
being rotated is distributed symmetrically around the rotational
axis of the transformation, it can be shown that this is the most
parsimonious route for the transformation to follow in terms
of total distance traveled by all points in the object.

Figure 32.6 shows the transformation used in the numerical
example decomposed into three identical sequential transfor-
mations computed using the matrix logarithm and matrix
exponential functions.
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FIGURE 32.6 Matrix logarithm and matrix exponential based
decomposition of the rotational component of the numerical example
illustrating three-dimensional rigid-body movements. See Figure 32.4
legend for additional details. In this case, rotation is applied around the
fixed axis. Note that the positions of the two round dots do not change
and that the intervening positions constitute optimal intermediates
without extraneous movement. The decomposition into three steps
is arbitrary; the required 18.8571◦ rotation can be equally divided
among any number of intervening positions. If the translational com-
ponent of the numerical example had been included, the rotations in
the fourth row would be centered around the (x , y) point (–2.8227,
−0.1917). The two points on the “fixed axis” and the origin would
rotate around this point in the images on the fourth row, and all
points would be translated perpendicular to the plane of the page in
the fourth row by 2.0314 units with each of the three transformation
steps. (See also color insert).

The relationship of the instantaneous elementary rotational
transformations to the orientation and magnitude of the actual
resultant rotation provides a very convenient method for speci-
fying rotations around a specific axis that does not correspond
to one of the cardinal axes of the coordinate system. The values
can be placed into the proper positions of a matrix that will have
a matrix exponential that is the desired transformation matrix.

For example, to produce a 7◦ rotation around the vec-
tor running from the origin to the point (2, 3, 5) requires
instantaneous simultaneous elementary rotations of 7◦ × (2/√

22 + 32 + 52) = 2.2711◦ = 0.0396 radians around the x-axis,
7◦ × (3/√22 + 32 + 52) = 3.4066◦ = 0.0595 radians around
the y-axis, and 7◦ × (5/√22 + 32 + 52) = 5.6777◦ = 0.0991
radians around the z-axis:⎡

⎢⎢⎣
0.9933 0.1000 −0.0573 0
−0.0977 0.9943 0.0425 0
0.0613 −0.0366 0.9974 0

0 0 0 1

⎤
⎥⎥⎦

= exp m

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0 0.0991 −0.0595 0
−0.0991 0 0.0396 0
0.0595 −0.0396 0 0

0 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

Translations can then be placed in the fourth column of the
matrix to reposition the origin to any desired location. If it is
necessary to ensure that the axis of rotation passes through some
particular point, the first step is to compute all eigenvalues and
eigenvectors (including the imaginary ones) of the preceding
matrix. If these eigenvectors are used as columns of a matrix
V , the eigenvalues can be placed along the diagonal of another
matrix D so that V × D × V−1 is equal to the original matrix.
One of the eigenvectors will be the vector

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ ,

and the corresponding column of V should be replaced by a
vector that represents a point on the desired axis of rotation,
keeping the fourth element as unity. The desired matrix can
then be computed as V × D × V−1.

32.3 Global Rescaling Transformation

This transformation is similar to the rigid-body transformation,
except that a seventh parameter is added that specifies a mag-
nification factor that is applied globally during transformation.
Three-dimensional magnification by the global rescaling factor
m can be represented by the matrix equation

FIGURE 32.7 Illustration of the numerical example of two-
dimensional affine transformation. The light gray axes are centered
on the coordinate (11.8514, 3.0593), which is unchanged by the trans-
formation. These axes are initially oriented 54.9232◦ counterclockwise
to the coordinate axes. The image is rescaled anisotropically along the
gray axes, and then the image and the gray axes are rotated 24.1889◦

clockwise. Note that within the frame of reference denned by the gray
axes, the transformation involves only anisotropic rescaling.
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⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦.

In the context of sequential elementary transformations,
the order of elementary magnification and elementary trans-
lations matters, but the order of elementary magnification

and elementary rotations does not. The set of global rescaling
transformations is closed under matrix inversion and matrix
multiplication, so any sequence of global rescaling transforma-
tions and rigid-body transformations (which can be viewed as
a special case with a magnification of unity) is guaranteed to
produce another global rescaling transformation. One possible
order of elementary transformations is

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ = translations×magnification× yaw× roll× pitch×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 p
0 1 0 q
0 0 1 r
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

m 0 0 0
0 m 0 0
0 0 m 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

cos(φ) sin(φ) 0 0
−sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

cos(ω) 0 −sin(ω) 0
0 1 0 0

sin(ω) 0 cos(ω) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

1 0 0 0
0 cos(θ) sin(θ) 0
0 −sin(θ) cos(θ) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m × cos(φ)× cos(ω)
m × (sin(φ)× cos(θ)
+ cos(φ)× sin(ω)× sin(θ))

m × (sin(φ)× sin(θ)
− cos(φ)× sin(ω)× cos(θ))

p

−m × sin(φ)× cos(ω)
m × (cos(φ)× cos(θ)
−sin(φ)× sin(ω)× sin(θ))

m × (cos(φ)× sin(θ)
+ sin(φ)× sin(ω)× cos(θ))

q

m × sin(ω) −m × cos(ω)× sin(θ) m × cos(ω)× cos(θ) r

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

Note that the added parameter eases the constraints on the
left upper three-by-three submatrix. For example, whereas the
combinations of sines and cosines in the rigid-body model
required all elements of this submatrix to have absolute val-
ues less than unity, the parameter m allows arbitrarily large
absolute values, though other constraints still remain in effect.

As a numerical example, consider a sequence of transforma-
tions in which an image is first rotated around the x-axis by
7◦, then rotated around the y-axis by 11◦, then rotated around
the z-axis by 13◦, then magnified by a factor of 2, and finally
translated 2 units along x , 3 units along y , and 5 units along z :

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

cos(13◦) sin(13◦) 0 0
−sin(13◦) cos(13◦) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

cos(11◦) 0 −sin(11◦) 0
0 1 0 0

sin(11◦) 0 cos(11◦) 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 0 0 0
0 cos(7◦) sin(7◦) 0
0 −sin(7◦) cos(7◦) 0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1.9129 0.4919 −0.3142 2
−0.4416 1.9238 0.3227 3
0.3816 −0.2393 1.9486 5

0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

Singular-value decomposition of the upper left three-by-
three submatrix provides a quick way to verify that a global
scaling transformation is described.
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For the numerical example, singular-value decomposition
gives ⎡

⎢⎢⎣
1.9129 0.4919 −0.3142 2
−0.4416 1.9238 0.3227 3
0.3816 −0.2393 1.9486 5

0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

0.9565 −0.1571 0.2459 0
−0.2208 0.1613 0.9619 0
0.1908 0.9743 −0.1196 0

0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

0
U 0

0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

0
S 0

0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

0
V ′ 0

0
0 0 0 1

⎤
⎥⎥⎦ .

Of the four matrices produced by this decomposition, the
translation matrix, the matrix containing U , and the matrix
containing V ′ must all describe rigid-body transformations,
so the rigid-body component is effectively isolated in matrix S,
which can have elements only along the diagonal. In general, the
original matrix can describe a global rescaling transformation
only if

S =
⎡
⎣ m 0 0

0 m 0
0 0 m

⎤
⎦, S =

⎡
⎣ −m 0 0

0 −m 0
0 0 m

⎤
⎦,

S =
⎡
⎣ −m 0 0

0 m 0
0 0 −m

⎤
⎦, or S =

⎡
⎣ m 0 0

0 −m 0
0 0 −m

⎤
⎦,

where m is positive. The usual caveats regarding the final row
of the original four-by-four matrix apply.

Aside from the added complication of a global rescaling com-
ponent, the underlying geometry of the global rescaling model
is quite similar to that of the rigid-body model. Schur decompo-
sition can be used to define a new coordinate system in which
all rotational components can be made parallel to either the
xy or the yz plane. If rotations are parallel to the xy plane,
an additional translation and rescaling occurs along the z-axis.
Likewise, if rotations are parallel to the yz plane, additional
translation and rescaling occur along the x-axis. For any mag-
nification factor that is not unity, some point in space must
always map to itself, and an axis passing through this point can

be viewed as the axis around which all rotations occur. This
point can be identified by finding the real eigenvector of the
original transformation that has a nonzero fourth element and
rescaling that vector to make the fourth element equal to one.

In the numerical example, the point (−2.4515,−2.6862,
−4.9621) is unchanged by the transformation. The other real
eigenvector of the transformation,⎡

⎢⎢⎣
0.4347
0.5382
0.7221

0

⎤
⎥⎥⎦ ,

identifies a vector parallel to the axis of rotation, so any point
(−2.4515+ k × 0.4347, −2.6862+ k × 0.5382, −4.9621+ k
× 0.7221) lies on this rotational axis and maps to the
point (−2.4515+ 2× k × 0.4347,−2.6862+ 2× k × 0.5382,
−4.9621+ 2× k × 0.7221).

The matrix logarithm provides an alternative to singu-
lar value decomposition for recognizing a global rescaling
transformation and for decomposing the transformation into
simultaneous elementary transformations.

For the numerical example, the matrix logarithm is⎡
⎢⎢⎣

0.6931 0.2376 −0.1771 1.4586
−0.2376 0.6931 0.1431 1.9892
0.1771 −0.1431 0.6931 3.4895

0 0 0 0

⎤
⎥⎥⎦

= log m

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1.9129 0.4919 −0.3142 2
−0.4416 1.9238 0.3227 3
0.3816 −0.2393 1.9486 5

0 0 0 1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

As usual, the matrix logarithm can be subjected to additive
decomposition into instantaneous simultaneous transforma-
tions. The off-diagonal elements of the upper left three-by-three
submatrix, which describe elementary rotations, will be iden-
tical to those from a corresponding rigid-body model that
uses the same rotation angles. The natural logarithm of the
global magnification factor will appear in the diagonal ele-
ments of this submatrix. These diagonal elements can be
partitioned into a global rescaling matrix, the matrix exponen-
tial of which describes the instantaneous simultaneous global
rescaling component of the transformation.

For the numerical example⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

= exp m

⎛
⎜⎜⎝
⎡
⎢⎢⎣

0.6931 0 0 0
0 0.6931 0 0
0 0 0.6931 0
0 0 0 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .
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The decomposition is otherwise similar to the rigid-body
case, except that the instantaneous simultaneous translational
matrix will have different values than before and will describe a
vector followed by the origin as it rotates around the rotational
axis of the transformation while rescaling is simultaneously
applied uniformly in all directions.

32.4 Nine-Parameter Affine Model

Instead of uniform rescaling along the three cardinal axes,
rescaling anisotropically is also possible. In this case, the order
in which rotations and rescaling are performed also matters.
Indeed, nine-parameter affine transformations do not comprise
a closed set under matrix inversion or matrix multiplication,

since these operations can alter the order in which rotations
and rescaling are performed. Consequently, use of the nine-
parameter affine model implies an intrinsic asymmetry between
two images that are being registered. For registration of images
from a single subject, this model would be useful if one of the
images is known to be properly calibrated, but the calibration
of the other image is unknown. In this case, variable rescal-
ing would need to be applied to the unknown image before
that image is rotated to match the other image. For intersub-
ject registration, this model is often used as part of the global
Talairach transformation (see Chapter 38, “Talairach Space as a
Tool for Intersubject Standardization in the Brain”). In this case,
the rescaling is applied after rotation of an individual brain to
match an atlas target. Consequently, two different formulations
may be required. The representation of the first formulation is

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ = translations× yaw× roll× pitch× rescaling×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 p
0 1 0 q
0 0 1 r
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

cos(φ) sin(φ) 0 0
−sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

cos(ω) 0 −sin(ω) 0
0 1 0 0

sin(ω) 0 cos(ω) 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 0 0 0
0 cos(θ) sin(θ) 0
0 −sin(θ) cos(θ) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

mx 0 0 0
0 my 0 0
0 0 mz 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mx × cos(φ)× cos(ω)
mx × (sin(φ)× cos(θ)
+ cos(φ)× sin(ω)× sin(θ))

mx × (sin(φ)× sin(θ)
− cos(φ)× sin(ω)× cos(θ))

p

−my × sin(φ)× cos(ω)
my × (cos(φ)× cos(θ)
−sin(φ)× sin(ω)× sin(θ))

my × (cos(φ)× sin(θ)
+ sin(φ)× sin(ω)× cos(θ))

q

mz × sin(ω) −mz × cos(ω)× sin(θ) mz × cos(ω)× cos(θ) r

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

A representation of the second formulation is

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ = translations× rescaling× yaw× roll× pitch×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 p
0 1 0 q
0 0 1 r
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

mx 0 0 0
0 my 0 0
0 0 mz 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

cos(φ) sin(φ) 0 0
−sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
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×

⎡
⎢⎢⎣

cos(ω) 0 −sin(ω) 0
0 1 0 0

sin(ω) 0 cos(ω) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

1 0 0 0
0 cos(θ) sin(θ) 0
0 −sin(θ) cos(θ) 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mx × cos(φ)× cos(ω)
my × (sin(φ)× cos(θ)
+ cos(φ)× sin(ω)× sin(θ))

mz × (sin(φ)× sin(θ)
− cos(φ)× sin(ω)× cos(θ))

p

−mx × sin(φ)× cos(ω)
my × (cos(φ)× cos(θ)
−sin(φ)× sin(ω)× sin(θ))

mz × (cos(φ)× sin(θ)
+ sin(φ)× sin(ω)× cos(θ))

q

mx × sin(ω) −my × cos(ω)× sin(θ) mz × cos(ω)× cos(θ) r

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

Note that in one formulation, the x-axis rescaling factor mx
appears in the first row of the transformation matrix, whereas
in the other it appears in the first column.

The situation is similar in two dimensions, where a five-
parameter model can be constructed analogously to the three-
dimensional nine-parameter model. The two added dimensions
allow for anisotropic rescaling either before or after rotations
are applied. Figure 32.8 illustrates the elementary anisotropic
rescaling transformations in two dimensions.

Two numerical examples of the three-dimensional case are
required. The first uses a sequence of transformations in which
an image is first rescaled by factors 1.5 along the x−axis, 2.0
along the y-axis and 2.5 along the z-axis, then rotated around
the x-axis by 7◦, then rotated around the y−axis by 11◦, then
rotated around the z-axis by 13◦, and finally translated 2 units
along x , 3 units along y , and 5 units along z :

⎡
⎢⎢⎣

x ′

y ′

z ′

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

cos(13◦) sin(13◦) 0 0
−sin(13◦) cos(13◦) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

cos(11◦) 0 −sin(11◦) 0
0 1 0 0

sin(11◦) 0 cos(11◦) 0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

1 0 0 0
0 cos(7◦) sin(7◦) 0
0 −sin(7◦) cos(7◦) 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1.5 0 0 0
0 2.0 0 0
0 0 2.5 0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1.4347 0.4919 −0.3928 2
−0.3312 1.9238 0.4034 3
0.2862 1.9238 2.4358 5

0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

FIGURE 32.8 Elementary two-dimensional affine transformations.
(Left column) Effects produced by off-diagonal elements in the matrix
logarithm of a transformation matrix. Balanced off-diagonal elements
produce rotations (left center). Unbalanced off-diagonal elements
result in shears along one of the two axes (left top and left bottom).
Like rotations, elementary shears do not change areas or volumes.
(Center column) When all elements in the matrix logarithm of a trans-
formation matrix are 0, an identity transformation is specified. (Right
column) Effects produced by diagonal elements in the matrix loga-
rithm of a transformation matrix. Balanced diagonal elements produce
global rescaling (right center). Unbalanced diagonal elements result
in anisotropic rescaling along the corresponding axis. Global rescal-
ing and anisotropic rescaling both generally change areas or volumes,
though these quantities can be preserved if anisotropic rescaling along
one axis exactly compensates for rescaling along another axis. These
relationships all generalize to three dimensions.
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The second uses a sequence of transformations in which an
image is first rotated around the x-axis by 7◦, then rotated
around the y-axis by 11◦, then rotated around the z-axis by
13◦, then rescaled by factors 1.5 along the x-axis, 2.0 along the
y-axis, and 2.5 along the z-axis, and finally translated 2 units
along x , 3 units along y , and 5 units along z :⎡

⎢⎢⎣
x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

1.5 0 0 0
0 2.0 0 0
0 0 2.5 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

cos(13◦) sin(13◦) 0 0
−sin(13◦) cos(13◦) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

cos(11◦) 0 −sin(11◦) 0
0 1 0 0

sin(11◦) 0 cos(11◦) 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 0 0 0
0 cos(7◦) sin(7◦) 0
0 −sin(7◦) cos(7◦) 0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1.4347 0.3689 −0.2357 2
−0.4416 1.9238 0.3227 3
0.4770 −0.2991 2.4358 5

0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

Singular-value decomposition of the upper left three-by-
three submatrix is the most effective strategy for verifying
that a transformation matrix describes a nine-parameter affine
model.

For the first numerical example, singular value decomposi-
tion gives⎡

⎢⎢⎣
1.4347 0.4919 −0.3928 2
−0.3312 1.9238 0.4034 3
0.2862 −0.2393 2.4358 5

0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣
−0.1571 −0.2459 0.9565 0
0.1613 −0.9619 −0.2208 0
0.9743 0.1196 0.1908 0

0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

2.5 0 0 0
0 2.0 0 0
0 0 1.5 0
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣

0
U 0

0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

0
S 0

0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0
V ′ 0

0
0 0 0 1

⎤
⎥⎥⎦ .

For the second numerical example, singular value decompo-
sition gives

⎡
⎢⎢⎣

1.4347 0.3689 −0.2357 2
−0.4416 1.9238 0.3227 3
0.4770 −0.2991 2.4358 5

0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

2.5 0 0 0
0 2.0 0 0
0 0 1.5 0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

0.1908 −0.2208 −0.9565 0
−0.1196 0.9619 −0.2459 0
0.9743 0.1613 0.1571 0

0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 2
0 1 0 3
0 0 1 5
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0
U 0

0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0
S 0

0
0 0 0 1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

0
V ′ 0

0
0 0 0 1

⎤
⎥⎥⎦ .

The matrix S always contains the three scaling factors along
the diagonal. However, their ordering along the diagonal alone
cannot be used to determine which axis was rescaled by a given
value. This must be deduced by considering their ordering in the
context of the U and V transformations. The U and V matri-
ces will also reveal whether the rescaling occurs before or after
rotation. If rescaling occurs first, matrix V will have only three
nonzero elements, one in each row and one in each column.
Furthermore, these nonzero elements will all have absolute val-
ues of unity. If rescaling occurs after rotation, matrix U will have
these properties instead. Since the rigid-body model and global
rescaling model are both special cases of the nine-parameter
affine model, the matrix S must also be inspected if these special
cases are to be excluded.

Computation of eigenvectors, eigenvalues, Schur decom-
position, or matrix logarithms of nine-parameter spatial
transformations does not reveal any special properties or geo-
metric interpretations that do not also apply to the general
12-parameter affine model, so discussion of these issues is
deferred to the next section.
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32.5 Other Special Constrained Affine
Transformations

Erroneous calibration of equipment may occasionally warrant
the use of other special spatial transformation models in which
additional degrees of freedom are added to the rigid-body
model to account for certain inaccuracies. For example, if the
voxel sizes are uncertain along all three axes and subject to
session-to-session variations, one dimension can be kept fixed
and the other five dimensions (two from the same session and
three from the other session) can be rescaled, producing an
11-parameter model. However, it should be noted that models
that involve rescaling both before and after rotation can present
problems with minimization because of ambiguities that arise
when rotations are absent, causing certain parameters to effec-
tively play identical roles. In scanners that have gantries that
tilt with respect to the bed, erroneous calibration of the tilt
angle can cause individual planes of an image to be skewed
with respect to one another. This error can be modeled with
by adding degrees of freedom to alter the potentially inaccurate
value. Because of the variety of different errors of this nature
that can occur, it may be expedient to simply use the general
affine model described in the next section, rather than try to
implement a tailored spatial transformation model. It should
be noted that overparameterization may lead to an increase in
errors by allowing the model to have an unnecessary mode of
variation, but in practice, this may be unimportant. Analysis
of transformations obtained with a general affine model may
also lead to a better understanding of the source of calibration
errors. For example, given one image from a well-calibrated
scanner and another image of the same subject from a scanner
with uncertain calibration, singular value decomposition of the
transformation that registers these two images will give an esti-
mate of the accuracy of the unknown scanner. If pure distance
calibration errors are present, the U matrix or the V matrix
will be close to an identity matrix, and the magnitude of the
inaccuracies will be revealed by the S matrix.

32.6 General Affine Model

The general affine model has 6 independent parameters in two
dimensions and 12 independent parameters in three dimen-
sions. One of the geometric constraints of this model is that
lines that are parallel before transformation remain parallel
after transformation. Unlike all of the previous models, the
general affine model does not require computation of sines and
cosines to implement. Instead, the elements of the transforma-
tion matrix itself serve as the independent parameters. In two
dimensions, this means that⎡

⎣ x ′
y ′
1

⎤
⎦ =

⎡
⎣ e11 e12 e13

e21 e22 e23

0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦ ,

and in three dimensions that⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

e11 e12 e13 e14

e21 e22 e23 e24

e31 e32 e33 e34

0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .

Consider first the geometry of the two-dimensional case.
Barring pure transformations that describe pure translations,
all two-dimensional transformation matrices have at least one
eigenvector with a nonzero third element. Consequently, it fol-
lows that some point in space must always remain unchanged
after transformation.

As a numerical example, consider the transformation

⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ 0.6753 0.6041 2
−0.1466 0.5873 3

0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦ .

Computation of eigenvectors of the transformation pro-
duces one real eigenvector corresponding to the point (11.8514,
3.0593). The fact that this point is an eigenvector is confirmed
by the fact that

⎡
⎣ 11.8514

3.0593
1

⎤
⎦ =

⎡
⎣ 0.6753 0.6041 2
−0.1466 0.5873 3

0 0 1

⎤
⎦×

⎡
⎣ 11.8514

3.0593
1

⎤
⎦.

Singular-value decomposition can be used to decompose any
affine transformation into a sequence involving rescaling along
some properly oriented set of axes, followed by a rigid-body
transformation of the rescaled result. Conceptually, this means
that the object being transformed can be viewed as residing
within a special reference frame. Inside this special reference
frame, the object is simply rescaled. Meanwhile, the reference
frame itself is subjected to a rigid-body transformation. Viewed
in this way, it does not matter whether the reference frame is
rotated before the object within it is rescaled or after the object
within it is rescaled. Indeed, the two operations can even be
viewed as occurring simultaneously.

For the numerical example, singular-value decomposition
gives

[
0.6753 0.6041 2
−0.1466 0.5873 3

0 0 1

]
=
[

1 0 2
0 1 3
0 0 1

]
×
[

0.9122 −0.4097 0
0.4097 0.9122 0

0 0 1

]

×
⎡
⎣ 0.9674 0 0

0 0.5015 0
0 0 1

⎤
⎦×

⎡
⎣ 0.5747 0.8184 0
−0.8184 0.5747 0

0 0 1

⎤
⎦

=
⎡
⎣ 1 0 2

0 1 3
0 0 1

⎤
⎦×

⎡
⎣ 0

U
0

0 0 1

⎤
⎦×

⎡
⎣ 0

S
0

0 0 1

⎤
⎦ =

⎡
⎣ 0

V ′
0

0 0 1

⎤
⎦.
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Since V ′ × V is an identity matrix, this can be rewritten as⎡
⎣ 0.6753 0.6041 2
−0.1466 0.5873 3

0 0 1

⎤
⎦

=
⎡
⎣ 1 0 2

0 1 3
0 0 1

⎤
⎦×

⎡
⎣ 0

U
0

0 0 1

⎤
⎦×

⎡
⎣ 0

V ′
0

0 0 1

⎤
⎦
⎡
⎣ 0

V
0

0 0 1

⎤
⎦

×
⎡
⎣ 0

S
0

0 0 1

⎤
⎦×

⎡
⎣ 0

V ′
0

0 0 1

⎤
⎦

=
⎡
⎣ 1 0 2

0 1 3
0 0 1

⎤
⎦×

⎡
⎣ 0.9122 −0.4097 0

0.4097 0.9122 0
0 0 1

⎤
⎦

×
⎡
⎣ 0.5747 0.8184 0
−0.8184 0.5747 0

0 0 1

⎤
⎦ ×

⎡
⎣ 0.5747 −0.8184 0

0.8184 0.5747 0
0 0 1

⎤
⎦

×
⎡
⎣ 0.9674 0 0

0 0.5015 0
0 0 1

⎤
⎦×

⎡
⎣ 0.5747 0.8184 0
−0.8184 0.5747 0

0 0 1

⎤
⎦

=
⎡
⎣ 0.8595 0.5111 2
−0.5111 0.8595 3

0 0 1

⎤
⎦×

⎡
⎣ 0.5747 −0.8184 0

0.8184 0.5747 0
0 0 1

⎤
⎦

×
⎡
⎣ 0.9674 0 0

0 0.5015 0
0 0 1

⎤
⎦×

⎡
⎣ 0.5747 0.8184 0
−0.8184 0.5747 0

0 0 1

⎤
⎦.

The three matrices to the right in this decomposition describe
anisotropic rescaling within a frame defined by a set of axes
oriented 54.9232◦ counterclockwise to the coordinate axes. The
matrix on the left describes a rigid-body transformation of this
reference frame.

The matrix logarithm can be used to decompose an affine
transformation, but the geometric insights provided are less
useful than those provided by singular value decomposition.
Instantaneous elementary shears replace instantaneous elemen-
tary rotations in a general affine transformation. Figure 32.8
shows elementary two-dimensional shears along each of the
two axes and illustrates that rotations can be viewed as a bal-
anced form of shears in the same way that global rescaling can
be viewed as a balanced form of anisotropic rescaling.

For the numerical example, the matrix logarithm is⎡
⎣ −0.2964 0.8954 0.7735
−0.2173 −0.4269 3.8812

0 0 0

⎤
⎦

= log m

⎛
⎝
⎡
⎣ 0.6753 0.6041 2
−0.1466 0.5873 3

0 0 1

⎤
⎦
⎞
⎠.

This can be decomposed into the matrix logarithms of an
anisotropic rescaling matrix, a shearing matrix along x , a
shearing matrix along y , and a translational matrix:

⎡
⎣ −0.2964 0.8964 0.7735
−0.2713 −0.4269 3.8812

0 0 0

⎤
⎦

=
⎡
⎣ −0.2964 0 0

0 −0.4269 0
0 0 0

⎤
⎦+

⎡
⎣ 0 0.8964 0

0 0 0
0 0 0

⎤
⎦

+
⎡
⎣ 0 0 0
−0.2173 0 0

0 0 0

⎤
⎦+

⎡
⎣ 0 0 0.7735

0 0 3.8812
0 0 0

⎤
⎦.

Matrix exponentiation gives the instantaneous elementary
transformation matrices. For the shearing matrices, matrix
exponentiation simply places ones along the diagonal. For
example, the instantaneous elementary matrix for shearing
along x is

⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ 1 0.8954 0

0 1 0
0 0 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦.

As with other affine spatial transformation models, the
matrix logarithm and matrix exponential functions can be used
to compute intermediate positions in a transformation. For
example, dividing the matrix logarithm by two and then com-
puting the matrix exponential will compute an intermediate
transformation halfway along the most direct path from the
initial position to the final position. Transformations interpo-
lated in this way will respect the geometry associated with the
special reference frame computed by eigenvector analysis and
singular-value decomposition.

The situation in three dimensions is similar to that in two
dimensions. Barring special cases (e.g., rigid-body transforma-
tions), a three-dimensional affine transformation will have at
least one real eigenvector with a fourth term that is nonzero.
Consequently, some point will be unchanged by the transfor-
mation. Singular-value decomposition can be used to identify
a special reference frame that has its origin at this unchanged
point. If the object being transformed is viewed as being embed-
ded in this special reference frame, the transformation can be
interpreted as a simple anisotropic rescaling along these special
coordinate axes. Meanwhile, the special reference frame itself
can be viewed as undergoing a three-dimensional rotation in
space around its origin.

Consider the three-dimensional example

⎡
⎢⎢⎣

x ′
y ′
z ′
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.0438 0.9152 0.2342 2
0.0061 0.7416 0.8985 3
0.8171 0.2038 0.7878 5

0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ .
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Computation of eigenvectors shows that the point (–5.7757,
–6.8698, –5.2754) is unchanged by the transformation.

Singular-value decomposition of the three-by-three left
upper submatrix gives

U =
⎡
⎣ 0.4646 0.5765 0.6722

0.6783 0.2563 −0.6886
0.5692 −0.7759 0.2720

⎤
⎦

S =
⎡
⎣ 1.6406 0 0

0 0.8615 0
0 0 0.3845

⎤
⎦

V =
⎡
⎣ 0.2984 −0.7048 0.6436

0.6365 0.6494 0.4160
0.7112 −0.2855 −0.6424

⎤
⎦.

The matrix V describes the orientation of the special refer-
ence frame with respect to the coordinate axes. Rescaling within
this reference frame is performed by the matrix product⎡

⎢⎢⎣
0

V 0
0

0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0
S 0

0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0
V ′ 0

0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0.2984 −0.7048 0.6436 0
0.6365 0.6494 0.4160 0
0.7112 −0.2855 −0.6424 0

0 0 0 1

⎤
⎥⎥⎦.

Rigid-body transformation of the special reference frame is
described by the matrix product⎡

⎢⎢⎣
0 0 0 2
0 0 0 3
0 0 0 5
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0
U 0

0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

0
V ′ 0

0
0 0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0.1650 0.9497 −0.2660 0
−0.4214 0.3118 0.8516 3
0.8918 −0.0284 0.4516 5

0 0 0 1

⎤
⎥⎥⎦.

The discussion of the matrix logarithm in two dimensions
generalizes to three dimensions.

32.7 Perspective Transformations

The most general linear transformation is the perspective trans-
formation. Lines that were parallel before perspective transfor-
mation can intersect after transformation. This transformation
is not generally useful for tomographic imaging data, but is
relevant for radiologic images where radiation from a point
source interacts with an object to produce a projected image on

FIGURE 32.9 Perspective distortions in a two-dimensional image.
Note that after transformation, the horizontal lines will converge to
a point somewhere to the right of the figure and the vertical lines
will converge to a point somewhere below the figure. Small rota-
tions and skews are also present in the transformed image. Perspective
distortions are the most general linear transformations and are not
considered affine transformations because parallel lines do not remain
parallel after transformation.

a plane. Likewise, it is relevant for photographs where the light
collected has all passed through the focal point of the lens. The
perspective transformation also rationalizes the extra constant
row in the matrix formulation of affine transformations. Figure
32.9 illustrates a two-dimensional perspective image. To explain
how perspective is incorporated into a matrix framework, it is
easiest to consider the case of a one-dimensional image. One-
dimensional transformations have only two parameters, scaling
and displacement, parameterized as follows:

x ′ = s × x + p.

By analogy with two-dimensional and three-dimensional trans-
formations, this is expressed in matrix formulation using a
two-by-two matrix:

[
x ′
1

]
=
[

s p
0 1

]
×
[

x
1

]
.

As in the one-and two-dimensional cases, all homogeneous
coordinate vectors must be rescaled to make the last element
equal to unity. If the vectors are viewed as two-dimensional
rather than one-dimensional, this means that all real one-
dimensional coordinates lie along the two-dimensional line
parameterized by the equation y = 1. Rescaling of vectors to
make the final element equal to unity is effectively the same
as moving any point that is not on the line y = 1 along a line
through the origin until it reaches the line y = 1. In this con-
text, a one-dimensional translation corresponds to a skew along
the x-dimension. Since a skew along x does not change the y
coordinate, translations map points from the line y = 1 back
to a modified position on that line. This is illustrated in Figure
32.10. In contrast, a skew along y will shift points off the line
y = 1. When these points are rescaled to make the final coordi-
nate unity once again, a perspective distortion is induced. This
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is illustrated in Figure 32.10. The matrix description of a pure
skew f along y is[

n × x ′
n

]
=
[

1 0
f 1

]
×
[

x
1

]
.

This means that

x ′ = x/(f × x + 1).

y 5 1

y 5 0

y 5 1

y 5 0

y 5 1

y 5 0

FIGURE 32.10 The geometry underlying the embedding of a one-
dimensional perspective transformation into a two-by-two homoge-
neous coordinate matrix. Real points are defined to lie along the line
y = 1. The upper left shows a one-dimensional object with nine equally
spaced subdivisions. Shearing along the x-dimension does not move
the object off the line y = 1. The coordinates of all of the intervals of
the object are simply translated as shown in the upper right. Shearing
along the y-dimension moves points off the line y = 1. A point off
this line is remapped back onto y = 1 by projecting a line from the
origin through the point. The intersection of the projection line with
the line y = 1 is the remapped coordinate. This is equivalent to rescal-
ing the transformed vector to make its final coordinate equal to unity.
Projection lines are shown as dashed lines, and the resulting coordi-
nates along y = 1 are shown as small circles. Note that the distances
between projected points become progressively smaller from right to
left. The gray line parallel to the skewed object intersects the line y = 1
at the far left. This point is the vanishing point of the transforma-
tion. A point infinitely far to the left before transformation will map
to this location. In this case, the skew is not sufficiently severe to move
any part of the object below the origin. Points below the origin will
project to the left of the vanishing point with a reversed order, and
a point infinitely far to the right before transformation will map to
the vanishing point. Consequently, at the vanishing point, there is
a singularity where positive and negative infinities meet and spatial
directions become inverted. Two-dimensional perspective transforma-
tions can be envisioned by extending the second real dimension out
of the page. Three-dimensional perspective transformations require a
four-dimensional space.

More generally, the skew can be included in the same matrix
with scaling and translation,

[
n × x ′

n

]
=
[

s p
f 1

]
×
[

x
1

]
,

so that

x ′ = (x × s + p)/(x × f + 1).

As x goes to positive infinity, x ′ will go to s/f . This corre-
sponds to the vanishing point in the transformed image. The
same vanishing point applies as x goes to negative infinity.
Note that a point with the original coordinate −1/f causes
the denominator to become 0. This corresponds to the inter-
section of the skewed one-dimensional image with the y-axis.
Points to one side of the value −1/f are mapped to positive
infinity, while those on the other side are mapped to negative
infinity. The geometry underlying these relationships can be
seen in Figure 32.10. From a practical standpoint, the singular-
ities involving division by 0 or the projection of the extremes
in either direction to the same point are generally irrelevant,
since they pertain to the physical impossible situation where
the direction of light or radiation is reversed.

In two dimensions, two parameters control perspective. In
the matrix formulation here, they are f and g .

⎡
⎣ x ′

y ′
1

⎤
⎦ =

⎡
⎣ e11 e12 p

e21 e22 q
f g 1

⎤
⎦×

⎡
⎣ x

y
1

⎤
⎦.

In this case, division by 0 arises whenever f × x + g × y =
−1. As x goes to infinity, x ′ will go to the point (e11/f , e21/f ) and
as y goes to infinity, y ′ will go to the point (e12/g , e22/g ). The
same general principles can be extended to three dimensions by
adding a third perspective parameter, h.

32.8 Spatial Transformations Using
Quaternions

In the preceding sections, spatial transformations were speci-
fied and computed using matrices and matrix products. For
the special case of rigid-body rotations, an alternative method
based on quaternions and quaternion products can also be
used [4]. Quaternions are analogous to complex numbers, but
have one real component and three distinct imaginary com-
ponents. For complex numbers, the imaginary square root of
−1 is represented by i; for quaternions, −1 has three dis-
tinct square roots, represented by i, j, and k. As with matrix
multiplication, products involving these imaginary roots do
not commute (i.e., i × j �= j × i), but are associative (i.e.,
i × (j × k) = (i × j)× k). The following equalities summarize
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multiplicative products involving i, j and k:

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j .

These properties of quaternions stem from the fact that i, j, and
k represent matrices in a four-dimensional space. If the number
1 is taken to represent the four-by-four identity matrix, then the
following definitions of i, j , and k nonuniquely satisfy all the
quaternion multiplicative rules [5]:

i =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , j =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 1 −1 0

⎤
⎥⎥⎦ ,

k =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎤
⎥⎥⎦.

The utility of quaternions for performing rigid-body trans-
formations stems from the fact that all three-dimensional
points and all three-dimensional rigid-body rotational trans-
formations can be represented in a four-dimensional space by
matrices that are constructed exclusively from scalar products
and sums of these three matrices and the identity matrix. Since
all products of the four matrices represented by 1, i, j, and k
can be expressed in terms of these same four matrices, the com-
plexity of performing four-dimensional matrix multiplications
is effectively hidden. It should be noted that unlike homoge-
nous coordinate transformations, the fourth dimension is not
used to represent translations; quaternions do not represent
translations, which must be tracked separately.

As discussed previously in the section describing rigid-body
models, any rigid-body rotation can be described as a rotation
around some fixed axis. Both the axis and the rotation angle can
be computed from a three-by-three rotation matrix by comput-
ing its matrix logarithm. For rigid-body rotations, the matrix
logarithm will always be of the form

⎡
⎣ 0 φs −ωs

−φ 0 θs

ωs −θs 0

⎤
⎦,

where the subscripts s signify that these are simultaneous rota-
tions, not the common, nonsubscripted sequential rotations.
These simultaneous rotations cause the vector (θs , ωs , φs) to
lie along the fixed axis of rotation and the norm of this vector,
ϕ = √θ2

s + ω2
s + φ2

s , is the rotation angle around this fixed axis

in radians. This same transformation can be represented by the
quaternion

q = cos
ϕ

2
× 1+ sin

ϕ

2

θs

ϕ
× i + sin

ϕ

2

ωs

ϕ
× j + sin

ϕ

2

φs

ϕ
× k.

All quaternions can be written in the general format

q = q1 × 1+ qi × i + qj × j + qk × k,

where q1, qi , qj , and qk are scalar quantities, and all rigid-body
transformations can be represented by unitary quaternions,
defined as quaternions having a quaternion norm of 1, i.e.,

norm(q) =
√

q2
1 + q2

i + q2
j + q2

k = 1.

To represent a point or the corresponding vector as a quater-
nion, the x , y , and z coordinates of the point are assigned to
qi , qj , and qk , respectively, and q1 is set to 0. Thus, the point
(x , y , z) can be represented by the quaternion v

v = 0× 1+ x × i + y × j + z × k.

The quaternion v ′, representing the point (x ′, y ′, z ′) that corre-
sponds to the point (x , y , z) after rotation by q can be computed
as the quaternion product

v ′ = q × v × q,

where q̄ is the quaternion conjugate of q, computed by multi-
plying the imaginary i, j, and k terms of q by –1. Like complex
multiplication, quaternion multiplication requires extra book-
keeping to keep track of the complex terms. The product of two
quaternions q and r is given by

q × r = (q1r1 − qiri − qj rj − qkrk)× 1

+ (q1ri + qir1 + qj rk − qkrj)× i

+ (q1rj − qirk + qj r1 + qkri)× j

+ (q1rk + qirj − qj ri + qkr1)× k.

Although a set of rigid-body transformations can be com-
bined into a single transformation more efficiently by using
quaternion multiplication than by using matrix multiplication,
rotation of a point using quaternions requires more unique
multiplications and additions than rotation of a point using
matrix multiplication, even after accounting for the fact that
the real components of quaternions that represent points are 0.
Consequently, if a large number of points need to be trans-
formed, it is more efficient to convert a quaternion representing
a rigid-body rotation into the corresponding matrix than to
repeatedly compute quaternion products. This conversion can
be done by reversing the matrix logarithm procedure already
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described for converting a matrix into a quaternion, or directly
as the three-by-three rotation matrix:

⎡
⎣ e11 e12 e13

e21 e22 e23

e31 e32 e33

⎤
⎦ =

⎡
⎢⎣

q2
1 + q2

i − q2
j − q2

k

2(qi × qj + q1 × qk)

2(qi × qk − q1 × qj)

⎤
⎥⎦

⎡
⎢⎣

2(qi × qj − q1 × qk)

q2
1 − q2

i + q2
j − q2

k

2(qj × qk + q1 × qi)

⎤
⎥⎦

⎡
⎢⎣

2(qi × qk + qi × qi)

2(qj × qk − q1 × qi)

q2
1 − q2

1 − q2
j + q2

k

⎤
⎥⎦.

From this equation, it should be apparent that with the excep-
tion of transformations that involve 180◦ rotations (in which
case q1 is 0), it is similarly possible to directly convert the
matrix representation of a rigid-body rotation into a quater-
nion without explicitly computing the matrix logarithm using
the equations:

q1 =
√

1+ e11 + e22 + e33

2
, qi = e32 − e23

4q1
,

qj = e13 − e31

4q1
, qk = e21 − e12

4q1
.

Note that these equations are applicable only if the matrix
represents a rigid-body rotation. If this is uncertain, it can be
confirmed by performing singular value decomposition or by
computing the matrix logarithm.

One of the rationales for using quaternions in computer
graphics is that they allow roots and powers of transformations
to be computed very efficiently for purposes such as creating
smooth animations like those illustrated in Figures 32.2 and
32.6. Since a rigid-body rotation always corresponds to a rota-
tion about some fixed axis, dividing the rotation angle by n will
compute the nth root, and multiplying the rotation angle by n
will compute the nth power. Thus, for the nth root of a matrix,
the corresponding matrix logarithm will be

⎡
⎢⎢⎢⎢⎣

0
φs

n
−ωs

n

−φs

n
0

θs

n
ωs

n
−θs

n
0

⎤
⎥⎥⎥⎥⎦,

and this rigid-body rotation can be represented by the unitary
quaternion

n
√

q = cos
ϕ

2n
× 1+ sin

ϕ

2n

θs

ϕ
× i + sin

ϕ

2n

ωs

ϕ
× j

+ sin
ϕ

2n

φs

ϕ
× k,

where ϕ = √θ2
s + ω2

s + φ2
s . Thus, only the sine and cosine

terms used to compute the quaternion need to be modified

to compute the root or power of a quaternion that describes
rotation around a known axis.

The use of matrix logarithms and exponentials to compute
roots and powers of transformations is conceptually simpler
than the corresponding use of quaternions, but the underlying
mathematics and geometric interpretation are the same. Indeed,
from the standpoint of generic linear spatial transformations,
quaternions can be viewed as a special shorthand representation
of matrix logarithms, together with some special relationships
that are applicable only in the case of rigid-body rotations.
While judicious use of quaternion operations may improve
computational efficiency in certain circumstances, traditional
matrix operations allow for more generally applicable solutions
to the same spatial transformation problems. Unless verifiable
gains in computational efficiency associated with the use of
quaternions are essential, it is sufficient in most circumstances
to be able to interconvert between quaternion and matrix rep-
resentations so that the more general and more familiar matrix
methods can be used.

32.9 Nonlinear Spatial Transformation
Models

Once linear constraints are abandoned, many different spa-
tial transformation models are possible. In certain instances,
nonlinear models are used to correct for nonlinear distor-
tions imparted by the equipment used for image acquisition
(see Chapter 29, “The Physical Basis of Spatial Distortions in
Magnetic Resonance Images” and Chapter 30, “Physical and
Biological Bases of Spatial Distortions in Positron Emission
Tomography Images”). In these instances, the mathematical
form of the nonlinear spatial transformation model may be
simple and dictated by the physical processes that underlie the
distortions. To the extent possible, these kinds of corrections
should be made at the time of image reconstruction, but in
some cases, parameters necessary to describe the distortions
can be estimated only when at least two misregistered images
are available.

More often, nonlinear spatial transformation models are
used for intersubject registration. As discussed in Chapter 31,
“Biological Underpinnings of Anatomic Consistency and
Variability in the Human Brain,” biological intersubject vari-
ability is highly unconstrained and varied. Nonlinear models
are used to improve upon the results traditionally achieved
with linear approaches such as the Talairach transformation dis-
cussed in Chapter 31,“Talairach Space as a Tool for Intersubject
Standardization in the Brain,” but it is implicitly understood
that the spatial transformation model that is being used is only
an approximation that may simultaneously overly constrain
certain types of distortions while inadequately constraining
others. In most cases, the choice of nonlinear spatial trans-
formation model turns out to be dictated by the availability of
a cost function and minimization strategy that can estimate the
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model’s parameters in a rapid and reproducible manner. These
models can be loosely classified by the number of degrees of
freedom that they require. At the lower end of this spectrum,
low-order polynomial warps provide a straightforward exten-
sion of the linear models discussed already in this chapter. A
second-order polynomial warp is characterized by the equations

x ′ = e00 + e01x + e02y + e03z + e04x2 + e05xy + e06xz + e07y2

+ e08yz + e09z2

y ′ = e10 + e11x + e12y + e13z + e14x2 + e15xy + e16xz + e17y2

+ e18yz + e19z2

z ′ = e20 + e21x + e22y + e23z + e24x2 + e25xy + e26xz

+ e27y2 + e28yz + e29z2

and extension to higher order models is straightforward. One
nice feature of the polynomial warps is that they constitute a
closed set under affine transformation. Consequently, chang-
ing the affine shape or orientation of either of the two images
being registered will not alter the types of distortions available
using the polynomial spatial transformation model. Another
advantage is that the polynomials can be analytically differen-
tiated locally to give a local affine warp. This can be useful for
shape analysis or for efficiently inverting the transformation
numerically. A theoretical disadvantage of polynomial warps is
that they can give rise to local spatial inversions since no formal
construct is included for preventing the local affine warp from
having a negative determinant.

At the opposite end of the spectrum from polynomial warps
are methods that provide one or more parameters for every
voxel in the images. Although often described as a vector
field mapping each point to its presumed homologue, these
models usually have other constraints. A common constraint
is that local spatial inversions are explicitly forbidden. The
spatial transformation models used for intersubject warping
are discussed further in Chapter 39, “Warping Strategies for
Intersubject Registration.”

32.10 Averaging Spatial Transformations

In some circumstances, it is relevant to average groups of linear
spatial transformations. For example, estimates of the spa-
tial transformation needed to register a pair of images using
different methods might be averaged to identify a consensus
transformation, or the spatial transformations needed to map
images from a group of subjects into a common atlas might
be averaged to estimate mean spatial properties of the group.
While it is tempting to simply average corresponding elements
of the spatial transformation matrices, a simple example serves
to illustrate that this is not an appropriate strategy. Consider
the average of a pair of two-dimensional rigid-body rotations,
one involving a positive rotation of 5◦ and the other involving a

negative rotation of 5◦. Instead of the expected identity matrix
(a rotation of 0◦), averaging the matrix elements gives[

cos(5◦) sin(5◦)
−sin(5◦) cos(5◦)

]
+
[

cos(−5◦) sin(−5◦)
−sin(−5◦) cos(−5◦)

]
2

=
[

0.9962 0
0 0.9962

]
.

This result violates the expectation that the mean of a group
of rigid-body transformations will be a rigid-body transforma-
tion. Analogous expectations regarding preservation of other
spatial transformation properties are similarly violated when
averaging matrix elements. Such violations can be avoided by
defining the mean of a group of spatial transformations in a way
that preserves any geometric properties shared by the individual
transformations. Given a set of n linear spatial transformation
matrices A1, A2, . . .An , a procedure that will iteratively esti-
mate the matrix mean transformation M can be defined by the
equation

Mk = exp m

(
1

n

n∑
i=1

log m
(
Ai ∗M−1

k−1

))
Mk−1,

where k indexes the iteration number and any one of the original
transformation matrices can be used as an estimate of M0. This
procedure converges rapidly and,with the exception of the nine-
parameter affine model (which, unlike the other models, does
not correspond to a Lie group), will produce a matrix mean that
preserves any of the special spatial properties discussed in this
chapter that are shared by all of the starting matrices. Note that
when applied to scalar quantities (one-by-one matrices), this
procedure reduces to computation of the geometric mean. The
geometric justification for this procedure derives from the rela-
tionships between matrices, spatial transformation constraints,
Lie groups, and pseudo-Riemannian manifolds as detailed in
[6]. This approach can be extended to nonlinear spatial trans-
formation models by computing local Jacobian matrices. When
one computes the matrix mean of the Jacobian matrices that
correspond to a particular anatomic location, one can estimate
the mean deformation at that location [6].
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From the user’s perspective, accuracy is one of the most impor-
tant properties of a registration method. In a research setting,
relative accuracy may be a basis for selecting one method
over another, and in a clinical context, knowledge of absolute
accuracy may be needed to make appropriate decisions. If a
particular structure is of special interest, the accuracy at this
particular location, as distinct from all other locations, may
need to be established. To the extent that accuracy has sub-
stantial regional variations, methods used to report accuracy
need to reflect these variations. Validation of registration accu-
racy is generally not an easy task due to the fact that the true
answers (i.e., a set of gold standard answers that can serve as a
basis for measuring accuracy) are generally not available. Even
when estimated gold standards are available, it often turns out
that uncertainty in the gold standards themselves limits the
ability to assess true accuracy. In this case, strategies that at
least put limits on the true accuracy are informative. Many
different validation methods have been reported in the litera-
ture, and in most cases it is difficult to compare the accuracy
claimed for one method with the accuracy claimed for another
due to methodological incompatibilities. This chapter will dis-
cuss some of the options and strategies available for validation
studies.

33.1 Units for Reporting Registration
Errors

Assuming for the moment that reliable gold standards are
available, how should registration errors be reported? The
answer to this question depends on the context in which the
method is to be used. For a user interested only in a small
anatomical structure, a useful validation study might be the
average error at that structure’s location, expressed as a real-
world distance (e.g., the mean error in registering the anterior
commissure was 3.4 millimeters). The root mean square (RMS)
error at this point is a commonly used alternative to mean
error. Neither of these measures gives a sense of the spread of
errors. In some contexts, it might be critical for the user that
the errors never exceed 2.0 millimeters. Reporting the most
extreme error at the structure of interest is helpful in this regard
but may be misleading, since the extremes of a distribution
are not very reproducible, especially when the number of
observations is small. A plot of the distribution of errors at
the point of interest would be more helpful, and a formal
statistical test, the Kolmogorov-Smirnov test, can be used to
compare distributions of errors to determine whether they are
significantly different [8]. Errors may not be homogeneously
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distributed in space (e.g., see Figure 31.5 of Chapter 31,
“Biological Underpinnings of Anatomic Consistency and
Variability in the Human Brain” taken from [10]), so the most
informative report would be a complete three-dimensional plot
of all errors showing the direction and magnitude.

If an anatomical point of interest cannot be delineated in
advance, it is impractical to report three-dimensional error
distributions for every point in the image. Indeed, it is not
even practical to show the distribution of three-dimensional
errors for every single point. However, it is possible to show
the mean or RMS errors for every point by using color cod-
ing. An example of this is shown in Figure 33.15 of Chapter 39,
“Warping Strategies for Intersubject Registration.” To convey
the distribution of errors, one could use separate color-coded
maps for various percentiles of the distribution. A more com-
mon strategy is to collapse all of the regional three-dimensional
errors as if they had been measured at the same point. This
allows the distribution of errors to be shown in a single plot.
However, due to the nature of the registration problem, it
is rare for errors to be similar throughout the image. Errors
near the center are generally likely to be smaller than those
near the edge. Consequently, unless maximum errors are tol-
erably small at all locations, some consideration of regional
variability is warranted. The Kolmogorov-Smirnov test men-
tioned previously can be used as a guide to whether error
distributions in different parts of the image can be appro-
priately pooled as representatives of the same underlying
distribution.

For rigid-body registration, errors in the formal parame-
ters of the spatial transformation model (e.g., errors in pitch
or errors in x-axis translation) are commonly reported. Since
the error associated with any rigid-body transformation can be
expressed as another rigid-body transformation, this is poten-
tially a powerful way to summarize errors. However, several
cautions are required. First of all, the decomposition of a rigid-
body movement into elementary rotations and translations
is not unique (see the chapter titled “Spatial Transformation
Models”). Consequently, errors in rotation around the x-axis
computed by one author may not be comparable to errors
in rotation around the x-axis computed by another author.
A second problem is that errors in rotation angles ignore the
underlying geometry of rigid-body transformations. The true
rotational error is a single rotation around an axis that may well
be oriented obliquely to the coordinate axes. A third problem is
that translations are intertwined with rotations. In the presence
of a rotational error, an apparent translational error may actu-
ally partially compensate and bring the images back into closer
registration.

One approach that will lessen some of these problems is to use
instantaneous elementary rotations computed using the matrix
logarithm function instead of traditional sequential rotations
when computing errors. Instantaneous elementary rotations
are introduced in the chapter “Spatial Transformation Models”

and can be defined unambiguously. The magnitude of the true
rotational error around an obliquely oriented axis can be com-
puted as the square root of the sum of the squares of the
three instantaneous elementary rotations. Alternatively, both
the magnitude and the direction of the rotational error can be
captured in a three-dimensional plot of all three instantaneous
elementary rotations. This may help to identify tendencies of
registration methods to identify rotations better in some direc-
tions than in others. The problem of correlations between
rotations and translations may be minimized by computing
translational errors at the center of the object (which may be
far from the origin of the coordinate system). In general, rota-
tional errors are likely to have the least effect near the center
of an object and to produce errors in opposite directions more
peripherally in the object. A plot of the magnitude of rota-
tion against the magnitude of translation may help to assess
the success with which correlations between these two sets of
parameters have been eliminated.

One final issue that needs to be addressed in a validation
study is the capture range of the method. Some methods will
do extremely well if the images are already approximately reg-
istered, but will often fail completely when the initial misre-
gistration exceeds a certain value. It is generally not appropriate
to include the errors associated with such failures when charac-
terizing registration accuracy. Instead, the magnitude of initial
misregistration that can be tolerated should be reported as the
capture range. For most methods, the capture range is suffi-
ciently large that minimal efforts are required to ensure that
the correct value will routinely lie within the capture range.
Methods that have a very small capture range may need to
be preceded by another less accurate method that is more
robust.

33.2 Validation by Visual Inspection

One of the quickest validation methods to implement is sim-
ple visual inspection of the results. While this may seem like
an informal and potentially unreliable approach, Fitzpatrick
et al. [1] have shown that visual inspection can detect 2 millime-
ter misregistrations of brain MRI images to brain CT images
quite reliably. Misregistration can be accurately identified even
when one of the images is a low-resolution PET image. Wong
et al. [12] found that translations of 2 millimeters along the x-
and y-axes and 3 millimeters along the z-axis could be detected
reliably. In-plane rotations of 2◦ were reliably detectable, as
were across-plane rotations less than 4◦. While learning to
recognize misregistration of dissimilar images requires some
experience and effort, recognition of errors in similar images
is fairly trivial. In general, if the images look misregistered,
they probably are misregistered, and visual inspection should
be used as a routine ongoing validation approach at every
opportunity.
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33.3 Validation of Point Fiducial-Based
Registration and Cross-Validation
Using External Fiducial Gold
Standards

One of the most basic methods of rigid-body registration is
to have someone with anatomic expertise pick pairs of homo-
logous points in the two images. Ideally, three points would
suffice to compute the correct registration parameters in three
dimensions. However, the selection of points is certain to
have some inaccuracy, so many points are typically chosen
and registration is performed in a way that minimizes the
summed squared distance between homologous points after
registration. The translational component of this minimiza-
tion problem is solved easily by aligning the centroid of the
points in one image with the centroid of the homologous set
of points in the other image. An easy way to do this is to rede-
fine the origin of the coordinate system in each image so that
it is located at the centroid position. The rotational compo-
nent is then derived using a method known as the Procrustes
algorithm, which provides an exact noniterative solution [4].
The residual RMS error after registration with this algorithm
is termed the fiducial registration error (FRE) by Fitzpatrick
et al. [3]. This error can be used to estimate the slightly larger
error in localization of each individual fiducial point using the
equation

FLE2 = FRE2 ∗ N

N − 2
,

where FLE is the error for each point and N is the number of
points in three dimensions (a different adjustment is used for
two-dimensional registration).

Using perturbation analysis, Fitzpatrick et al. [3] have shown
that the error at some arbitrary target location can be approx-
imated using FLE, N , the distance from the target location
to each of the three principal axes of the fiducials (dx ′ , dy ′ ,
and dz ′), and the RMS distance of the fiducials to each of
the three principal axes of the fiducials ( fx ′ , fy ′ , and fz ′). The
equation relating the target registration error (TRE) to these
quantities is

TRE2 ≈ FLE2

N

(
1+ 1

3

(
d2

x ′
f 2
x ′
+ d2

y ′

f 2
y ′
+ d2

z ′
f 2
z ′

))
.

Note that the error should be smallest near the centroid of the
fiducials. Errors grow larger with increasing distance in any
direction. For any given distance from the centroid, the errors
are worst when the displacement corresponds to the axis along
which the fiducials are least dispersed from one another and
best when it corresponds to the axis along which the fiducials
are most dispersed.

This equation provides guidance for selecting fiducial points
in a way that will optimize accuracy. First, it is always prefer-
able to use points that are widely dispersed as far from their
centroid as possible in all directions. This will make the f val-
ues large. Second, errors will be inversely proportional to the
square root of the number of points, so quadrupling the num-
ber of fiducials identified will reduce the errors by half, so long
as subsequent fiducials are identified with the same accuracy as
the previous fiducials. A point of diminishing returns may be
reached if FRE begins to increase more rapidly than

√
N − 2

as a result of adding inaccurately identified points. Finally, if all
the individual fiducials can be localized twice as accurately, this
will double the accuracy of the registration derived from the
fiducials at any location.

The dependence of accuracy on location serves to emphasize
the earlier point that registration accuracy should not gen-
erally be assumed to be uniform throughout the images. In
this particular case, the underlying geometry makes it fairly
easy to summarize the spatial dependency of the errors. It
is likely that other rigid-body registration methods may also
have error isocontours that are approximately ellipsoidal in
space, making their spatial dependency amenable to charac-
terization by a reasonably small number of parameters. One
final point of note is that the expression for TRE given pre-
viously is for the expected value; in any given case, the true
TRE may be larger or smaller. Expressions for the distribution
of TRE around this expected value also depend on the num-
ber of landmark points and are given in [2]. It should also
be noted that these results assume that all the errors have the
same variance and are uncorrelated. Recent advances allowing
maximum likelihood estimates of landmark-based registration
parameters [9] may allow more precise error estimates in the
future.

While fiducial-based registration has classically depended
on anatomic expertise, computerized identification of land-
marks based on differential geometry is a relatively new
approach based on similar principles. This approach is dis-
cussed in Chapter 34, entitled “Landmark-Based Registration
Using Features Identified Through Differential Geometry.” In
this case, error estimation becomes more complicated, since
information about landmark orientation often supplements the
traditional information about landmark location [6].

When registration accuracy is extremely important in a clin-
ical context (e.g., during neurosurgical procedures as discussed
in the chapters “Clinical Applications of Image Registration”
and “Registration for Image Guided Surgery”), external fidu-
cials may be attached directly to bone. So long as the structure
of interest cannot move with respect to the bone, this should
improve registration accuracy over anatomically identified fidu-
cials for three reasons: (1) The fiducials are always located
further from their centroid than the anatomic regions of inter-
est, thereby minimizing the d/f ratios in the TRE estimate; (2)
the external fiducials are deliberately designed to be easily and
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accurately identified, making it possible to have a large N and
a small FRE; (3) the fiducials are often constructed as part of
a stereotactic frame that is designed in a way that allows the
relationships among the fiducials (e.g., the fact that several are
known to lie on the same line or within parallel planes) to fur-
ther reduce FRE Figure 33.1. Particularly when frames are used
instead of simple fiducials, these theoretical advantages trans-
late into a substantial improvement in accuracy [7]. As a result,

FIGURE 33.1 Schematic illustration of the arrangement of fiducial
channels within a stereotactic head frame. Prior to the advent of
frameless stereotaxy (see the chapter “Registration for Image-Guided
Surgery”), such frames were used routinely prior to certain neurosur-
gical procedures to allow MRI, CT, and PET data to be mapped into
the frame of reference of the operating room. The frame is attached
directly to the bones of the skull through incisions, assuring that it can-
not move between imaging sessions. Special channels within the frame
represented by the “N ” shaped lines can be filled with a copper solu-
tion to make them easily recognized in MR images and with a solution
of positron emitting radioisotope to make them visible with PET. The
frame is precisely engineered so that the four horizontal channels are all
parallel to one another and so that planes passing through them meet
at right angles. The diagonal channels are also parallel to one another,
and the plane containing them is perpendicular to the planes defined
by the two channels on the right and by the two channels on the left.
These geometric and physical constraints make it possible to register
images acquired with the frame in place extremely accurately. By ignor-
ing or eliminating the frame information from the images, one can use
such data as an excellent gold standard for validating other registration
methods [11, 13]. Potential limitations include the fact that the brain
may move with respect to the skull [5] and the fact that the MR and
PET imaging modalities may introduce nonlinear distortions (see the
chapters “Physical Basis of Spatial Distortions in Magnetic Resonance
Images” and “Physical and Biological Bases of Spatial Distortions in
Positron Emission Tomography Images”).

images obtained with external fiducial frames in place can rea-
sonably be used to derive gold standard transformations for
validating other intermodality registration methods [11, 13]. In
one large validation study based on this methodology,West et al.
[11] estimated that the TRE using external fiducials was approx-
imately 0.39 millimeters for registration of MRI to CT images
and approximately 1.65 millimeters for MRI to PET registra-
tion. These results were then used as gold standards to validate a
large number of other independent techniques. This study illus-
trates the importance of having highly accurate gold standards,
since some registration methods produced results consistent
with the conclusion that they were as accurate as the gold
standards used to test them. Additional comments on this com-
parative study are included in Chapter 37, “Across-Modality
Registration Using Intensity-Based Cost Functions.”

33.4 Cross-Validation

Once a registration method has been validated to some degree
of accuracy, it is possible to use the results of this method for
cross-validating other methods. While this sounds reasonable
in principle, it is not an optimal validation strategy in prac-
tice. It is possible that the performance of the already validated
method will not be as accurate as expected due to failure to
reproduce the conditions of the original validation. In addi-
tion, except for blinded prospective studies, reporting biases and
tuning of algorithms to the validation environment may cause
reported accuracy of the already validated method to exceed
the true accuracy. Finally, validation of the original method
may not have been performed correctly, making the cross-
validation inaccurate in a way that will likely reflect poorly on
the newer method. These types of problems may accumulate
across a chain of cross-validation studies to give rise to highly
misleading results. Whenever possible, cross-validation should
be limited to datasets registered with highly accurate methods
that can reasonably be considered gold standards.

33.5 Sensitivity to Starting Parameters
and Statistical Modeling

For registration methods that must employ an iterative search
algorithm to optimize some cost function, it is possible to eval-
uate how consistent registration results are as a function of
the starting parameters used to initialize the search. This strat-
egy gives an estimate of the accuracy with which the search
optimizes the cost function. For registrations that involve least
squares minimization, the accuracy with which the minimum
has been identified can even be computed on the basis of a single
optimization, subject to some fairly restrictive statistical mod-
eling assumptions [8]. While inaccuracies in identifying the
true minimum of the cost function will contribute to registra-
tion inaccuracies, it is important to recognize that registration
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accuracy may be poor even when the minimum of the cost
function has been identified extremely accurately. This is true
because the cost function is often only a proxy for true registra-
tion, so that optimal registration does not necessarily coincide
with the cost function minimum. Cost functions that are based
on image intensities, rather than distances associated with
image features, are especially likely to have minima that do not
coincide exactly with correct registration. Nonetheless, these
methods may sometimes be helpful by showing that poor iden-
tification of the cost function minimum places an upper bound
on the accuracy that a method can achieve. However, in many
instances, the minimization strategy is extremely effective, and
this bound involves errors so small that nothing meaningful can
be inferred about true registration accuracy.

33.6 Simulations

In the absence of gold standards, simulations are sometimes
used to estimate registration accuracy. A common strategy is
to take real data and deform it using an appropriate spatial
transformation model while simulating the addition of noise
and other factors thought to be relevant in limiting registra-
tion accuracy. Simulations are most useful when addressing the
question of how sensitive a registration method is to some par-
ticular aspect of the data. For example, simulations might be
very helpful when trying to choose the optimum amount of
smoothing that should be applied to images for intensity-based
intramodality registration. The results of such simulations can
serve a very important role in optimizing the performance of
a registration method. However, in the context of validation,
simulations have definite limitations that can make them over-
estimate or underestimate registration accuracy. Simulations
are especially poor in the context of comparing different meth-
ods to one another. The limitations of simulations derive from
the fact that they are based on models of reality and not on real-
ity itself. These models may omit factors that limit registration
accuracy in the real world, or they may overestimate the degree
to which a limiting factor is actually present. The models used
to create simulated data for registration necessarily include spa-
tial transformation models, interpolation models, and models
of noise. Registration methods typically also implement spa-
tial transformation models, interpolation models, and noise
models either explicitly or implicitly. If the two sets of mod-
els are congruent, estimated registration accuracy will probably
be excellent, but this provides little assurance that actual per-
formance will be as good. To the extent that the models are not
congruent, any poor performance will be difficult to evaluate,
since it can be blamed on the discrepancy between models.

33.7 Phantoms and Cadavers

Unlike people, phantoms designed for medical imaging can
remain perfectly still and can be displaced and sometimes even

rotated with considerable accuracy. For imaging modalities
with low resolution like PET, phantoms can produce images
that are indistinguishable from real images by casual inspec-
tion [13, 14]. Aside from biological factors (e.g., violations of
rigid-body constraints or absence of realistic high-resolution
partial volume effects), images of phantoms will reproduce
many factors that may limit registration accuracy. These
include some (though in some modalities, not all) of the
spatial distortions produced by the imaging equipment, and
the noise introduced by the imaging equipment and by image
reconstruction. Phantoms are most effective for estimating
the accuracy of intramodality registration. For intermodality
registration involving different scanners, phantoms suffer
from the same difficulties as real images, since it is usually not
possible to know the precise absolute position of the phantom.
For intermodality registration obtained with the same scanner
(e.g., two different MRI pulse sequences), only the relative
position of the phantom is required. However, this case suffers
from the limitation that the phantom must mimic reality in two
different imaging contexts where different physical properties
account for the observed tissue contrasts. In this situation,
cadavers may provide an effective alternative so long as the
imaging modality does not depend on physiologic processes.

33.8 Internal Consistency

A very effective strategy for placing a boundary on true regis-
tration accuracy is the use of internal inconsistencies generated
by the registration method itself. In the simplest case, image
A can be registered to image B, and the inverse of the result-
ing transformation can be compared to the result of registering
image B to image A. Some registration methods are deliberately
designed to produce transformations that are exact inverses of
one another in this context, and a slightly more complex strat-
egy involving three images is required. In this case, image A is
registered to image B, and image B is registered to image C. The
results of these two registrations are combined to compute the
transformation needed to register image A to image C. The algo-
rithm is then used to register image A to image C directly, and
the two estimates of this transformation are compared. To the
extent that these two estimates differ, the algorithm must have
been inaccurate. When one assumes that the inaccuracies are
optimally distributed among the three registrations performed,
a best-case estimate of registration inaccuracy can be obtained.
Unlike many of the other validation methods discussed here,
these inaccuracies cannot overestimate the true errors, since
they are based on real data and involve no external standards.
Use of this validation strategy is illustrated in [14].

33.9 Validation of Intersubject Warping

Validation of strategies for warping one subject onto another
poses unique difficulties. Visual inspection can be extremely
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misleading when evaluating warping algorithms that have many
degrees of freedom (sometimes one or more degrees of free-
dom per voxel), potentially allowing them to morph any shape
into any other. Point landmarks identified by a single anatomist
cannot be used to estimate errors in landmark identification
because no constrained spatial transformation model exists to
allow errors to be distinguished from true variability. In many
regions of the brain, experts are likely to disagree about what
constitutes the correct homology or may simply be unable to
identify a reasonable homology. Cross-validation may show
that one of the two methods has a large error, but if neither
method has been well validated previously, this information is
not very helpful. Most algorithms used for nonlinear model-
ing have been deliberately chosen because they are quite robust
for identifying a unique (even if possibly incorrect) solution
to the warping problem, so little is likely to be learned from
restarting the algorithm from a new set of initial parameters.
Simulations may give a clue that the spatial transformation
model is overparameterized (the ability to warp some arbitrarily
shaped object of equivalent topology into the form of a brain is
not necessarily a good thing), but are otherwise likely to reflect
the similarities of modeling assumptions (especially the form
of the spatial transformation model) between the simulation
and the registration method. Phantoms offer no special advan-
tages in validating intersubject warping, since morphometry,
not movement, is the main source of difficulty.

Despite the potential problems associated with expert iden-
tification of landmarks, this is the most convincing strategy
for validation of warping algorithms. Demonstration that a
warping algorithm approximates the accuracy of experts is an
important first step in validation. Since experts may disagree
about what constitutes a homology in certain brain regions, the
degree of agreement between well-trained experts is a reason-
able metric against which a warping algorithm can be calibrated.
Some warping algorithms do not seek to exceed or even match
the performance of experts in any particular region, but instead
are intended to give a reasonable level of registration accuracy in
an automated fashion. Validation against anatomic landmarks
identified by a single expert is often sufficient for showing that
these methods meet their objective. An example of this type of
validation is given in Woods et al. [15]. For methods that use
many degrees of freedom, anatomic validation is essential for
demonstrating that the apparently good registration seen on
visual inspection is due to true superimposition of anatomic
homologues and not to the morphing of structures to create the
appearance of homology. This means that the landmarks must
be identified in the original images and then tracked through
all steps of the warping transformation for comparison to one
another in a common frame of reference.

For comparisons of different methods, care must be taken to
ensure that the space in which errors are measured is compa-
rable. Otherwise, a method that shrinks all images will appear
to perform better than it actually does. One strategy for dealing

with this problem is to map the anatomic landmarks of each
individual used for validation into the unwarped original brain
images of a randomly selected representative subset of these
individuals, averaging the errors across the subset. For methods
that use an atlas as the warping target, each landmark would be
mapped into the atlas using a forward transformation and then
back out into the selected subset using reverse transformations.
This strategy effectively prevents the size and shape of the atlas
from influencing the metric used for validation.

New and better ways of defining anatomic homologies are
likely to play an important role in future intersubject warp-
ing validation studies. Microscopic examination of postmortem
brain specimens can identify features that uniquely label certain
regions. Although very laborious, work is ongoing to identify
such features and to map them precisely back into MRI images
obtained before or shortly after death (see Chapter 43, “Image
Registration and the Construction of Multidimensional Brain
Atlases”). Functional imaging techniques are also likely to pro-
vide unique imaging signatures that uniquely identify specific
brain regions. Work is underway in our laboratory to identify
functional imaging tasks and paradigms that can be used for
this purpose. The fact that intersubject warping is essentially a
biological question assures that warping methods will continue
to evolve and improve as our ability to identify homologies
improves and as our understanding of biological processes that
lead to intersubject variability deepens.
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Registration of 3D medical images consists of computing the
“best”transformation between two acquisitions or, equivalently,
determines the point-to-point correspondence between the
images. Registration algorithms are usually based either on fea-
tures extracted from the image (feature-based approaches) or
on the optimization of a similarity measure of the image inten-
sities (intensity-based or iconic approaches). In this chapter,
we concentrate on feature-based approaches for rigid registra-
tion; similar approaches for nonrigid registration are reported
in another set of publications [41, 42]. We show how to reduce
the dimension of the registration problem by first extracting
a surface from the 3D image, then landmark curves on this
surface, and possibly landmark points on these curves. This
concept proved its efficiency through many applications in
medical image analysis, as we will show in the sequel. For a
long time this work has been a central investigation topic of the
Asclepios/Epidaure team [3], and we can reflect here on only
a small part of the research done in this area. We present in
the first section the notions of crest lines and extremal points
and how these differential geometry features can be extracted
from 3D images. In Section 34.2, we focus on the different rigid
registration algorithms that we used to register such features.
Section 34.3 analyzes the possible errors in this registration

scheme and demonstrates that a very accurate registration could
be achieved.

34.1 Feature Extraction: Extremal
Points and Lines

To extract reliable curves on a surface, most approaches try to
generalize the notion of “edges” to smooth surfaces to find the
most salient features on the surface: ridges. Prior to the late
1980s and early 1990s, the interest in ridges was mostly theo-
retical, in areas of mathematics related to catastrophe theory
[2, 24, 27, 38, 39]. Crest lines are then defined as the cuspidal
edges of a caustic surface, and the link between caustics and
curvatures on a surface was established.

Researchers then discovered practical applications in com-
puter vision, graphics, and medical imaging together with the
specification of algorithms to extract ridges. In the following,
we are going to focus on the crest and extremal line as intro-
duced in [28, 29] and developed in [44, 45]. Basically, these
curves are (subsets of) the loci of the surface where one of the
principal curvatures reaches a locally optimum in the associated
principal direction. In these works, the crest lines are extracted

Copyright © 2008 by Elsevier, Inc.
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using third order derivatives of the image intensities. An alter-
native approach was presented in [17] with the use of a B-spline
approximation of the surface.

A different notion of ridges is given in [13, 46]: they are
defined as the salient structures of the intensity surface defined
by I = f (x , y , z). Here, the ridges are surfaces and are more
like results of the medial axis transform than the intuitive
notion of salient lines on a surface. Cutting et al. [9] also
developed a method using a template of ridges to assist in
their extraction from image data. This method was extended
by Dean et al. [10]. A good review of the many definitions of
ridges can be found in [5].

Recently there has been renewed interest for ridges in com-
puter graphics because they synthesize some important visual
and geometric surface information and could even be used to
greatly enhance surface remeshing [1, 31]. In particular, new
algorithms have been designed to extract ridges on meshes
[32], sometimes with topological guaranties (especially around
umbilics) [7, 8, 40].

34.1.1 Definition and Properties

34.1.1.1 Differential Geometry of 3D Surfaces

Let us first recall briefly some results of differential geometry
about surface curvatures (a good introduction to these notions
can be found in [12] or in [24]). In this chapter, we call a smooth
surface a 3D surface that is continuously differentiable up to the
third order. At any point P of such a 3D surface, we can define
one curvature per direction t in the tangent plane of the surface.
This directional curvature kt is the curvature of the 3D curve
defined by the intersection of the plane (P,t,n) with the surface,
where n is normal to the surface.

Except for the points where this curvature kt is the same for all
the directions t , which are called umbilic points, the total set of
curvatures can be described with only two privileged directions,
t1 and t2, and two associated curvature values, k1 = kt1 and
k2 = kt2 , which are called respectively the principal directions

and the associated principal curvatures of the surface at point P,
as shown in Figure 34.1. These two principal curvatures are the
extrema of the directional curvatures at point P, and (except for
umbilic points) one of these two is maximal in absolute value,
let us say k1: we call this the largest curvature, in order not to
be mistaken with the maximal curvature. We simply call the
second (principal) curvature the other principal curvature k2.

34.1.1.2 Extremal Lines

The crest lines are intuitively the loci of the surface where the
“curvature” is locally maximal. More precisely, we define them
as the loci of the surface where the largest curvature, k1, is locally
maximal (in absolute value) in the associated principal direc-
tion t1. In [29], it is shown that these points can be defined
as the zero-crossing of an extremality function e, which is the
directional derivative of k1 in the direction t1.

We have proposed another method to compute them in [44,
45], for the case of iso-intensity surfaces. Our method is based
on the use of the implicit functions theorem. Basically, we have
shown that the crest lines can be extracted as the intersection of
two implicit surfaces f = I and e = 0, where f represents the
intensity value of the image, I an iso-intensity threshold, and
e = ∇k1 · t1 is the extremality function (see Figure 34.2, left).
We have proposed an algorithm, called the Marching Lines, to
automatically extract these crest lines. This algorithm can also
be used to overcome some orientation problems (mainly due to
the fact that the principal directions are only directions and not
oriented vectors), by locally orienting the principal directions
along the extracted lines.

In fact, for each point of the surface, two different extremality
coefficients can be defined, corresponding to the two principal
curvatures:

e1 = ∇k1 · t1 and e2 = ∇k2 · t2. (34.1)

We found experimentally that the maxima (in absolute val-
ues) are more stable landmarks than the minima: crests or
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FIGURE 34.1 Differential geometry of 3D curves and surfaces. (Left) Principal directions and curvatures of a surface. (Right) Frénet trihedron
of a 3D curve and first differential-invariants: curvature and torsion.
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Crest line positions of different
iso-intensity thresholds

Iso-surfaces

f(x,y,z) � 100

Crest surface: e1(x,y,z) � 0

f(x,y,z) � 120

f(x,y,z) � 140

Second extremal surface:
e2(x,y,z) � 0 Extremal point

First extremal surface
(crest surface): e1(x,y,z) � 0

Iso-surface  f(x,y,z) �I

FIGURE 34.2 (Left) Crest lines as the intersection of two implicit surfaces. (Right) Definition of the extremal points as the intersection
of three implicit surfaces.

rifts (maxima) are stable, whereas the loci in a valley where
the ground floor is the flattest (minima) are very sensitive to
small perturbations in the data.

We call extremal lines all the lines defined as the zero-
crossings of either e1 or e2. There are therefore four major
different types of extremal lines, depending on whether the
corresponding curvature is the largest or the second one, and
whether it is a local maximum or minimum. Furthermore, the
signs of the largest and second curvatures help to distinguish
between four additional subtypes of extremal lines, leading to a
classification into 16 types. The crest lines are two of them: pos-
itive largest curvature maxima (k1 > 0 and ∇e1 · t1 < 0) and
negative largest curvature minima (k1 < 0 and ∇e1 · t1 > 0).

34.1.1.3 Extremal Points

We now define the extremal points as the intersection of the
three implicit surfaces: f = I , e1 = 0. and e2 = 0. The notions
of extremal lines and extremal points are closely related to the
notion of corner points, in 2D images, as defined in [23], [30],
and [11]. A study of the evolution in 2D of corner points with
respect to the scale can be found in [16]. A similar study on
the scale-space behavior of the extremal lines and the extremal
points was presented in [15].

Extremalities e1 and e2 are geometric invariants of the
implicit surface f = I : they are preserved with rigid transforms
(rotations and translations of the object). Therefore, the relative
positions of the extremal points are also invariant with respect
to a rigid transformation, that is, for two different acquisitions
of the same subject. There are 16 different types of extremal
points, depending on the type of extremality: local minimum
or maximum of the extremalities e1 and e2 and the signs of k1

and k2. This classification can be used to reduce the complexity
of the matching algorithm.

However, the intuitive interpretation of extremal points is not
straightforward. The extremal lines are 3D curves, for which we
are able to compute the curvature, but the extremal points are

generally not the points of the extremal lines whose curvature is
locally maximal. Even if they are not extremal curvature points,
the extremal points are very well defined, and there is no reason
for their locations along the extremal lines to be less precise
than the lines’ positions themselves because the precision of the
computation of k1 and k2 is approximately the same.

34.1.1.4 Geometric Characteristics

Let us begin with the points on a surface. We have already seen
(Figure 34.1, left) that any such point could be provided with
a trihedron (n, t1, t2) formed by the normal to the surface and
the two principal directions. As our points are also on extremal
lines, we could provide them with the differential characteristics
of 3D curves (Figure 34.1, right), that is, the Frénet trihedron
(t , nc , b), where t is the tangent to the curve; nc , its normal; and
b, the binormal.

These two trihedrons are not the same, as the extremal lines
are generally not lines of curvature. However, as the curve is
embedded in the surface, the tangent to the curve t is con-
strained to be in the tangent plane of the surface spanned by
(t1, t2). Thus, there are two independent parameters character-
izing the relative configuration of the trihedron: we can measure
two angles θ = ∠(t , t2) and φ = ∠(nc , n). These characteristics
are invariant with respect to rigid transformations.

Two other invariants come from the surface (principal cur-
vatures k1 and k2). One could also think to add the curvature
k, the torsion τ of the curve and the geodesic torsion τg of the
curve with respect to the surface, but it appears that k and τg

are completely determined by the surface invariants: k cosφ =
k1 cos2 θ + k2 sin2 θ and τg = (k2 − k1) cos θ sin θ. Thus, we are
left with the torsion of the curve.

However, the computation of the Frénet trihedron (t,g,b) and
the curve torsion τ has to be conducted on the extremal curve
itself after its extraction. If this can be done directly on the
polygonal approximation, a much better method is to compute
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the characteristics on a local B-spline approximation of the
curve [18].

34.1.2 The Automatic Extraction of the Extremal
Points

In practical cases, e1 and e2 can be computed for each point
of the 3D image with the equations described in [43] directly
from the differentials of the intensity function of the image f .
We compute these differentials with linear filtering, using the
convolution of the discrete image with the differentials of
the Gaussian function exp(−||x||2/2σ2). The normalization of
these filters is not straightforward; we use the responses to sim-
ple polynomials, as proposed in [29]. We choose the Gaussian
function because it is isotropic, a prerequisite if we are looking
for geometric invariants for rigid transformations. Different
values of σ can be chosen, depending on the level of noise in
the 3D images. Changing σ is somewhat equivalent to changing
the scale at which we look for extremal lines and points.

The hypothesis that the iso-surfaces are a good representa-
tion of the surface of organs for the case of medical images
is a prerequisite: sometimes, the iso-surface can be extracted
directly from the 3D image, such as the skin surface in mag-
netic resonance imaging (MRI) or the bones in X-ray scanner
images. For other soft tissues, such as for the brain surface, a
presegmentation step is required to isolate the brain from the
rest of the data. This can be done with a combination of math-
ematical morphological operators, filtering, and the search for
connected parts or with an automatic “surface edge” extractor,
such as the zero-crossing of the Laplacian image. In all cases,
the final step of the segmentation is performed using iso-surface
techniques.

34.1.2.1 Computation of the Extremal Points in a
8-Voxel Cell

One solution to get the set of extremal points of the 3D image is
to compute e1 and e2 for all the voxels of the 3D image and then

to consider individually each cubic cell, formed with 8 voxels
(8-cell), as shown in Figure 34.3. There are therefore three values
defined for each vertex of the cube: f , e1, and e2. The extremal
points in that 8-cell are defined as the intersection of the three
implicit surfaces f , e1, and e2. The method varies according to
the type of interpolation or convolution function used to extend
continuously the three values at the vertices of the cubic cell to
the entire cell. The trilinear interpolation is a good first order
approximation.

The extraction of a polygonal approximation of the crest lines
with some warranties about the topology and the orientation
of the reconstructed 3D curves is presented with the march-
ing line algorithm [45]. Its extension to the extraction of the
extremal points was performed in [44]. We briefly recall here
the method on a very simple example where the iso-surface is
a triangle in the cell. This operation can be extended to any
configuration of the values of f and e1 while ensuring that
the extracted segments form a continuous and closed 3D curve
(except when f or e1 is not defined, for instance, at the borders of
the image). The original algorithm also considers orientation
problems, which allows us to distinguish between minimum
and maximum extremal points.

The first step (Figure 34.3, left) is to extract the iso-surface
within the cell. The iso-surface intersects the edges on the cell
with the value I . Computing, by linear interpolation along
the edges, the points where f = I , we get the three points
{Q1, Q2, Q3}. Since we are using a tri-linear interpolation within
the cell, the intersection of the iso-surface with the cell is the
triangle {Q1, Q2, Q3}.

In the second step (Figure 34.3, middle), we compute the
values of e1 for {Q1, Q2, Q3}, by linear interpolation along the
edges of the cubic cell. If they have the same sign, there is no
extremal line of e1 in this cell. Otherwise, we look for the two
points along the triangle edges where the interpolated value
of e1 is null: we get the two points {P1, P2} that form a seg-
ment. This is the approximation of the extremal line within
the cell.

The last step (Figure 34.3, right) is to compute the position
of the extremal point. Since P1 and P2 lie on the surface of the

Iso-surface f � I Crest line f � I, e1� 0 Extremal point
f � I, e1� 0, e2� 0

Q1

Q3

Q2

f (6)

f (4)

f (0) f (1)

e1(Q3)

e1(Q1)

e1(Q2)
P1

P2

f (7)

f (5)

f (3)
f(2)

e2(P2)

e2(P1)
P

FIGURE 34.3 Extraction of the extremal points. An empty circle denotes a positive value, whereas a filled circle
indicates a negative one.
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cell, we compute the value of e2 at these points with a bilinear
interpolation of e2 in the faces. If the two values have the same
sign, there is no extremal point on this cell. Otherwise, as is
shown here, we compute its position P by interpolating the
zero value along the segment.

34.1.2.2 Randomized Extraction of Extremal Points

Of course, we could look for extremal points in all the possible
cells of the image, excepting regions of null gradient and umbil-
ics. However, it is much more efficient to randomize the search:
we start with seed cells, randomly chosen in the 3D image, and
discard the ones for which the sign of f − I is the same for all
the vertices. Then we compute the values of e1 for the 8 vertices
of the cell. Once again, a simple test discards the cells that are
not crossed by a k1 extremal line (the sign of e1 is the same for
the 8 vertices). If there is an extremal line, we extract it from
end to end, using the Marching Lines algorithm (we follow the
extremal line “marching” from one cell to the next).

At each point of the polygonal approximation of the crest
line, we compute the second extremality e2 by bilinear inter-
polation. If there is a sign change, we compute the extremal
point on the segment of the extremal line that we are currently
following.

The randomized implementation of the Marching Lines
allows us to extract the main extremal lines (that is, the longest
ones, which experimentally appeared to be the most reliable
ones) of the 3D image, with only very few seeds (with respect
to the total number of voxels), randomly distributed in the 3D
images. The probability of missing an extremal line is approx-
imately proportional to the inverse of its length. This method
reduces drastically the number of computations to perform,
compared to the extensive implementation: typically, one uses
10% of the number of voxels as seeds. Even if the set of gener-
ated extremal points is not complete, it is generally sufficient to
perform a reliable 3D registration.

34.1.3 Example of Extracted Extremal Lines
and Points

In Figure 34.4, we can see an example of the lines extracted auto-
matically (with a manual choice of the iso-intensity threshold)
in a CT image of a dry skull. Some of the 550 crest lines may be
recognized as anatomical landmarks, such as the orbits or the
inferior border of the mandible. The lines are colored by the
sign of the e2 extremality. Thus, extremal points are located at
the color changes along the lines. There are around 3000 such
extremal points.

In an MR image, the surface of the brain is not very well
defined by the iso-intensity of the image. A presegmentation
step is usually needed to isolate the brain from the rest of the
data. This can be done with a combination of mathematical
morphological operators, filtering, and the search for connected
parts or with an automatic “surface edge” extractor, such as the
zero-crossing of the Laplacian image. In Figure 34.5, we used
a segmentation of the surface of the brain and extracted the
crest lines on this surface. Lines in red (with a positive largest
curvature) roughly correspond to sulci, whereas blue lines (with
a negative largest curvature) could be interpreted as gyri.

34.2 Rigid Registration

Let us now consider two images of the same modality and
of the same patient, but in a different position. We extract
extremal lines on both images. The problem is to put into
correspondence the two sets of lines (the model and the
scene), which is often called the matching step, and to compute
the best rigid transformation that superimposes the matched
lines.

It is important to note that a global registration algorithm, for
instance, superimposing the barycenters (centers of gravity) of
all points and the inertia axes,will often fail due to the occlusion.

FIGURE 34.4 (Left) An axial slice of a 3D CT image of a dry skull in Plexiglas. (Middle and right) The crest lines
extracted on this image. The iso-intensity was manually chosen to delimit the skull. Original 3D Image courtesy
of GE-CGR, Buc, France. (See also color insert).
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FIGURE 34.5 (Left) A sagittal slice of a 3D MR image. (Middle and right) 3D views of the extremal lines
extracted superimposed on the surface of the brain. Original MR images and segmentation courtesy of Prof.
R. Kikinis, Brigham and Women’s Hospital, Boston. (See also color insert).

Indeed, the images being are taken in different positions, and
the regions of interest are frequently different in the two images,
leading to crest lines and extremal points present in one image
and not in the other. The image noise will also induce the extrac-
tion of spurious lines and points in different parts of the two
images.

34.2.1 Curve Registration

Several algorithms adapted from computer vision have been
proposed and used over time. In [18], Guéziec matches the
crest lines using a combination of geometric hashing [25] and
Hough transform (see, for instance, [26]). The basic idea was to
index each point of each model crest line in a hash table using
its invariant characteristics. At recognition time, the invariants
of each scene crest line point are used to recover, thanks to the
hash table, the possible matches with model points (geometric
hashing step). For each match (that is, couple of model and
scene points), a rigid transformation is computed by superim-
posing the Frénet frames and used to index the match in a new
accumulator sampling the rigid transformation space (Hough
transform step). Densely populated cells in this second accu-
mulator are detected as rigid body transformations that are
candidates to match a large number of crest points. For each
such cell, a refined least-squares transformation is computed
using the matches indexed in this cell.

34.2.2 Extremal Points Registration Using
Alignment

With the development of completely automated methods to
extract crest lines and the higher resolution of images, the
number of crest lines drastically increased, leading to a much
higher density of invariants in the hash table. This could lead to

an important number of false positives that would overwhelm
the correct matches. The maximum complexity would then be
reached, and the algorithm could even provide a wrong answer.
To address this problem, Thirion reduced once again the image
information by keeping only a very small number of specific
points on the crest lines: the extremal points. Typically, they
represent only 16% of the number of crest line points, but we
are still left with 2000 to 5000 points in each image.

In [43] Thirion used another computer-vision-based tech-
nique: alignment (or prediction-verification) [4, 20]. The basic
idea is to compute the registration of each triplet of model
points with each triplet of scene points, superimpose the two
sets of points using this transformation, and verify this match
using an iterative closest point algorithm (see Section 34.2.4).
However, the search for compatible triplets in the model and
the scene can be reduced, since there are some unary invari-
ants (the principal curvatures k1 and k2), secondary invariants
(e.g., the distance between the two points, or the relative orien-
tation of the surface normals and the principal curvatures) and
even ternary invariants (involving the whole triplet of extremal
points). Thirion used 18 such invariants for each triplet, pre-
computed and stored them in a hash table to retrieve in constant
time the compatible triplets. Thus, the complexity of the algo-
rithm is O(n4) since there are n3 triplets, and a verification of
O(n) for each triplet match. In practice, this complexity is not
reached, as we can stop as soon as a given number of points is
matched after verification (typically 10 %).

34.2.3 Substructure Matching with Frame
Features

In [19] we came back to geometric hashing, but the idea was
to use all the geometric information on the features while tak-
ing great care of the uncertainty handling for the algorithm to
be robust (see [33] for an analysis of recognition algorithms
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with uncertain geometric features). In addition to the point’s
position, we can add the normal vector n and the two prin-
cipal directions t1 and t2 of the surface to constitute a local
coordinate system, or a frame.

In this context, each medical image is modeled by a set
of frames and the matching problem is to find the corre-
spondences between two subsets of frames that are in the
same configuration in the two “images,” up to a global rigid
transformation.

34.2.3.1 Invariant Representation: Preprocessing
Step

To obtain an invariant representation with respect to the global
position and orientation of the considered structure, we can
express the configuration of all frames relative to one frame
(called the basis). For efficiency, this representation is stored
in a hash table and, for correctness, we include the uncertainty
of each invariant. As only part of the frames are in the same
configuration in the two images, the one chosen as the basis
may not be present in the other image. The preprocessing step
is thus repeated with each frame as the basis.

34.2.3.2 Recognition Step

Choosing a frame of the second structure (the scene) as the
basis, we compute the invariant representation and retrieve,
thanks to the hash table, the compatible model frame cou-
ples. If the basis belongs to a common substructure, then a
significant number of frames are in the same configuration

with respect to it. We then match the model and scene bases
(Figure 34.6).

This process is repeated for every extremal point as the basis
to find its possible matches in the model, and we keep only the
matches that are above a given threshold (typically 10% of the
number of extremal points).

34.2.3.3 Clustering Compatible Matches and
Verification

For each individual match, we maintain during the recognition
step an estimation of the associated transformation by fus-
ing the transformations between confirming frames. To group
matches belonging to the same (rigid) substructure, we run a
very simple clustering algorithm on the associated transforma-
tion. Indeed, up to measurement errors, frames should undergo
a similar transformation within a single substructure. Each clus-
ter is then refined by an iterative closest neighbor technique
where we enforce symmetry of the matches and verify their
validity with a χ2 test.

34.2.3.4 Matching Crest Lines

In order to reduce once again the complexity of the algorithm,
we exploited in this method the structure of the extremal points:
they belong to crest lines. The principle is to consider each
model crest line as a different object. Indexing all model lines in
the same hash table, we retrieve at recognition time the model
lines corresponding to each scene crest line.

However, different crest line matches can correspond to dif-
ferent transformations. Thus, we run once again our clustering

Indexing the invariant space: Hash table
Model

Fm1

Fm2

Fm 3

Fm4

Fmi
Base

Imi,1

Imi,4

Imi,2

Imi,3

Scene

Isj,1

Isj,2

Isj,3

Fs1

Fs2

Fs3

Fsj
Base

FIGURE 34.6 Preprocessing: The 6D invariant vector associated with every couple of model frames is computed with its error zone and used
as an index for the couple in the hash table. Recognition: For each scene frame couple, we compute the 6D invariant vector and retrieve through
the hash table every compatible model frame couple. For each such couple, we tally a vote for the matching of the reference frames [here the
match (Fmi ,Fsj) scores 2].



584 Handbook of Medical Image Processing and Analysis

algorithm on the transformations to find out the compatible
line matches, and we obtain a single transformation from the
model to the scene image.

34.2.4 ICP on Frames

When images are close enough, one can use still another algo-
rithm: the Iterative Closest Point [6, 47]. The basic principle
is the following. For each scene point, we look for the closest
point in the model with the current transformation, compute
a new rigid transformation with these matches, and iterate the
process until convergence.

Of course, since we have more geometric information than
just the point position, we use a generalization: the Iterative
Closest Feature [33]. The idea is to use a higher dimensional
space for the closest point search. In our case, the space is made
of the extremal point position, the trihedron (n, t1, t2), and the
unary invariants k1 and k2. The important point is to set an
appropriate metric on this space in order to combine efficiently
the different units of measurement. In our algorithm, this is
done using the inverse of the covariance matrix of the features.
This matrix can be reestimated after convergence and the whole
process iterated. However, we did not observe a critical influence
of the covariance matrix values, as long as it approximately
reflects the variation range of the different components.

34.2.5 Examples of Rigid Registrations

34.2.5.1 Registration of CT Images of the Skull

Figure 34.7 presents an example of the registration of two CT
images of the dry skull in a Plexiglas box in two different posi-
tions. We used the geometric hashing algorithm on frames

(Section 34.2.3). As the transformation between the two images
is close enough to the identity, the ICP algorithm also gives very
similar results. About 75 crest lines are matched with more than
4 extremal points among the 550 lines in each image leading to
a total of 550 matched extremal points (only on the 75 matched
lines). Using the techniques described in Section 34.3.2, we
have computed that the typical object accuracy (the expected
standard RMS error on image superimposition due to the trans-
formation in the area of the matched features) is 0.04 mm,
whereas the typical corner accuracy is 0.1 mm. This is to be
compared with the voxel size: 1× 1× 1.5 mm.

34.2.5.2 Registration of MR Images of the Head

Figure 34.8 is an example of the registration of two MR T1
images of the same patient. In this case, 240 crest lines are
matched among approximately 2100 in each image, for a total
of 860 matched extremal points among 3600 in each image
(about 25%). We used the zero-crossing of the Laplacian to
define the surfaces of interest. Thus, there are crest lines all over
the head. However, if some of the matched lines are located
on the surface of the skin (we can recognize the nose and the
eyes), most of them are located on the surface of the brain.
The typical object accuracy of the registration is 0.06 mm for a
typical corner accuracy of 0.125 mm. Once again, the accuracy
is far below the voxel size (0.97× 0.97× 1.5 mm).

34.3 Robustness and Uncertainty
Analysis

Once we have registered the images, that is, found matches
and a rigid transformation, the question is: how confident can

FIGURE 34.7 Example of registered crest lines between two CT skull images of the same phantom acquired in two different positions. Extremal
points are represented by a color change from yellow to blue on the lines. (Left) Front view with all crest lines from the two skulls after registration.
(Middle) Left view of the matched crest lines. (Right) Close-up on the occipital foramen on the right. In this last image, the width of a line is
a tenth of a voxel, which shows the very precise registration of these extremal points. One can also see that the trihedron part of the matched
frames is very well conserved. (See also color insert).
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FIGURE 34.8 Example of registered crest lines between two MR T1 images of the same patient.
Only the 240 matched lines are displayed. Extremal points are represented by a color change from
yellow to blue on the lines. (Left) View of matched crest lines from the left of the head. (Right)
View from the front. (See also color insert).

we be with this result? There are two main types of errors in
feature-based registration algorithms. First, the matches could
be completely wrong, and we simply recognized by chance n
features in approximately the same configuration. This is called
a gross error in statistics and a false positive in recognition. But
even if we got the matches right, the features we are using to
compute the registration are corrupted by noise and induce a
small error, or uncertainty, on the transformation parameters.
In this section, we analyze in turn these two types of errors.

34.3.1 Robustness Analysis

Since our features are noisy, we had to allow for a certain
error when matching them. In the registration algorithm of
Sections 34.2.3 and 34.2.4, this is computed from the covari-
ance matrices. The existence of such an error zone allows us to
match features that by chance fall in this area. When this proba-
bility is sufficiently high, individual false matches can combine
themselves (conspiracy) to produce an important matching
score.

However, we should note that such a false positive is a correct
recognition from a feature point of view (a globally consistent
matching) but is incorrect from the image or data point of
view. This problem is inherent in the ascendant organization of
information: Some important information can be dismissed by
simplifying the image as a set of features.

In [34], we developed a generic method to evaluate the prob-
ability of matching by c τ features just by chance. The basic
framework is the following. Let us assume for the moment that
the transformation between the two images is fixed. First, we
compute the selectivity η, which is the probability that a ran-
dom feature (uniformly distributed in the image) falls in a given
error zone. Then, we compute the probability that at least τ of

the m scene features fall in one of the n model error zones. In
our analysis, computations are simplified by assuming that all
features are randomly distributed.

Now, we will accept a match if there exists one transforma-
tion such that at least τ features are put into correspondence.
Thus, to obtain the mean number of false positives, we just
have to integrate over all possible transformations. Let d be the
“diameter” of the images. We get the following estimation:

P ≈ (2πd)3

3

⎛
⎝1− exp(−nmη)

τ∑
j=0

(nmη)j

j!

⎞
⎠.

In the example of Section 34.3.3, we compute that the selec-
tivity is ηpt = 2.10−6 if we just use the position of the extremal
points and ηfr = 1.5.10−8 if we model them using frames. The
diameter of the image is d ≈ 400 mm and we extracted around
2500 extremal points in each image. We plot in Figure 34.9 the
number of false positives P with these values.

The actual matches found involve about 500 features, and
the probability of being a false positive is thus practically zero.
However, we must be careful that the “object” we registered is
not always the one we wanted, even if this is definitely not a false
positive: there can be several different rigid motions in a single
image, for instance, the skull and the brain in MR images.

34.3.2 From Features to Transformation
Uncertainty

Here, we assume that the matches are right. However, measure-
ment errors on the features induce an estimation error on the
transformation. In [35, 36] we developed a method in which
we register the features, estimate the noise on the frames, and
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FIGURE 34.9 Qualitative estimation of the number of false posi-
tives involving at least τ matches in MR images of 2500 features.
Comparison between frames and points: we need roughly 5 times
more point matches than frame matches to obtain the same probability
(10 frames and 56 point matches for a probability of 10−10).

propagate this noise to estimate the uncertainty of the rigid
transformation.

34.3.2.1 Feature Uncertainty

For extremal points (modeled as frames), we proposed a “com-
positive” model of noise. Basically, this means that the noise is
assumed to be identical on all extremal points in the local frame
(that is, with respect to the surface normal and the principal
directions). This has to be compared with the standard additive
noise model on points where we assume an identical noise with
respect to the image axes. In the case of the MR images of the
next section, this leads to an interesting observation: we draw in
Figure 34.10 a graphical interpretation of the covariance matrix
estimated on the extremal points after registration.

We obtain an approximately diagonal covariance matrix with
standard deviations σt 1 ≈ σt 2 ≈ 2 deg, σn ≈ 6 deg for the rota-
tion vector (these are typical values of the angle of rotation
around the corresponding axis) and σxt 1 ≈ σxt 2 ≈ 0.8 mm,
σxn ≈ 0.2 mm for the position. As far as the trihedron part
is concerned, this means that the surface normal is more stable
than the principal directions, which was expected since the nor-
mal is a first order differential characteristic of the image and
the principal directions are second order ones.

For the position, the coordinate along the normal is once
again more stable than in the tangent plane for the same rea-
sons. The 3D standard deviation of the position is σ = 1.04
mm, which is in agreement with the additive noise model on
points. However, for the additive noise model, the estimated
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FIGURE 34.10 Graphical interpretation of the “compositive” noise
model estimated on extremal points. The uncertainty of the origin
(point X) is 4 times larger in the tangent plane than along the surface
normal. The uncertainty of the normal is isotropic, whereas the prin-
cipal directions t1 and t2 are 3 times more uncertain in the tangent
plane.

covariance is isotropic. Thus, using an adapted model of noise
on frames allows us to extract much more information about
the feature noise. This constitutes an a posteriori validation of
our “compositive” model of noise on extremal points.

34.3.2.2 Transformation Uncertainty

Now the problem is to propagate the feature uncertainty to
the rigid transformation. Let f represent (the parameters of)
a rigid transformation and χ̂ the observed data. The opti-

mal transformation f̂ minimizes a given criterion C( f ,χ) (for
instance, the least-squares or the Mahalanobis distance). Let
	( f ,χ) = ∂C( f ,χ)/∂f . The characterization of an optimum is

	( f̂ , χ̂) = 0. Now, if the data are moving around their observed
values, we can relate the new optimal parameters using a Taylor
expansion. Let Ĥ = ∂	/∂f and Ĵ	 = ∂	/∂χ be the values of
the second order derivatives of the criterion at the actual values
( f̂ , χ̂). We have

	( f̂ + δf , χ̂+ δχ) ≈ Ĵ	.δχ+ Ĥ .δf = 0

⇒ �f̂ f̂ = E(δf .δf T ) = Ĥ (−1).Ĵ	.�χ̂χ̂.Ĵ T
	 .Ĥ (−1).

Thus, we can express (an approximation of) the covariance of
the resulting transformation using the covariance on features
and the criterion derivatives.

However, a covariance matrix on a rigid transformation is
quite hard to understand since it mixes angular values for the
rotation and metric values for the translation. To character-
ize the transformation accuracy with a single number, we can
compute the uncertainty (expected RMS error) induced on a
set of representative points by the registration uncertainty alone
(without the uncertainty due to the feature extraction). In our
case, two sets are particularly well suited: The position of the
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Uncertainty induced  by the transformation

On the image corners On some object points

FIGURE 34.11 Uncertainty induced on the point positions by the
transformation.

matched extremal point represents the localization of the object
of interest, whereas the corners of the image symbolize the
worst case (Fig. 34.11). In the example in Section 34.3.3, we
find, for instance, a typical boundary precision around σcorn =
0.11 mm and a typical object precision far below the voxel size:
σobj = 0.05 mm for echo-1 registrations. The values are even
a little smaller for echo-2 registrations: σcorn = 0.10 mm and
σobj = 0.045 mm.

34.3.2.3 Validation Index

Last but not least, we need to validate this whole chain of
estimations to verify whether our uncertainty prediction is
accurate. We observed that, under the Gaussian hypothesis,
the Mahalanobis distance μ2

i between the estimated and the
exact transformation (or between two independent estimations
of the same transformation) should be χ2

6 distributed (if the
covariance matrix on the estimation is exact). To verify this,
the idea is to repeat a registration experiment N times with
data corrupted by a different random noise each time and to
compute the empirical mean value I = μ̄2 = 1/N

∑
μ2

i and
the variance σ2

i of this Mahalanobis distance. The values for an
exact χ2

6 are, respectively, 6 and 12. We can also verify using

the Kolmogorov-Smirnov test (K-S test) that the empirical
distribution corresponds to the exact distribution. The vali-
dation index I [36] can be interpreted as an indication of how
the estimation method underestimates (I > 6) or overestimates
(I < 6) the covariance matrix of the estimated transforma-
tion. It can also be seen as a sort of relative error on the error
estimation.

We run several sets of tests with synthetic data and verify
that our uncertainty estimations perfectly validated for more
than 15 extremal point matches. Now, the question we want to
answer is: Is it still valid for real data?

34.3.3 Validation with Real Data

The experiment is performed using multiple 2D contiguous
magnetic resonance images (MRI) that constitute a 3D rep-
resentation of the head. The images are part of an extensive
study of the evolution of the multiple sclerosis (MS) disease
performed at the Brigham and Woman’s Hospital (Harvard
Medical School, Boston) by Dr. Guttmann and Professor Kikinis
(Figure 34.12). Each patient underwent a complete head MR
examination several times during one year (typically, 24 dif-
ferent 3D acquisitions). The aim is to register precisely all the
images acquired at multiple time points in order to segment the
lesions and evaluate their evolution very accurately.

Each acquisition provides a first echo image and a second
echo image (typically 256× 256× 54 voxels of size 0.9375×
0.9375× 3 mm). The two images represent the same slice of
T2 weighted signal imaged at different echo times. Thus, they
are expected to be in the same coordinate system. This protocol
was designed to optimize the contrast in the two channels for
easier tissue segmentation. Considering two acquisitions A and
B, the registrations of echo-1 images (A1 to B1) and echo-2
images (A2 to B2) give two relatively independent estimates
of the genuine transformation from A to B. The comparison
of these two transformations using the Mahalanobis distance
gives a real validation index that can be tested for the accuracy
of the uncertainty estimation.

FIGURE 34.12 (Left) Example of MS images. The same slice of one acquisition in echo-1 (left) and echo-2 (Middle Left). (Right)
Evolution of an image row going through a lesion across 24 time points over a year. Middle Right: without registration; Right: after
registration and intensity correction. Original 3D Images courtesy of Dr. Charles Guttmann and Prof. Ron Kikinis from the Brigham
and Woman’s Hospital (Harvard Medical School, Boston).



588 Handbook of Medical Image Processing and Analysis

In this experiment, the images being close enough, we used
the iterative closest feature algorithm. Typically, we match 1000
extremal points out of the about 3000 extracted with a residual
mean square error (RMS) of about 1mm.

34.3.3.1 Direct Validation Shows Biases

With n different acquisitions, we can run n(n − 1)/2 registra-
tions for each echo-1 and echo-2 group. In a first experiment,
we compared directly the registrations between the corre-
sponding echo-1 and echo-2 images. The resulting validation
index clearly indicates that the transformations do not agree
(μ̄2 = I > 50 instead of 6). However, our registration method
cannot detect systematic biases.

To discover the biases, we ran a series of experiments in
which we repeated the same registration while varying the algo-
rithm parameters. This confirms that the observed uncertainty
is similar in size and shape to the predicted one. Moreover,
other experiments show that the inter-echo-1 and the inter-
echo-2 registrations are compatible but the two groups differ
significantly (Figure 34.13). Thus, we concluded that there
was a systematic bias between echo-1 and echo-2 registrations.
Additional experiments showed that the bias was different for
each registration.

34.3.3.2 Estimation of the Biases

To estimate the biases, we first observed that the transformation
from image A1 to image B2 can be written fA1B2 = fB ◦ fAB1 =
fAB2 ◦ fA . If measurements were perfect, the bias fA could be

C1B1

B2A2
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C2

fCfBfA

fAB1

fAB1

fAC2

fAC1

fBC2

fBC1

FIGURE 34.13 Diagram representing three acquisitions A, B, and C
with three echo-1 images (A1, B1, C1) and three echo-2 images (A2,
B2, C2). The echo-1 and echo-2 registrations are significantly different
(μ2(fAB1

, fAB2
),μ2(fAC1

, fAC2
),μ2(fBC1

, fBC2
) > 50) but the intra-echo-1

and intra-echo-2 registrations are compatible (μ2(fBC1
◦ fAB1

, fAC1
) ≈ 6

and μ2(fBC2
◦ fAB2

, fAC2
) ≈ 6). This led us to assume a global bias for

each acquisition between echo-1 and echo-2 images, represented here
by the transformations fA , fB , and fC .

expressed for any other image Z : fA = f (−1)
AZ2

◦ fZ ◦ fAZ1 . Since
measurements are noisy, we obtain an estimator of the bias fA

by taking the Fréchet mean value [37]:

f̄A = arg min
f

{∑
Z �=A

dist2
(

f , f (−1)
AZ2

◦ fZ ◦ fAZ1

)}
.

In this formula, each acquisition bias depends on the others.
Thus, we begin with null biases (identity transformations) and
iteratively estimate each bias until convergence.

We effectively obtain a different bias for each acquisition that
significantly differs from the identity. However, from a more
global point of view, all the biases could be modeled as a noise
on the transformation with an identity mean and standard
deviations of σr = 0.06 deg on the rotation (not significantly
different from 0) and σx = 0.09, σy = 0.11, and σz = 0.13 mm
on the translation (significantly different from 0). Very similar
values were observed for other patients.

34.3.3.3 Validation with Bias

Although the biases appear very small, they are sufficient to
explain the previous errors in the registration accuracy predic-
tion. Indeed, taking the biases into account, the real validation
index between acquisition A and B becomes

IAB = μ2
(
fB ◦ fAB1 , fAB2 ◦ fA

)
Since the biases are estimated from the registration values, using
their uncertainties in this formula would bias the validation
index toward low values. Thus, we consider them as determin-
istic. The mean value and standard deviation of this new index
across all registrations are now very close to their theoretical
value (see Table 34.1).

34.3.3.4 Origin of the Bias

Most of the extremal points we match are situated on the surface
of the brain and the ventricles. These surfaces appear differently

TABLE 34.1 Theoretical and observed values of the real validation
index with bias for different patients. The number of registrations
(which is also the number of values used to compute the statistics on
the validation index) is directly linked to the number of images used.
Results indicate a very good validation of the registration accuracy
prediction: the mean validation index is within 10% of its theoretical
value and the K-S test exhibits impressively high values.

Ī σI K-S test num. im. num. reg.

Theoretical values 6
√

12 = 3.46 0.01− 1 n ≤ 24 n(n − 1)/2
patient 1 6.29 4.58 0.14 15 105
patient 2 5.42 3.49 0.12 18 153
patient 3 6.50 3.68 0.25 14 91
patient 4 6.21 3.67 0.78 21 210
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in echo-1 and echo-2 images due to the difference in contrast.
Other artifacts such as chemical shift or susceptibility effects
(see for instance [21]) may also account for the observed bias
as they influence the detection of extremal points. Indeed, the
two echoes are acquired with different receiver RF bandwidth to
improve the signal-to-noise ratio [22]. Therefore, the chemical
shift and the susceptibility effect are different in the two echoes.
This shows that we must be extremely careful about subvoxel
accuracy, since simple artifacts may bring biases that are larger
than the random part of the error on the transformation. In
that experiment, multiplying the number of acquisitions was a
good idea, as it transforms the bias into a random effect over
acquisitions, which allowed us to measure it.

34.4 Conclusion

In this chapter we presented a method to extract reliable differ-
ential geometry features (crest lines and extremal points) from
3D images and several rigid registration algorithms to put into
correspondence these features in two different images and to
compute the rigid transformation between them. We also pre-
sented an analysis of the robustness with the computation of the
probability (or mean number) of false positives and an analysis
of the accuracy of the transformation.

This method proves to be very powerful for monomodal
rigid registration of the same patient imaged at different times,
as we show that an accuracy of less than a tenth of voxel
can be achieved. In the last experiment, we showed that this
uncertainty estimation technique is precise enough to put into
evidence systematic biases on the order of 0.1 voxel between
features in echo-1 and echo-2 images. Once corrected, multi-
ple experiments on several patients show that our uncertainty
prediction is validated on real data.

This registration technique is currently used in many medi-
cal applications, such as the registration of a preoperative MR
used for planning and MR with a stereotactic frame for neuro-
surgery navigation (European Community project Roboscope),
or the registration of a series of acquisitions over time of images
of multiple sclerosis patients to study the disease’s evolution
(European Community project Biomorph).

Several tracks have been followed to generalize this work to
nonrigid registration. Feldmar [14] used the principal curva-
tures to register surfaces with rigid, affine, and locally affine
transformations. Subsol designed an algorithm for nonrigid
matching of crest lines. In [41], he used this method to warp
3D MR images of different patients’ brains in the same coordi-
nate system and even to warp an atlas onto a given 3D MR
image of a brain in order to segment it. In [42], he used
the same method to construct automatically a morphomet-
ric atlas of the skull crest lines from several acquisitions of
different patients’ CT images, with applications in craniofacial
surgery.
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35.1 Theory

The goal of image registration is the determination of a com-
mon coordinate system in which images can be compared or
fused on a pixel-by-pixel basis. Chamfer matching is a classi-
cal image registration method for segmented features that was
suggested by Barrow et al. in 1977 [2]. It has gained wider
recognition through the work of Borgefors, who applied the
algorithm in a hierarchical way for locating outlines of lakes in
satellite images and investigated some of the algorithm’s basic
properties [7]. The method basically matches a drawing onto an
image. The name chamfer matching is derived from the appli-
cation of the chamfer distance transform in the algorithm [6].
However, at present, the name chamfer matching is used more
generally, irrespective of the used type of distance transform.
The word “chamfer” stands for a tool to create a groove in, e.g.,
a wooden table surface. If one considers a drawing as a wire,
and a distance transform image as a groove, chamfer matching
may be described as the process of letting the wire fall into the
groove (Figure 35.1).

The chamfer matching algorithm consists of the following
independent components: image segmentation algorithms for
both images to be registered, a distance transform, a cost func-
tion, and an optimization algorithm. We will describe the cost
function (and the associated distance transform) first, since it
illustrates some important features of the chamfer matching
algorithm.

35.1.1 Cost Function and Distance Transform

Mathematically, the cost functions for chamfer matching and
gray value registration are related. Let us consider the classical
image correlation function, C, between two images, which is
defined as a volume integral or sum,

C(T ) =
∫

F(T .r) · G(r)dr , (35.1)

where r is a three-dimensional integration variable, F and G
are the images to be correlated, and T is a geometrical trans-
formation. For practical image registration applications, the
correlation function must be suitably normalized and the maxi-
mum of C is searched by varying T. For each optimization
step, the volume integral must be calculated, which makes
application of this technique slow for large (3D) images. The
analogy with chamfer matching becomes clear if we segment
image G and make a list of the coordinates of its nonzero ele-
ments: ri (a drawing), which contains N elements. In that case,
Equation 35.1 is equivalent to

CMEAN(T ) = 1/N
N∑

i=0

[F(T .ri)]. (35.2)

This equation forms the core of the chamfer matching algo-
rithm. It is possible, but not common, to apply this equation

Copyright © 2008 by Elsevier, Inc.
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FIGURE 35.1 Illustration of the process of chamfer matching in two
dimensions. From one image, a distance transform is made. A surface
plot of the distance transform image looks like a groove or “chamfer.”
The bottom of the groove corresponds with the feature to be matched.
The process of chamfer matching is like letting a wire (which represents
a drawing from another image) fall into the groove. This corresponds
to minimizing the distance between both features. Note that to improve
the visualization in this figure, the distance transform has been clipped
at a certain level.

directly using a gray-values image for F. In general, for cham-
fer matching, the image F is obtained by segmenting the input
image and applying a distance transform to the result. In a
distance transform, the pixel value gives the shortest distance
to the segmented feature [6], so that cost function CMEAN is
an accurate estimate of the average distance between the seg-
mented image features in both images. This function must be
minimized to achieve image registration. In practice it is useful
to express r and T in world coordinates, i.e., using centime-
ters instead of pixels, since this reduces the required number of
coordinate transformations to interpret the matching result and
allows easy matching of calibrated images without including
scaling in the optimization procedure. Note that (when using a
distance transform for F) Equation 35.2 is equivalent to aver-
age absolute distance between the drawing and the feature in
image F. For that reason, we call Equation 35.2 the MEAN cost
function. An alternative cost function is RMS:

CRMS(T ) =
√√√√(1/N

N∑
i=0

F 2[T · ri]

)
. (35.3)

This cost function is equivalent to the RMS distance between
the drawing and the feature in image F. Similarly, one can define
the MAX cost function, which corresponds with the maximum
distance. The usefulness of these cost functions depends on
the problem. The MEAN cost function performs very well in
the absence of global shape distortions (it is highly insensitive
to outliers in the point list), whereas the RMS and MAX cost
functions are more suitable in the presence of small global shape

distortions. However, these cost functions are highly sensitive
to outliers.

Equations 35.2 and 35.3 illustrate a few key features of the
chamfer matching algorithm. First of all, the cost function is
computed in only N steps, where N is the number of points in
drawing r. For practical applications, N may be on the order of
a few hundred points for 2D to a few thousand points for 3D
image registration. Second, the algorithm can be easily extended
to subpixel accuracy by interpolating image F, e.g., using bilin-
ear or trilinear interpolation. Our practical experience is that
(linear) interpolation also drastically improves the performance
of chamfer matching, since it causes the cost function to vary
more smoothly as a function of T. Finally, the algorithm can
easily be extended to handle the situation where the images to
be matched do not overlap completely. This means that some
of the transformed contour points are invalid, e.g., they fall
outside the area/volume covered by image F. The solution is to
ignore these points, i.e., assign them a value of zero in the sum
and reduce the value of N. To avoid the situation in which zero
points are valid, the cost function is set to an arbitrary high
value when this occurs.

An essential component of the chamfer matching algorithm
is the distance transform. The type of distance transform deter-
mines the accuracy with which the cost function describes the
distance between the features in both images. In practice, good
results have been obtained both with a city-block and with
chamfer distance transforms, which are more simple to com-
pute than the“true,”Euclidean, distance. The city block distance
is the shortest distance between two points using only horizon-
tal and vertical movements. The chamfer distance is the shortest
distance allowing movements along diagonal lines as well. The
distance transform need only be computed once, and high-
speed recursive algorithms exist for this purpose. For example,
a simple city block distance transform of an arbitrary complex
binary image in two dimensions may be computed with only
eight operations per pixel, as illustrated next. Setting the seg-
mented pixels to zero and all others to a high value, we can apply
the following basic recursive series for a distance transform in
one dimension (e.g., [33]):

gx = min
[
gx−1 + a, fx

]
for x = 1 . . .M , (35.4)

where a defines the size of the pixel in world coordinates
(a > 0), f is the input data, g is the output data, x is a counter,
and M is the number of data points. To complete the distance
transform, the same recursive operation must be performed
backwards through the result of Equation 35.4, i.e.,

hx = min
[
hx+1 + a, gx

]
for x = M . . . 1. (35.5)

To perform a city-block distance transform in two dimensions,
first set all segmented pixels in image F to zero (their distance
will be zero) and all other pixels to a high positive value. Then
Equations 35.4 and 35.5 must be applied, first to each row and



35 Image Registration Using Chamfer Matching 593

then to each column of the image, writing the result back into
the image. To obtain a chamfer distance transform (an eight-
connected distance), Equations 35.4 and 35.5 must next be run
over all diagonals of the image in both directions. Extension
to three dimensions and nonequidistant image slices is trivial
[34]. Borgefors gives an extensive description of recursive dis-
tance transforms [6]. More recently, several groups have also
developed true Euclidean distance transforms that have a rea-
sonable speed [11, 19, 38]. The performance gain obtained by
using a Euclidean distance transform in the chamfer match-
ing algorithm is, however, limited because close to a perfect
match all distances are zero irrespective of the type of distance
transform.

An alternative for the use of a distance transform would be to
search the closest point of the segmented features of F for each
of the points in drawing r (the iterative closest-point algorithm)
[3, 13, 27, 39]. In such an implementation, the speed is limited
by the geometrical searching: For each feature point in one
image, the algorithm would inspect all or many points of the
feature of the other image. Often, the searching algorithm also
poses constraints on the shape of the applied features. So, in
essence, the chamfer matching algorithm is an efficient and
flexible implementation of the iterative closest-point matching
algorithm.

35.1.2 Segmentation

The required segmentation depends on the practical applica-
tion. The chamfer matching algorithm only requires that image
F be segmented to a binary image as input to the distance trans-
form, and that a set of contour points be derived from image
G. The contour points may be derived using a simple contour
tracer, or by scanning a binary image for all nonzero pixels (the
order of the points in the drawing is irrelevant). The algorithm
imposes no constraints on the applied segmentation algorithms,
other than that the number of points in drawing r must be rela-
tively small for efficiency reasons. In practice this means that the
point list is reduced by resampling. Later we will show that the
chamfer matching algorithm is highly robust for the quality of
the segmentation. This feature allows the use of “poor quality”
automatic segmentation algorithms, that is, the algorithm can
be fully automated even though the quality of the images is poor.

35.1.3 Optimization of the Cost Function

The transformation T that relates the coordinate systems of the
images to be matched is usually a rigid geometric transforma-
tion (rotation, translation, scaling). The search space for the
matching algorithm depends on the dimension of the images
and the transformation model (see Chapter 32, entitled “Spatial
Transformation Models”). For 2D registration, T depends on
3 or 4 parameters, whereas for 3D registration, T depends
on 6 parameters (3 translation values, 3 rotation angles).
Incorporation of (isotropic or nonisotropic) scaling requires

extension of the number of parameters in T, while distortion
may be corrected by making T a nonlinear transformation.

Most authors use standard general-purpose optimization
algorithms for the chamfer matching algorithm. The simplex
method [26] is easy to implement and gives quite good per-
formance. This method moves a simplex with M + 1 points
through an M -dimensional space, where M is the number of
parameters. The simplex is mirrored, expanded, or contracted
to catch the minimum like a fish in a net. Many authors also
use Powell’s method of conjugate gradients. Both algorithms
are usually just copied from a standard text book on numerical
recipes [28]. For medical applications, the required search range
is often limited since both images to be matched are generally
centered at the same region of interest. For this reason, the use
of more powerful optimization algorithms such as simulated
annealing is not required. Similarly, the value of hierarchical
search strategies is limited since the images can often easily be
brought in reasonable correspondence by a rough prematch,
e.g., by aligning the center of gravity of both images. Quite
often, the search space is reduced by artificially raising the cost
function when one of the search parameters moves outside pre-
set limits. As a rule of thumb, cost function minimization using
the simplex or Powell’s method requires on the order of 50 cost
function evaluations per degree of freedom.

The performance of the registration algorithm depends on
the parameters of the optimization procedure. For example,
initial search steps on the order of 1 cm translation and 10°
rotation give good performance with the simplex algorithm. To
reject local minima, it is often useful to restart the minimization
algorithm one or more times.

35.1.4 Comparison of Automatic Image
Registration Algorithms in Terms of Speed

Table 35.1 compares the three classes of image registration
algorithms described in this chapter. The speed of a regis-
tration algorithm depends on the need for preprocessing, the
complexity of the cost function, and the number of cost func-
tion evaluations performed by the optimization algorithm.
The chamfer matching algorithm has the lowest cost function
complexity, but requires the most preprocessing.

35.2 Medical Applications of Chamfer
Matching

Most applications of the chamfer matching algorithm have
been in the field of radiotherapy, although a few authors have
published applications outside this field [18]. In the next sec-
tions, first the use of 2D chamfer matching for treatment
verification for radiotherapy is described, then the use of 3D
chamfer matching for radiotherapy treatment planning (that
is, targeting the tumor), and finally applications to measure
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TABLE 35.1 Simplified comparison of three classes of automatic image registration algorithmsa

Algorithm Preprocessing Cost function complexity (typical example for 3D
images)

Gray-value matching
Chamfer matching
Iterative closest point

None
Segmentation+ distance transform
Segmentation (+ triangulation)

# pixels (107)
# contour points (103)
(# contour points)2 (106)

a The chamfer matching algorithm has the lowest cost function complexity, but requires the most preprocessing. The complexity estimates are based on an image with 107 voxels and
drawings described by 103 contour points.

(a) (b)

FIGURE 35.2 (a) Typical radiotherapy equipment. A patient is accurately positioned on the treatment table using side lasers. The head of the
linear accelerator is above the treatment table, while below the treatment table one sees the electronic portal imaging device (mounted on a
robot arm) that is used to verify the position of the patient relative to the treatment beam. The accelerator and table can rotate to allow targeting
of a tumor from any direction. Photo courtesy of Varian Medical Systems, Palo Alto, CA. (b) The images made with the portal imager inherently
have a poor image quality because of the high energy of the treatment beam. This is a portal image of a treatment in the pelvic area, where the
black square is the treatment field.

organ motion and to quantify treatment response parameters.
After the overview of applications, various performance tests of
the chamfer matching algorithm are summarized.

35.2.1 Electronic Portal Imaging (Verification of
Radiation Therapy)

One of the first applications of the chamfer matching algorithm
in the medical profession was in the field of treatment verifica-
tion for radiotherapy. The aim of external beam radiotherapy is
to eradicate a tumor by irradiating it repeatedly by high-energy
photons with multiple beams (from multiple directions). Since
the irradiation is typically repeated 20 or more times over a
period of several weeks, the patient has to be repeatedly aligned
on the treatment machine with high accuracy. To verify the
patient position, a planar radiograph can be made during irra-
diation by placing a film cassette in the treatment beam at
the opposite side of the patient (portal imaging). To facilitate
more extensive quality assurance, several groups have developed

electronic portal imaging devices to replace the film cassette
[8]. Such systems can be based on fluorescent screen/video
camera combinations (e.g., [25]) on a matrix of ionization
chambers [32], or on large-area amorphous silicon detectors
[1]. An example of a electron portal imaging device mounted
on a linear accelerator for radiotherapy is shown in Figure 35.2.
The quality of the portal images is inherently poor because of
the high photon energy that is used for therapeutic irradiation
(4 to 50 MV acceleration potential). The images have a poor
spatial resolution, and the contrast of the interesting anatomi-
cal structures (bone) is extremely low (Figure 35.2b). After some
enhancement, the bones become visible (Figure 35.3b).

To verify the patient position, the portal image is compared
with a reference image that is either a diagnostic energy X-ray
image made on a treatment simulator or a digitally recon-
structed radiograph (DRR), which is a simulated X-ray image
that is constructed by ray tracing a CT scan of the patient
along the beam direction (Figure 35.3a). The analysis of the
portal images needs to answer the following question: is the
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(c) (d)(a) (b)

FIGURE 35.3 (a) Reference image for portal image analysis. This is a simulated radiograph. The green dots were automatically placed on
highlights in the image to describe the bony anatomy and form the input drawing for the chamfer matching procedure on anatomy. (b) Enhanced
portal image with automatically detected field edge. (c) After matching the field edge, the portal image and the reference image have the same
scale and alignment. Note the misalignment of the bony structures due to a small misalignment of the patient. (d) By matching the anatomy,
the displacement of the patient with respect to the treatment beam is measured. (See also color insert).

patient in the correct orientation with respect to the treatment
beam? To answer that question, the reference image is matched
twice with the portal image. First the borders of the treat-
ment field are matched, so that scale and position of the portal
image and the reference image are brought into correspondence
(Figure 35.3c). Next, the anatomy is matched, so that the dis-
placement of the patient with respect to the treatment beam
is quantified (Figure 35.3d). For both registration purposes
chamfer matching has been applied successfully. Note that the
image analysis is done in two dimensions, for each beam direc-
tion separately. Fully 3D portal image analysis methods have
been developed [16]. However, these are not based on chamfer
matching and therefore fall outside the scope of this chapter.

35.2.1.1 Field Edge Matching

The field edge in the reference image can be delineated man-
ually, or it can be retrieved from the planning system (if the
reference image is a DRR) or detected automatically from the
simulator image. The field edge in the portal image is easily
detectable because it has a very high contrast. Several authors
have presented algorithms for this purpose, e.g., based on his-
togram driven segmentation and/or gradient tracing [4]. Early
attempts to register these shapes applied moment-based shape
descriptors [5].

Because of the high quality of the segmented features,
field edge registration by means of chamfer matching works
extremely well, and this method has gained wide acceptance
(Figure 35.4). However, in some cases there are small errors in
the shape of the field edge, which complicates the analysis [15].
With (simulated) perfect shapes, both the MEAN and RMS cost
functions work perfectly, independent of the distance transform
used. However, when there is a small aspect ratio difference, e.g.,
because of a small misalignment of the shielding blocks used to
shape the beam, the MAX and the RMS cost function perform
much better. In contrast, when there is an outlier, such as a

(a) (b)

FIGURE 35.4 Use of chamfer matching for field edge matching.
(a) Exaggerated mismatch prior to optimization. The computer mea-
sures the average gray value in the distance transform under the
drawing. (b) By rotating, translating, and scaling the contour and
minimizing the average gray value, matching takes place. Because of
the high quality of the segmented features, chamfer matching works
extremely reliably and accurately for this application.

missing shielding block, the MEAN cost function is the only
cost function that works well. For this reason, these authors
implemented a two step procedure in which both the MEAN
and then the MAX cost functions are used for matching and the
results are compared to detect common shape errors. The resid-
uals using both cost functions are an indication of the quality
of the field shape and warnings are given if these exceed thresh-
old levels. Variations on this algorithm are given by Leszczynski
et al. [22, 23]; Cai et al. [9] compared its performance with that
of a contour-based matching algorithm.

35.2.1.2 Anatomy Matching and Clinical Application

Detection of anatomical structures in electronic portal images is
difficult because of the low contrast of the bony structures. Both
a top-hat filter [15] and a multiscale medial axis filter [14, 17]
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(a) (b) (c) (d)

FIGURE 35.5 Use of chamfer matching for anatomy matching in electronic portal imaging. (a) Result of top-hat filter on the portal image
shown in Figure 35.3: bone is enhanced, but so is some noise. (b) Automatic segmentation of (a). (c) Distance transform of (b) overlaid with
a drawing of the anatomy in the reference image prior to matching. (d) After matching. Even though the quality of the segmented anatomical
features is poor, the matching performance is reasonable.

can be used for a low-quality segmentation of the bony anatomy
(Figures 35.5a and 35.5b). However, it turns out that the cham-
fer matching algorithm works reasonably well even with such a
poor-quality segmentation (Figures 35.5c and 35.5d). However,
the likelihood that the chamfer matching algorithm is caught in
a local minimum increases with a poor segmentation quality.
For this reason, it is highly important that the matching result
be verified visually and that the operator can manually adjust
the result if required. For AP images (such as the ones shown
in Figures 35.3 and 35.5) the matching reliability is over 90%
[17]. However, for other anatomy, the reliability is lower. The
complete analysis procedure takes less than 1s on a modern
low-cost computer. A portal image analysis procedure based on
chamfer matching has been in clinical use since 1992 and has
been used for thousands of images. The analysis results of mul-
tiple beams are averaged to obtain an estimate of the patient
misalignment in 3D. Using this methodology, it is possible to
correct the patient setup on-line, i.e., take an image with a short
exposure, analyze the image(s), and correct the patient setup.
However, such a procedure is only considered cost effective for
patients who are treated in a few fractions. For other patients,
the image analysis is performed off-line (i.e., in the evening
hours) and the results are fed into a computerized decision
rule. This protocol is aimed at eliminating systematic errors in
patient positioning, without influencing the day-to day varia-
tions. With this protocol, the incidence of systematic patient
position errors larger than 5mm has been reduced from 30%
to about 1%.

35.2.2 Image Registration for Treatment Planning

A critical step in the radiotherapy procedure is the delineation
of the target volume. Since the introduction of CT, the use of
this image modality has become standard practice in precision
radiotherapy. The CT scan has a high geometric accuracy, and
the pixel values in the CT data are used directly to compute
transport of the beam through the patient. Using a computer

system, an optimal beam arrangement is searched to obtain a
high dose in the tumor, while sparing critical normal tissues as
much as possible (treatment planning). However, a disadvan-
tage of CT is that the contrast between tumor tissue and normal
structures is often extremely low. By using image registration,
the diagnostic quality of, e.g., MRI can be combined with the
geometric accuracy of CT [31].

Chamfer matching is highly suitable for 3D image registra-
tion because of its high speed. The extension of the chamfer
matching algorithm to 3D is trivial. However, often the pixel
size and the slice distance are different, which has to be taken
into account in the algorithm. Using world coordinates in the
matching algorithm as much as possible limits the complexity
of such an adaptation. In the next sections, the use of chamfer
matching 3D registration of CT, MRI, and SPECT is described
for the head, the pelvis, and the lungs.

35.2.2.1 CT-CT Registration

The registration of CT with CT is useful for treatment plan-
ning since it allows repeated measurement of the position of an
organ, to quantify its mobility, or to update the knowledge of
the anatomy of the patient during the course of treatment. In
radiotherapy, the bony anatomy is generally used as a frame
of reference, since the bony anatomy is most visible in the
radiographs used for patient positioning. Segmentation of bone
from CT is trivial, i.e., using binary segmentation at a suit-
able threshold level. The choice of threshold level is not very
important, as long as the same threshold is used in both images
to be matched. In general, however, a somewhat high thres-
hold (e.g., 500 HU) is preferred to suppress the partial volume
effect and to prevent erroneous identification of contrast dyes
administered to the patient to enhance delineation of soft tissue
structures. Applying a contour tracer to one segmented image
(e.g., slice by slice), and a distance transform to the other pro-
duces good quality input for the chamfer matching algorithm
(Figure 35.6a).
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(a) (b)

FIGURE 35.6 Use of a simple eraser tool to remove mobile anatomy
for chamfer matching for CT-CT and CT-MRI registration. (a)
Automatically traced bone contours of a pelvic CT scan. (b) The oper-
ator erases the femurs in the 2D picture. The operation is linked to
the 3D point list, meaning that all slices are “cleaned” in a matter of
seconds.

A problem that needs to be addressed, however, is that not all
bony anatomy is rigid. In particular the lower jaw for the head
and the leg bones for the pelvis may be in different positions
in subsequent scans. To exclude these structures in our match-
ing application, we have developed a small contour wiper that
works on a wire-frame display of the contoured bones [37]. It
turns out that erasure of the mobile anatomy is only required
in the drawing input of the chamfer matching algorithm, since
near the correct match the extraneous structures in the distance
transform will not correspond with any structures in the draw-
ing and will not be “seen” by the algorithm. With the mobile
anatomy erased, CT-CT registration can easily reach subpixel
accuracy [36].

A similar algorithm has been used to register CT-CT on lung
contours to localize lung damage after radiotherapy [21].

35.2.2.2 CT-MRI Registration

Registration of CT and MRI is highly important in treatment
planning of radiotherapy. CT is commonly used to define the
organs and location of the tumor (target). CT is most suitable,
since the pixel values in the CT scan provide a direct measure of
the electron density of the tissue, information that is required
to predict the transport of the radiation through the body. In
addition, the good geometric fidelity of CT helps in deliver-
ing the treatment beams to the correct place. In some cases,
however, MRI provides much better contrast of the tumor.
In such cases CT-MRI registration is extremely useful. CT is
then used to define the normal structures, while MRI is used
to define the tumor. Bone is the most suitable structure for
matching for treatment planning: first, because bone has a rel-
atively high contrast in both CT and MRI, and second because
bone is considered as a frame of reference, relative to which all
internal and external coordinates are related. In CT-MRI reg-
istration, it is best to use CT to extract the drawing, that is,

(a) (b)

FIGURE 35.7 Segmentation of MRI for chamfer matching (sin-
gle slice of the full stack is shown only). (a) Segmentation of
the skull in MRI of the head using a two-threshold scheme. (b)
Segmentation of bone in MRI of the pelvis using a top-hat filter on
the negated image. The segmentation is good enough for successful
matching.

by binary segmentation followed by contour tracing. Also, for
CT-MRI registration it is highly important to exclude mobile
anatomy from the segmented CT, e.g., using an eraser tool
such as shown in Figure 35.6. Segmentation of bone in MRI
requires selection of dark structures. For head matching, good
results have been obtained with a two-threshold segmentation
algorithm on the unprocessed pixel values [34]. For example,
for proton density MRI, segmenting all pixels between 15%
and 65% of the average gray value of the brain results in a
reasonable segmentation of the skull, even though some parts
of the brain and an outline of the skin are segmented as well
(Figure 35.7a). For the pelvis, application of a top-hat filter on
the negated pixel values results in a reasonable segmentation
[39] (Figure 35.7b).

Some examples of CT-MRI registration are shown in
Figure 35.8. Note the strongly improved soft tissue visualization
in MRI compared with CT. The chamfer matching algorithm is
in widespread clinical use for CT-MRI registration for stereotac-
tic radiotherapy [20]. The utility for conformal radiotherapy is
great as well [29]. The importance of excluding mobile anatomy
for matching is illustrated in Figure 35.8c.

The impact of image registration on prostate treatment plan-
ning is dramatic. In a multiobserver,multimodality study,Rasch
et al. compared the target delineation performed by three
observers in CT, axial MRI, coronal MRI, and sagittal MRI [30].
If different observers delineate the target in the same scan, the
differences are on the order of a few millimeters both for CT
and MRI. However, between CT and MRI large systematic dif-
ference can be observed (Figure 35.9). The delineated volume in
MRI is on average 30% smaller. Most of these differences occur
at the posterior side of the prostate (8 mm average difference).
Even though the true target volume is unknown, it is likely that
the MRI defined volume more closely represents the true organ,
because in CT the base of the seminal vesicles was erroneously
included.
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(a) (b) (c)

FIGURE 35.8 Some examples of CT-MRI registration. (a) MRI slice of a brain tumor patient with an inset of matched CT. The MRI clearly
shows abnormal anatomy around the operation bed, while in the CT scan the brain around the operation bed (the dark spot) looks normal.
In this case, the MRI is essential for accurate targeting of the tumor volume for radiotherapy. (b) Quality assurance of CT-MRI matching of
the pelvis. The CT bone is overlaid in white over the MRI (bone is black in MRI). (c) Matching the same data without first erasing the femurs
(Figure 35.6a) leads to a grossly incorrect match (target registration error of about 1.5 cm).

FIGURE 35.9 Example of observer variation (top to bottom) and
modality deviation (left to right) for the delineation of the prostate.
The MRI slices in this figure have been matched and resampled to
correspond with the CT slices on the left. The difference between the
observers is a few millimeters, while the same observer delineates a
target area in MRI that is almost a centimeter smaller. (See also color
insert).

35.2.2.3 Registration of CT with SPECT

The use of chamfer matching on SPECT images has been inves-
tigated for the brain to study Alzheimer’s disease [12] and for
the lung to quantify the relation between radiation dose and
lung function changes [9, 21]. Essential for successful matching
is that the SPECT scan shows adequate anatomy of interest. For
example, HMPAO SPECT scans show the whole brain, while
ventilation or perfusion SPECT scans show the whole lungs.
Segmenting these organs is, however, difficult because it is not
easy to derive heuristic rules to find the correct threshold. With
chamfer matching it is, however, easy to include the segmenta-
tion threshold in the optimization procedure. This means that

the whole chamfer matching algorithm is performed several
times for different SPECT segmentation thresholds and that
the match with the lowest cost function is kept. Because of the
low resolution of the SPECT and PET, a single chamfer match-
ing run is extremely quick and the whole procedure takes no
longer than a minute. It is, however, essential in this procedure
to use images with a calibrated scale and to exclude scaling in
the optimization loop (changing the segmentation threshold
for SPECT leads to a pseudoscaling due to the unsharpness of
the image, which would be erroneously corrected by the match-
ing algorithm). Mangin et al. describe a similar use of chamfer
matching for MRI-PET image registration [23]

35.2.2.4 Measurement of Organ Motion

The use of chamfer matching to determine organ motion is
illustrated in Figure 35.10. Here, a pair of CT scans was first
matched on the solid bone of the pelvis, and next on the right
femur. The small insets on these figures show the drawing points
used for matching. Erasing both femurs or erasing everything
except a single femur takes about 15 seconds. To compute the
relative motion (in this case of femur relative to pelvis), the
transformation matrix of one match is inverted and multiplied
with the matrix of the other match. The resulting matrix (in
homogeneous coordinates) is decomposed into translation and
rotation elements, which accurately quantify the motion of the
femur relative to the pelvis. In this example, the femur was
rotated by an extreme amount of 18.9◦ around the craniocaudal
axis and by smaller angles around the other two axes.

In a similar way, the motion of the prostate relative to the
pelvis was quantified [35]. For matching the prostate, how-
ever, outlines delineated on the treatment planning system were
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(a) (b)

FIGURE 35.10 (a) CT-CT matched on the pelvis (the inset shows
the contours used for matching, that is, the pelvis only). (b) CT-CT
matched on the right femur (the inset shows the contours of the single
used femur).

used in the chamfer matching algorithm. Because all organ
contours are used for matching, small differences in delin-
eation of the prostate, missing slices, or differences in slice
distance have only a limited influence on the accuracy. A strong
correlation was found between rectal volume and anterior–
posterior translation and rotation around the left–right axis of
the prostate (Figure 35.11). Because the rectum volume varies
significantly, these parameters had the largest standard devi-
ations of 2.7 mm and 4.0◦ (Table 35.2). Bladder filling had
much less influence. Less significant correlations were found
between various leg rotations and pelvic and prostate motion
and bladder filling. Standard deviations of the rotation angles
of the pelvic bone were less than 1 degree in all directions.
The availability of statistical data on organ motion is extremely
important in radiotherapy to decide on required safety
margins.

35.2.2.5 Follow-up studies

By integrating functional lung images made before and after
radiotherapy with the planning CT, the local relation between
change of function and delivered dose can be quantified accu-
rately [10]. The technique of chamfer matching is a convenient
and more accurate alternative for the use of external markers
on CT and SPECT [21]. In some cases, late damage visible in
diagnostic scans can be related to local radiation dose, improv-
ing follow-up diagnostics. Figure 35.12a shows an example of
tumor regression over a period of 3 months in a patient which
was treated stereotactically twice at Harvard Medical School.
Figure 35.12b shows CT scans of a patient with a lung reaction
half a year after receiving a mantle field treatment. By correlat-
ing the planning CT with the follow-up CT based on the lung
tops (the scans were made with the arms in different orienta-
tions), the given dose at the point of the lung reaction could be
estimated. These data were important for the subsequent clini-
cal decision, because it showed that the lung damage was most
likely related to the high local radiation dose.

35.3 Performance Tests of the Chamfer
Matching Algorithm

The performance of an automatic image registration algorithm
may be quantified according to the following types of param-
eters: accuracy and reproducibility, and reliability and capture
range.

35.3.1 Accuracy and Reproducibility

The accuracy is defined as the deviation between the registra-
tion obtained with the algorithm under test and the ground
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FIGURE 35.11 Correlation between rectal volume differences (measured with the planning system) and (a) rotation and translation of the
prostate (measured using chamfer matching). (b) Increasing rectal filling tends to rotate the prostate around a left–right axis of the patient near
the apex of the prostate. The translations are measured because our reference point is the center of gravity of the prostate. Reprinted from Int J
Radiat Oncol Biol Phys. 33, van Herk M, Bruce A, Kroes S, Shouman T, Touw A, Lebesque JV. Quantification of organ motion during conformal
radiotherapy of the prostate by three-dimensional image registration, 1311–1320, copyright 1995, with permission from Elsevier Science.
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TABLE 35.2 Magnitude of relative organ motion in the pelvic area specified as one standard deviationa

Relative motion Translation (mm) along axis Rotation (degrees) around

Axis L-R A-P C-C L-R A-P C-C

Pelvic bone-table 3.9 2.3 8.8 0.9 0.5 0.7
Femora-pelvic bone 1.0 5.4 3.3 2.7 2.0 3.7
Prostate-pelvic bone 0.9 2.7 1.7 4.0 1.3 2.1

a These values are quantified from differences in position between pairs of scans by dividing the standard deviation of the differences by sqrt(2).The values for motion of the pelvic
bone relative to the table indicate the setup deviations on the scanner. The statistics for left and right femora have been combined. Because rotations are described around the center
of gravity of the applied leg contours, rotations around the joint induce translations as well. The prostate is fairly stable, except for translations in the A-P direction and rotations
around the L-R axis. For most parameters, measurement errors are well below the observed variations. Reprinted from Int J Radiat Oncol Biol Phys. 33, van Herk M, Bruce A, Kroes S,
Shouman T, Touw A, Lebesque JV. Quantification of organ motion during conformal radiotherapy of the prostate by three-dimensional image registration, 1311–1320, copyright 1995,
with permission from Elsevier Science.

(a) (b) (c)

FIGURE 35.12 (a) Example of tumor regression. Two CT scans of the same patient with 3 months in between have been matched based on
the skull. The outer enhancement ring is from the first scan, the inner ring is from the second scan. (b) Lung damage visible in a follow-up
scan. (c) By overlaying the dose distribution (defined on the planning CT) on the follow-up scan, the given dose at the area of damage can be
estimated. A complicating factor for this match was that the scans were made with the arms in a different orientation. Consequently, only the
lung tops were used for matching. (See also color insert).

truth. The accuracy may be represented as mean and standard
deviation of the differences in transformation parameters, or
as an average vector displacement of points of interest (tar-
get registration error). Because, in general, ground truth data
is unavailable, the reproducibility of algorithms is often tested
instead, i.e., by restarting the automatic registration from ran-
dom starting positions. In an extensive perturbation study in
which artifacts were simulated in clinical CT scans, a number
of artificial and natural artifacts (for instance, as a model for
CT-MR matching) were introduced or suppressed in pairs of
pelvic CT scans, and a perturbation study was used to deter-
mine reliability and accuracy in a well-known ground truth
situation [36]. In this study, chamfer matching turned out to be
extremely robust against missing data, low resolution, and poor
segmentation of the images. In the presence of artifacts, mini-
mization of the average distance outperformed minimization
of the root-mean-square distance. Outliers in the scan from
which the point list is obtained must be avoided. For example,
rotation of the femurs reduces CT-CT registration accuracy by
1–2 mm. In other situations, the reproducibility is extremely
good, with average vector displacements of less than 0.5 mm,
i.e., the reproducibility is at subpixel level (the pixel size of

the used scans was 1.6 mm, with an average slice distance of
4 mm).

An obvious way to test the accuracy of a registration algo-
rithm in the absence of ground truth data is to compare the
results of two or more registration methods. When these regis-
tration algorithms are statistically independent, the differences,
which are attributed the inaccuracy of both algorithms, can be
used to estimate the inaccuracy of the individual algorithms.
Using three independent registration results (e.g., one by the
automatic system under test, and two by independent human
observers), Gilhuijs et al. estimated the accuracy of 2D cham-
fer matching using analysis of variance [17]. In this study, the
accuracy of the chamfer matching algorithm for registration of
portal images was shown to be similar to a well-trained human
observer (0.5 mm SD) for large anterior–posterior radiographs
of the pelvis.

To give an impression of the accuracy of both matching
procedures for CT-MRI registration, chamfer matching and
volume matching have been compared for 12 brain cases and
14 pelvic cases from our image database. In all the cases, the
matched MRI were proton density scans. The chamfer matching
results had been used clinically for treatment planning and had
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TABLE 35.3 Difference (st. dev.) in resulting translation (mm) and rotation (degrees) between chamfer matching on bone and volume matching
based on mutual information for CT-MRI registration

Translation (mm) along axis Rotation (degrees around)

A-P H-P L-R A-P H-P L-R 3D mean 3D maximum

Brain (n = 15) 0.53 0.45 0.24 0.29 0.17 0.60 1.43 2.82
Pelvis (n = 8) 1.8 1.3 1.1 1.0 0.8 1.5 3.67 9.71

been visually verified. For the head the differences are extremely
small (Table 35.3). Subsequent visual verification of the volume
matching results did not show conclusively that one method was
better than the other. Assuming that both registration methods
are independent, the errors in either methods are smaller that
the listed numbers. The largest observed difference is a few mil-
limeters. For the pelvis, very large differences were found, while
visual scoring of the matches showed that the volume regis-
tration method did not perform very well. We blame the poor
performance of volume registration for the pelvis on the influ-
ence of organ motion and shape changes on the registration.
In these circumstances, it is a good idea to limit the registra-
tion algorithm to bony anatomy, i.e., use a technique such as
chamfer matching that works on segmented features.

We have noted that the reliability of the registration depends
strongly on the followed protocols for MRI and CT acquisi-
tion. For example, the reliability of the matching procedure is
reduced if a scan does not cover the complete head.

Another method to test registration accuracy is by com-
paring (triangulating) registrations of a single CT scan with
MR in different orientations in a “full circle.” For example,
CT is first matched on transverse MR, next transverse MR
is matched independently on coronal MR, and finally coro-
nal MR is matched independently on CT. The product of the
three transformations is the identity if all matching steps are
perfect. Deviations from identity occur both due to random
errors and due to some types of systematic errors. MR was regi-
stered on MR (to close the “circle”) by minimization of RMS
voxel value differences. This method provides an estimate of
the registration accuracy on clinical data and can detect ran-
dom errors and some sorts of systematic errors, such as errors
induced by chemical shift in MRI. For this particular prob-
lem random errors were on the order of 0.5 mm SD, and a
systematic shift of 1 mm was demonstrated due to chemical
shift [37].

35.3.2 Reliability and Capture Range

Because the optimization procedures used in most implemen-
tations of chamfer matching are simple downhill searchers, the
algorithm can be caught in a local minimum of the cost func-
tion and produce a suboptimal or downright wrong result.
The probability that the match winds up in a local mini-
mum depends on the distance (in the search space) between

the starting position and the correct match. For this reason,
often measures are taken to reduce this distance (by manual or
automatic prematching).

To test a registration procedure for reliability and capture
range, it is restarted repeatedly with a random translation,
rotation, and scaling from a well-chosen reference match. The
“capture range” is defined as the distance (expressed as an aver-
age displacement vector length for the random transformation)
at which 10% of the registrations fail. A failure is a match that
deviates significantly from the reference match. The reliability
is measured by generating random transformations according
to the assumed clinical distribution of initial mismatches and
counting the number of failures. A typical capture range for 3D
image registration using chamfer matching is 2–5 cm, depend-
ing on the quality of the image segmentation. At capture ranges
below 4 cm a prematch (for instance, on the skin surface) is
required to ensure adequate reliability. With such measures, a
reliability on the order of 95% or better can be obtained for
CT-MRI registration of the head or of the pelvis. The remain-
ing failures are corrected by restarting the match from a manual
prematch.

The capture range was measured this way for CT-CT, CT-
MRI, and CT-SPECT registration of the head [34]. The capture
range was 6 cm for CT-CT and CT-MRI and 3 cm for CT-
SPECT. A capture range of 4 cm is adequate for reliable
unattended clinical operation. In conclusion, the accuracy and
reliability of our method is adequate for CT-CT and CT-MRI
correlation, while CT-SPECT correlation must be improved
further.

35.4 Conclusions

Chamfer matching is a simple, accurate, reliable, and fast regis-
tration method for segmented images. It may be considered as
an efficient and flexible implementation of the iterative closest-
point matching algorithm. With careful tuning, the method
achieves subpixel accuracy. In general, chamfer matching is
extremely robust against missing data, low resolution, and poor
segmentation of the images. In the presence of artifacts, mini-
mization of the average distance outperformed minimization of
the root-mean-square distance. Outliers in the scan from which
the point list is obtained must be avoided. 3D image integration
plays an important role in assessing and improving the accuracy
of radiotherapy.
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The past decade has seen tremendous growth in the demand
for intramodality registration of images. Much of this demand
has been driven by the increasing use of image subtraction
techniques to detect changes in images that are too subtle to
be reliably detected or quantified by simple visual inspection
(see Figure 36.1). Image subtraction was first used primarily
in functional imaging studies of the brain, where these sub-
tle changes could be correlated with cognitive tasks performed
by the subject. Early functional imaging studies were based on
positron emission tomography (PET) where only a dozen or so
images are typically collected from any given subject. Now that
functional imaging with magnetic resonance imaging (MRI) is
common, the demand for rapid, reliable, automated registration
of images has grown enormously, since several hundred images
are commonly acquired from each subject over the course of
an hour or so. Interest in registration of standard structural
images has also grown with the realization that registration
and subtraction can be used to detect subtle changes that may
reflect clinically important disease progression (see Chapter 41,
“Clinical Applications of Image Registration”). The high spa-
tial resolution of MRI images demands extreme registration
accuracy, and the current thinking is that subvoxel accuracy is

needed. In this context, intensity-based methods that do not
require the identification of explicit landmarks or features have
emerged as the workhorses of intramodality image registration.

36.1 Cost Functions for Intramodality
Registration

The premise of intensity-based registration methods is straight-
forward. If two images are well aligned, they will look similar to
one another. More explicitly, if one image is resampled to match
the other image, the image intensities at each voxel should be
similar in the two images. One caveat that should be noted
early in this discussion is that it may be necessary to globally
adjust the intensities of the images to compensate for any num-
ber of factors that may induce global changes in intensity from
one image to the next. Intensity-based cost functions quantify
the degree of similarity between the two images, and registra-
tion methods based on these cost functions simply adjust the
parameters of an appropriate spatial transformation model (see
Chapter 32, entitled “Spatial Transformation Models”) until the
cost function reaches a local optimum.

Copyright © 2008 by Elsevier, Inc.
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FIGURE 36.1 In the top panel, sagittal slices from two unregistered 3D
MRI volumes are shown. Although differences are not easily detected
by eye, subtraction of the images from one another reveals that subtle
differences are present, as seen on the second row of the top panel.
The bottom panel shows similar sagittal slices from the same two
datasets after registration of the full three-dimensional volumes using
an intensity-based cost function (scaled least squares). Trilinear inter-
polation was used during registration. After the optimal rigid-body
spatial transformation parameters were identified, the images were
resampled by using chirp z interpolation [17] to perform three one-
dimensional pseudoshears [11],which were preceded by an antialiasing
Fourier prepass interpolation [6]. After registration and resampling,
the artifacts caused by misregistration within the brain were elimi-
nated, as seen in the second row of the bottom panel. All difference
images in both panels were scaled identically here for display. Note
that the scalp, which was masked out of the images during registra-
tion, can still be detected in the postregistration difference images.
Also note that movement of the tip of the tongue is discernible even
in the unsubtracted images and represents a blatant violation of the
rigid-body model. The estimated three-dimensional rotational dis-
placement identified by the registration algorithm was 0.84◦ around
an axis of rotation oriented at an angle of 71.7◦ from the plane dis-
played here. Estimated three-dimensional translational errors in the
thalamus near the center of the brain were 1.5 millimeters with almost
all of the displacement directed along the brain’s anteroposterior axis.

36.1.1 Cross-Correlation

Cross-correlation was one of the first cost functions used for
image registration [18]. This cost function first multiplies the
intensities of the two images at each voxel and sums the result-
ing product. The product is then normalized by dividing it by
the product of the root mean squared intensities of each of the
two images. If the images are identical, the resulting value will
be equal to 1. Differences in the images will produce values less
than 1. It should be noted that the cross-correlation measure
does not explicitly compensate for differences in image inten-
sity, and it is possible that images identical except for global
scaling may not reach an optimum in the cost function unless
a variable scaling parameter is formally included in the model.
Implementations of cross-correlation have generally not used
calculus-based minimization methods (e.g., Collins et al. [4] use
simplex minimization), and our own attempts to implement
calculus-based minimization of this cost function have not
given good results. The added efficiency of calculus-based min-
imization methods has tended to make the cross-correlation
cost function less commonly used.

36.1.2 Ratio Image Uniformity

A cost function that does allow for global differences in image
intensity without the need for formal modeling of an intensity
scaling parameter is the ratio uniformity cost function intro-
duced in 1992 [20]. If one image is divided by the other image
on a voxel-by-voxel basis, the resulting ratio image should have a
constant uniform value when the images are well registered. Any
misregistration will induce nonuniformities. The ratio image
cost function quantifies this lack of uniformity by computing
the standard deviation of the ratio image and normalizing the
result by the mean ratio. This cost function is amenable to
calculus-based registration and has been validated extensively
for intramodality registration of PET images and MRI images
[13, 20, 21]. More recent work [21] has shown that this cost
function does not perform as well for MRI registration as the
scaled least squares cost function discussed next, but it is slightly
better than the scaled least squares cost function for registration
of PET images of a realistic brain phantom. A simulation study
comparing the ratio image uniformity measure to other selected
registration methods that were not based on voxel intensities
showed good performance by the ratio image uniformity cost
function [19].

36.1.3 Least Squares and Scaled Least Squares

Another index of image similarity is the squared difference in
image intensities averaged across all voxels. This value should be
minimal when the images are registered. If large differences in
image intensity are present, a global scaling term can be added
as an additional parameter to be optimized. Calculus-based
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minimization is especially robust for least squares problems,
making this cost function especially attractive and easy to
implement [1, 8, 10–12, 21, 22]. Even for high-resolution MRI
registration, this cost function is able to produce subvoxel
accuracy [21], and it is sufficiently robust to allow spatial
transformation models with hundreds of parameters to be
optimized [22].

36.1.4 Other Cost Functions

A number of other intensity-based cost functions have been
implemented and used for intramodality registration. These
include stochastic sign crossing [12, 15], sum of absolute dif-
ferences [5, 12], and mutual information (see Chapter 37,
“Across-Modality Registration Using Intensity-Based Cost
Functions”). A study by Lin et al. [14] compared a variety of cost
functions for registering PET fluoro-dopa images and found
the sum of absolute differences cost function to produce results
similar to those obtained with the ratio uniformity and least
squares methods.

Variants of these intensity-based cost functions have also
been used for intermodality registration. This topic is discussed
in detail in Chapter 37, “Across-Modality Registration Using
Intensity-Based Cost Functions.”

36.2 Interpolation Method

When using an intensity-based cost function, one needs to
repeatedly resample one of the images to match the other. This
resampling process necessarily requires selection of an inter-
polation model to be used within the registration algorithm.
It is important to understand that the interpolation method
used for registration does not have to be the same interpo-
lation method used when applying the optimal registration
parameters to compute a final image (see Figure 36.1). Because
speed is important, simple trilinear interpolation is usually the
interpolation model implemented when optimizing intensity-
based cost functions. Hajnal et al. [10] suggested that the use of
sinc interpolation during registration might lead to improved
registration accuracy. Direct comparisons of trilinear and sinc
interpolation [7, 21] have found that the theoretical advantages
of sinc interpolation do not translate into substantial improve-
ments in registration accuracy and that the deterioration of
performance in terms of speed is severe with sinc interpolation.

For calculus-based minimization using analytical deriva-
tives, the interpolation of voxel intensities is a critical link
between the spatial transformation model (which dictates
exactly where in space the interpolated value must be com-
puted) and the derivatives of the cost function based on that
image intensity with respect to the formal spatial transforma-
tion parameters. A small change in a spatial transformation
parameter will slightly alter the position at which the value

must be interpolated, and this will in turn alter the intensity
itself. Calculus-based methods track these derivatives through
the entire process, invoking the chain rule as necessary to
reduce the redundant computations. Explicit equations for
the derivatives of the trilinear interpolation process are given
in [23].

36.3 Calculus-Based Optimization

36.3.1 Univariate Optimization

One approach to calculus-based optimization is to perform
sequential optimizations of the cost function by treating each
parameter in turn as a univariate minimization problem. This
approach, combined with heuristic rules for selecting a good
sequence of parameters to minimize, was shown to be fast
and accurate for registration of PET and MRI images [14, 21].
Univariate minimization is based on a quadratic (i.e., parabolic)
approximation of the cost function in the region where the
parameter is near the cost function’s minimum (Figure 36.2).

FIGURE 36.2 The cost function is represented on the vertical axis, and
a parameter that needs to be adjusted to minimize the cost function
is shown on the horizontal axis. Calculus-based univariate minimiza-
tion uses the first and second derivatives of the cost function at a given
point (indicated by the blue cross) to construct a parabola (red curve)
that is assumed to be a reasonable model of how the true cost function
varies. The first derivative, represented by the yellow line, should be 0
(horizontal) at the true minimum. The minimization algorithm com-
putes the value of the parameter that corresponds to the minimum
of the constructed parabola and then reevaluates the derivatives using
this new estimate. This process is repeated iteratively until a minimum
is reached. (See also color insert).
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If p0 is the optimum value of the parameter p, and c is the cost
function, this approximation gives

c( p) ∼= c( p0)+ k ∗ ( p − p0)
2.

The first derivative of the cost function with respect to p, c ′ is
given by

c ′( p) = 2 ∗ k ∗ ( p − p0),

and the second derivative, c ′′, by

c ′′( p) = 2 ∗ k.

From this, it follows directly that

(
p − p0

) = c ′( p)
c ′′( p)

p0 = p − c ′( p)
c ′′( p)

.

The parabolic form of the cost function is justified by the
fact that the first derivative of the cost function should be zero
at a local minimum or maximum. The optimization strategy
is very simple: Compute the first and second derivatives of the
cost function with respect to the parameter, divide the first
derivative by the second derivative, and subtract the result-
ing quotient from the current value of the parameter. If the
parabolic model were perfectly accurate (which it generally is
not), the minimum would be reached in a single step. As the
minimum is approached, the parabolic approximation should
become increasingly valid, and convergence should be rapid
with repeated iterations. A reasonable stopping criterion occurs
when the first derivatives become arbitrarily close to 0 or when
the predicted or actual improvements in the cost function
become arbitrarily small.

36.3.2 Multivariate Optimization

If the independent parameters of the spatial transformation
model did not interact with one another, multivariate optimiza-
tion could be conducted as a set of simultaneous univariate
optimizations. Unfortunately, the parameters of a rigid-body
model become extensively intertwined even in the course of
converting rotations and translations into the coefficients of
the linear equations that perform rigid-body transformations
(see Chapter 32, entitled “Spatial Transformation Models”).
Fortunately, there is a multidimensional version of the univari-
ate procedure described previously that takes these interactions
between parameters into account. Analogous to the univariate
case, the cost function is modeled as a parabolic surface centered
on the desired minimum (Figure 36.3). Given a vector b of first
partial derivatives of the cost function with respect to each of the
spatial transformation parameters and a Hessian matrix A con-
sisting of the second partial derivatives with respect to each pair
of parameters, the vector x, which represents the adjustment of

each spatial transformation parameter needed to reach the min-
imum of this parabolic surface, can be computed by solving the
matrix equation

A ∗ x = −b.

Note that this multivariate equation is analogous to the uni-
variate result. This equivalence can be emphasized by noting
that the Hessian matrix A is symmetric by definition and con-
sequently that all of its eigenvalues and eigenvectors are real.
If V is a matrix with columns that correspond to all of the
unit-length eigenvectors of A, and D is a matrix with the cor-
responding eigenvalues along the diagonal and zeros elsewhere,
the matrix to be solved can be rewritten as

V ∗ D ∗ V ′ ∗ x = −b

so

x = −V ∗ D−1 ∗ V ′ ∗ b.

From a geometric standpoint, the vector b of first deriva-
tives is rotated by the orthonormal matrix V ′ into a space
where each newly defined first derivative is divided by the corre-
sponding eigenvalue derived from the Hessian matrix of second
derivatives. The resulting vector is then rotated back into the
original space where it defines the modification of the original
parameters that is required. In essence, the eigenvectors of A
define a set of hybrid parameters that are uncorrelated with one
another. Each of these hybrid parameters effectively undergoes
univariate normalization. These newly defined hybrid spatial
transformation parameters lie along the principal axes of the
multidimensional parabolic surface defined by A and b (see
Figure 36.3). Fortunately, it is not necessary to actually compute
eigenvectors and eigenvalues to determine the required trans-
lation. This multivariate formulation has been implemented
for the ratio image uniformity, least squares, and scaled least
squares cost functions [21] and generally performs well. One
difficulty that can arise is that one or more of the eigenvalues
of the Hessian matrix A can turn out to be negative (indicating
proximity of a maximum instead of the desired minimum) or 0
(indicating a saddle point). In this case, the equation A∗x=−b
does not have a real solution, and the Hessian matrix is said to be
nonpositive definite. One strategy for dealing with this problem
is discussed in the next section.

36.3.3 Special Simplifying Approximations for
Least Squares Problems

Recall the univariate minimization problem described previ-
ously. For least squares cost functions, the contribution of each
individual voxel to the cost function, ci , can be expressed as the
square of the intensity difference function, di

ci(p) = d2
i (p).
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Multivariate minimization: with parameter interactionMultivariate minimization: with parameter interaction

Multivariate minimization: no parameter interactionMultivariate minimization: no parameter interaction

FIGURE 36.3 Multivariate minimization methods model the cost
function as a parabolic surface. The right top panel shows the modeled
cost function on the vertical axis and two parameters on the hor-
izontal axes. The objective is to identify the parameter values that
correspond to the lowest point on the parabolic surface. As illus-
trated on the left in the top panel, the second partial derivatives of
the cost function indicate that the two parameters are intertwined.
As a result, many univariate minimizations of these two parameters
would be required to reach the minimum. Full Newton-type mini-
mization procedures effectively define a new pair of hybrid parameters
that are linear combinations of the original parameters but have the
special property that their second derivatives are diagonalized. The
right panel shows the geometric consequences of this diagonalization.
Univariate minimizations can be applied to both of the hybrid parame-
ters to find the location of the minimum in a single step. The optimum
pair of hybrid parameters can then be projected back onto the orig-
inal pair of parameters to compute the values required for the next
iteration.

The first derivative can be computed using the chain rule as

c ′i ( p) = 2 ∗ di( p) ∗ d ′i ( p),

and the second derivative as

c ′′i ( p − p0) = 2 ∗ d ′i ( p) ∗ d ′i ( p) + 2 ∗ di( p) ∗ d ′′i ( p).

If the second term in the formula for the second derivative is
small compared to the first term, the formula for the displace-
ment needed to reach the minimum can be approximated as

p0 = p −
∑

i

2 ∗ di

(
p
) ∗ d ′i

(
p
)

2 ∗ d ′i
(

p
) ∗ d ′i

(
p
) = p −

∑
i

di

(
p
)

d ′i
(

p
) .

It turns out that the multivariate equivalent of this approx-
imation has been used routinely in a number of least squares
minimization problems. Indeed, Press et al. [16] specifically
recommend this approach rather than including the omit-
ted second derivative term, noting that this will not alter the
final result, but rather the path through parameter space taken
to achieve this final result. We have found this strategy to
be effective in eliminating problems associated with nonpos-
itive definite Hessian matrices that are associated with full
Newton-type minimization. This strategy is also used by the
Levenberg–Marquardt algorithm, and some variant of this gen-
eral approach has been used for registration by a number of
authors [1, 8, 10, 11, 21, 22].

36.4 Speed and Accuracy Trade-offs

The single most effective strategy for improving the speed of
intensity-based registration algorithms is to compute the cost
function only for some subset of the total voxels in the images.
Tenfold improvements in speed can be achieved with only mod-
est decreases in registration accuracy by sparsely sampling the
images [21]. Avoidance of overly stringent convergence criteria
can also be quite helpful.

The accuracy of intensity-based registration is generally
believed to be in the subvoxel range. It is difficult to define
gold standards that allow true accuracy to be verified with this
degree of certainty (see Chapter 33, “Validation of Registration
Accuracy”). Using internal consistency measures, we have
shown that registration results obtained with high-resolution
MRI images are consistent with errors in the 75–150 μm
range in images with 1–millimeter voxels [21]. Errors in low-
resolution PET images with 6.75–millimeter slice thickness are
on the order of 2 millimeters, which can also be considered sub-
voxel accuracy [21]. Smoothing the data [21] and editing the
data to remove extraneous structures that might move slightly
relative to the object of interest [10] appear to improve accuracy
in at least some contexts.

36.5 Scope and Limitations

Voxel-intensity-based registration methods are generally robust
for within-modality registration and require minimal user
intervention. As detailed in Chapter 37, “Across-Modality
Registration Using Intensity-Based Cost Functions,” extensions
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of these methods are also effective for across-modality registra-
tion. Although most attention has been focused on the brain as
the target object for registration, voxel-intensity-based meth-
ods can also be used for registration of images of other organs
such as the breast [24]. These techniques have been shown to be
robust in the presence of focal changes [19, 20] and can even be
used with clinical images that include differences in tumor size
and contrast enhancement [3]. Spatial transformation models
need not be restricted to those required for intrasubject regis-
tration; even moderate order nonlinear warps with hundreds of
parameters can be optimized using calculus-based minimiza-
tion of intensity-based cost functions [22]. Use is not limited to
three-dimensional images; two-dimensional photographs can
also be registered [2].

These methods are most likely to encounter limitations in
cases where the amount of anatomic information contained
within the images is low or where the visual scene lacks
global features. Registration of a simple square to a displaced
version of itself is not easily achieved by an intensity-based
cost function because the spatial information is limited to the
boundaries. Likewise, attempted registration of a page of print
to a displaced copy is likely to fail because all of the spatial
information is at such a local scale that the correct displacement
is not reflected by the derivatives of the cost function. Failures
can also occur when performing simple simulations without
the addition of noise because interpolation errors, which do
not conform to the parabolic approximation, can predominate
the derivatives. Movements that occur during the course of
image acquisition will not be corrected by this or any other
standard registration method.

36.6 Future Directions

For a large class of intramodality problems, intensity-based
registration poses an adequate retrospective solution to the
registration problem. As demands for precise quantification of
small differences grow, differences in partial volume effects and
the associated interpolation errors will need to be addressed
more effectively. The best strategy for dealing with these prob-
lems is to move the use of intensity-based cost functions from
the realm of retrospective methods into the realm of prospective
methods. When one uses a scout scan, it is possible to perform a
preliminary registration and then acquire new images in an ori-
entation that will match that of a previous scanning session [20].
This eliminates many of the problems associated with partial
volume effects and interpolation errors and greatly facilitates
comparative interpretation of the images. Future functional
MRI sequences may well modify themselves on-the-fly to com-
pensate for subject movements detected within the sequence of
images. An appropriate long-term goal for the future of the field
would be to advance to a state where within-modality image

registration is so robust and so omnipresent that it is routinely
taken for granted.
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37.1 Introduction

Intensity-based cost functions, also called voxel similarity
measures, have recently come to dominate the field of cross-
modality or intermodality medical image registration. For same
modality or intramodality registration, techniques that align
images by optimizing some measure of image similarity cal-
culated from the original voxel intensity values of the images
have an intuitive basis. For intermodality registration, however,
the intensity values in images of the same object taken with the
different modalities are often very different, so the success of
voxel similarity measures in this area is surprising. In this chap-
ter, we give some background for the use of intensity-based cost
functions in intermodality image registration, and describe how
information theoretic measures, in particular mutual infor-
mation, came to be used. We discuss the successes of mutual
information and highlight situations when it fails. The most
widely used application of intermodality registration is aligning
three-dimensional MR,CT,SPECT,and PET images of the head.
In this case, the registration transformation is usually assumed
to have the six degrees of freedom of rigid body motion. Most of

the discussion is, however, applicable for registration transfor-
mations involving different numbers of degrees of freedom. For
example, some researchers are interested in aligning 2D projec-
tion images (e.g., X-rays or video images) with 3D images, so
called 2D-3D registration. Other authors add scaling or skew
degrees of freedom in order to model poorly calibrated voxel
dimensions or CT gantry tilt. Mutual information has also been
used to control registration incorporating elastic deformation
(sometimes called free-form deformation), but few intermodal-
ity results have so far been produced. Although most of the
results presented in this chapter come from the main applica-
tion area of 3D rigid body registration, we also include results
from other application areas.

Intermodality registration differs in several important ways
from intramodality registration. Almost by definition, differ-
ent medical imaging modalities usually have quite different
intensity characteristics. Also, whereas images from the same
modality being registered are frequently acquired with very
similar resolutions and fields of view (especially in serial MR
applications), intermodality images often differ substantially
from each other in both these respects. The modalities are often

Copyright © 2008 by Elsevier, Inc.
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most different in resolution and field of view in the through-
slice direction, where, for example, a much smaller volume of
CT data than MR data might have been acquired because of
radiation dose considerations. As a consequence, the volume of
overlap of the two images may be considerably smaller than the
volume imaged by either modality. To be clinically useful, it is
important that any intermodality registration algorithm can be
successfully applied to images of this sort.

37.2 Background to the Use of Voxel
Similarity Measures

As stated in the introduction, voxel similarity measures have an
intuitive basis in intramodality registration. The assumption is
that the images are very similar, that is, that after calculation of
the geometric transformation required to align the structures
in the patient being studied, the vast majority of voxels in the
registered images will differ only by noise. The simplest voxel
similarity measure is the sum of squared intensity differences
between images, SSD, which is minimized during registration.
For N overlapping voxels i in images A and B:

SSD = 1

N

∑
i

|A(i)− B(i)|2. (37.1)

It can be shown that this is the optimum measure when two
images only differ by Gaussian noise [1]. For intermodality
registration, this will never be the case.1 A slightly less strict
assumption would be that there is a linear relationship between
the intensity values in the images. In this case, the optimum
similarity measure is the correlation coefficient CC,

CC = 1

N

∑
i

(
A(i)− A

) · (B(i)− B
)

{∑
i

(
A(i)− A

)2 ·∑i

(
B(i)− B

)2
}1/2 , (37.2)

where A and B are the mean intensity values in images A and B.
The correlation coefficient can be thought of as a normalized
version of the widely used cross-correlation measure C :

C = 1

N

∑
i

A(i) · B(i). (37.3)

The assumption of a linear relationship between voxel values
is also, in general, untrue for images of different modalities,
as is clear from a brief inspection of the MR and CT head
images in Figure 37.1 or the CT and PET images in Figure 37.2.
Types of correlation have, however, been used for intermodality
medical image registration since the earliest days of this field.

1 This strict requirement is seldom true in intramodality registration, either, as

noise in medical images such as modulus MRI scans is frequently not Gaussian,

and also because there is likely to have been a change in the object being imaged

between acquisitions.

Maguire et al. [2] proposed an algorithm for registration of CT
and PET images of the head using a transformation that could
be represented by a second-order 2D (for two single slices) or
3D (for volumes) polynomial calculated from landmarks that
were interactively identified and refined by local cross correla-
tion. Apicella et al. [3] proposed the use of Fourier invariants
to provide fast cross-correlation of MR and PET images. A few
years later, van den Elsen et al. [4] used an intensity remap-
ping algorithm to make cross-correlation applicable to MR-CT
registration. None of these methods became widely used. The
favorite intermodality image registration techniques in the late
1980s and early 1990s used point landmarks [5–7] or surfaces
[8–10], and implementations of these approaches were in use
in several centers. The first intermodality intensity-based regis-
tration algorithm that became widely used was the variance of
intensity ratios proposed by Roger Woods for the registration
of MR and PET brain images [11]. This algorithm involved
an apparently trivial change to the source code of his pre-
viously published PET-PET registration technique [12], but
transformed its functionality. This algorithm makes an ideal-
ized assumption that “all pixels with a particular MR pixel value
represent the same tissue type so that values of corresponding
PET pixels should also be similar to each other”. The algorithm
therefore minimizes the normalized standard deviation of PET
voxel values for each of 256 MR intensity partitions. For reli-
able use, it was found to be necessary to remove dura, skull, and
scalp from the MR images prior to registration.

For registration of the images A and B, the variance of inten-
sity ratios (VIR) can be calculated in two ways, either as the sum
of the normalized standard deviation of voxel values in B for
each intensity a in A(VIRB), or as the sum of the normalized
standard deviation of voxel values in A for each intensity b in
B(VIRA):

VIRB =
∑
a∈A

nA(a)

N

σB(a)

μB(a)
(37.4)

VIRA =
∑
b∈B

nB(b)

N

σA(b)

μA(b)
. (37.5)

Here, μB(a) and σB(a) are the mean and standard deviations
of the values of voxels in image B that co-occur with value a in
image A, nA(a) is the number of voxels with intensity a in image
A, and N is the total number of voxels, and similarly for μA(b),
σA(b), and nA(b). Although the idealized assumption made by
the algorithm can be criticized as too simplistic, this approach
proved to be extremely successful and led to renewed effort
from the medical image analysis community to find alternative
intensity-based algorithms that would work for other types of
images (e.g., MRI and CT), or that would remove the need to
presegment the MR image data. One tool used in devising new
similarity measures was the two-dimensional or joint image
histogram.
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FIGURE 37.1 Example unregistered MR (left) and CT (right) images. The top panels are the original
axial images, and the lower panel the reformatted coronal images. Note the striking difference in intensity
of equivalent anatomical tissues between these images. Also, for these scans targeted at the temporal bone,
the CT images have a much smaller axial field of view than the MR images. The difference in field of
view of images being registered is one of the greatest challenges of intermodality image registration.

37.3 Joint Histograms

A joint histogram is a useful tool for visualizing the relationship
between the intensities of corresponding voxels in two or more
images. Such histograms are widely used with multispectral
data (e.g., dual echo MR images) as the basis for statistical clas-
sifiers for image segmentation, and are used as co-occurrence
matrices for texture analysis. For two images A and B, the joint
histogram is two-dimensional and is constructed by plotting
the intensity a of each voxel in image A against the inten-
sity b of the corresponding voxel in image B. The value of
each histogram location h(a, b) will therefore correspond to
the number of image voxels with intensity a in modality A and
intensity b in modality B. For the dual echo MR image just

mentioned, there are the same number of voxels in each image,
and there is complete overlap between image volumes. When
a joint histogram is being produced from two images of dif-
ferent modalities, the resolution and field of view are likely to
be different. Before calculating a joint histogram, it is necessary
to resample one of the images so that they both have the same
sample spacing, and it is also necessary to exclude from the his-
togram all places where the two image volumes do not overlap.
An interesting observation was that the appearance of joint his-
tograms changes in a visually striking way as registered images
are misaligned [13, 14]. This visual change is especially striking
if the images are blurred to increase the partial volume effect
prior to the calculation of the 2D histograms. Example joint
histograms for MR and CT images and MR and PET images
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FIGURE 37.2 Example unregistered CT (left) and PET (right) images. The top panels are the original
axial images, and the lower panel the reformatted coronal images. As in Figure 37.1, the intensities in
these images are very different, and also the modalities have different fields of view. In this case, the CT
has a smaller field of view than the PET both in the slice plane and in the through-plane direction.

at various stages of misregistration are shown in Figure 37.3.
These joint histograms are functions of the two images and of
the registration transformation T . Although the change in the
appearance of the histograms for these two modality combi-
nations is different, there are some important similarities: In
particular, structure that is visible in the histogram at registra-
tion appears to disperse with misalignment, with an increasing
number of low-intensity values appearing in the histogram.

It is possible to describe many different voxel similarity
measures with reference to joint histograms. For example,
cross-correlation makes the assumption that at registration, the
values in the joint histogram lie on a straight line. The corre-
lation coefficient CC can be calculated directly from the joint
histogram as

CC = 1

N

∑
a, b (a − a) · (b − b)h (a, b)

{(∑a, b h(a, b)(b − b)2
) (∑

a, b h (a, b) (a − a)2
)}1/2

·
(37.6)

The variance of intensity ratios measure tries to reduce the
spread of this joint histogram about the mean position for each
vertical (or horizontal) line in the histogram. As in Eqs. 37.4
and 37.5, there are two versions of this measure: minimizing
the spread of modality A with respect to modality B,

VIRA = 1

N

∑
b

σa(b) · h(b) , (37.7)

and minimizing the spread of modality B with respect to
modality A,

VIRB = 1

N

∑
a

σb(a) · h(a) , (37.8)

where σa(b) is the standard deviations of intensity values a
in modality A corresponding to a given intensity value b in
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(a)

(b)

(c)

FIGURE 37.3 Example 2D histograms from Hill et al. [13] for (a) identical MR images of the head, (b) MR
and CT images of the head, and (c) MR and PET images of the head. For all modality combinations, the left
panel is generated from the images when aligned, the middle panel when translated by 2 mm, and the right
panel when translated by 5 mm. Note that, although the histograms are quite different for the different modality
combinations, misregistration results in a dispersion of the signal. Although these histograms are generated
by lateral translational misregistration, misregistration in other translation or rotation directions has a similar
effect.

modality B (similarly for σb(a)) and h(a) is the projection
of the joint histogram h(a, b) onto the b = 0 axis. As well as
describing existing similarity measures in terms of this joint
histogram, it is also possible to use the histograms as a basis for
new measures. The most important of these are the measures
based on information theory.

37.4 Information Theory Measures

37.4.1 Measuring Information
According to Studholme [15], it is useful to think of the registra-
tion process as trying to align the shared information between
the images:“If structures are shared between the two images and
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the images are mis-aligned, then in the combined image, these
structures will be duplicated. For example, when a transaxial
slice through the head is mis-aligned, there may be four eyes
and four ears. As the images are brought into alignment, the
duplication of features is reduced and the combined image is
simplified.” Using this concept, registration can be thought of
as reducing the amount of information in the combined image,
which suggests the use of a measure of information as a registra-
tion metric. The most commonly used measure of information
in signal and image processing is the Shannon–Weiner entropy
measure H , originally developed as part of communication
theory in the 1940s [16]:

H = −
∑

i

pi log pi . (37.9)

H is the average information supplied by a set of i symbols
whose probabilities are given by p1, p2, p3, . . . , pi . Entropy will
have a maximum value if all symbols have equal probability
of occurring (that is, pi = 1

i ∀i), and the minimum value if the
probability of one symbol occurring is 1 and the probability of
all the others occurring is zero.

37.4.2 Joint Entropy

By considering the two images being registered as the random
variables A and B, the joint histogram just described can be nor-
malized by dividing by the total number of voxels, and regarded
as a joint probability distribution function or PDF pAB of images
A and B. Because of the quantization of image intensity values,
the PDF is discrete, and the values in each element represent
the probability of pairs of image values occurring together. The
joint entropy H (A, B) is therefore given by

H(A, B) = −
∑
a∈A

∑
b∈B

pAB (a, b) log pAB (a, b). (37.10)

The number of elements in the PDF can be determined either
by the range of intensity values in the two images, or from a
reduced number of intensity “bins”. For example, MR and CT
images being registered could have up to 4096 (12 bits) intensity
values, leading to a very sparse PDF with 4096 by 4096 elements.
The use of between 64 and 256 bins is more common. In the
foregoing equation, a and b represent either the original image
intensities or the selected intensity bins. The joint entropy can
be seen to have some intuitive basis as a registration similarity
measure if we look again at the example joint histograms shown
earlier. With increasing misregistration, the brightest regions of
the histograms get less bright, and the number of dark regions
in the histogram is reduced. If we interpret the joint histogram
as a joint probability distribution, then misregistration involves
reducing the highest values in the PDF and reducing the num-
ber of zeroes in the PDF, and this will increase the entropy.

Conversely, when registering images we want to find a transfor-
mation that will produce a small number of PDF elements with
very high probabilities and give us as many zero-probability
elements in the PDF as possible, which will minimize the joint
entropy.

37.4.3 Mutual Information

The minimization of joint entropy H (A, B) has been used for
image registration [17, 18], but it has been found to be unreli-
able. The use of this measure involves the implicit assumption
that large regions in the two images being aligned should
increase their degree of overlap as the images approach reg-
istration. If the overlap between large regions of the image is
not maximized at registration, then the joint entropy will not
be a minimum at registration. As has been already stated, inter-
modality image registration involves aligning images with very
different fields of view. It is likely that the correct alignment will
involve only part of each image, that is, only a proportion of the
information in each image. A solution to this problem is to con-
sider the information contributed to the overlapping volume
by each image being registered as well with the joint informa-
tion. The information contributed by the images is simply the
entropy of the portion of the image that overlaps with the other
image volume:

H(A) = −
∑
a∈A

pA(a) log pA(a) (37.11)

H(B) = −
∑
b∈B

pB(b) log pB(b). (37.12)

Here, pA and pB are the marginal probability distributions,
which can be thought of as the projection of the joint PDF onto
the axes corresponding to intensities in image A and B, respec-
tively. It is important to remember that the marginal entropies
are not constant during the registration process. Although the
information content of the images being registered is con-
stant (subject to slight changes caused by interpolation during
transformation), the information content of the portion of
each image that overlaps with the other image will change
with each change in estimated registration transformation.
Communication theory provides a technique for measuring
the joint entropy with respect to the marginal entropies. This
measure is known as mutual information I (A, B) and was
independently and simultaneously proposed for intermodality
medical image registration by researchers in Leuven, Belgium
[18, 19], and MIT in the United States [1, 20]:

I(A, B) = H(A)+H(B)−H(A, B)

=
∑
a∈A

∑
b∈B

pAB (a, b) log
pAB (a, b)

pA (a) · pB (b)
. (37.13)
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Mutual information can qualitatively be thought of as a
measure of how well one image explains the other; it is maxi-
mized at the optimal alignment. This measure can be more
rigorously described statistically [19]. Considering images A
and B once again to be random variables with a joint proba-
bility distribution pAB and marginal probability distributions
pA and pB , then these variables are statistically indepen-
dent if pAB(a, b) = pA(a) · pB(b), whereas they are maximally
dependent if related by a one-to-one mapping T : pA(a) =
pB(T (a)) = pAB(a, T (b)). In this case, mutual information
measures the distance between the joint distribution pAB(a, b)
and the case of complete independence pA(a) · pB(b).

37.4.4 Normalized Mutual Information

The maximizing of mutual information is an appealing voxel
similarity measure for intermodality registration both because
of its success across several application areas (see Section 37.6)
and because the information theory principals underlying it
lend it scientific credibility. There is certainly more scientific
notation in papers describing mutual information registration
techniques than is used to describe other approaches. It is,
therefore, tempting to think of mutual information as being
rigorously arrived at in contrast with the heuristic approaches
of others. It is probably a mistake to think in these terms.
There are some shortcomings of mutual information for inter-
modality image registration, which have led investigators to
propose modified “information theoretic” measures that are
essentially heuristic, as they do not exist in the communication
theory literature and have not yet been shown to have a strong
theoretical basis. In communication theory, mutual informa-
tion is a direct measure of the amount of information passed
between transmitter and receiver. During image registration,
however, different transformation estimates are evaluated, and
these transformation estimates will result in varying degrees
of overlap between the two images. In communication the-
ory terms, each transformation estimate results in a different
amount of information being transmitted (and received). As a
consequence, mutual information as a registration criterion is
not invariant to the overlap between images, though it is better
than joint entropy.

The problem has been addressed by proposing various nor-
malised forms of mutual information that are more overlap
independent. Three normalization schemes have so far been
proposed in journal articles. The following equations were
mentioned in passing in the discussion section of Maes et al.
[19]:

Ĩ (A, B) = 2I(A, B)

H(A)+H(B)
(37.14)

Ĩ (A, B) = H(A, B)− I(A, B). (37.15)

Studholme has proposed an alternative normalization devised
to overcome the sensitivity of mutual information to change in
image overlap [21]:

Ĩ (A, B) = H(A)+H(B)

H(A, B)
. (37.16)

This version of normalised mutual information has been
shown to be considerably more robust than standard mutual
information.

37.5 Optimization

The voxel similarity measures described in this chapter all need
to be incorporated into an iterative optimization scheme in
order to register images. Depending on the similarity measure
being used, it may or may not be possible to calculate deriva-
tives of the similarity measure with respect to the parameters of
the spatial transformation model (degree of freedom). If such
derivatives can be calculated, then a calculus-based optimiza-
tion algorithm such as those described elsewhere in this book
can be used. Alternatively, non-calculus-based techniques are
necessary. This section concentrates on optimizing informa-
tion theoretic similarity measures that have been the focus of
this chapter.

37.5.1 Discrete and Continuous Formulations of
Mutual Information

There are two distinct formulations of mutual information
registration. These methods differ in the way that they esti-
mate the joint probability distribution function. The method
described earlier calculates the joint PDF from the discrete joint
histogram. The alternative method proposed by Viola and Wells
[1, 20] involves using a Parzen window density estimate, which
generates a continuous PDF. Two randomly chosen samples of
the voxels in the image pair are chosen. The first sample α of
Nα voxels is used to estimate the density function, and the sec-
ond sample β of Nβ is used to estimate the entropy. The Parzen
window function chosen by Wells et al. [20] is Gψ, a Gaussian
with variance ψ. The estimated entropy of a distribution z is
therefore

H ∗(z) = −1

Nβ

∑
zi∈β

log
1

Nα

∑
zj∈ α

Gψ

(
zi − zj

)
. (37.17)

This approach can be used to calculate both the joint entropy
and the marginal entropies. An advantage of this approach com-
pared to the histogram method of PDF estimation is that it is
possible to calculate the derivatives of the entropies with respect
to the transformation parameters of T . A further advantage
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of this approach is that the PDF can be calculated using a
small number of samples from the images. Wells suggests
Nα = Nβ = 50.

37.5.2 Image Resampling

In order to achieve high registration accuracy by maximization
of mutual information, it is important to calculate changes in
the value of mutual information for small changes in the trans-
formation parameters. It is therefore essential that the image
resampling required for each transformation estimate not lead
to artifacts in the PDF that would result in local extreme in the
search space. Maes et al. [19] propose the use of partial volume
interpolation as a means of accurately estimating the joint his-
togram, and hence PDF. In general, an image transformation
will require interpolation between existing sample points, and
fast interpolation algorithms such as nearest-neighbor and tri-
linear interpolation are well known to introduce errors [22]. In
partial volume interpolation, the contribution to the joint his-
togram from a voxel in image A and the corresponding location
in the transformed image B is not a single value calculated by tri-
linear interpolation of image 3B, but multiple values distributed
over all eight nearest-neighbor intensity values, using the same
weights as used in trilinear interpolation. This approach can
introduce other artifacts and has not been universally adopted.
Many authors [21, 23–25] find trilinear interpolation sufficient.

37.5.3 Capture Range

In many applications of optimization algorithms, the goal is to
find the global optimum value in an infinite parameter space,
and a successful algorithm will manage to avoid finding solu-
tions in local optima or on plateaus in the search space. This
tends to be the situation for image registration using surface
matching, but for image registration using voxel similarity mea-
sures, the situation is quite different. The similarity measures
described in this chapter give an indication of how well the
data is matched within the volume of overlap of the images.
If the amount of overlap is small, then the measures can give
a misleading indication of registration accuracy. For example,
taking typical images in which there is air at the edge of the
field of view in both modalities, if these are misaligned so much
that the only overlapping voxels contain air in both modali-
ties, then voxel similarity measures will judge this to be a good
alignment. In fact, it is common for such an alignment to be
globally optimal as far as the similarity measure is concerned,
but clearly incorrect. A successful voxel similarity measure will
have a limited range of transformations for which the value
of the measure is a monotonic function of misregistration.
This limited portion of the parameter space has been called the
capture range. The correct registration transformation is, there-
fore, a local optimum value of the similarity measure within the
capture range. As Studholme points out [24], this capture range

is a function of the image content and field of view as well as
of the similarity measure, so it cannot be determined a priori.
An indication of the comparative sizes of the capture ranges of
different similarity measures can be obtained by registering a
set of test data with a large number of different starting esti-
mates [23, 24]. The similarity measure that converges to the
correct registration solution for the largest range of starting
estimates has the largest capture range for that data. An impor-
tant consequence of the existence of a capture range is that the
starting estimate of the registration transformation needs to
be close to the correct transformation. For registration using
mutual information, the capture range is often as large as a 30-
mm translation or 30° rotation [24], which means that for the
great majority of clinical images, registration can be fully auto-
matic. For a minority of images, including situations in which
the images being registered are acquired in different planes (e.g.,
one is axial and the other coronal), or where a small field of view
in one modality reduces the capture range, a user might need
to interactively align the data to provide the algorithm with an
improved starting estimate. A further consequence of the cap-
ture range is that stochastic optimization algorithms such as
simulated annealing and genetic algorithms are inappropriate
for intermodality image registration using many voxel simi-
larity measures. It is difficult to constrain these optimization
algorithms to search just inside the capture range because nei-
ther the size of the capture range nor the position of the starting
estimate within this range is known a priori.

37.5.4 Search Strategy

Calculus-based optimization techniques have already been
described in Chapter 36, “Within-Modality Registration using
Intensity-Based Cost Functions”. Most implementations of
image registration by maximization of mutual information do
not make use of derivatives. Instead they use standard numerical
optimization techniques such as Powell and simplex, or simple
multiresolution search. These algorithms need to find the opti-
mum value of the similarity measure within the capture range,
rather than the global optimum.

37.5.4.1 Powell’s Direction Set Method

Powell’s direction set method finds the optimum in an
N -dimensional parameter space by a succession of one-
dimensional optimizations. The advantage of this approach
is that one-dimensional optimization is an easy problem to
solve numerically. Each iteration involves carrying out N
one-dimensional optimizations. For 3D rigid body registra-
tion, there are six degrees of freedom (three translations and
three rotations) giving a six-dimensional parameter space.
Determining transformations with more degrees of freedom
involves a higher dimensional optimization space. For exam-
ple, determining an affine transformation involves finding the
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optimum in a 12-dimensional parameter space. It is common
to start by carrying out the one-dimensional optimizations
along directions defined by the axes of the parameter space.
For example, the method might start by searching in the lat-
eral translation direction, then the anterio–posterio translation
direction, then the cranial–caudal translation direction, then
rotations about each of these axes in turn. This example gives
only one of the 6! = 720 different orders in which the axes can
be searched at the first iteration. The choice of ordering can
influence the success of the optimization, and many researchers
have adopted a heuristic approach to selecting the order of the
search. Maes suggests [19] that for typical medical images that
have higher in-plane resolution than through-plane resolution,
it is best to search the in-plane degrees of freedom before the
out-of-plane degrees of freedom. After an iteration, there is an
estimate of the transformation solution Te that, in general, has
a nonzero component for each degree of freedom. Subsequent
iterations start their search at Te and can use either the same
axes for the one-dimensional searches, or Te to define a new set
of search axes. The algorithm finishes when an iteration fails to
improve the similarity measure evaluation by more than some
defined tolerance. A commonly used implementation is that
provided in [26].

The speed of registration can be increased by applying the
Powell algorithm at multiple resolutions. The resolution of the
data is reduced by blurring, and then the blurred images are
subsampled at intervals corresponding to the resolution. The
algorithm is run at this resolution; then when it terminates,
it is started again at a higher resolution (less blurring of the
data), using the solution obtained at the lower resolution as the
starting estimate. This increases the speed of the algorithm sub-
stantially both because the blurred and subsampled images have
fewer voxels than the original, making the similarity measure
quicker to calculate at each iteration, and also because fewer
iterations are needed overall.

37.5.4.2 Simplex

The simplex optimization algorithm does not use a suc-
cession of one-dimensional optimizations. A simplex in N -
dimensional space is a shape with N + 1 vertices, and is thus
the simplest shape that requires that many dimensions exist. For
the purposes of N -dimensional optimization, the simplex can
be thought of as a creature with N + 1 feet that tries to crawl
into the correct minimum. One foot is the starting estimate,
and the others are randomly generated within the search space,
which should lie within the capture range. The similarity mea-
sure being optimized is evaluated for each foot, and the creature
decides to move its worst foot to a better position. Because the
simplex is the simplest creature that requires N dimensions
to exist, all of the remaining feet lie in an N − 1 dimensional
plane. The creature first tries to reflect its worst foot across this
plane. If the new position it lands on is better than the one it

came from, it tries going further in that direction. Alternatively,
it tries to place its foot in an intermediate position. If none of
these moves gives it a better solution, it tries moving all of its
feet closer to the best one. It then once again selects its worst
foot, and has another attempt. The simplex stops when all its
feet are within a predefined range of each other. A simplex is
likely to find the nearest local minimum in the search space. Like
the Powell algorithm, the simplex algorithm can be applied at
multiple resolutions.

37.5.4.3 Multiresolution Search

Because of the capture range issue describe above, Studholme
has chosen to use a simple step-based optimization technique
[21, 23, 24]. The starting estimate is assumed to lie within the
capture range, then the similarity measure is evaluated at that
starting estimate, and with a single increment and decrement
in each parameter of the spatial transformation model. This
gives 13 evaluations for a 3D rigid-body transformation. The
best evaluation is chosen as the new estimate, and the algorithm
iterates until no step can be found that improves the value of
the measure. The translation step size δt is chosen as approx-
imately the resolution of the data, and the rotation step size
δθ is chosen such that it corresponds to a translation at δt of
60 mm from the center of rotation. This scheme is run start-
ing at low resolution, and when the algorithm terminates at that
resolution, the resolution is increased. At the highest resolution,
the step size is further reduced to provide subvoxel registration
solutions. This approach can be computationally expensive, but
it is robust and easy to implement.

37.6 Applications of Mutual Information

The great attraction of mutual information (with or without
normalization) as a voxel similarity measure for image regis-
tration is that it makes no assumption about the relationship
between the intensity of a particular anatomical structure in
the modalities being aligned. As a result, it can be used for both
intramodality registration and intermodality registration and is
far more generally applicable than any automatic medical image
registration algorithm previously proposed. There is a con-
siderable literature demonstrating application areas in which
mutual information is successful [19, 20, 25] and comparing
mutual information with alternative measures [23, 24, 27].
Most of these studies have looked only at MR, CT, PET, and
SPECT images of the head. The most objective of these stud-
ies is the multicenter comparison of retrospective registration
techniques run by Prof. J. Michael Fitzpatrick of Vanderbilt
University, Nashville, Tennessee [27]. In this study, researchers
active in the field of intermodality registration were recruited
and provided with MR and CT images and MR and PET images
for which a “gold standard” rigid-body registration transfor-
mation was known. This gold standard was obtained from
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bone-implanted fiducial markers that were airbrushed out of
the images before distribution, so that the study participants
were blinded to the “gold standard” transformations. The accu-
racy of the “gold standard” transformation was estimated to be
about 0.5 mm for the MR to CT images, and about 2 mm for the
MR and PET images. The published results show that mutual
information, as implemented by two investigators (CO and HI),
was the only similarity measure that provided accuracy of the
same order as the gold standard for all modality combinations.
Other measures performed well for specific applications. For
example, Woods’ variance of intensity ratios algorithm does
just as well as mutual information for MR-PET registration,
and Elsen’s modified correlation has similar accuracy to mutual
information for MR-CT registration.

It is worth noting that the paper reporting the results of the
Fitzpatrick study [27] had to be substantially shortened to take
account of the journal page limit. As a result, some detail of
the algorithms was omitted. In particular, conventional mutual
information has been reported by several researchers to be
unreliable for the registration of the data in this study compared
to other head data of these modalities. The reason for this diffi-
culty is that the data in this study was acquired with the patient
wearing a stereotactic frame, and consequently has a larger
transaxial field of view than most diagnostic brain images. The
images can, however, be accurately registered either by crop-
ping the image field of view and applying conventional mutual
information, or by using the Studholme normalized mutual
information algorithm [21]. The second of these approaches
was used by investigator HI in this project, though this is not
recorded in this paper.

37.6.1 Mutual Information for Registration
Involving Affine Transformations

Figure 37.4 shows some of the types of images that can be reg-
istered by maximizing normalized mutual information, taken
from the Ph.D. thesis of Colin Studholme [15].2 These images
include MR and CT images and MR and PET images of
the head, neck, and pelvis. In all these cases, the registration
transformation being determined was a rigid-body one. It is
straightforward to extend mutual information to the 12 degrees
of freedom of an affine transformation.3

Figure 37.5 shows MR and CT images of a head before
and after registration using a 10 degree of freedom registra-
tion algorithm that corrects for errors in voxel dimensions and
the CT gantry tilt angle. In this case, the registration solution
obtained with the 10 degree of freedom algorithm corrected

2 Both the thesis and an executable version of the algorithm used to generate

these images are available from http://www-ipg.umds.ac.uk/cisg by following

the link to publications and software, respectively.
3 An affine transformation maps parallel lines to parallel lines. It includes skew

and scaling as well as the rigid body degrees of freedom.

scaling errors of several percent, and an error in the machine-
supplied gantry tilt angle of nearly 5◦. This is visually better than
the rigid-body solution obtained using the machine-provided
voxel dimensions and skew angle.

37.6.2 Mutual Information for 2D-3D
Registration

To further demonstrate the wide applicability of mutual infor-
mation, Viola showed that it is possible to calculate the pose
of a camera recording a video image of a skull relative to a
CT scan of that skull. Clarkson et al. [28] have extended this
work to robustly and accurately align multiple calibrated video
images taken through an operating microscope to a CT scan of
a skull. Example images are given in Figure 37.6. This may have
applications in image guided surgical interventions involving
microscopes or endoscopes.

37.6.3 Mutual Information for Nonrigid
Registration

Several authors have proposed the use of mutual informa-
tion as a similarity measure for registration involving general
nonrigid deformations rather than rigid-body or affine trans-
formations [25, 29]. Considerably less research has been done
in this area than in rigid-body or affine intermodality registra-
tion. One approach is to iteratively optimize the position of a
grid of control points defining a B-spline deformation while
maximizing mutual information [29]. The examples given in
Figure 37.7 show the application of this algorithm to pre- and
post-gadolinium images of the breast.

37.7 Criticisms of Mutual Information

Mutual information and its normalized variants have been crit-
icized for failing to take account of the spatial coherence of
information in images. By analogy with communication theory,
all the voxel values are sent down a communication channel one
after another, with all spatial information about their relative
positions being lost. This can be nicely illustrated by randomiz-
ing the positions of all voxels in an image, such that it looks like
noise. Provided the same randomization function is applied
to both images being registered, the mutual information will
be unchanged. For image registration, it is not a single value
of mutual information that is of interest, that is, the value of
mutual information of just one estimate of the image transfor-
mation T . Rather, it is the change in mutual information as T
is iterated that influences the success of the measure. There is,
therefore, some implicit spatial information involved in regis-
tration by maximizing mutual information because the spatial
transformation estimates are being changed. There are, nev-
ertheless, examples of data that mutual information cannot
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(a) (b)

(c) (d)

(e) (f)

FIGURE 37.4 Example unregistered sagittal images that can be registered using mutual information.

register. Clinical scenarios in which this arise include registra-
tion of a very small number of slices of one image with a second.
In this case the joint PDF is quite sparse, and there are too few
voxels to estimate mutual information robustly. Also, although
mutual information is fairly robust to shading across images,
frequently caused by RF inhomogeneity in MR scans, it can fail
to register images where the shading is very severe. In this case
there is no functional relationship between the intensity values
of an object in both images. It is also easy to design a pair of
simulated images that mutual information fails to register in a
sensible way. Figure 37.8 is an example put forward by Roche

et al. [30]. In this example, there would appear to be an intu-
itively correct translation that would correctly align the images,
yet mutual information produces multiple identical maxima
with a period of one pixel.

37.8 Conclusions

In this chapter we have described the development of voxel sim-
ilarity measures for intermodality medical image registration.
We introduced the standard image processing approaches of
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FIGURE 37.5 (Top row) Unregistered MR (left) and CT (right) images. The MR images are shown in the original sagittal plane and reformatted
coronal plane; the CT images, in the original oblique plane and reformatted sagittal plane. Note the different field of view of the images. (Bottom
row) MR images in sagittal, coronal, and axial planes with the outline of bone, thresholded from the registered CT scan, overlaid. The registration
transformation has 10 degrees of freedom to correct for errors in the machine-supplied voxel dimensions and gantry tilt angle.

(a) (b) (c)

(d) (e) (f)

FIGURE 37.6 Registration of CT images and video images by maximizing of mutual information, taken from Clarkson et al. [28]. (a)
Example video image (the black circles are fiducial markers used as a gold standard to test the accuracy of the method). (b) Example rendered
image. Note the absence of fiducials, which were edited out of the CT scan before rendering. (c) Misregistered overlay. (d) Registered overlay.
(e) Misregistered overlay. (f) Registered overlay. The accuracy of this registration was estimated to be about 1 mm.
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(a) (b)

(c) (d)

FIGURE 37.7 Maximum intensity projection images produced from subtracting a pre-
gadolinium MR mammogram from a post-gadolinium MR mammogram, using (a) no
registration, (b) rigid registration, (c) affine registration, and (d) nonrigid registration incorpo-
rating deformation. All registration involved maximization of normalized mutual information
[29]. The nonrigid deformation algorithm results in much less artifact due to deformation of
tissue, making the enhancing lesion easier to identify.

image subtraction and correlation (both cross-correlation and
correlation coefficient), and explained why these algorithms are
inapplicable to most intermodality registration applications,
despite their success in intramodality registration. We then
described the variance of the intensity ratios algorithm,and how
the success of this algorithm for MR-PET registration inspired
further research into voxel similarity measures that could be
more generally applicable. The majority of the chapter was
devoted to explaining how information theoretic approaches,
in particular mutual information and its normalized vari-
ants, came to be widely used for intermodality registration.
We described ways in which the required entropies can be
estimated from the data, and suitable optimization strategies.
We gave examples that illustrate both the successes of mutual
information registration and its limitations.

Although mutual information has been more successful than
previous algorithms at registering 3D tomographic datasets
such as MR, PET, CT, and SPECT, this success has been pri-
marily in the head and is mainly limited to rigid-body or affine
transformations. There have been encouraging results demon-
strating the applicability of mutual information to both 2D-3D
registration and nonrigid deformation algorithms, but these
results tend to be quite preliminary. No one has yet shown that
mutual information is the ideal similarity measure for inter-
modality registration. Indeed, the widespread use of rather
ad hoc normalizations of mutual information suggest that it
probably is not ideal. It is likely that other similarity measures
will continue to be proposed that can be shown to succeed
where mutual information fails, and the problem of identifying
a theoretically ideal measure remains unsolved.
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FIGURE 37.8 Simulated image that cannot be registered by maximizing mutual information.
(a) is an original image, and (b) an image to be registered to (a). Note that (b) looks similar to
(a) except for the presence of shading in the horizontal translation direction. The graph next to
(b) shows how mutual information changes with horizontal translation of image (b) with respect
to image (a). The correct alignment corresponds to zero translation. The same maximum value of
mutual information is obtained for any translation by an integer number of pixels. (c) is a random
permutation of image (b). Note that the plot of mutual information against lateral translation when
aligning image (b) with image (a) is the same for this image as for image (b). This figure is taken
from Roche et al. [30].
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To answer questions about “where in the brain” as opposed to
“where in this brain,” images from many subjects are often
combined to form consensus mappings of the brain. These
composite images help to standardize teaching of brain
anatomy and support powerful statistical analyses for brain
research. Composite brain images take on numerous forms;
the simplest is a group-average image, the backbone of cerebral
blood-flow (CBF) studies using positron emission tomography
(PET) [14, 16, 24, 25]. Additionally, large-population composite
brain images, formed from high-resolution three-dimensional
(3D) magnetic resonance (MR) images, have been used to study
anatomical variability in normal populations [10, 36]. Whereas
composite brain images are needed to represent population
characteristics, individual brain images are required to diagnose
and track brain problems in individual patients, i.e., they are
the core of clinical decision making. A standard brain space is
needed for consistent spatial localization in both individual and
composite images, and this is provided by the Talairach space.

38.1 Spatial Normalization

To make meaningful comparisons between images from diffe-
rent brains, extrinsic differences (position and orientation)

must be removed and intrinsic differences (size and shape)
minimized. A transformation process called spatial normaliza-
tion (SN) is used to account for these differences by matching
a set of brain features derived from a standard brain. Brain
position, orientation, and size provide the minimal set of global
spatial features for spatial normalization in three dimensions.
When only global spatial features are used for the spatial trans-
formation, the process is called global spatial normalization.
Global SN is usually done using a nine-parameter affine trans-
form with three parameters each for rotation, translation, and
scaling [32, 35, 55, 57]. One additional global spatial feature,
skew, has been used for global SN with minimal improvement
[43]. The global features of the brain carefully documented in
the 1988 Talairach Atlas [32, 49] are ideal for global SN, and
this brain is used by the majority of brain mapping centers as
the standard for spatial normalization. A brain image that con-
forms to the global spatial features of this standard brain is said
to be Talairach spatially normalized and registered in Talairach
space. Talairach space carries with it a Cartesian reference
frame, and all measurements (positions, distances, sizes, angles,
and shapes) are made in this space. The most common usage
is to report locations in the brain with x − y − z Talairach
coordinates.

Copyright © 2008 by Elsevier, Inc.
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When greater detail is needed for feature matching, addi-
tional features and alternate transformation methods must be
employed. The stereotactic transform of Talairach [48, 49] is a
classic example of a low degree-of-freedom regional method.
It uses a piecewise linear fit to transform source images to
match the brain in 12 regions of the Talairach atlas brain.
The 12 regions are defined exteriorly by the 6 plane surfaces
of the brain’s bounding box and interiorly by 4 planes: coronal
through the anterior commissure (AC), coronal through the
posterior commissure (PC), and sagittal and axial planes inter-
secting the AC–PC line (Figure 38.1). In this scheme there are
four regions anterior to the AC, four between the AC and PC,
and four posterior to the PC, divided equally between left and
right hemispheres. Following reorientation of the source brain
to match the atlas brain, corresponding internal and external
planes of a source brain are identified. Internal planes of the
source are transformed to match paired planes in the atlas, and
proportional scaling is applied between parallel planes to stretch
the brain to conform within each of the 12 regions [46]. An
advantage of this method is that x-scaling can be different on
the left and right, z-scaling can be different above and below
the AC–PC line, and y-scaling can be different in the front,
middle, and posterior regions of the brain. Talairach regional
SN provides some additional feature matching capabilities
when compared to Talairach global SN methods [47]. However,

because of the large number of landmarks required, Talairach
regional SN cannot be directly applied in low-resolution images
(PET and SPECT) where these anatomical features are not
visible.

More powerful transform methods are necessary to extend
feature matching to the level of detail in high-resolution
MR brain images [5, 6, 11, 26, 31, 34, 57]. Such methods
often employ large deformation fields to perform spatial nor-
malization. These high degree-of-freedom methods cannot
directly match the 1988 Talairach atlas since their feature-
matching algorithms require identical MR image characteristics
for both source and target brains. The target brain image is
globally spatial normalized to overcome this limitation. The
modified target image is in Talairach space, and locations
within brain images regionally transformed using the modi-
fied target also reference the Talairach space. The significance
of global SN of the target brain needs to be emphasized,
since it is the global component of regional SN that pro-
vides the frame of reference, i.e., the transform to Talairach
space. Although regional SN components can provide superior
regional feature matching, they should not alter this reference
frame. This scheme provides Talairach space compatibility for
spatial normalization methods ranging from nine-parameter
global methods to high degree-of-freedom deformation-field
methods.
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(0, –103,0)
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Z
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FIGURE 38.1 Twelve regions of the 1988 Talairach atlas. The outer boundaries define the bounding box for the brain. Talairach coordinates
are given for the AC and PC and bounding box coordinates at the intersection of the x , y , and z axes. The orientation of the brain within this
coordinate system is illustrated in Figures 38.3 and 38.5. (See also color insert).
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FIGURE 38.2 The schematic plan for spatial normalization of brain images.

38.2 General Spatial Normalization
Algorithm

The processing stream for spatial normalization is presented
schematically in Figure 38.2. The general SN algorithm is
applicable to both global and regional transformation methods
by altering feature matching and transform strategies. Global
spatial normalization is the simplest to describe since it has
the fewest features to match. For Talairach spatial normal-
ization the target-brain features are derived from the 1988
Talairach atlas. In most cases processing is iterative with a goal
of minimizing differences between features in transformed and
target brains. This is achieved by adjusting transform param-
eters between processing steps, following analysis of residual
feature differences. For automated methods, the feature differ-
ence is often converted to a mean square error (MSE) and an
MSE minimization method used to drive the transformation
[5, 26, 57]. For manual methods feature comparison is done by
visual inspection, and the transform is adjusted interactively to
minimize feature differences (see example). In high degree-of-
freedom regional deformation methods, both feature matching
and transformation are performed using a global-to-regional
scheme. This hierarchical multiresolution approach deals with
large features first, proceeding to smaller features, and down to
the limiting resolution of the processing algorithm if desired
[5, 6, 26, 31, 34].

38.3 Feature Matching

The analysis and synthesis components of feature matching are
categorized as either landmark or correlation based. Landmark-
based feature matching is illustrated for manual global SN
in this chapter. Anatomical feature matching is the goal, and
corresponding features must be present in source and target
brains. In cases where matching features cannot be visually
matched, indirect matching methods, such as multi-landmark
fitting of the AC–PC line, have been used [23]. Anatomical
feature landmarks should have a high degree of penetrance, rep-
resent critical areas to fit, and be easily extracted from source
and target images. Numerous landmark-based global SN meth-
ods have been reported [2, 32, 38]. Landmark-based manual
SN involves human interaction for analysis (feature extraction
and comparison) and synthesis (determination of appropri-
ate transform parameters). Pelizzari introduced a surface-based
method to automate landmark-based feature matching for
intra- and intermodality registration [42]. This surface-based
strategy was refined to achieve automated spatial normalization
by matching the convex hull of the source brain to a target con-
vex hull derived from the 1988 Talairach Atlas [8,9,35]. Whereas
prominent features of the brain, such as its surface, are read-
ily discernible, small, low-contrast features are hard to identify
in low-resolution images, limiting the use of a large num-
ber of features. Even in high-resolution MR images, manual
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selection of a large number of features can be problematic,
restricting the use of landmark-based methods to global or low
degree-of-freedom regional spatial normalization. For addi-
tional feature matching strategies see Chapter 39, entitled
“Warping Strategies for Intersubject Registration.”

38.4 Transformation

A coordinate transformation is used to warp a source image
to a transformed image to match a target brain (Figure 38.2).
The regional nature of spatial normalization determines the
complexity of the coordinate transformation. For global SN
the most common approach is to use a homogeneous 4× 4
matrix, with three parameters, one each for rotation, trans-
lation, and scale, for coordinate transformations [1, 32]. See
Chapter 32,“Spatial Transformation Models”, for more detailed
information about the 4× 4 transform matrix. This global SN
transform is also called a nine-parameter or linear-affine trans-
form. Additional regional anatomical matching can be achieved
using higher order polynomials for coordinate transformations
[57]. For practical purposes this approach is limited to poly-
nomials of order 12 or less. Other methods, including the use
of thin-plate splines [4] and deformable models [7], have the
potential for additional regional feature matching. Finally, to
achieve a maximum regional effect, 3D deformation fields are
used with high degree-of-freedom regional transform methods
[3, 5, 6, 31, 33, 44]. A deformation field is a large matrix of 3D
translations, one for each voxel in the source and target brain
images. Because of the discrete nature of the images, coordi-
nate transformations must be coupled with a 3D interpolation
scheme.

38.5 Talairach Atlases

The use of Cartesian coordinates as an anatomical nomencla-
ture for the human brain was pioneered by Jean Talairach, a
French neurosurgeon. Over the course of three decades, he pub-
lished a series of atlases addressing the brain as a coordinate
space [48–50]. The 1967 atlas was the earliest used for spatial
normalization [14]. The 1967 atlas was not ideal for spatial nor-
malization since its axial, sagittal, and coronal section images
were from different brains. No single brain was adopted as the
standard from the 1967 atlas, requiring transforms between
various brains to achieve comparable Talairach coordinates
[18, 20, 22]. This lack of standardization was resolved when the
1988 Talairach atlas was published with all three section images
from the same brain, a 60-year-old right-handed European
female. The 1988 Talairach atlas soon became the standard
for human brain spatial normalization [19]. Though the orig-
inal atlas concept was not coordinate specific, a right-handed
Cartesian coordinate system has evolved with +x on the right,

+y to the front, and +z to the top of the brain with the ori-
gin at the anterior commissure or AC (Figures 38.1 and 38.3)
[32, 35, 37].

The 1988 atlas is well suited for global spatial normaliza-
tion because it clearly defines all anatomical features needed
for landmark-based coordinate transformations (Figures 38.3
and 38.6). The following features/landmarks are identifiable in
high-resolution MR images and serve as the basis for global
spatial normalization:

• Location. A single landmark is needed to standardize
location, and it is designated as the origin, or 0,0,0 coordi-
nate, in Talairach space. The anatomical site of the origin
is at the anterior commissure (AC), a very small mid-
line site where a narrow band of callosal fibers crosses
between hemispheres. More precisely, the origin is at the
intersection of the interhemispheric fissure and the AC’s
posterior–superior margin. However, the visual center of
the AC is usually selected in MR images since it is easier
to see.

• Orientation. The interhemispheric plane and a line in this
plane passing through both the AC and posterior commis-
sure (PC) are used to standardize brain orientation. This
AC–PC line defines the y-axis and the interhemispheric
fissure defines the y− z plane needed to standardize
orientation in Talairach space.

• Dimension. The dimensions of the 1998 Talairach Atlas
brain in its standard orientation are 172 mm for A–P,
136 mm for L–R, and 118 mm for S–I [32, 35]. While
the A–P and L–R dimensions are clearly defined, the S–
I dimension is from the top of the cortex to the most
inferior margin of the temporal lobe. This is because the
Talairach atlases were intended for normalization of the
cerebrum, and little detail is provided for the cerebellum.
These dimension measurements are sometimes called the
bounding box dimensions for obvious reasons.

38.6 Manual SN Example

The simplest means to transform a brain image to Talairach
space is to manually apply rotations, translations, and scaling
while visually matching source and target brain features. The
1988 Talairach atlas with its key features for location, orienta-
tion, and dimension helps to illustrate this process. The order of
rotation and scaling are extremely important since the Talairach
brain dimensions only apply to a brain in the standard orien-
tation; therefore, rotations must be done before scaling. The
suggested steps for manual SN are as follows:

• Mid-sagittal alignment. The brain is divided into right
and left hemispheres by the interhemispheric fissure.
Axial, coronal, and sagittal section views of the brain are
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used to interactively assess feature matching while adjust-
ing rotation and translation parameters. Graphical lines
representing the intersection of the mid-sagittal plane
in axial and coronal section images are used as guides
(Figures 38.3a, b). The brain image is translated and
rotated until the interhemispheric fissure aligns with the
mid-sagittal plane in both images. A visual indication of
mid-sagittal alignment is provided in the sagittal view that

displays the interhemispheric fissure when the alignment
is correct. In MR images, a broad region with loss of sulcal
detail is characteristic of the interhemispheric fissure, and
visual assessment of this effect is used as a qualitative mea-
sure of alignment (Figure 38.3c). Most users have a high
level of confidence in mid-sagittal alignment, even for
lower resolution PET images. Since this fissure approx-
imates to a plane, the mid-sagittal plane, it serves as an

(a)

(b)

Anterior-right

1y

1x 1x

1y

1x 1x

1z 1z

Anterior-right

Superior-right Superior-right

FIGURE 38.3 Continued
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(c)

Anterior-superior 1z 1z

1y 1y

Anterior-superior

FIGURE 38.3 (a) Axial views of the brain before (left) and after (right) alignment to the mid-sagittal plane (red line). The image was rotated
clockwise and translated to the right in this example. Note the embedded marker used to positively identify the right side of the patient. (b)
Coronal views of brain images before (left) and after (right) alignment to the mid-sagittal plane (red line). The brain was rotated counterclockwise
and translated to the right in this example. (c) Sagittal views of the brain before (left) and after (right) mid-sagittal alignment. Following
alignment (right) sulcal detail is diminished and lower in contrast, indicating better match of this mid-sagittal view to the interhemispheric
fissure. (See also color insert).

excellent landmark for alignment. The objective of mid-
sagittal alignment is to rotate and translate the brain to
align the interhemispheric fissure of the brain with the yz
or mid-sagittal plane of Talairach space (Figure 38.3). By
convention, the mid-sagittal plane is located in the middle
of the left-to-right (L–R) field of view (FOV) of the brain
image. Most brain images are acquired with a 256-mm
L–R FOV, so the mid-sagittal plane is set at 128 mm from
the left edge.

• AC–PC alignment. Followingmid-sagittalalignmentonly
rotation about the x-axis is needed for standard Talairach
orientation. Unlike the large distinct interhemispheric fis-
sure, landmarks for this alignment, the AC and PC, are
small and the PC is sometimes hard to see, even in high-
resolution MR images. Formally, the AC–PC line is the
line passing through the superior edge of the AC and the
inferior edge of the PC [49]. When the PC is well visual-
ized, the operator can manually identify the AC and PC
to fit the AC–PC line. Several investigators [2, 23, 32, 38]
have used least-square error fitting methods with addi-
tional landmarks characteristic of the AC–PC line. The
use of more landmarks to fit the AC–PC line using least-
square error methods is less susceptible to operator bias
and landmark anatomical variability and helpful in low-
resolution images where the AC and/or PC cannot be seen.

Figure 38.4 illustrates the use of a four-landmark method
[32]. Once theAC–PC line is determined, its angle with the
y–axis is calculated and the image rotated and translated
so that the AC–PC line is congruent with the y-axis.

• Dimension normalization. Bounding box dimensions of
the brain are measured following standardization of brain
orientation by mid-sagittal and AC–PC alignment. The
maximum extent of the brain in x , y , and z directions
is used for its bounding box dimensions (Figure 38.5).
These can be determined visually in high-resolution MR
images or in low-resolution images such as PET, with the
aid of boundary detection methods [32]. The visual deter-
mination of brain extent in MR images is best done while
viewing sections perpendicular to the direction of inter-
est. The location of the bounding limit is the coordinate
of first section image where the brain is visualized. This is
relatively simple for the front (+y), back (−y), left (−x),
right (+x), and top (+z) brain extent. However, the infe-
rior brain extent (−z), identified as the inferior margin of
the temporal lobe, is surrounded by many confounding
structures (Figure 38.5b). By careful inspection of axial,
coronal, and sagittal views the inferior boundary can be
accurately identified. Once the bounding box dimensions
are measured they are compared with those of the 1988
Talairach atlas brain to determine scale factors. Scaling
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FIGURE 38.4 Mid-sagittal section views of the brain before (left) and after (right) AC–PC alignment using a four-point fitting method. The
four landmarks are the anterior–inferior margin of the corpus callosum (blue), inferior margin of the thalamus nucleus (yellow), the superior
colliculus (green), and the apex of the cerebellum. (See also color insert).

is then applied independently along each axis such that
the transformed brain’s bounding box dimensions are
identical to those of the atlas brain.

• Origin placement. This step can be done before or after
dimension normalization, but the end result must be a
precisely designated location within the image volume
for the origin or AC. This is readily done visually and
the image translated such that the AC falls at a desig-
nated location (see Figure 38.6). In low-resolution images,
where the AC is not visible, a secondary method for origin
placement assumes that the AC is 40% from the anterior
to the posterior boundary of the brain. This approxi-
mate site for the AC was the result of measurements in
numerous brain images following global Talairach spatial
normalization [32].

38.7 Accuracy of Spatial Normalization

For global SN methods, the accuracy depends on location, size,
and anatomical variability of the site of interest. For example,
the anterior commissure, a small reference landmark in many
global SN methods, will match very well (Figure 38.6). Likewise,
larger anatomical structures near the AC and PC tends to match
reasonably well (Figure 38.7). However, match quality generally
diminishes with distance from the center of the brain. Features
in the cortex are harder to match because landmarks are difficult
to accurately define, and anatomical variability is often greater
there. Feature matching for global SN methods has been esti-
mated to exceed 90% by several different methods with that of
regional methods reaching 95% [5, 6, 31, 34, 57].

The feature matching capability of global SN is less prob-
lematic in low-resolution PET brain function studies than
in high-resolution MRI anatomical studies. The spatial res-
olution of imaging systems is determined by the extent of a
theoretical point source and quantified by the full-width-half-
maximum (FWHM) of the point-spread function (PSF) [12].
Point sources separated by a distance less than the FWHM tend
to merge into a single source [30], therefore, a smaller FWHM
indicates higher spatial resolution. It is common practice to
spatially smooth PET images to reduce noise levels [19], further
increasing the overall FWHM and reducing spatial resolution.
The net FWHM of PET studies can be greater than 1 cm [24],
and since global SN usually provides anatomical matching of
1 cm or less in most areas, corresponding anatomical regions
tend to merge in group average images (Figure 38.7, PET). The
spatial precision for activation sites is not necessarily limited
by the system FWHM, since activation loci are often calculated
as a weighted centroid in a thresholded region of interest, and
this can provide millimeter-level precision [16]. However, the
low spatial resolution inherent in PET imaging systems reduces
activation peak intensities in small regions, thereby reducing
sensitivity to their detection.

For imaging systems with higher spatial resolution, more
accurate spatial normalization is necessary to preserve reso-
lution in group averages. For example, the blurring introduced
by averaging globally spatially normalized images has a FWHM
ranging from approximately 1 mm to 1 cm. When applied to
PET images with a system FWHM ≈ 1 cm, the net FWHM
ranges from approximately 1.05-1.41 cm, since independent
resolution components in linear systems add in quadrature
[12, 30]. The FWHM of an average PET image is just 5–41%
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FIGURE 38.5 (a) Axial and sagittal views of the bounding box after manual adjustment to match the bounding limits of the cerebrum. The
anterior, posterior, left, right, superior, and inferior bounds are illustrated; however, bounds do not generally fall within any one section view
of the brain (e.g., posterior bound in axial view and inferior bound in sagittal view). (b) Axial, coronal, and sagittal views of the bounding box
limits for the inferior margin of the temporal lobe. The cross-hairs for each view intersect at the limit. For this inferior brain boundary the axial
view of the most inferior indication of temporal lobe tissue is considered the limiting boundary. The coronal and sagittal views are used for
verification. (See also color insert).

larger than that of a single image, mostly because of the PET
system’s FWHM. This provides an overall improvement of the
signal-to-noise ratio in an average PET image (Figure 38.7,
PET). However, when averaging globally spatially normalized

high-resolution MR images, with system FWHM ≈1 mm, the
net FWHM ranges from approximately 1.41 to 10.5 mm, bet-
ter than PET but much worse than that of single MR images.
The mid-sagittal plane in an average MR image appears to be
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Axial View

2x

1y

Sagittal View

FIGURE 38.6 In the axial view the anterior commissure (AC) and posterior commissure (PC) appear as thin white lines connecting white
matter between hemispheres. In the sagittal view the AC is a conspicuous white, slightly elliptical structure, and the PC is at the elbow between
the pineal body (pb) and superior colliculus (sc). (See also color insert).

well resolved as well as other central structures (Figure 38.7,
MRI). However, in regions with high anatomical variability,
the FWHM can increase by a factor of 10 and is dominated
by the blurring effect of group averaging. The group average
MR image has a lower contrast-to-noise ratio than individ-
ual MR images in these highly blurred areas, especially in the
cortex (Figure 38.7, MRI). To obtain better resolution in group-
averaged MR images, the FWHM component due to spatial
normalization must be made smaller, and this can only be done
using higher-resolution regional spatial normalization meth-
ods. The goal is to have the FWHM component of spatial
resolution due to group averaging similar to the FWHM of
the imaging system. Two major obstacles in attaining this goal
are low object contrast of critical features, even when reso-
lution is high, and incomplete feature correspondence across
brains.

38.8 Transformed Image Standardization

There are several points to consider in standardizing results of
spatial normalization field of view, orientation of the x − y − z
axes, and location of the AC. Standard output can be achieved
by storing all results in a fixed-size 3D image array (fixed field

of view and spacing for x , y , and z directions) with the AC
at a standard array location. The advantage of this approach
is that subsequent display and analysis is simplified since all
images are in the same format. An alternative method is to
store only the information needed to reconstruct a transformed
image. The former method is simpler to use, but it requires that
copies of source and transformed images be maintained. The
later method is more general and does not require storage of
transformed images, but it requires special software to create
transformed images when needed. For this reason most labo-
ratories use a standard 3D image array for spatially normalized
images.

A separate standard is needed for high-resolution MR images.
General practice is to use x − y − z spacing of 2 mm for low-
resolution (functional) images and 1 mm for high-resolution
(anatomical) images. The FOV and mm location of the AC can
remain the same, but the 3D arrays will be 8 × larger for the
high-resolution MR images. One recommendation is that the
x − y − z dimension be 256 × 170 × 150 mm to ensure that
all brains fit into a standard physical volume [35]. It was also
suggested and that the origin be 128 mm from the left, 87 mm
from the top, and 107 mm from the front in order to center the
brain in the standard volume. Several other locations and array
sizes/image volumes have been used [37].
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AverageIndividual

MRI

PET

FIGURE 38.7 Axial section views of spatially normalized MRI and O-15 PET images from individual and averages from 12 subjects. The average
MR image has better definitation of the interhemispheric fissure but less cortical detail. The average PET shows a significant improvement in
signal-to-noise ratio.

38.9 Anatomical and Functional
Variability

The traditional “anatomical space” taught in medical and grad-
uate schools is feature based. The brain is named and divided
in terms of visual landmarks (sulci and gyri, nuclei and tracts).
The assumption is that these landmarks bear reliable relation-
ships to underlying functional architecture. This assumption is
tenuous, at best. The caudate and putamen are so similar in
cell structure, connectivity, and function as to be considered a
single functional entity [47], yet they are divided by a broad
white matter tract, and therefore separately named. Subnuclei
within the thalamus are extraordinarily diverse in their affer-
ent and efferent connectivity, yet they form a visually cohesive
mass, even in high-resolution MR images. Only with the micro-
scope and advanced histochemical techniques can functional
areas be accurately discerned. Anatomical/functional anoma-
lies are even more diverse in the cortex. The issue dates back
at least to Brodmann, who in his 1909 monograph on cytoar-
chitecture (translated by Garey [31]) repeatedly cautioned that
many functional zones bear no consistent relationship to visi-
ble landmarks. For example, concerning primary visual cortex
(Brodmann area 17), Brodmann warned: “The borders of this
area, especially laterally, are extraordinarily variable, which is

particularly important for pathology. But even medially there are
no regular and constant relationships to any ‘limiting sulci’ … ”
([27], p. 120). Thus, the notion of “limiting sulci,”upon which a
“gross anatomical space” rests, is inherently flawed for mapping
many functional areas. Subsequent studies of human cytoar-
chitecture continue to confirm the wisdom of Brodmann’s
warnings [28, 58]. This observation has been echoed and ampli-
fied by neurosurgeons who observe a remarkable diversity of
sulcal patterns and tremendous variability in the functional
organization of the brain, as determined by intraoperative cor-
tical electrical stimulation [39]. Finally, neuroimaging studies
have observed that functional areas as fundamental as primary
motor cortex for mouth may “bear no relation to any detectable
sulcal or gyral feature” [29, 45, 52]. This lack of correspon-
dence between functional areas and gross anatomical features
is a clear indication that an alternative to the “gross anatom-
ical space” is needed for functional mapping of the human
brain. For those mapping cortical areas in the macaque monkey
and other non human primates, the alternative that has been
developed and adopted is a surface-flattened, planar report-
ing “space” [51]. For a large and rapidly growing segment
of the human neuroscience community, the alternative to the
“gross anatomical space” is a 3D volumetric space, the Talairach
space [19].



38 Talairach Space as a Tool for Intersubject Standardization in the Brain 639

Talairach was the first to use this space as a modeling
construct within which structural and functional probability
contours could be created [48]. Using intraoperative cortical
stimulation to localize functional areas and pneumoence-
phalography to localize sulcal and gyral landmarks, Talairach
created probability distributions—probabilistic models—for
functions and structures. Although his subjects were not nor-
mal and his sample sizes were never large (10–25 per area), the
spatial distributions appeared normal and the variance was not
large.

38.10 Uses in Functional and Anatomical
Studies

Landmark research [13–15] demonstrated that individual vari-
ability in response location—when reported using Talairach
coordinates—has a standard deviation on the order of 5 mm
and is similar across different brain areas [17, 21], regardless of
the nature of the complexity of the operation performed. That
intersubject averaging gives statistically well-behaved reduc-
tions in background noise and increases in signal-to-noise ratio
[16, 23–25] is strong confirmation that intersubject functional
variability is not large (Figure 38.7, PET). These observations
encouraged many laboratories to incorporate spatial normal-
ization and image averaging in the experimental design of
functional studies of the brain. It is now common practice to
use Talairach coordinates in functional brain mapping studies
[19]. The human BrainMap database makes use of this stan-
dardization, to record functional brain findings using Talairach
coordinates [18, 20, 22]. Probabilistic 3D regions of interest
defining the location and extent of elementary mental opera-
tions in Talairach space have been reported for use in functional
PET studies [21]. Talairach coordinates have been used to
guide researchers to target transcranial stimulation of brain
regions [40, 41]. Spatial normalization has subsequently been
validated for use in high-resolution anatomical MR images
[8, 9, 32, 35, 56, 57].

By providing a means to standardize brain images spa-
tially, the Talairach space has solved many of the problems
associated with the “gross anatomical space.” Statistical mod-
els of anatomical [10, 36] and functional [21] variability are
now available for use in Talairach space, providing insight for
both individual and population studies of the brain. Talairach
coordinates are commonly used to obtain labels for typical
anatomical and functional areas from the 1988 Talairach atlas. A
network-based brain-label server called the Talairach Daemon
[33] automates this process by providing a hierarchical set of
anatomical labels using Talairach coordinates. A variety of soft-
ware packages for spatial normalization to Talairach space are
available over the Internet, and many centers are using these
applications to enhance their research, educational, and clinical
capabilities.
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39.1 Challenges in 3D Brain Imaging

The complexity of human brain structure mandates the use of
engineering approaches drawn from computer vision, image
analysis, computer graphics, and artificial intelligence research
fields to manipulate, analyze, and communicate brain data.
The rapid growth in brain imaging technologies has also been
matched by an extraordinary increase in the number of inves-
tigations analyzing brain structure and function in clinical and
research settings.

Image registration is central to many of the challenges in
brain imaging today. Initially developed as an image processing
subspecialty to geometrically transform one image to match
another, registration now has a vast range of applications. In

this chapter, we review the registration strategies currently used
in medical imaging, with a particular focus on their ability to
detect and measure differences. These include methods devel-
oped for automated image labeling and for pathology detection
in individuals or groups. We show that these algorithms can
serve as powerful tools to investigate how regional anatomy
is altered in disease, and with age, gender, handedness, and
other clinical or genetic factors. Registration algorithms can
encode patterns of anatomic variability in large human popu-
lations and can use this information to create disease-specific,
population-based brain atlases. They may also fuse information
from multiple imaging devices to correlate different measures
of brain structure and function. Finally, registration algorithms
can even measure dynamic patterns of structural change during

Copyright © 2008 by Elsevier, Inc.
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brain development, tumor growth, or degenerative disease
processes [107, 116, 120].

39.1.1 Pathology Detection

Normal anatomic complexity makes it difficult to design
automated strategies that detect abnormal brain structure.
Considerable research has focused on uncovering specific pat-
terns of anatomic alterations in Alzheimer’s disease (AD) or
other dementias [47], schizophrenia [25, 68], epilepsy [23],
attention deficit hyperactivity disorder (ADHD; [53]), autism
[24, 40], and cortical dysplasias [99]. At the same time, brain
structure is so variable that group-specific patterns of anatomy
and function are often obscured. Reports of structural dif-
ferences in the brain linked to gender, IQ, and handedness
are a topic of intense controversy, and it is even less clear
how these factors affect disease-specific abnormalities [118].
The importance of these linkages has propelled registration to
the forefront of brain imaging investigations. To distinguish
abnormalities from normal variants, a realistically complex
mathematical framework is required to encode information on
anatomic variability in homogeneous populations [59]. As we
shall see, elastic registration or warping algorithms offer sub-
stantial advantages for encoding patterns of anatomic variation
and detecting pathology.

39.1.2 Analyzing Brain Data

One of the driving forces that made registration important
in brain imaging was the need to perform brain to brain
comparisons. Anatomic variations severely hamper the inte-
gration and comparison of data across subjects and groups
[81, 129]. Motivated by the need to standardize data across
subjects, registration methods were developed to remove size
and shape differences that distinguish one brain from another
[104]. Transforming individual datasets into the shape of a sin-
gle reference anatomy, or onto a 3D digital brain atlas, removes
subject-specific shape variations and allows subsequent com-
parison of brain function between individuals [4, 15, 64, 91].
For similar reasons, deformable brain atlases are based on the
idea that a digital brain atlas can be elastically deformed to fit
a new subject’s anatomy [15, 39, 49, 62, 93, 95, 121]. High-
dimensional brain image registration or warping algorithms
[13, 15, 16, 19, 51, 59, 90, 106, 111, 125] are discussed in detail
in this chapter. These algorithms can transfer 3D maps of func-
tional and vascular territories onto the scan of any subject,
as well as information on tissue types, cytoarchitecture, and
histologic and neurochemical content [79].

39.1.3 Measuring Anatomical Differences

As a valuable by-product, 3D warping algorithms also quan-
tify local and global shape changes. The complex profiles

of dilation and contraction required to warp an atlas onto
the new subject’s brain provide an index of the ana-
tomical shape differences between that subject’s brain and
the atlas [5, 27, 114]. Differences in regional shape can be
assessed by the displacement required to locally deform one
brain volume into another, and can be further examined
by applying vector and tensor field operators to the trans-
formation field [108, 115]. As a result, deformable atlases
not only adapt to individual anatomy, but offer a powerful
strategy to analyze developmental, age-related, or pathologic
variations.

39.1.4 Population-Based Atlases

Pathology detection algorithms are discussed later (Sec-
tion 39.4). These invoke deformation fields that match one
brain with a large number of others. The result is a proba-
bilistic brain atlas that encodes patterns of anatomic variation
in human populations, and incorporates algorithms to detect
structural variants outside of the normal range [78, 114].

39.1.5 Measuring Brain Changes

When applied to scans acquired over many months or years
from a single subject, 3D warping algorithms can also cal-
culate measures of local and global shape change over time
[115, 116, 120]. In many ways, static representations of brain
structure are ill suited to investigating dynamic processes of
disease. With warping algorithms, measures of dilation rates,
contraction rates, and rates of shearing and divergence of
the cellular architecture may be computed locally, for all
structures, directly from the deformation field that matches
one scan with the other. As a result, warping algorithms
offer a powerful strategy to track temporal change and clas-
sify age-related, developmental, or pathologic alterations in
anatomy.

39.1.6 Hybrid Algorithms

The challenges created by cross-subject variations in brain
structure prompted us to explore hybrid approaches for
brain image registration and pathology detection. In these
approaches, computer vision algorithms and statistical pattern
recognition measures are integrated with anatomically driven
elastic transformations that encode complex shape differences
in anatomy. As a result, objective criteria can be defined to iden-
tify how brain structure is altered by age, gender, handedness,
disease, and other genetic or demographic factors [118]. We
begin with an overview of 2D and 3D image warping algo-
rithms widely used in brain imaging, in the hope that hybrid
algorithms will be developed in the future that capitalize on the
merits of each approach.
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39.2 Classification of Warping Algorithms

39.2.1 Model-Driven and Intensity-Driven
Algorithms

A wide variety of 3D image warping algorithms have been
designed to handle neuroanatomic data (Table 39.1). Model-
driven algorithms first build explicit geometric models, rep-
resenting separate, identifiable anatomic elements in each of
the scans to be matched. These anatomical systems typically
include functionally important surfaces [26, 34, 84, 103, 111],

curves [48, 83, 101], and point landmarks [1, 8]. Anatomical
elements are parameterized and matched with their counter-
parts in the target scan, and their correspondences guide the
volumetric transformation of one brain to another. In our
own warping algorithms (Section 39.3; [111, 115]), higher-
level structural information guides the mapping of one brain
onto another, and a hierarchy of curve-to-curve and surface-to-
surface mappings is set up, guaranteeing the biological validity
of the resulting transform. The algorithms exploit anatomical
information to match cortical regions, so that networks of sulci

TABLE 39.1 Warping algorithms for 3D nonlinear deformation of brain data

Algorithm type Author General features

I. Intensity-Based

A. Elastic Broit Connection developed between 3D image and a mechanical system
Bajcsy/Kovacic Multiscale/multiresolution approach; matching based on normalized cross-correlation in a 3D

Hermite basis
Dengler/Schmidt “Dynamic pyramid”/optical flow approach; matching performed on the sign of pixels in a

multiresolution Laplacian pyramid; used for template-driven segmentation
Miller/Christensen/Grenander MASPAR (massively parallel) implementation; Bayesian (probabilistic) pattern-theoretic frame-

work; warp represented using eigenfunctions of elastic operator and solved in a stochastic PDE
framework

Gee Bayesian (probabilistic) framework; uses finite elements; matches curvature and edge features as
well as intensities and tissue classes

Schormann/Zilles Fast elastic matching for histologic applications
B. Hyperelastic Rabbitt Allows large deformation and temporal evolution of the anatomic template
C. Spline-Based Meyer/Kim Mutual information measures pattern similarity; allows cross-modality warping
D. Fluid Christensen/Miller/Grenander MASPAR (massively parallel) implementation; allows large deformations; deformation velocity

tracked in an Eulerian reference system; topology of the volumetric mapping investigated (related
work by Freeborough, Lester)

Bro-Nielsen/Gramkow Fast filters used to implement continuum-mechanical deformations
E. Other Collins Maximizes normalized cross-correlation of intensity and edge features; used for automated image

segmentation and labeling, and probabilistic atlas construction
Thirion Fast algorithm; “demon”-based diffusion method motivated by thermodynamics
Woods Automated polynomial-based image registration
Ashburner/Friston Bayesian (probabilistic) framework; represents warp using 3D trigonometric basis; part of Statistical

Parametric Mapping package
Amit Wavelet, and other, bases used to express deformation fields in a variational framework, graphical

templates developed for automated feature detection
II. Model-Based

Constraints
A. Points Bookstein Thin-plate splines; used to investigate biological shape variation

Davis Landmarks used to drive 3D volume splines, elastic splines; neural network implementation
Müller/Ruprecht Explores 3D interpolation schemes and radial basis functions for warping

B. Curves Subsol/Declerck Pre-extracted ‘crest lines’ constrain the warp; used for automated atlas construction
Ge; Banerjee; Collins 3D sulcal lines used for cortical surface matching

C. Surfaces Downs Normalizes cortical convex hulls
Terzopoulos Snakes used for deformable curve and surface segmentation
Szeliski/Lavallée Warp rapidly computed on an adaptive octree-spline grid
Davatzikos Deformable surface models drive a 3D elastic registration; curvature maps used to constrain surface-

to-surface matching (related work by Gabrani/Tretiak)
Thompson/Toga Connected systems of deep surface meshes and deformable surfaces used to drive the warp; tensor-

based matching of cortical patterns for pathology detection; used to measure brain growth and to
create disease-specific brain atlases

Drury/Van Essen; Dale/ Cortical flattening and parameterization algorithms (related work by Schwartz/Merker,
MacDonald/Evans)Sereno/Fischl

Miller/Drury/Van Essen Matching of cortical flat maps
D. Other Joshi Generalized Dirichlet problem formulated for point, curve, surface and volumetric matching
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and gyri are individually matched. These strategies are discussed
in Section 39.3.

Model-driven approaches contrast with intensity-driven
approaches. Intensity-driven approaches aim to match regional
intensity patterns in each scan based on mathematical or statis-
tical criteria. Typically, they define a mathematical measure of
intensity similarity between the deforming scan and the target.
Measures of intensity similarity can include squared differences
in pixel intensities [4, 15, 128, 130], regional correlation [6, 21],
or mutual information [69]. Mutual information has proved
to be an excellent similarity measure for cross-modality regis-
trations, since it assumes only that the statistical dependence of
the voxel intensities is maximal when the images are geometri-
cally aligned. The intensity similarity measure, combined with
a measure of the structural integrity of the deforming scan, is
optimized by adjusting parameters of the deformation field.
Algorithms based on intensity patterns alone essentially bypass
information on the internal topology of the brain. Matching
of neuroanatomic data in the absence of higher-level structural
information presents an extremely difficult pattern recognition
problem. Future hybrid approaches, based on a combination
of model-based and densitometric criteria, are likely to benefit
from the advantages of each strategy.

39.2.2 Intensity-Driven Approaches

A key insight, which spurred the development of intensity-
based warping algorithms, was the connection of the image data
with a physically deforming system in three dimensions [12].
Physical continuum models (Figure 39.1) consider the deform-
ing image to be embedded in a three-dimensional deformable
medium, which can be either an elastic material or a viscous
fluid. The medium is subjected to certain distributed inter-
nal forces, which reconfigure the medium and eventually lead
the image to match the target. These forces can be based
mathematically on the local intensity patterns in the datasets,
with local forces designed to match image regions of similar
intensity.

39.2.3 Navier-Stokes Equilibrium Equations

In elastic media, the displacement field u(x) resulting from
internal deformation forces F(x) (called body forces) obeys
the Navier-Stokes equilibrium equations for linear elas-
ticity:

μ∇2u + (λ+ μ)∇(∇T · u(x)
)+ F(x) = 0, ∀x ∈ R. (39.1)

(a) (b)

FIGURE 39.1 Continuum-mechanical warping. (a) The complex transformation required to reconfigure one brain into the shape of another can
be determined using continuum-mechanical models, which describe how real physical materials deform. In this illustration, two line elements
embedded in a linearly elastic 3D block (lower left ) are slightly perturbed (arrows), and the goal is to find how the rest of the material deforms in
response to this displacement. The Cauchy-Navier equations (shown in discrete form, top) are solved to determine the values of the displacement
field vectors, u(x), throughout the 3D volume. (b) Lamé Elasticity Coefficients. Different choices of elasticity coefficients, λ andμ, in the Cauchy–
Navier equations (shown in continuous form, top) result in different deformations, even if the applied internal displacements are the same.
In histologic applications where an elastic tissue deformation is estimated, values of the elasticity coefficients can be chosen which limit the
amount of curl (lower right ) in the deformation field. Stiffer material models (top left ) may better reflect the deformational behavior of tissue
during histologic staining procedures. Note: For visualization purposes, and to emphasize differences in deformation patterns, the magnitudes
of the displacement vector fields shown in this figure have been multiplied by a factor of 10. The Cauchy–Navier equations, derived using an
assumption of small displacements, are valid only when the magnitude of the deformation field is small.
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Here R is a discrete lattice representation of the scan to be
transformed, ∇T · u(x) =∑

∂uj/∂xj is the cubical dilation of
the medium, ∇2 is the Laplacian operator, and Lamé’s coeffi-
cients λ and μ refer to the elastic properties of the medium.
Body forces, designed to match regions in each dataset with
high intensity similarity, can be derived from the gradient of
a local correlation function. In Bajcsy and Kovacic [6], inten-
sity neighborhoods to be correlated in each scan were projected
onto a truncated 3D Hermite polynomial basis to enhance the
response of edge features and accelerate computation. More
complex local operators can also be designed to identify candi-
dates for regional matches in the target image [2]. With proper
boundary conditions the elasticity equilibrium equations can be
solved numerically by finite difference, finite element, or spec-
tral methods. If U :x → x + u(x), then U (R) is the final image,
warped into register with the target scan. This elasticity-based
warping scheme was introduced by Broit [12]. It was subse-
quently extended to a multiresolution/multigrid algorithm by
Bajcsy and Kovacic [6], and to a finite element implementation
by Gee et al. [49].

39.2.4 Viscous Fluid Approaches

More recently, Christensen et al. [15–17] proposed a viscous-
fluid based warping transform, motivated by capturing non-
linear topological behavior and large image deformations.
Designed to operate sequentially, this transform is actually a
series of three algorithms that adjust successively finer features
of the local anatomy until the transformed image matches the
target scan. The optimal deformation field is defined as the one
that maximizes a global intensity similarity function (defined
on the deformed template and the target), while satisfying addi-
tional continuum-mechanical constraints that guarantee the
topological integrity of the deformed template.

The transformation proposed by Christensen et al. [17] is
conducted in three successive stages. Stage 1 requires a sparse
manual specification of the displacement field by isolating sev-
eral corresponding landmarks in both 3D scans. The minimum
energy configuration of the template compatible with this ini-
tial assignment is formalized as a Dirichlet problem [65]. For
a system of point landmarks, the associated Fredholm integral
equation reduces to a linear system whose solution expresses
the stage 1 deformation field in terms of the self-adjoint linear
operator describing the mechanics of the deforming system.
A second step expresses the residual deformation in terms of
an approximation series of eigenfunctions of the linear elastic
operator. Basis coefficients are determined by gradient descent
on a cost functional (39.2) that penalizes squared intensity
mismatch between the deforming template T (x − u(x, t )) and
target S(x):

C(T (x) , S(x), u) = (1/2)

∫
�

|T (x − u(x, t ))− S(x)|2dx.

(39.2)

Finally, a third, viscous deformation stage allows large-distance
nonlinear fluid evolution of the neuroanatomic template. With
the introduction of concepts such as deformation velocity and
an Eulerian reference frame, the energetics of the deformed
medium are hypothesized to be relaxed in a highly viscous fluid.
The driving force, which deforms the anatomic template, is
critical for successful registration. It is defined as the variation
of the cost functional with respect to the displacement field:

F((x, u(x, t )) = −(T (x − u(x, t ))− S(x))∇T |x-u(x,t) (39.3)

μ∇2v(x, t )+ (λ+ μ)∇(∇T · v(x, t ))+ F(x, u(x, t )) = 0
(39.4)

∂u(x, t )/∂t = v(x, t )− ∇u(x, t )v(x, t ). (39.5)

The deformation velocity (39.4) is governed by the creep-
ing flow momentum equation for a Newtonian fluid and the
conventional displacement field in a Lagrangian reference sys-
tem (39.5) is connected to an Eulerian velocity field by the
relation of material differentiation. Experimental results were
excellent [17].

39.2.5 Convolution Filters

Linkage of continuum-mechanical models with a 3D inten-
sity matching optimization problem results in an extremely
computationally intensive algorithm. Registration of two 1283

MR volumes took 9.5 and 13 hours for elastic and fluid trans-
forms, respectively, on a 128× 64 DECmpp1200Sx/Model 200
MASPAR (massively parallel mesh-connected supercomputer).
This spurred work to modify the algorithm for use on stan-
dard single-processor workstations [13, 43, 106]. Both elastic
and fluid algorithms contain core systems of up to 0.1 billion
simultaneous partial differential equations (39.1) and (39.4),
requiring many iterations of successive overrelaxation to find
their solution. To avoid this need to pass a filter many times over
the vector arrays, Bro-Nielsen and Gramkow [13] developed
a convolution filter to solve the system of partial differen-
tial equations in a single pass over the data. This speeds up
the core step in the registration procedure by a factor of
1000. Since the behavior of the mechanical system is governed
by the Navier–Stokes differential operator L = μ∇2 + (λ+
μ)∇(∇T ·), the eigenfunctions of this operator [17] were used to
derive a Green’s function solution u∗(x) = G(x) to the impulse
response equation Lu∗(x) = δ(x − x0). The solution to the full
PDE Lu(x) = −F(x) was approximated as a rapid filtering
operation on the 3D arrays representing the components of the
body force,

u(x) = −
∫
�

G(x − r) · F(r)dr = −(G ∗ F)(x), (39.6)

where G∗ represents convolution with the impulse response
filter. As noted in Gramkow and Bro-Nielsen [13], a fast,
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“demons-based” warping algorithm [106] calculates a flow
velocity by regularizing the force field driving the template with
a Gaussian filter. Since this filter may be regarded as a separa-
ble approximation to the continuum-mechanical filters derived
earlier, interest has focused on deriving additional separable
(and therefore rapidly applied) filters to capture the defor-
mational behavior of material continua in image registration
[55, 56]. Variable viscosity fluids create a still more flexible
registration model ([71]; λ = 0, cf. Equation (39.4)):

μ∇2v(x, t )+ μ∇(∇T · v(x, t ))+ (∂μ/∂xj)∇vj(x, t )

+ (∇μ · ∇)v(x, t )+ F(x, u(x, t )) = 0. (39.7)

In this model, a spatially dependent viscosity fieldμ(x) controls
the pliancy of the deforming image, slowing the deformation
of some regions to enable others to register first. By combining
a diffusion model with spatially adaptive controls, this method
shares some affinities with variable-conductance scale spaces,
which have become a powerful approach for multiscale feature
detection in medical imaging [105].

39.2.6 Multigrid and Coarse-to-Fine
Optimization

Vast numbers of parameters are required to represent com-
plex deformation fields. Optimal values for these parameters
must therefore be searched, to find parameter sets that glob-
ally minimize the measure of mismatch between the warped
image and target. In several robust systems for automated
brain image segmentation and labeling, Dengler and Schmidt
[32], Bajcsy and Kovacic [6], Collins et al. [20, 21], Gee et al.
[49, 50], and Schormann et al. [97] recover the optimal trans-
formation in a hierarchical multiscale fashion. Both template
and target intensity data are smoothed with different sized
Gaussian filters, and the registration is performed initially at
coarse spatial scales, then finer ones. This accelerates com-
putation and helps to avoid local minima of the mismatch
measure. In an alternative approach, the deformation field is
expressed as a steadily increasing sum of basis functions, whose
coarse-scale parameters are estimated first and whose spatial
frequency is increased as the algorithm progresses [1, 82]. The
widely used Statistical Parametric Mapping [4] and Automated
Image Registration algorithms [130] take a similar coarse-to-fine
approach. Increasingly complex warping fields are expressed in
terms of a 3D cosine basis (SPM) or by using 3D polynomials
of increasing order (AIR; polynomials also span the space of
continuous deformation fields, by the Stone–Weierstrass theo-
rem). Amit [2] expresses 2D warping fields in terms of a wavelet
basis. The small support of high-frequency wavelets allows local
adjustments of the warping field in regions where the mismatch
is large, without having to alter the field in other areas where the
mismatch may already be small. In Miller et al. ([82]; cf. [1]), a
stochastic algorithm generates the expansion coefficient set for

the deformation field

u (x) =
∑

i,j=1 to d

∑
r=1,2

[
2
(
i2 + j2

)]−1/2 [
μi,j,r ei,j,r (x)

]
(39.8)

in terms of an eigenbasis {ei,j,r } for the linear elasticity operator.
Stochastic gradient descent is used to find the optimal warping
field parameters according to:

dμi,j,r (t ) = − (1/2)
[
∂H (u (t )) /∂μi,j,r

]
dt + dwi,j,r (t ) .

(39.9)

Here H (u(t )) is the combined measure of intensity mismatch
and deformation severity, and dwi,j,r (t ) is a Wiener process
that allows provisional parameter estimates to jump out of
local minima. At the expense of added computation time,
stochastic sampling allows globally optimal image matches to
be estimated.

39.2.7 Bayesian Registration models

Bayesian statistical models provide a general framework for
the presentation of deformable matching methods. They have
also been applied to the brain image matching problem
[4, 49, 50, 82]. In a Bayesian model, statistical information on
the imaging process (the imaging model) is combined with
prior information on expected template deformations (the prior
model) to allow inferences to be made about the parameters
of the deformation field. In fact, all of the intensity-based
approaches that combine an intensity mismatch term with a
measure of deformation severity can be recast as an inference
task in a Bayesian probabilistic framework. The Bayesian max-
imum a posteriori (MAP) estimator solving the registration
problem is the transformation Û = argminu(D(u)+ E(u)),
which minimizes a combined penalty due to the intensity mis-
match D(u) and the elastic potential energy E(u) stored in the
deformation field.

39.2.8 Model-Driven Algorithms

The extreme difficulty of matching brain data based on inten-
sity criteria alone led to the development of algorithms driven
by anatomical models, which can be extracted from each dataset
prior to registration. Anatomic models provide an explicit
geometry for individual structures in each scan. Model-driven
algorithms can be classified by the type of features that drive
them. These features include point, curve, or surface models
of anatomic structures. When parameterized consistently (see
Section 39.3), mesh-based models of anatomic systems help
guide the mapping of one brain to another. Anatomically driven
algorithms guarantee biological as well as computational valid-
ity, generating meaningful object-to-object correspondences,
especially at the cortex.
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39.2.9 Point-Based Matching

The simplest set of anatomic features that can guide the map-
ping of one brain to another is a set of point landmarks,
identified manually [8] or automatically [2, 30] in each dataset.
A specification of correspondences at point landmarks can be
extended to produce a deformation field for the full volume
in a variety of ways, each consistent with the displacements
assigned at the point landmarks. The ambiguity is resolved
by requiring the deformation field to be the one that mini-
mizes a specific regularizing functional [119], which measures
the roughness or irregularity of the deformation field, calcu-
lated from its spatial derivatives. Different regularizers measure
smoothness in different ways, and have different ways of inter-
polating the deformation from the points into the full 3D
volume. All regularizers penalize large values of the deriva-
tives, creating warping functions that take on the values to be
interpolated (displacements) at the specified points, but that
do not vary erratically elsewhere. For producing 2D warping
fields, thin-plate splines [8, 60] are functions that minimize the
penalty,

Jthin-plate (u) =
∫

R2

[
(∂11u)2 + 2(∂12u)2 + (∂22u)2

]
dx1 dx2,

(39.10)

where ∂ij u = ∂2u/∂xi∂xj . Other members of the family of mul-
tidimensional spline functions [37, 80, 124] have also been used
for brain image warping. Membrane splines [1, 49], elastic body
splines [30, 82], and div-curl splines [102] are warping functions
that minimize the following measures of irregularity:

Jmemb (u) =
∫

dx1 dx2

[
(∂1u1)

2 + (∂1u2)
2 + (∂2u1)

2 + (∂2u2)
2
]

(39.11)

Jelas(u) =
∫ ( ∑

i=1 to 2

∑
j=1 to 2

[
(λ/2) (∂iui)

(
∂j uj

)

+ (μ/4)
((
∂iuj

)+ (
∂j ui

))2
])

dx1 dx2 (39.12)

Jdiv-curl(u) =
∫ [

λ||∇DIVu||2 + ||∇CURLu||2] dx1 dx2.

(39.13)

Just like the continuum-mechanical warps defined earlier, the
warping fields generated by splines satisfy partial differential
equations of the form Lu(x) = −F(x), where u(x) is fixed at
the specified points, F(x) plays the role of a body force term,
and L is the biharmonic differential operator ∇4 for the thin-
plate spline, the Laplacian operator∇2 for the membrane spline,
and the Cauchy–Navier operator μ∇2 + (λ+ μ)∇(∇T ·) for
the elastic body spline.1

Once a type of spline is chosen for warping, a formula can
be used that specifies how to interpolate the displacement field

from a set of points {xi} to the surrounding 2D plane or 3D
volume:

u(x) = pm−1(x)+
∑

i

ciG (x − xi) . (39.14)

Here pm−1(x) is a polynomial of total degree m − 1, where
m is the order of derivative used in the regularizer, and G
is a radial basis function or Green’s function whose form
depends on the type of spline being used [30, 65]. The poly-
nomial coefficients determine components of low-order data
variations, such as a global rigid motion between the two
brains, which are not penalized by the smoothness func-
tional [127]. The coefficients ci in this formula are found
by evaluating this equation at the points xi and solving the
resulting linear system of equations. Various choices of radial
basis functions G(r), for r = ||(x − xi)||, are commonly used
for medical image matching and for multivariate data inter-
polation generally [8, 94, 111]. Their behavior is also well
understood from their wide use in neural networks and pat-
tern classifiers [92]. Choices of r2 In r and r correspond to
the thin-plate spline in two and three dimensions, with r3 for
the 3D volume spline [30], the 3× 3 matrix [αr2I − 3xxT ]r
for the 3D elastic body spline [30], and (r2 + c2)α(0 < α <

1) and ln(r2 + c2)1/2(c2 ≥ 1) for multiquadric and shifted-log
interpolants [42, 63, 94]. Gaussian radial functions G(r) =
exp(−r2/2σ2) belong to the same family, generating warp-
ing fields that minimize the following nonintuitive irregularity
measure [89]:

Jgauss (u) =
∑

n=0 to∞
(−1)n

(
σ2n/n!2n

)

∑
i1...in

∫ [
∂nu (x)/∂xi1 . . . ∂xin

]2
dx. (39.15)

These Gaussian functions perform poorly unless σ is cho-
sen carefully ([127]; Franke [42] suggests using σ = 1.008 d/n,
where d is the diameter of the point set and n is the number
of points). The best choice of radial basis functions depends
on the objective. For modeling deformation of real biological
tissue, elastic body splines outperform thin-plate splines [30].
Thin-plate splines, however, are advantageous in computing
shape statistics [8]. Use of radial basis functions in medical
image registration algorithms has also been extended to neural
network implementations [29].

1 Note that spline-based warping functions can be defined either (39.1) as the

variational minimizer of an irregularity measure or (39.2) as solutions to related

PDEs. But, as pointed out by Arad [3], strictly one looks for solutions to each

problem in different function spaces (the Sobolev space H 2(�) for minimizing

the regularizing integral—which is also known as a Sobolev semi-norm—and

continuous function spaces such as C(�c ) ∩ C 4(�) for solving PDEs such as

∇4u(x) = 0, x ∈ �).
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39.2.10 Neural Network Approaches

Neural networks are widely used in pattern recognition and
computational learning [92] and provide ingenious solutions
for both landmark-driven and automated image matching.
Two of the most common network types are multilayered per-
ceptrons (MLPs) and radial basis function (RBF) networks.
RBF neural nets, in particular, use correspondences at known
landmarks as a training set to learn a multivariate function
mapping positions in the image (input) to the desired displace-
ment field at that point (output). Intriguingly, the hidden units
in the neural net are directly analogous to Green’s functions,
or convolution filters, in the continuum-mechanical match-
ing approach [13, 65]. They are also directly analogous to
Watson–Nadaraya kernel estimators, or Parzen windows, in non-
parametric regression methods ([87]; Figure 39.2). As before,
the k deformation field components are the output values of the
neural net:

uk(x) =
∑

m=1 to M

amπm(x)+
∑

i=1 to N

wikGi(x − xi). (39.16)

Here the Gi are N separate hidden unit neurons with receptive
fields centered at xi ,

∑
amπm is a polynomial whose terms are

hidden units and whose coefficients am are also learned from
the training set, and wik are synaptic weights (Figure 39.2).
The synaptic weights are determined by solving a linear system
obtained by substituting the training data into this equation. If

landmarks are available to constrain the mapping, the function
centers xi may be initialized at the landmark positions, although
fewer hidden units are desirable if the network output is to be
accurate far from the landmarks. In an innovation [29], a 3D
brain image matching neural net was developed that eliminates
the need for landmark selection. Network weights (the coordi-
nate transformation parameters) and the RBF center locations
are successively tuned to optimize an intensity-based func-
tional (normalized correlation) that measures the quality of
the match. Hidden units were initially randomly placed across
the image and the network was trained (i.e., the parameters
of the warping field were determined) by evaluating the gradi-
ent of the normalized correlation with respect to the network
parameters, and optimizing their values by gradient descent.
Results matching 3D brain image pairs were impressive [29]. For
further discussion of the close relationship among continuum-
mechanical PDEs, statistical regression, and neural nets, see
Ripley et al. [92].

39.2.11 Curve-Based Approaches

When constructing a warping field for matching two brain
images, greater anatomical accuracy can be achieved by using
curves as anatomic driving features. In fact, many investigators
of point-based landmark matching have included orientation
attributes or directional information at landmarks to fur-
ther constrain the transformation [9, 77]. In two dimensions,
matching of entire planar curved boundaries is ideal for
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FIGURE 39.2 Automated image matching with neural networks. Neural networks can be used to compute the deformation field required to warp
one image into the shape of another. In one approach ([30], (a)), each of the three deformation vector components, uk (x), is the output of the
neural net when the position in the image to be deformed, x, is input to the net. In calculating the output, the numerical outputs of the hidden
units (Gi , πm) are weighted using synaptic weights, wik , different for each output component. If landmarks in both images are available to guide
the mapping, the weights are found by solving a linear system. Otherwise, the weights can be tuned so that a measure of similarity between the
deforming image and the target image is optimized. (b) When the number of landmarks driving the deformation mapping is very large [115], a
linear system can be set up, based on a model of linear elasticity, which is solved by successive overrelaxation methods. However, there is a strong
mathematical connection between the Green’s function (impulse response) of the deformation operator (b), hidden units in the neural net (a),
and kernels used in nonparametric regression approaches (see main text). (Diagram (a) is adapted from [30]).
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(a) (b)

FIGURE 39.3 Curve-driven warping in a histology application. Curve-driven warping algorithms can recover and compensate for patterns of
tissue change which occur in post mortem histologic experiments. A brain section ((a), left panel), gridded to produce tissue elements for
biochemical assays, is reconfigured ((a), right ) into its original position in the cryosection blockface ([79], algorithm from [111], modified
to produce a 2D elastic warp). The complexity of the required deformation vector field in a small tissue region (magnified vector map, (b))
demonstrates that very flexible, high-dimensional transformations are essential [87, 111]. These data can also be projected, using additional
warping algorithms, onto in vivo MRI and coregistered PET data from the same subject for digital correlation and analysis [79]. (See also color
insert).

correcting deformations in histologic tissue ([79, 97]; see
Figure 39.3). Approaches using sulcal lines to drive a 3D vol-
umetric warp are under active investigation in Macaque [65]
and human MR data [7, 31, 48, 72]. Curve-based sulcal mod-
els can be combined with intensity-based measures to assist in
matching cortical regions [22].

Declerck et al. [31] used crest lines to drive a volume trans-
formation. Crest lines [83] are curved loci on a surface that
satisfy the following geometric criterion: The largest principal
curvature must be locally maximal in the associated principal
direction. After an MR dataset is thresholded to segment the
cortex and ventricles, crest lines on these surfaces are defined.
They are matched with their counterparts in a target brain
using (39.1) an iterative closest point algorithm, which finds
candidate lines for matching, and (39.2) topological criteria to
enforce one-to-one matching of curves and to ensure that their
internal points are matched in a consistent, serial order. The 3D
deformation field, expressed as a 3D tensor product of B-spline
basis functions, is obtained by minimizing a regularizing term
(as in point-based approaches) and a landmark mismatch term.
This mismatch term limits the impact of spurious matches by
tolerating some separation between curves that the algorithm
decides to match.

39.2.12 Automated Matching

Identifying the subset of curved features that have a consis-
tent topology across subjects (and are therefore appropriate
to match) is extremely challenging. The problem is, however,
easier than in the general intensity-matching case, as the para-
metric forms of the curves have a differentiable structure. The
inherent structure in the model allows additional geometric

features (torsion, curvature, and local Frenet frames) to be
included in the matching function, to favor correct pairing
[54, 70]. Sulcal curvature patterns are only weakly conserved
across subjects, and even this consistency is restricted to spe-
cific anatomic regions [86, 113]. Nevertheless, to help guide the
automated matching of curves and surfaces in anatomic data,
statistical priors have been defined, for different types of sulci, to
describe their expected curvature [67, 75], torsion [61, 67], and
stereotaxic position [109, 112, 115]. In an alternative approach
based on Markov random fields, Mangin et al. [76] extract a
3D skeletonized representation of deep sulci and parse it into
an attributed relational graph of connected surface elements.
They then define a syntactic energy on the space of associations
between the surface elements and anatomic labels, from which
estimates of correct labelings (and therefore correct matches
across subjects) can be derived.

39.2.13 Surface-Based Approaches

Ultimately, accurate warping of brain data requires the
following.

1. Matching entire systems of anatomic surface boundaries,
both external and internal

2. Matching relevant curved and point landmarks, includ-
ing ones within the surfaces being matched (e.g., pri-
mary sulci at the cortex, tissue type boundaries at the
ventricular surface)

In our own model-driven warping algorithm [111, 113, 115],
systems of model surfaces are first extracted from each dataset
and used to guide the volumetric mapping. The model surfaces
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include many critical functional interfaces, as well as numerous
cytoarchitectonic and lobar boundaries in three dimensions.
Both the surfaces and the landmark curves within them are
reconfigured and forced to match their counterparts in the
target datasets exactly. We will discuss this approach in some
detail.

39.2.14 Anatomical Models

Since much of the functional territory of the human cortex is
buried in the cortical folds or sulci, a generic structure is built
to model them (Figures 39.4, 39.5; [111]), incorporating a pri-
ori topological and shape information about the deep sulcal
pattern. The underlying data structure consists of a connected
system of surface meshes, in which the individual meshes are
parametric and have the form of complex 3D sheets that divide
and join at curved junctions to form a network of connected
surfaces. Separate surfaces are used to model the deep inter-
nal trajectories of features such as the parieto-occipital sulcus,
the anterior and posterior calcarine sulcus, the Sylvian fissure,
and the cingulate, marginal, and supracallosal sulci in both
hemispheres. Additional major gyral and sulcal boundaries are

FIGURE 39.4 Connected surface systems used to drive the warp.
Models of deep structures are used to guide the mapping of one
brain to another (data from [111]). Deep sulcal surfaces include
the anterior and posterior calcarine (CALCa/p), cingulate (CING),
parieto-occipital (PAOC), and callosal (CALL) sulci and the Sylvian
fissure (SYLV). Also shown are the superior and inferior surfaces of the
rostral horn (VTSs/i) and inferior horn (VTIs/i) of the right lateral ven-
tricle. Ventricles and deep sulci are represented by connected systems
of rectangularly parameterized surface meshes, whereas the external
surface has a spherical parameterization that satisfies the discretized
system of Euler–Lagrange equations used to extract it. Connections are
introduced between elementary mesh surfaces at known tissue–type
and cytoarchitectural field boundaries, and at complex anatomical
junctions (such as the PAOC/CALCa/CALCp junction shown here).
Color-coded profiles show the magnitude of the 3D deformation maps
warping these surface components (in the right hemisphere of a 3D
T1-weighted SPGR MRI scan of an Alzheimer’s patient) onto their
counterparts in an identically acquired scan from an age-matched
normal subject. (See also color insert).

represented by parameterized curves lying in the cortical sur-
face. The ventricular system is modeled as a closed system of
14 connected surface elements whose junctions reflect cytoar-
chitectonic boundaries of the adjacent tissue (for details, see
Thompson and Toga [115]). Information on the meshes’ spa-
tial relations, including their surface topology (closed or open),
anatomical names, mutual connections, directions of parame-
terization, and common 3D junctions and boundaries, is stored
in a hierarchical graph structure. This ensures the continuity of
displacement vector fields defined at mesh junctions.

39.2.15 Parameterization

Surface parameterization, or imposition of an identical reg-
ular structure on anatomic surfaces from different subjects
(Figure 39.5), provides an explicit geometry that can be
exploited to drive and constrain the correspondence maps
which associate anatomic points in different subjects. Structures
that can be extracted automatically in parametric form include
the external cortical surface (discussed in Section 39.3), ventric-
ular surfaces, and several deep sulcal surfaces. Recent success
of sulcal extraction approaches based on deformable sur-
faces [122] led us to combine a 3D skeletonization algorithm
with deformable curve and surface governing equuationations
to automatically produce parameterized models of cingulate,
parieto-occipital, and calcarine sulci, without manual initializa-
tion [136]. Additional, manually segmented surfaces can also
be given a uniform rectilinear parameterization using algo-
rithms described in Thompson et al. [109, 110] and used to
drive the warping algorithm. Each resultant surface mesh is
analogous in form to a uniform rectangular grid, drawn on a
rubber sheet, which is subsequently stretched to match all data
points. Association of points on each surface with the same
mesh coordinate produces a dense correspondence vector field
between surface points in different subjects. This procedure is
carried out under very stringent conditions,2 which ensure that
landmark curves and points known to the anatomist appear in
corresponding locations in each parametric grid.

39.2.16 Displacement Maps

For each surface mesh MP
l in a pair of scans Ap and Aq we define

a 3D displacement field

W pq
l

[
r p

l (u, v)
] = r

q
l (u, v)− rp

l (u, v) (39.17)

2 For example, the calcarine sulcus (see Figure 39.4) is partitioned into two

meshes (CALCa and CALCp). This ensures that the complex 3D curve forming

their junction with the parieto-occipital sulcus is accurately mapped under both

the surface displacement and 3D volumetric maps reconfiguring one anatomy

into the shape of another. Figure 39.5 illustrates this procedure, in a case where

three surface meshes in one brain are matched with their counterparts in a target

brain. A separate approach (discussed later, Section 39.3) is used to match

systems of curves lying within a surface with their counterparts in a target

brain.
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FIGURE 39.5 Mesh construction and matching. The derivation of a standard surface representation for each structure makes it easier to compare
and analyze anatomical models from multiple subjects. An algorithm converts points (dots, top right panel) on an anatomical structure boundary
into a parametric grid of uniformly spaced points in a regular rectangular mesh stretched over the surface [110]. Computation of anatomic
differences between subjects requires transformation tools that deform connected systems of mesh-based surface models representing structures
in one subject’s anatomy, into correspondence with their counterparts in the anatomy of another subject. This mapping is computed as a surface-
based displacement map (right panel), which deforms each surface locally into the shape of its counterpart. Maintenance of information on
surface connectivity guarantees accurate mapping of curved junctions among surfaces, under both the surface-based and subsequent volumetric
transformations. Note: Matching of surfaces with a spherical parameterization requires separate methods, which deal with the matching of
curved internal landmarks (Section 39.3).

carrying each surface point rp
l (u, ν) in Ap into structural

correspondence with rq
l (u, v), the point in the target mesh

parameterized by rectangular coordinates (u, v). This family of
high-resolution transformations, applied to individual meshes
in a connected system deep inside the brain, elastically trans-
forms elements of the surface system in one 3D image to their
counterparts in the target scan.

39.2.17 3D Volume Transformation

As in approaches based on matching points and curves, the
surface-based transformation can be extended to the full vol-
ume in a variety of ways. In one approach [111], weighted
linear combinations of radial functions, describing the influ-
ence of deforming surfaces on points in their vicinity, extend
the surface-based deformation to the whole brain volume (see
Figure 39.6). For a general voxel x in the scan Ap to be

transformed, we let δ
p
l (x) be the distance from x to its near-

est point(s) on each surface mesh Mp
l , and let the scalars

γ
p
l (x) ∈ [0, 1]denote the weights {1/δp

l (x)}/
∑

l=1 to L{1/δp
l (x)}.

Then W pq(x), the displacement vector which takes a general
point x in scan Ap onto its counterpart in scan Aq, is given by
the linear combination of functions:

W pq(x) =
∑

l=1 to L

γ
p
l (x) · Dpq

l

(
np p

l (x)
)

, for all x ∈ Ap.

(39.18)

Here the Dpq
l are distortion functions (Figure 39.6) due to the

deformation of surfaces close to x, given by

Dpq
l (x) =

{∫
r∈B(x;rc)

w
p
l

(
x, δ

p
l (r)

)
·W pq

l

[
npp

l(r)
]

dr

}

/{∫
r∈B(x;rc)

w
p
l

(
x, δ

p
l(r)

)
dr

}
.

(39.19)
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FIGURE 39.6 Volume warp calculation. The volumetric transforma-
tion W pq(x), of an arbitrary point x in a scan, p, to its counterpart
in another scan, q, is expressed as a weighted linear combination
of distortion functions associated with each surface. Within a sur-
face Si , the relative contribution of each point in the projected patch
{npi[B(x; rc )]} to the elastic transformation at x is given a rela-
tive weight wi . The distortion at x due to surface Si is given by
Dpq

i (x) = {
∫

r∈B wp
i W pq

i dr}/{∫r∈B wp
i dr}, where the W pq

i are the dis-
placement maps defined on each surface (Figure 39.5). The volume
warp Wpq(x) is a weighted average (over i) of the Dpq

i (x), depending
on the relative distance γi(x) of x from its near-points on each surface
Si . (Adapted from [111].)

W pq
l [np p

l (r)] is the (average) displacement vector assigned by

the surface displacement maps to the nearest point(s) np p
l (r) to

r on Mp
l · Rc is a constant, and B(x;rc ) is a sphere of radius rc =

min{Rc , min{δp
l (r)}}. The wp

l are additional weight functions
defined as

w p
l

(
x, δ

p
l (r)

)
= exp

(
−

{
d
(

npp
l (r), x

)
/δ

p
l (x)

}2
)

, (39.20)

where d(a, b) represents the 3D distance between two points
a and b. The Jacobian of the transformation field at each
point x is tracked during the computation, as recommended by
Christensen et al. [16]. In rare cases where the transformation
is locally singular, the vector field computation is discretized in
time, and the deformation field is reparameterized at successive
time steps, as suggested in Christensen et al. [17]. Intermediate
surface blends (1− t )r

p
l (u, ν)+ tr

q
l (u, v), t ∈ [0, 1], are gen-

erated for every surface, and these surfaces are uniformly
reparameterized at times 0 ≤ . . . tm ≤ tm+1 . . . ≤ 1. The M
warps mapping the full surface system and surrounding volume
from one time point to the next are concatenated to produce the
final transformation. This incremental evolution of the trans-
formation is visualized in a published video [115]. Extensions
of the core algorithm to include continuum-mechanical, and

other filter-based models of deformation (cf. [26, 46, 65, 96])
have yielded similar encouraging results. Experiments illustrat-
ing the performance of the algorithm on MRI data are shown
in Figure 39.7.

39.3 Cortical Pattern Matching

Cortical surfaces can be matched using a procedure that also
matches large networks of gyral and sulcal landmarks with
their counterparts in the target brain [26, 35, 111, 113, 123].
Differences in the serial organization of cortical gyri prevent
exact gyrus-by-gyrus matching of one cortex with another, but
an important intermediate goal has been to match a compre-
hensive network of sulcal and gyral elements that are consistent
in their incidence and topology across subjects. Elastic matching
of primary cortical regions factors out a substantial component
of confounding cortical variance in functional imaging stud-
ies, as it directly compensates for drastic variations in cortical
patterns across subjects [100, 114, 129]. Quantitative compar-
ison of cortical models can also be based on the mapping that
drives one cortex with another [114, 123]. Because of its role in
pathology detection algorithms (Section 39.4), we focus on this
mapping in some detail.

39.3.1 Overview of Method

Our method [111] is conceptually similar to that of Davatzikos
[126]. 3D active surfaces (Figure 39.8; [18]) are used to auto-
matically extract parametric representations of each subject’s
cortex, on which corresponding networks of anatomical curves
are identified. The transformation relating these networks is
expressed as a vector flow field in the parameter space of
the cortex (Figure 39.9). This vector flow field in parame-
ter space indirectly specifies a correspondence field in three
dimensions, which drives one cortical surface into the shape of
another.

39.3.2 Algorithm Details

Several algorithms have been proposed to extract cortical sur-
face models from 3D MR data [26, 28, 95, 98, 134]. In one
algorithm [73, 74], a spherical mesh surface is continuously
deformed to match a target boundary defined by a thresh-
old value in the continuous 3D MR image intensity field
(Figure 39.8). Evolution of the deformable surface is con-
strained by systems of partial differential equations. These
equations have terms that attract the parametric model to
regions with the preselected intensity value, while penalizing
excessive local bending or stretching. If an initial estimate
of the surface v0(s, r) is provided as a boundary condition
(see Thompson and Toga [111] for details), the final position



39 Warping Strategies for Intersubject Registration 655

Target brain's
cortical surface

a b

c d

e

Target brain

3D Deformation
field

Magnitude
(mm)

20

15

10

5

0

FIGURE 39.7 3D image warping measures patterns of anatomic differences. T1-weighted MR sagittal brain slice images from (a) a normal
elderly subject’s scan; (b) a “target” anatomy, from a patient with clinically determined Alzheimer’s disease; and (c) result of warping the
reference anatomy into structural correspondence with the target. Note the precise nonlinear registration of the cortical boundaries, the desired
reconfiguration of the major sulci, and the contraction of the ventricular space and cerebellum. The complexity of the recovered deformation
field is shown by applying the two in-slice components of the 3D volumetric transformation to a regular grid in the reference coordinate system.
This visualization technique (d) highlights the especially large contraction in the cerebellar region, and the complexity of the warping field in
the posterior frontal and cingulate areas, corresponding to subtle local variations in anatomy between the two subjects. To monitor the smooth
transition to the surrounding anatomy of the deformation fields initially defined on the surface systems, the magnitude of the warping field is
visualized (e) on models of the surface anatomy of the target brain, as well as on an orthogonal plane slicing through many of these surfaces at
the same level as the anatomic sections. The warping field extends smoothly from the complex anatomic surfaces into the surrounding brain
architecture, and severe deformations are highlighted in the pre-marginal cortex, ventricular, and cerebellar areas. (See also color insert).

of the surface is given by the solution (as t →∞) of the
Euler–Lagrange evolution equation:

∂v/∂t − ∂/∂s(w10|∂ν/∂s|)− ∂/∂r(w01|∂ν/∂r |)
+ 2∂2/∂s∂r

(
w11|∂2v/∂s∂r |)+ ∂2/∂s2

(
w20|∂2v/∂s2|)

+ ∂2/∂r2
(
w02|∂2v/∂r2|) = F(v). (39.21)

Here F(v) is the sum of the external forces applied to the
surface, and the wij terms improve the regularity of the sur-
face. The spherical parameterization of the deforming surface
is maintained under the complex transformation, and the
resulting model of the cortex consists of a high-resolution
mesh of discrete triangular elements that tile the surface
(Figure 39.8).
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FIGURE 39.8 Cortical Surface Extraction. Prior to matching cortical surfaces across subjects, a high-resolution surface representation of the
cortex is obtained with a semi-automatic 3D active surface extraction algorithm [73, 74]. A spherical mesh surface (top left ) is governed by a
system of partial differential equations, which allow it to be continuously deformed to match a target boundary defined by a threshold value in
the continuous 3D MR image intensity field. The algorithm operates in a multiscale fashion, so that progressively finer surface detail is extracted
at finer scale representations of the data. The initial surface, composed of 8192 polygons, is extracted rapidly, but expresses only the gross shape
of the cortex (top right ). After several finer scale steps, the final model of the cortex (lower left ) consists of a high-resolution mesh consisting of
100,000–150,000 discrete triangular elements that tile the surface (lower right ). (See also color insert).

39.3.3 Maps of the Cortical Parameter Space

Because the cortical model is obtained by deforming a spherical
mesh, any point on the cortical surface (Figure 39.9(a)) must
map to exactly one point on the sphere (Figure 39.9(b)), and
vice versa. Each cortical surface is parameterized with an invert-
ible mapping Dp , Dq : (r , s)→ (x , y , z), so sulcal curves and
landmarks in the folded brain surface can be reidentified in the
spherical map (cf. Sereno et al. [98] for a similar approach;
Figure 39.9(b)). To retain relevant 3D information, cortical
surface point position vectors in 3D stereotaxic space are color-
coded, to form an image of the parameter space in color image
format (Figure 39.9(b),(c)). To find good matches between
cortical regions in different subjects (Figure 39.9(a),(d)), we
first derive a spherical map for each respective surface model
(Figure 39.9(b),(c)) and then perform the matching process in

the spherical parametric space, �. The parameter shift func-
tion u(r) : �→ �, is given by the solution Fpq : r → r + u(r)
to a curve-driven warp in the biperiodic parametric space� =
[0, 2π)× [0, π) of the external cortex (cf. [26, 35, 41, 123]).
This warp can be set up in a variety of ways. Spherical har-
monic functions are an orthonormal basis on the sphere (they
are eigenfunctions of the Laplacian operator) and can be used
to extend this curve-based deformation to the whole surround-
ing spherical map [111]. An alternative, mathematically more
challenging approach is to use the regularization approach
introduced earlier, with several modifications.

39.3.4 Cortical Curvature

At first glance it seems that the previous approach, using ordi-
nary differential operators to constrain the mapping, can be
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FIGURE 39.9 Scheme to match cortical regions with high-dimensional transformations and color-coded spherical maps. High-resolution surface
models of the cerebral cortex are extracted in parametric form, which produces a continuous, invertible one-to-one mapping between cortical
surface points, (a), and their counterparts on a sphere. To find matches between cortical regions in different subjects [(a)/(d)], a Dirichlet problem
is framed in the parametric space [26, 111, 113, 115]. Each point in the spherical map, (b), is color-coded at 16 bits per channel with a color value
that represents the location of its counterpart on the convoluted surface. When spherical maps are made from two different cortical surfaces, the
respective sulci will be in different positions in each spherical map [(b), (c)], reflecting their different locations on the folded brain surface. Using
a vector-valued flow field defined on the sphere (c), the system of sulcal curves in one spherical map is driven into exact correspondence with
their counterparts in the target spherical map, guiding the transformation of the adjacent regions. The effect of the transformation is illustrated
in (c) by its effect on a uniform grid, ruled over the starting spherical map and passively carried along in the resultant deformation. Complex
nonlinear flow is observed in superior temporal regions, as the superior temporal sulcus (STS) extends further posteriorly in the target brain,
and the posterior upswing of the Sylvian fissure (SYLV) is more pronounced in the reference brain (a) than in the target (d). Outlines are also
shown for the superior frontal sulcus (SFS) and central sulcus (CENT), which is less convoluted in the reference brain than in the target. Because
the color-coded spherical maps index cortical surface locations in 3D, the transformation is recovered in 3D stereotaxic space as a displacement
of points in one subject’s cortex onto their counterparts in another subject (Figure 39.12). (See also color insert).

applied directly. For points r = (r , s) in the parameter space,
a system of simultaneous partial differential equations can be
written for u(r) using

L(u(r))+ F(r − u(r)) = 0, ∀r ∈ �,

u(r) = u0(r) , ∀r ∈ M0 ∪M1. (39.22)

Here M0, M1 are sets of points and (sulcal and gyral) curves
where vectors u(r) = u0(r) matching regions of one anatomy

with their counterparts in the other are known, and L and
F are 2D equivalents of the differential operators and body
forces defined earlier. Unfortunately, the recovered solution
x → Dq(Fpq(D

−1
p (x))) will in general be prone to variations in

the metric tensors gjk(rp) and gjk(rq) of the mappings Dp and
Dq (Figure 39.10). Since the cortex is not a developable surface
[26], it cannot be given a parameterization whose metric tensor
is uniform. As in fluid dynamics or general relativity applica-
tions, the intrinsic curvature of the solution domain should be
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FIGURE 39.10 High-dimensional matching of cortical surfaces and sulcal networks. Accurate and comprehensive matching of cortical surfaces
requires more than the matching of overall cortical geometry. Connected systems of curved sulcal landmarks, distributed over the cortical
surface, must also be driven into correspondence with their counterparts in each target brain. A cascade of mathematical mappings is required
to achieve this. Active surface extraction of the cortex provides a continuous inverse mapping from the cortex of each subject to the spherical
template used to extract it. Application of these inverse maps (D−1

p , D−1
q ) to connected networks of curved sulci in each subject transforms the

problem into one of computing an angular flow vector field Fpq , in spherical coordinates, which drives the network elements into register on the
sphere [111]. To greatly accelerate computation of the overall mappings Dq Fpq D−l

p , the forward mapping Dq is preencoded via the mapping
I−1

q Kq as a three-channel floating-point array (shown in color) defined on the codomain of Fpq . The full mapping Dq Fpq D−1
p can be expressed

as a displacement vector field that drives cortical points and regions in brain P into precise structural registration with their counterparts in
brain Q. (See also color insert).

taken into account when computing flow vector fields in the
cortical parameter space and mapping one mesh surface onto
another.

39.3.5 Covariant Formalism

To counteract this problem, we developed a covariant formal-
ism [115] that makes cortical mappings independent of how
each cortical model is parameterized. Although spherical, or
planar, maps involve different amounts of local dilation or con-
traction of the surface metric, this metric tensor field is stored

and used later, to adjust the flow that describes the mapping
of one cortex onto another. The result is a covariant regular-
ization approach that makes it immaterial whether a spherical
or planar map is used to perform calculations. Flows defined
on the computational domain are adjusted for variations in the
metric tensor of the mapping, and the results become inde-
pendent of the underlying parameterization (i.e., spherical or
planar).

The covariant approach was introduced by Einstein [38] to
allow the solution of physical field equations defined by ellip-
tic operators on manifolds with intrinsic curvature. Similarly,
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the problem of deforming one cortex onto another involves
solving a similar system of elliptic partial differential equations
[26, 35, 115], defined on an intrinsically curved computational
mesh (in the shape of the cortex). In the covariant formal-
ism, the differential operators governing the mapping of one
cortex to another are adaptively modified to reflect changes in
the underlying metric tensor of the surface parameterizations
(Figure 39.11).

39.3.6 Covariant Matching of Cortical Surfaces

Cortical surfaces are matched as follows. We first establish the
cortical parameterization, in each subject, as the solution of
a time-dependent partial differential equation (PDE) with a
spherical computational mesh (Equation (39.19); Figure 39.8;
[11, 26]). This procedure sets up an invertible parameteri-
zation of each surface in deformable spherical coordinates
(Figure 39.9), from which the metric tensors gjk(rp) and gjk(rq)
of the mappings are computed. The solution to this PDE defines

FIGURE 39.11 Covariant tensor approach to cortical matching.
Current approaches for deforming one cortex into the shape of another
typically simplify the problem by first representing cortical features on
a 2D plane, sphere, or ellipsoid, where the matching procedure (that
is, finding u(r2), above) is subsequently performed. Although these
simple two-parameter surfaces serve as proxies for the cortex, differ-
ent amounts of local dilation and contraction (gjk (r)) are required to
transform the cortex into a simpler two-parameter surface. These vari-
ations complicate the direct application of 2D regularization equations
for matching their features. A covariant tensor approach is introduced
to address this difficulty. The regularization operator L is replaced by
its covariant form L*, in which correction terms �i

jk compensate for
fluctuations in the metric tensor of the flattening procedure. (See also
color insert).

a Riemannian manifold [10]. In contrast to prior approaches,
this Riemannian manifold is then not flattened (as in [35, 123]),
but is used directly as a computational mesh on which a second
PDE is defined (see Figure 39.11). The second PDE matches sul-
cal networks from subject to subject. Dependencies between the
metric tensors of the underlying surface parameterizations and
the matching field itself are eliminated using generalized coor-
dinates and Christoffel symbols [115]. In the PDE formulation,
we replace L by the covariant differential operator L‡. In L‡,
all L’s partial derivatives are replaced with covariant deriva-
tives. These covariant derivatives3 are defined with respect to
the metric tensor of the surface domain where calculations are
performed.

39.3.7 Advantages

Using this method, surface matching can be driven by anatom-
ically significant features, and the mappings are independent
of the chosen parameterization for the surfaces being matched.
High spatial accuracy of the match is guaranteed in regions of
functional significance or structural complexity, such as sulcal
curves and cortical landmarks (Figure 39.11). Consequently,
the transformation of one cortical surface model onto another
is parameterized by one translation vector for each mesh point
in the surface model, or 3× 65536 ≈ 0.2 million parameters
(Figure 39.12). This high-dimensional parameterization of the
transformation is required to accommodate fine anatomical
variations (cf. [16]).

3 The covariant derivative of a (contravariant) vector field, ui (x), is defined

as ui k = ∂uj/∂xk + �j
ik ui [38] where the �j

ik are Christoffel symbols of the sec-

ond kind. This expression involves not only the rate of change of the vector

field itself, as we move along the cortical model, but also the rate of change of

the local basis, which itself varies due to the intrinsic curvature of the cortex

(cf. [65]). On a surface with no intrinsic curvature, the extra terms (Christoffel

symbols) vanish. The Christoffel symbols are expressed in terms of derivatives

of components of the metric tensor gjk (x), which are calculated from the cortical

model, with �i
jk = (1/2)g il(∂gli/∂xk + ∂glk/∂xj − ∂gjk/∂xi). Scalar, vector, and

tensor quantities, in addition to the Christoffel symbols required to implement

the diffusion operators on a curved manifold, are evaluated by finite differences.

These correction terms are then used in the solution of the Dirichlet problem

for matching one cortex with another. A final complication is that different

metric tensors gjk (rp) and gjk (rq) relate (39.1) the physical domain of the input

data to the computation mesh (via mapping D−1
p ) and (39.2) the solution on the

computation mesh to the output data domain (via mapping Dq). To address

this problem (Figure 39.9), the PDE L‡‡u(rq) = −F is solved first, to find a

flow field Tq : r → r − u(r) on the target spherical map with anatomically-

driven boundary conditions u(rq) = u0(rq), ∀rq ∈ M0 ∪M1. Here L‡‡ is the

covariant adjustment of the differential operator L with respect to the tensor

field g jk (rq) induced by Dq . Next, the PDE L†u(rp) = −F is solved, to find a

reparameterization Tp : r → r − u(r) of the initial spherical map with bound-

ary conditions u(rp) = 0, ∀rp ∈ M0 ∪M1. Here L‡ is the covariant adjustment

of L with respect to the tensor field gjk (rp) induced by Dp . The full cortical

matching field (Figure 39.12) is then defined as x → Dq(Fpq(D−1
p (x))) with

Fpq = (Tq)
−1 o (TP)

−1.
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FIGURE 39.12 Matching an individual’s cortex to the average cortex. 3D variability patterns across the cortex are measured by driving individual
cortical patterns into local correspondence with the average cortical model. (a) shows how the anatomy of one subject (shown as a brown surface
mesh) deviates from the average cortex (shown in white), after affine alignment of the individual data. (b) shows the deformation vector field
required to reconfigure the gyral pattern of the subject into the exact configuration of the average cortex. The transformation is shown as a flow
field that takes the individual’s anatomy onto the right hemisphere of the average cortex (blue surface mesh). The largest amount of deformation
is required in the temporal and parietal cortex (pink colors, large deformation). Details of the 3D vector deformation field ((b), inset ) show the
local complexity of the mapping. (c) Mapping a patient into the group average configuration. Instead of matching just the cortex, this figure shows
the complex transformation required to match 84 different surface models in a given patient, after affine alignment, into the configuration
of an average surface set derived for the group (see Thompson et al. [117] for details). The effects of several anatomic surfaces driving the
transformation are indicated, including the cingulate sulcus (CING), hippocampal surface (HPCP), superior ventricular horn (VTS), parieto-
occipital sulcus, and the anterior calcarine fissure (CALCa). This surface-based vector field is extended to a full volumetric transformation field
(0.1 billion degrees of freedom) that reconfigures the anatomy of the patient into correspondence with the average configuration for the group.
Storage of these mappings allows quantification of local anatomic variability. (See also color insert).

39.4 Pathology Detection

39.4.1 Encoding Brain Variation

When applied to two different 3D brain scans, a nonlinear
registration or warping algorithm calculates a deformation
map (Figures 39.7, 39.12) defining the spatial relationship
between them. The deformation map describes the 3D patterns

of anatomic differences. Several probabilistic approaches have
been proposed for encoding variation based on deformation
maps, both for brain image analysis [1, 58, 113, 114] and in the
engineering literature on deformable templates (e.g. [135]). By
defining probability distributions on the space of deformation
transformations applied to a prototypical template [1, 57, 58],
statistical parameters of these distributions can be estimated
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from databased anatomic data to determine the magnitude
and directional biases of anatomic variation. Encoding of local
variation can then be used to assess the severity of structural
variants outside of the normal range, which may be related to
disease [112].

39.4.2 Emerging Patterns

Cortical patterns are altered in schizophrenia [68], Alzheimer’s
disease [115], and a wide variety of developmental disorders.
By using specialized strategies for group averaging of anatomy,
specific features of anatomy emerge that are not observed
in individual representations because of their considerable
variability. Group-specific patterns of cortical organization or
asymmetry can then be mapped out and visualized [85, 118].

In one study [117], mappings that deform one cortex into
gyral correspondence with another were used to create an
average cortex for patients with mild to moderate Alzheimer’s
disease (AD). Thirty-six gyral curves for nine AD patients were
transferred to the cortical parameter space (as in Figure 39.9(b))
and uniformly reparameterized, and a set of 36 average gyral
curves for the group was created by vector averaging of point
locations on each curve. Each individual cortical pattern was
then aligned with the average curve set using a spherical flow
field (as in Figure 39.9(c)). These nine flow fields were then
used to create an average cortex in 3D space, as follows. If a
code (that indexes 3D locations) is carried along with the flow
that aligns each individual with the average folding pattern (cf.
Figure 39.9(c)), information can then be recovered at a par-
ticular location in the average folding pattern, specifying the
3D cortical points that map to it in each subject. By ruling a
regular grid over the warped coded map, and reading off 3D
position values for each subject, cortical positions in any sub-
ject’s original 3D anatomy can be recovered. This produces a
new coordinate grid on a given subject’s cortex, in which par-
ticular grid points appear in the same location relative to the
primary gyral pattern across all subjects (see [41] for a simi-
lar approach). By averaging these 3D positions across subjects,
an average 3D cortical model was constructed for the group
(Figure 39.13). The resulting mapping is guaranteed to aver-
age together all points falling on the same cortical locations
across the set of brains, and ensures that corresponding cortical
features are averaged together.

39.4.3 Mapping Cortical Variability

By using the code to identify original cortical locations in
3D space, displacement maps can be recovered mapping each
patient into gyrus-by-gyrus correspondence with the average
cortex (Figure 39.12). Anatomic variability can thus be defined
at each point on the average mesh as the root mean square mag-
nitude of the 3D displacement vectors, assigned to each point,
in the surface maps from individual to average. This variability
pattern is visualized as a color-coded map (Figure 39.14).

FIGURE 39.13 Average cortex in Alzheimer’s disease. The average cor-
tical surface for a group of subjects (N = 9, Alzheimer’s patients) is
shown as a graphically rendered surface model. If sulcal position vec-
tors are averaged without aligning the intervening gyral patterns (top),
sulcal features are not reinforced across subjects, and a smooth average
cortex is produced. By matching gyral patterns across subjects before
averaging, a crisper average cortex is produced (bottom). Sulcal fea-
tures that consistently occur across all subjects appear in their average
geometric configuration. (See also color insert).

FIGURE 39.14 3D cortical variability in Talairach stereotaxic space.
The profile of variability across the cortex is shown (N = 9 Alzheimer’s
patients), after differences in brain orientation and size are removed by
transforming individual data into Talairach stereotaxic space. The fol-
lowing views are shown: oblique frontal, frontal, right, left, top, bottom.
Extreme variability in posterior perisylvian zones and superior frontal
association cortex (16–18 mm; red colors) contrasts sharply with the
comparative invariance of primary sensory, motor, and orbitofrontal
cortex (2–5 mm, blue colors). (See also color insert).

This map shows the anatomic variability, due to differences
in gyral patterning, that remains after aligning MR data into
the Talairach stereotaxic space, using the transforms prescribed
in the atlas [104].
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39.4.4 Variability and Asymmetry

First, variability values rose sharply (Figure 39.14) from 4–5 mm
in primary motor cortex to localized peaks of maximum
variability in posterior perisylvian zones and superior frontal
association cortex (16–18 mm). Temporal lobe variability rose
from 2–3 mm in the depths of the Sylvian fissure to 18 mm at
the posterior limit of the inferior temporal sulcus in both brain
hemispheres. Peak variability occurs in the vicinity of functional
area MT [126] and extends into the posterior heteromodal asso-
ciation cortex of the parietal lobe (14–18 mm). Second, there is
a marked anatomic asymmetry in the posterior perisylvian cor-
tex ([52]; up to 10 mm). This asymmetry is not clearly apparent
individually, but appears clearly in the average representation. It
also contrasts sharply with negligible asymmetry in the frontal,
parietal, and occipital cortex (1–2 mm). Similar studies of deep
sulcal cortex found this asymmetry to be greater in Alzheimer’s
patients than in controls matched for age, gender, handed-
ness, and educational level, corroborating earlier reports of an
asymmetric progression of the disease [115]. The improved
ability to localize asymmetry and encode its variability in a
disease-specific atlas has encouraged us to develop a proba-
bilistic atlas of the brain in schizophrenia [85] where cortical
organization and functional lateralization are also thought to be
altered ([68]; cf. [25]).

39.4.5 Comparing Registration Methods

Elastic registration approaches all produce two types of output:
first, they measure anatomic variability by transforming brain
data to match another brain, or a common digital template;
second, by creating registered images, they can reduce the con-
founding effects of anatomic variation when comparing other
types of brain data. The relative performance of different algo-
rithms should therefore be compared. The availability of large
numbers of digital anatomical models stored in population-
based brain atlases [117] presents opportunities to explore the
strengths and limitations of different registration algorithms
and measure their accuracy quantitatively.

In a recent project to generate an Alzheimer’s disease brain
atlas [79, 117, 131], parametric surface meshes [110] were
created to model 84 structures per brain in 3D MRI scans
of 9 Alzheimer’s patients. The ability of different registration
approaches to reduce anatomic variability was investigated. 3D
patterns of residual structural variability were visualized after
digitally mapping all structures from all subjects into several dif-
ferent coordinate systems, using the transformations described
in the Talairach atlas [104], as well as automated affine and poly-
nomial transformations of increasing complexity [128, 130].
For all major anatomic systems (Figure 39.15), automated affine
registration reduced variability to a far greater degree than
the Talairach system, with added benefit obtained by using
higher-order polynomial mappings. As expected, the highest
registration accuracy was achieved for brain structures with
lowest complexity and topological variability across subjects

(Figure 39.15, top row). With increasing polynomial order, sig-
nificantly better registration was observed across deep cortical
sulci, and anatomical variation could be further reduced using
model-driven algorithms that explicitly match gyral patterns.

39.4.6 Population-Based Brain Image Templates

Interestingly, the automated registration approaches were able
to reduce anatomic variability to a slightly greater degree if a
specially prepared image template was used as a registration tar-
get [117, 131]. Brain templates that have the mean global shape
for a group of subjects can be created using Procrustes averaging
[11] or transformation matrix averaging [130]. Brain templates
that have mean shape and intensity characteristics at a local level
can also be generated. Recent methods have included Bayesian
pattern theory and variational calculus [59, 62], variable dif-
fusion generators [117], or hierarchical registration of curves,
surfaces, and volumes to a set of mean anatomical models
[113, 115].

Several approaches, many of them based on high-
dimensional image transformations, are under active develop-
ment to create average brain templates. Average templates have
been made for the Macaque brain [59], and for individual struc-
tures such as the corpus callosum [26, 51], central sulcus [75],
cingulate and paracingulate sulci [88, 114], and hippocampus
[25, 62, 66, 117], as well as for transformed representations of
the human and Macaque cortex [36, 41, 59, 117]. Under vari-
ous metrics, incoming subjects deviate least from these mean
brain templates in terms of both image intensity and anatomy
(Figure 39.16). Registration of new data to these templates
therefore requires minimal image distortion, allows faster algo-
rithm convergence, and may help to avoid nonglobal stationary
points of the registration measure as the parameter space is
searched for an optimal match. For these reasons, templates
that reflect the mean geometry and intensity of a group are a
topic of active research [59, 117, 131].

39.4.7 Random Tensor Field Models

Analysis of variance in 3D deformation fields that match
different subjects’ anatomies shows considerable promise in
being able to differentiate intrasubject (between hemisphere),
intersubject, and intergroup contributions to brain variation
in human populations [115]. In Thompson et al. [112], we
developed an approach to detect structural abnormalities in
individual subjects. Based on a reference image archive of
brain scans from normal subjects, a family of volumetric warps
was generated to encode statistical properties and directional
biases of local anatomical variation throughout the brain (see
Figure 39.17). To identify differences in brain structure between
two groups, or between a patient and the normal database, the
following steps were followed. After affine components of the
deformation fields are factored out, we defined W ij (x) as the
deformation vector required to match the structure at position
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FIGURE 39.15 Comparing different registration approaches. The ability of different registration algorithms to reduce anatomic variability in a
group of subjects (N = 9, Alzheimer’s patients) is shown here. Digital anatomic models for each subject were mapped into common coordinate
spaces using the transformations specified in the Talairach atlas [104], as well as automated affine (or first-order) and eighth-order polynomial
mappings as implemented in the Automated Image Registration package [128, 130, 131]. After applying each type of mapping to the models from
all subjects, the residual variability of ventricular (top row) and deep cortical surfaces (middle row) and superficial sulci (bottom row) is shown as
a color-coded map across each structure. The color represents the 3D root mean square distance from individual models to an average model for
each structure, where distance is measured to the near-point on the average mesh model [117]. As expected, polynomial transformations reduce
variability more effectively than affine transformations, and both outperform the Talairach system. At the cortex, model-driven registration can
be used to explicitly match gyral patterns, improving registration still further. (See also color insert).

x in an atlas template with its counterpart in subject i of group
j, and modeled the deformations as

W ij(x) = μj(x)+�(x)1/2 εij(x). (39.23)

Here μj(x) is the mean deformation for group j ;�(x) is a non-
stationary, anisotropic covariance tensor field, which relaxes
the confidence threshold for detecting abnormal structure in
regions where normal variability is extreme; �(x)1/2 is the
upper triangular Cholesky factor tensor field; and εij(x) is a
trivariate random vector field whose components are inde-
pendent stationary Gaussian random fields. Deviations from
a mean deformation field based on normal subjects were mod-
eled, for small N , as a Hotelling’s T 2-distributed random field,
or as N →∞, as a χ2 (chi-squared) distributed random field
with three degrees of freedom, defined at nodes (u, v) in
parametric mesh models of the anatomy of new subjects [112].

A T 2 or F statistic that indicates evidence of significant dif-
ference in deformations between two groups of subjects, or
between a single subject and the normal database, can be cal-
culated. By calculating these statistics at each lattice location
in a 3D image, or across a parameterized 3D anatomical sur-
face, a statistic image is formed. The global maximum of the
random deformation field, or derived tensor fields [115], can
be used to identify the presence of structural change in disease
[14, 132, 133]. Random field approaches, some of which are now
widely used in packages for analyzing functional brain images
[45], use the Euler characteristic (EC) of the excursion sets of
a random field as an estimator of the number of local nonzero
signal components, above a given threshold in a statistic image.
They also use the expected value of the EC as an approximate
p-value for the local maximum [132, 133]. This probability
value allows a definitive statement of whether a statistically
abnormal structural difference has been detected or not.
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FIGURE 39.16 Average brain templates and 3D cortical variabil-
ity. Axial, sagittal, and coronal images are shown from a variety
of population-based brain image templates. For comparison pur-
poses, the left column shows a widely used average intensity dataset
(ICBM305) based on 305 young normal subjects, created by the
International Consortium for Brain Mapping [39]; by contrast, the
middle and right columns show average brain templates created from
high-resolution 3D MRI scans of Alzheimer’s disease patients. (middle
column): Affine Brain Template, constructed by averaging normalized
MR intensities on a voxel-by-voxel basis data after automated affine
registration; (right column): Continuum-Mechanical Brain Template,
based on intensity averaging after continuum-mechanical transfor-
mation. By using spatial transformations of increasing complexity,
each patient’s anatomy can increasingly be reconfigured into the aver-
age anatomical configuration for the group. After intensity correction
and normalization, the reconfigured scans are then averaged on a
pixel-by-pixel basis to produce a group image template with the aver-
age geometry and average image intensity for the group. Anatomical
features are highly resolved, even at the cortex. Transformations of
extremely high spatial dimension are required to match cortical fea-
tures with sufficient accuracy to resolve them after scans are averaged
together. (See also color insert).

Probabilistic atlases based on random deformation fields
have been used to assess gender-specific differences in the brain
[14] and to detect structural abnormalities induced by tumor
growth ([109]; Figure 39.18), and in neurodegenerative dis-
orders such as Alzheimer’s disease (Figure 39.19; [112, 115]).
Similar multivariate linear models can be used to test for the
effect of explanatory variables (e.g., age, gender, clinical test
scores) on a set of deformation field images [5, 47].

39.4.8 Abnormal Asymmetry

In related work, Thirion et al. [108] applied a warping algorithm
to a range of subjects’ scans, in each case matching each brain
hemisphere with a reflected version of the opposite hemisphere.

The resulting asymmetry fields were treated as observations
from a spatially parameterized random vector field, and devi-
ations due to lesion growth or ventricular enlargement were
detected using the theory developed in Thompson et al. [112].
Because of the asymmetrical progression of many degenera-
tive disorders [115], abnormal asymmetry may prove to be an
additional, sensitive index of pathology in individual subjects
or groups.

39.4.9 Shape Theory Approaches

Deformation fields expressing neuroanatomic differences have
also been analyzed with Procrustes methods, developed for the
statistical analysis of biological shape [8, 11]. In Procrustes
methods, affine components of neuroanatomic difference are
factored out by rotating and scaling configurations of point
landmarks in each subject into least-squares correspondence
with a Procrustes mean shape. Residual deformations that
reflect individual change or anatomic difference are then
expressed in terms of an orthogonal system of principal defor-
mations derived from the bending energy matrix of the operator
that governs the deformation [11]. A number of modes of vari-
ation, based on the eigenvectors of the covariance matrix of
landmark positions, can be determined to describe the main
factors by which the instance shapes tend to deform from the
generic shape. Of particular relevance are methods used to
define a mean shape in such a way that departures from this
mean shape can be treated as a linear process. Linearization of
the pathology detection problem, by constructing Riemannian
shape manifolds and their associated tangent spaces, allows
the use of conventional statistics and linear decomposition of
departures from the mean to characterize shape change. These
approaches have been applied to detect structural anomalies in
schizophrenia [11, 33].

39.4.10 Pattern-Theoretic Approaches

In a related approach based on pattern theory [59], a spectral
approach to representing anatomic variation is developed. This
was the first approach to build on the framework of deformable
atlases by representing variation in terms of probabilistic trans-
formations applied to deformable neuroanatomic templates.
Deformation maps expressing variations in normal anatomies
are calculated with a nonlinear registration procedure based on
continuum mechanics [15, 82]. As noted in Section 39.2, the
deformational behavior of each subject’s anatomy, driven into
correspondence with other anatomies, is expressed as a system
of partial differential equations. The equations are governed by
a differential operator (such as the Laplacian ∇2, or Cauchy-
Navier operator (λ+ μ)∇(∇·)+ μ∇2) that controls the way
in which one anatomy is deformed into the other. The prop-
erties of this operator can be used to make the deformation
reflect the mechanical properties of deformable elastic or fluid
media. Each deformation map is then expanded in terms of the
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FIGURE 39.17 Pathology detection with a deformable probabilistic atlas. A family of high-dimensional volumetric warps relating a new subject’s
scan to each normal scan in a brain image database is calculated (I-II, above), and then used to quantify local structural variations. Differences in
anatomy are recorded in the form of vector field transformations in 3D stereotaxic space that drive both subcortical anatomy and the gyral/sulcal
patterns of different subjects into register. The resulting family of warps encodes the distribution in stereotaxic space of anatomic points that
correspond across a normal population (III). Their dispersion is used to determine the likelihood (IV) of local regions of the new subject’s
anatomy being in their actual configuration. Easily interpretable, color-coded topographic maps can then be created to highlight regional patterns
of deformity in the anatomy of each new subject [112]. This approach quantifies abnormal structural patterns locally and maps them in three
dimensions.

FIGURE 39.18 Brain distortions induced by tumor tissue: probability maps for major sulci in both hemispheres. Color-coded probability maps
(right ) quantify the impact of two focal metastatic tumors (illustrated in red; see cryosection blockface, left ) on the supracallosal, parieto-occipital,
and anterior and posterior calcarine sulci in both brain hemispheres. (See also color insert).

eigenfunctions of the governing operator, and Gaussian prob-
ability measures are defined on the resulting sequences of
expansion coefficients [1, 59]. In Grenander’s formalism, the
distribution of the random deformation fields u(x) is assumed
to satisfy the stochastic differential equation

L(u(x)) = e(x). (39.24)

Here L is the operator governing the deformation and e(x)
is a 3× 1 random noise vector field, whose coefficients in L’s
eigenbasis are zero-mean independent Gaussian variables with
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(a) (b)

FIGURE 39.19 Pathology detection in Alzheimer’s disease. A color-coded probability map (a), shown on a 3D graphical surface model of an
Alzheimer’s patient’s cortex, provides probability statements about the deviation of cortical regions from the norm. The inherent variability
in normal cortical anatomy is encoded in the form of a surface-based probability field, known as an anisotropic lattice process, or a random
vector field (see Section 39.4). Adaptive to their biological context, these algorithms use contextual information on anatomic variations before
assigning a probability value to each cortical point. The resulting map exhibits regions of severely depressed probability values (p < 0.00001),
particularly in the inferior frontal cortex. A probability map is also shown (b) for a normal control subject, age-matched to the AD patient and
to subjects in the reference archive. 12.8% and 19.5% of the left and right inferior frontal cortex were severely abnormal (p < 0.00001) in the
Alzheimer’s patient, while only 0.21% and 0.37% of the same areas were indicated as abnormal in the control subject. The system is refined as
the underlying database of subjects increases in size and content. (See also color insert).

variances σ2
k . If the differential operator L has eigenbasis {φk}

with eigenvalues {λk}, a probability density can be defined
directly on the deformation field’s expansion coefficients
(z1, . . . , zn). If

u(x) =
∑

k

zkφk(x), (39.25)

then

p (z1, . . . .zn) = exp− (1/2)

( ∑
k=1 to n

log{2πσ2
k/λ

2
k}

+
∑

k=1 to n

{|λkzk |2/σ2
k }

)
. (39.26)

39.4.11 Learning Information on Anatomic
Variability

Essentially this spectral formulation is a model of anatomic
variability. The parameters of this model are learned from an
anatomic image database. Model parameters include the σk ,
but even the eigenelements {λk , φk} can be learned, if L is
treated as a parameterized operator, in much the same way
as the Green’s functions’ parameters were learned in the neu-
ral net registration model discussed earlier. Once the model
parameters are learned, every subject’s anatomy can be rep-
resented by a feature vector (z1, . . . , zn), whose elements are
just the coefficients of the deformation field required to match

their particular anatomy with a mean anatomical template (e.g.,
Figure 39.16). The probability of abnormality in a new subject
can therefore be estimated from (39.26).

39.4.12 Disease Classification and Subtyping

A second opportunity arises if a disease-specific atlas is avail-
able. This type of atlas represents a homogeneous group of
patients matched for age, gender, and relevant demographic
factors [118, 131]. If the parameters of anatomical variation
are altered in disease, a pattern classifier can readily be con-
structed to classify new subjects according to their statistical
distance from the diseased group mean relative to the normal
group mean [66, 112]. From a validation standpoint, the oper-
ating characteristics of such a system can be investigated (that is,
false positives versus false negatives; [66, 112]). Currently being
tested as a framework for encoding anatomic variation, pattern-
theoretic and other random tensor-based approaches build on
the framework of deformable atlases and show considerable
promise in the automated detection of pathology [62, 66].

39.4.13 Pathology Detection in Image Databases

Pattern recognition algorithms for automated identification of
brain structures can benefit greatly from encoded information
on anatomic variability. We have developed a Bayesian approach
to identify the corpus callosum in each image in an MRI
database [88a]. The shape of a deformable curve (Figure 39.20,
panel 7) is progressively tuned to optimize a mathematical
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FIGURE 39.20 Automated detection of structures in image databases. Here an algorithm is used to find the corpus callosum boundary (panel
9) in each image in an anatomic database (N = 104; [88a]). The output of an edge detector (panel 2) is run through a connectivity filter that
suppresses the smallest connected sets of edge pixels. The filtered edge image is then diffused over time (panels 4–6) and a deformable curve
(panel 7) is adapted to optimize a matching measure (panel 10). This measure penalizes curve shapes that are too bent or stretched, that fail
to overlap the diffused edge image, or that are unlikely based on a statistical distribution of normal corpus callosum shapes. Given an image
database, algorithm parameters (such as the size of the connectivity filter; panel 11) can be tuned based on their overall performance on an image
database. Their optimal values differ depending on how noisy the images are. Boundaries were averaged from patients with Alzheimer’s disease
and from elderly controls matched for age, educational level, gender, and handedness. Panel 12 shows a focal shape inflection in the Alzheimer’s
patients relative to normal elderly subjects of the same age, and a statistically significant tissue loss in the isthmus (the second sector, when
the structure is partitioned into fifths). The isthmus connects regions of temporo-parietal cortex that exhibit early neuronal loss and perfusion
deficits in AD [115]. (See also color insert).
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criterion measuring how likely it is that it has found the
corpus callosum. The measure includes terms that reward
contours based on their agreement with a diffused edge
map (panels 7–9), their geometric regularity, and their sta-
tistical abnormality when compared with a distribution of
normal shapes. By averaging contours derived from an image
database, structural abnormalities associated with Alzheimer’s
Disease and schizophrenia were identified (Figure 39.20, [85,
115]). Automated parameterization of structures will acceler-
ate the identification and analysis of disease-specific structural
patterns.

39.5 Conclusion

Registration algorithms, applied in a probabilistic framework,
offer a new method to examine abnormal brain structure.
Probability maps can be combined with anatomically driven
elastic transformations that associate homologous brain regions
in an anatomic database. This provides the ability to perform
morphometric comparisons and correlations in three dimen-
sions between a given subject’s MR scan and a population
database, or between population subgroups stratified by clinical
or demographic criteria.

Methods to compare probabilistic information on brain
structure from different subpopulations are under rapid devel-
opment. They include approaches based on random tensor
fields [14, 47, 108, 112, 113], singular value decomposition
and ManCova (multivariate analysis of covariance; [5]), shape-
theoretic approaches [11], stochastic differential equations [15],
and pattern theory [59]. The resulting probabilistic systems
show promise for encoding patterns of anatomic variation in
large image databases, for pathology detection in individuals
and groups, and for determining effects on brain structure
of age, gender, handedness, and other demographic or genetic
factors.

As well as disease-specific atlases reflecting brain structure
in dementia and schizophrenia, research is underway to build
dynamic brain atlases that retain probabilistic information
on temporal rates of growth and regressive processes during
brain development and degeneration. Refinement of these atlas
systems to support dynamic and disease-specific data should
generate an exciting framework to investigate variations in brain
structure and function in large human populations.
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40.1 Introduction

In this chapter, we discuss some of the important issues per-
taining to the resampling of MR data from one grid of pixels
to another grid of pixels. In particular, we note that the way
in which resampling is done can impact the information con-
tent, accuracy, and statistical properties of the data. In fMRI
studies this means that the resampling procedure used in data
processing can influence whether areas of activation are prop-
erly detected. Throughout most of this chapter we focus on
two-dimensional registration (a) because of its primary impor-
tance for most current methods of fMRI data collection and
(b) because most of the important issues in three dimensions
already arise in two. We use the term resampling to mean
the interpolation of the data to other than the original pixel
locations. We also use the term transformation rather than
interpolation when we are focusing on the information in the
data rather than the images themselves. The subject of image
registration for MR images is much broader than we could pos-
sibly cover here and, of course, is much broader than MR itself.
Good overviews of the general problem of image registration
are given in [3], [12].

Since fMRI BOLD effects are small, typically only 1–5%
changes in the signal, small motions of the brain have signifi-
cant impact on the data. Adjacent voxels within the brain can
have signal values that vary by 10% or more and signal changes
on the order of 100% or more occur at the edge of the brain.
Thus, very small motions can have highly significant effects. For
example, stimulus-correlated head motion has been shown to
generate false positive effects [8].

Every method which adjusts fMRI data for head motion
(registration) involves two steps: (a) determination (i.e, esti-
mation) of the amount of motion and (b) correction of the
data for that amount of motion. In this chapter we focus on
the correction part of the registration method. Furthermore we
focus on correction for rigid motion of the brain as that is the
most important effect.

Motion correction is one of many steps that should be per-
formed during the routine processing of fMRI data. As such,
any motion correction method should remove as much of the
effect of motion as possible without otherwise affecting the
data. If the motions of the brain are essentially random, they
will appear to be simply an increase in the underlying noise level.
Correction of these motions will reduce the apparent noise level
and hence increase the amount of detected activation. On the
other hand, if the motions of the brain are correlated with the
stimulus, correction of the motion may (properly) reduce the
amount of detected activation.

A critical part of motion correction is the production of an
image relocated to the pixels of the fixed target image; that
is, the resampling of the data onto the appropriate pixel grid.
That is our focus here. This chapter has three sections. In
Section 40.2 we discuss the idea of conservation of information
in the context of resampling of the data. We consider the effects
of transforming (resampling) the data by various procedures;
e.g., nearest-neighbor, (bi- or tri-) linear, polynomial (cubic,
quintic, . . .), windowed sinc, and Fourier. The choice of inter-
polator determines the degree to which the original information
is conserved during resampling. We show empirically that not
all the available (and popular) methods are equally desirable in

Copyright © 2008 by Elsevier, Inc.
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terms of their impact on the data. Relative to the others, appli-
cation of the full Fourier technique, in k-space, appears most
optimal, among the methods considered, in conserving infor-
mation. This is for two reasons. First, from a sampling theory
point of view, other forms of interpolation exhibit a lower order
of accuracy than the full Fourier method. Second, from the
point of view of statistical theory, less-accurate interpolators
tend to smear information during resampling which has the
effect of introducing a false level of correlation in the data. This
can lead to mis-interpretation of the functional information
contained in the data.

In Section 40.3 we discuss three distinct implementations
of Fourier-based methods for moving (translating and rota-
ting) MR data on a grid: the discrete Fourier transforma-
tion, the chirp-z transformation, and rotation by successive
shearing. We are interested in both the comparative accuracy
and the relative computational efficiency of these different
approaches.

The principal messages of this chapter are contained in the
argument that runs through the first three sections. The final
section expands the scope of the discussion by turning to spe-
cific issues pertaining to 3D sampling and resampling. Given the
way in which MR data are acquired, what are the implications
for 3D processing and imaging? In particular, as we synthesize
a 3D data volume from an inherently 2D acquisition process
(via resampling and interpolation), what is the impact on the
conservation of information and the preservation of statistical
properties?

40.2 Conservation of Information

We adopt as a basic premise that whatever information has
been captured in the MR data acquisition process should be
conserved (and, ideally, enhanced) in any subsequent data pro-
cessing, including resampling. Every method of pairwise rigid
image registration has two parts: (a) a method for determina-
tion (i.e., estimation) of the movement required to register one
image to another; and (b) a method for relocation (registration)
of the one image to the other.

The essential problem in relocating one image (“the image”)
to align with another (“the target”) is that almost certainly the
(relocated) image will no longer be on the pixel grid determined
by the target image. Thus some method will have to be found for
“moving” the image to align with the target; that is, a method is
needed to assign new values to pixels of the image at the location
of the pixels of the target (based on the current values of the
pixels of the image).

First, it should be noted that there are certain special val-
ues of the translations and rotation for which the resampling
can be exact. Specifically, for translations which are integral
multiples of the pixel size in each coordinate and for rotations
which are integral multiples of 90 degrees (π/2 radians) there

is no error in resampling; for these specific relocations we
know the optimal method for resampling: move the image the
exact number of pixels required. We should state, unequivo-
cally, that without some additional information, beyond what is
contained in the data itself, there is no “correct” method for reg-
istration of one image to another at distances other than these
special values noted. The additional information would typi-
cally be an assumption about the images, such as: each image is
a discretization of an underlying periodic function with period
equal to the image size. Many assumptions other than peri-
odic are possible, each leading to a different optimal method
of resampling the data. In the absence of such an additional
assumption there is no correct answer to the registration prob-
lem. As a consequence it is very difficult to evaluate methods for
registration.

40.2.1 Mathematical Framework

We denote by TM a relocation transformation by a method M .
We say that the method is information-conserving if, for every
image I , and every sequence of movements {(R, δ)} (we denote
rotations by R and translations by δ) which returns the image to
its original location, the final image is identical to the original
image.

For example, a sequence of rotations of an image which
results in a net rotation of zero because the sum of the clockwise
and counterclockwise rotations is some multiple of 2π radians
satisfies the condition of the definition. Likewise, a sequence
of translations whose net result is no translation at all satisfies
this condition. And, obviously, so does a combination of the
two. The point of this definition is that none of the statistical
information in the image I is destroyed by repeated application
of the transformation TM .

A particular special sequence which satisfies the condition of
the definition is the sequence of two transformations:

T−1
M (TM (I )) = I .

We will focus on this special case.
Let T be a registration transformation expressed, for exam-

ple, in homogeneous coordinates. For our purposes here we can
think of a two-dimensional homogeneous transformation T as
simply the representation of a two-dimensional rotation matrix
Rθ and a two-dimensional translation vector δ by a single three
dimensional matrix (

Rθ δ
0 1

)

where 0 is a 1× 2 vector of 0’s. Now let M be a method for
implementing T , often referred to as an interpolation method
(but it can also be thought of as a reconstruction method)
denoted by TM .
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We can write

TM (I ) = TRθ (Tδ(I )),

where Tδ(I ) represents a shift in location by the vector δ and
TRθ (I ) represents a rotation around the origin by an angle θ.
Notice that, using the inverse transforms

T−1
δ (I ) = T−δ(I )

and

T−1
Rθ
(I ) = TR−θ (I ),

we can define T−1
M by

T−1
M (I ) = T−1

δ (T−1
Rθ
(I ))

= T−δ(TR−θ (I ))

so that

T−1
M (TM (I )) = T−1

M (TRθ (Tδ(I )))

= T−δ(TR−θ (TRθ (Tδ(I ))))

= I .

Note that translations and rotations do not commute. Thus,
the composition of two translation-rotation pairs expressed as
a single translation-rotation pair is

TRθ2
(Tδ2(TRθ1

(Tδ1(I )))) = TRθ∗ (Tδ∗(I )),

where Rθ∗ = Rθ2 Rθ1 = Rθ1+θ2 and δ∗ = Rθ2 Rθ1δ1 + Rθ2δ2.
More generally, the composition of a sequence of successive

translation-rotation pairs expressed as a single translation-
rotation pair is

TRθk
(Tδk (· · · (TRθ1

(Tδ1(I ))) · · · )) = TRθ∗ (Tδ∗(I )),

where θ∗ =∑k
i=1 θi and δ∗ =∑k

i=1

(∏i
j=1 Rθj

)
δi .

A simple example of a transformation which is not
information-conserving is the method of linear interpolation.
To see this, let TR be the transformation which shifts an image
to the right by exactly one pixel. Let TH be the transfor-
mation which shifts an image to the right by one-half pixel
using the method of linear interpolation (not worrying about
edge-effects). So we define

TH (I ) = 1

2
(I + TR(I ))

and

T−1
H (I ) = 1

2
(I + T−1

R (I )).

Now

T−1
H (TH (I )) = 1

2
(TH (I )+ T−1

R (TH (I )))

= 1

2

(
1

2
(I + TR(I ))+ T−1

R

(
1

2
(I + TR(I ))

))

= 1

4
T−1

R (I )+ 1

2
I + 1

4
TR(I )

�= I

except in the very unusual circumstance that

TR(I )+ T−1
R (I ) = 2I .

This can only happen when there are two alternating columns
of values across the image. Thus linear interpolation is not
information-conserving, as defined above.

An easy empirical way to check whether any particular
method TM is information-conserving is to simply compute

E = I − T−1
M (TM (I )).

If E is larger than the computer rounding error the method is
not information-conserving.

40.2.2 Empirical Demonstration

In a typical fMRI study there is no absolute reference against
which to compare a resampled image; i.e., there is no “gold
standard.” Nonetheless, in the act of resampling and regridding
our data we want to avoid introducing interpolation artifacts
and false correlations due to loss of information.

Here, we have performed some simple motion-correction
experiments with actual brain images using various algorithms
from widely-recognized fMRI processing systems. In one of
these experiments, we investigated the “round-trip” error asso-
ciated with taking a 64× 64 pixel image and (1) rotating it
π/64 radians, (2) translating it 1/4 pixel diagonally (3) translat-
ing it back 1/4 pixel diagonally, and, finally, (4) rotating it back
π/64 radians – all using the same algorithm.

The results from this experiment are shown in Table 40.1.
Selected cases are highlighted in Figure 40.1. Eleven different
interpolation methods were compared as follows: Fourier –
Fourier method as described in [7]; WS16 – windowed sinc,
16-point operator; WS8 – windowed sinc, 8-point operator;
Fourier(2) – alternative implementation of Fourier method;
WS4 – windowed sinc, 4-point operator; NN – nearest neighbor
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TABLE 40.1 Motion correction experimental results. The 64× 64
pixel image of a brain was rotated π/64 radians, translated 1/4 pixel
on the diagonal, translated back 1/4 pixel, and rotated back π/64 radi-
ans. All statistics were computed over a 40× 40 central sub-image.
The mean-squared (MSD) difference was calculated between the input
(unmoved) image and the one that was moved. Also, the Minimum,
Maximum, Mean, and Variance are compared for input and out-
put images. Two different implementations were compared for both
Fourier and linear methods of resampling

Method Min Max Mean MSD Var

Input 0 2771 1312 0.00 750648
Fourier* 0 2771 1312 0.00 750648
WS16 0 2753 1312 742.86 747497
WS8 0 2743 1313 1452.98 746904
Fourier(2)* −26 2724 1312 1782.73 747859
WS4 0 2762 1325 3136.68 753332
NN 0 2771 1309 3830.08 751768
Quintic −27 2586 1312 8906.20 727693
Cubic −8 2526 1312 13864.46 713571
WS2 11 2704 1427 28455.73 832998
Linear* 20 2380 1310 28949.22 661286
Linear(2)* 25 2387 1310 34736.56 653424

interpolation; Quintic – fifth-degree polynomial; Cubic – third-
degree polynomial; WS2 – windowed sinc, 2-point operator;
Linear – linear interpolation; Linear(2) – second implementa-
tion of linear interpolation. The implementations were all taken
from publicly available systems that are currently in wide use in
fMRI studies.

The table presents a comparison of the relative accu-
racy of different methods as measured by the mean-squared

difference between the moved image and the original. We have
also included some summary information on the final image:
maximum value (Max), minimum value (Min), and average
value (Mean). A number of the implementations had minor
artifacts at the edges of the final image. In order to downplay
the influence of these edge-effects, we computed the statistics
over a 40× 40 central subimage.

Two observations that can be made from this table are (a)
only the full Fourier technique appears to move and then restore
the position of an image accurately; (b) implementations differ;
i.e., the same basic method implemented in different ways can
yield results with different accuracy. These results are consis-
tent both with our understanding of sampling theory and also
with the discussion in Section 40.3 concerning the fidelity of
the full Fourier method in conserving information. The win-
dowed sinc methods improve with increasing operator-length
(or bandwidth). The Fourier method is superior because it does
not suffer from the edge effects (Gibbs phenomenon) of the
windowed sinc methods.

Results from the same experiment are also portrayed in a
statistical light. By listing the variance for both the original and
final images, it becomes clear that for most methods, one of the
consequences of performing motion correction is a reduction
in variance – that is, a falsely elevated degree of correlation –
among the pixels in the image.

Figure 40.1 reinforces the message of Table 40.1 in a pic-
torial fashion. Three different methods, full Fourier, 4-point
windowed sinc (WS4), and linear, were used to move an image
in the “round trip” described for Table 40.1. Figure 40.1a shows
obvious degradation of the image moved by the linear approach,
whereas both the Fourier and WS4 methods appear to produce
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FIGURE 40.1 Comparison of an image before and the difference images produced after the motion described
in Table 40.1. Result of subtracting each moved image in (a) from the original image.
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high-fidelity images. Figure 40.1b shows the result of subtract-
ing each of the moved images from the input image. Here it
becomes evident that the full Fourier method has conserved the
information in the original image but the other two methods
have introduced discrepancies.

40.3 Resampling by Full Fourier
Transform Methods

The empirical demonstration above suggests that image
reconstruction by a full Fourier method is information con-
serving, depending on the implementation. Hence, in this
section we will compare different approaches to implementa-
tion and then return to the issue of information conservation.
Image translations can easily be performed in k-space with-
out interpolation; however, rotations may require interpolation,
whether performed in k-space or on images. Interpolation
in k-space, while well-studied ([9], [15]), can introduce new
errors ([24], [11]), particularly for uniform-in-space sampling
schemes.

When performing translations and rotations using Fourier
methods, there are at least three possible ways it can be
implemented:

1. the Discrete Fourier Transform (DFT);
2. the Chirp-z Transform (CZT); and
3. the Fast Fourier Transform (FFT).

There are important practical issues influencing the choice
among these three. The DFT is least efficient computation-
ally but requires no special thought. The FFT is more efficient
when the data lie on a regular grid, particularly when the image
dimensions are a power of two. However, rotation of the image
off the original grid introduces a variable transformation that
prevents direct use of the FFT. The CZT is equally efficient to
the FFT but without special “tricks” can only operate on square
(or cubic) arrays.

40.3.1 Implementation by Discrete Fourier
Transform

In two dimensions the implementation of a translation can be
easily handled by phase shifts in Fourier space. For an n ×m
image I (letting F be the Fourier transform and F−1 be the
inverse Fourier transform) we have

F(I ) = Î (kx , ky) = n−1m−1
n∑
x

m∑
y

I (x , y)

exp

(
− i2π

nm
(mxkx + nyky)

)

and

F−1(Î ) = I (x , y)

=
n∑
kx

m∑
ky

Î (kx , ky) exp

(
i2π

nm

(
mxkx + nyky

))
.

Consequently, the image translated by a vector δ = (a, b) can
be expressed as

I (x + a, y + b)

=
n∑
kx

m∑
ky

Î (kx , ky) exp

(
i2π

nm
(m(x + a)kx + n(y + b)ky)

)

=
n∑
kx

m∑
ky

[
Î (kx , ky) exp

(
i2π

nm

(
makx + nbky

))]

exp

(
i2π

nm

(
mxkx + nyky

))
. (40.1)

That is, the raw (k-space) data can be simply phase-shifted by
an amount corresponding to the location shift of the image and
the result subjected to an inverse Fourier transform to get the
translated image. This computation can be performed with the
FFT algorithm by simply regarding Equation 40.1 as the DFT
of the quantity in square brackets.

The implementation of a rotation is a little more subtle. If we
let x = (x , y) and k = (kx , ky) and write

F(I ) = Î (k) =
∑

I (x) exp{−i2π(xTk)}

and

F−1(Î ) = I (x) =
∑

Î (k) exp{i2π(xTk)},

the image I rotated by an angle θ given by the rotation matrix

R =
(

cos θ − sin θ
sin θ cos θ

)

can be expressed as

I (Rx) =
∑

Î (k) exp{i2πxT RT k}. (40.2)

Since RT = R−1 this can be written as∑
Î (k) exp{i2πxT R−1k},

which can be rewritten as (letting k∗ = R−1k)∑
Î (Rk∗) exp{i2πxT k∗}.

A rotation of an image can be implemented by the rotation of
the k-space data.
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Being more explicit about the details we have

I (x cos θ − y sin θ, x sin θ + y cos θ)

=
n∑
kx

m∑
ky

Î (kx , ky) exp

(
i2π

nm
((x cos θ − y sin θ)mkx

+ (x sin θ + y cos θ)nky)

)

=
n∑
kx

m∑
ky

Î (kx , ky) exp

(
i2π

nm
(x(mkx cos θ + nky sin θ)

+ y(−mkx sin θ + nky cos θ))

)
. (40.3)

Equation 40.3 can be implemented directly. Unfortunately,
written in this way, the implied Fourier transform cannot be
computed by the Fast Fourier Transform algorithm because of
the cos and sin factors; the exponents no longer contain integral
multiples of i2π

n and i2π
m . It can be computed as written (a dis-

crete Fourier transform) but the calculations are prohibitively
slow.

Precisely, we know that the number of computations required
to compute Equation 40.3 directly is O(n2 ×m2) (see, e.g., [2])
because it has to be computed for each value of kx and ky . There
are at least two alternative computational approaches which we
discuss in the next two subsections.

40.3.2 Implementation by Chirp-z

The calculation can be performed by a chirp-z transform
[17]. Simply put, the chirp-z re-expresses the exponent in
Equation 40.2:

2xTRTk = xTRTk + xTRT(k − x)+ xTRTx

so that

I (Rx) =
∑

k

Î (k) exp{i2πxT RT k}

=
∑

k

Î (k) exp{iπ(xTRTk + xTRT(k − x)+ xTRTx)}

= exp{iπxTRTx}
∑

k

[
Î (k) exp{iπxTRTk}

]
[
exp{iπxTRT(k − x)}] .

This is easily seen to be a convolution of the two functions
in square brackets, multiplied by the constant exp{iπxTRTx}.
The convolution can be implemented with the FFT algorithm.
The actual calculation would require an FFT of each quantity

in square brackets, a multiplication of the two transforms, an
inverse FFT of the product, and a final multiplication by the
constant in front of the summation. The result is a calculation
which requires O(nm log nm) operations.

This method is considerably more efficient than the DFT
given in Equation 40.3 but when written out in detail it is
seen to require that the image being rotated is square (n = m).
See [20].

40.3.3 Implementation by Shearing

An alternative method for performing k-space or image rota-
tions is to approximate the rotation by successive use of shearing
transformations. According to [21], shearing was discovered
independently by [10], [16], and [6].

A shear, parallel to the x-axis, is given by the shearing matrix
product

Sx ,t

(
x
y

)
=

(
1 t
0 1

)(
x
y

)
=

(
x + ty

y

)
.

The pixels in each row are translated by an amount proportional
to the y-index of that row.

A shear, parallel to the y-axis, is given by the shearing matrix
product

Sy ,s

(
x
y

)
=

(
1 0
s 1

)(
x
y

)
=

(
x

y + sx

)
.

The pixels in each column are translated by an amount
proportional to the x-index of that column.

By using the Fourier shift theorem (e.g., [1], p. 104) the
shearing translation can be implemented in the Fourier dom-
ain using phase-shifts. In [21], which studies various meth-
ods for implementing shearing, it is shown the best-quality
results can be obtained implementing the shears using a
one-dimensional FFT.

Thus, a shear parallel to the x-axis can be implemented as:

I (Sx ,t x) = F−1
x

{Fx {I (x)} ei2πtkx y
}

,

where Fx is the Fourier transformation in the x-coordinate,
F−1

x is its inverse. A shear parallel to the y-axis is performed
similarly:

I (Sy ,s x) = F−1
y

{Fy {I (x)} ei2πsky x
}

.

A rotation matrix is equal to the product of three shearing
matrices:(

c −s
s c

)
=

(
1 t
0 1

)(
1 0
s 1

)(
1 t
0 1

)
= Sx ,t Sy ,s Sx ,t ,
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where c = cos θ, s = sin θ, t = − tan θ
2 , and θ is the angle of

rotation. So an image can be rotated using three successive shear
transformations utilizing only 1-dimensional FFTs.

The amount of computation required, if the shears are
implemented as one dimensional FFTs, is O(nm log n) for the
shears parallel to the x-axis and O(mn log m) for the shears
parallel to the y-axis. The entire computation thus requires
O(nm log nm) operations.

Figure 40.2 shows the images corresponding to the successive
steps in a shear-based calculation of a rotation; the intermediate

images would not normally be output in the actual use of the
rotation but are simply provided to help the reader understand
the method.

Because of the Fourier duality between image space and k-
space, note that the shift theorem can be implemented on k-
space data instead of the image data. That is, the k-space data
can be rotated by using the analogous formulas prior to actual
reconstruction into an image.

The shearing approach can be extended directly to three
dimensional images since a 3D rotation matrix, R3D , can be

(a) (b)

(c) (d)

FIGURE 40.2 The intermediate steps in the rotation of a two-dimensional image by three successive shears. Panel (a) is the original
image. Panel (b) is the result after shearing parallel to the x-axis. Panel (c) is the result after shearing parallel the y-axis. Panel (d) is the
final rotated image after the third shear parallel to the x-axis.
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written as the product of three extended 2D rotation matrices:

R3D =
⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠

⎛
⎝cosφ 0 − sin φ

0 1 0
sin φ 0 cosφ

⎞
⎠

⎛
⎝1 0 0

0 cosω − sinω
0 sinω cosω

⎞
⎠ . (40.4)

Each of these three matrices can be written as the product of
three extended 2D shearing matrices. Thus nine shears can be
used to perform 3D rotation. In fact, by using the combina-
tion rules for shear matrices the expression can be somewhat
simplified.

It is possible to write the 3D rotation matrix as the product
of only four shear matrices as follows:

R3D = Sy ,a,bSz ,c ,d Sx ,e,f Sy ,g ,h , (40.5)

where

Sx ,s,t =
⎛
⎝1 s t

0 1 0
0 0 1

⎞
⎠ ,

Sy ,s,t =
⎛
⎝1 0 0

s 1 t
0 0 1

⎞
⎠ ,

and

Sz ,s,t =
⎛
⎝1 0 0

0 1 0
s t 1

⎞
⎠ .

The values of the constants a, b, c , d , e, f , g , h are determined
by solving the equations obtained by multiplying out the
right-hand side of Equation 40.5 and equating each entry to
the corresponding entry on the left-hand side of Equation
40.5 (obtained by multiplying out the three matrices on the
right-hand side of Equation 40.4). A formal proof of this
decomposition is given by [5]. However, this product of four
shears does not have the information conserving property. As
demonstrated in [23], for four-shear rotations an appropri-
ate method of picking decompositions is a prerequisite for
reversibility.

40.3.4 Conservation of Information

Fourier interpolation is information-conserving in the sense
defined in Section 40.2.1. It is well-known that the Fourier
transform itself is information-conserving in the sense of
invertibility, i.e., the Fourier transform of data which is itself

the inverse Fourier transform of some original data reproduces
that original data. That is,

F(F−1(I )) = I .

Consequently, translations and rotations implemented
by Fourier interpolation are information-conserving, unless
details of the implementation, i.e., what happens between
forward and inverse transformation, destroy this property.
For example, translations implemented as phases-shifts in k-
space, utilizing Equation 40.1, are information-conserving. In
shorthand, we can write

I (x + δ) = F−1(F(I ) exp(i2πδT k))

and

I (x − δ) = F−1(F(I ) exp(−i2πδT k∗)).

Thus

I (x + δ− δ) = F−1(F(F−1(F(I ) exp(i2πδT k)))

exp(−i2πδT k∗)) = I (x).

Similarly, rotations are information-conserving. From
Equation 40.2 we know that

I (Rx) = F−1(F(I ) exp(i2πxT RT k))

and

I (RTy) = F−1(F(I ) exp(i2πyT Rk∗)).

Consequently, since RT = R−1 we have that

I (R−1(Rx)) = F−1(F(F−1(F(I ) exp(i2πxT RT k)))

exp(i2πyT Rk∗)) = I (x).

Remember that, for example, linear interpolation does not have
this information-conserving property.

Implementation details matter. Implementation details mat-
ter a great deal. For example, implementation of the Fourier
interpolation by use of sinc interpolation directly on the image
will not yield the exact result because of “edge-effects.” In
Panel (a) of Figure 40.1 the Fourier interpolation and the
4-point windowed sinc interpolation both appear to give high-
fidelity results. However, Panel (b) of Figure 40.1 shows that
while the Fourier interpolation produced an exact result, the
windowed sinc interpolation not only had errors but a sys-
tematic spatial pattern of errors. This stems from two sources:
first, the windowed sinc interpolator only used a four-point
approximation to the true sinc interpolator and second, the
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actual implementation did not deal with the edge effects (or the
wrap-around) correctly. This point is discussed extensively in
[21], although these authors do not address the issue of Fourier
interpolation, directly.

Implementation details matter. This can be seen most clearly
in Table 40.1. There are two different Fourier interpolation
methods and two different linear interpolation methods given
in the table and the results are different within each pair of
methods.

The crux of the matter seems to be to use a Fourier for-
mulation that does not truncate the spectrum or otherwise
degenerate into a lower-fidelity interpolator. The periodicity
of the full Fourier operator accurately conserves all the infor-
mation inherent in the data. With respect to implementation,
the accuracy and efficiency, and simplicity of substituting shift
for rotation (by shearing) make this an attractive choice.

40.4 Three-dimensional Resampling
of Slices

There are a variety of reasons for resampling (or “reslicing”) the
MR volume after the data have been acquired. For instance, to
compare the image from one study with the results of another
or with a reference image it might be necessary to create slices
in locations or orientations that differ from where they were
originally acquired. In cases where noise has been introduced
into the data by head motion through the slice plane, inter-
polation between slices may be required for adequate motion
correction.

A three-dimensional MR data volume is composed of
an aggregate of two-dimensional slices, when using com-
mon acquisition methods. When resampling the MR volume
between slices there are some important issues to consider. It
is well known from Fourier theory (see, e.g., [1]) that, given a
data volume composed of slices collected perpendicular to the
z axis, the inter-slice distance determines the maximum spatial
frequency, Kz , that can be recorded without aliasing. However,
in [14] it is further observed that important objectives which
govern slice selection in two-dimensional data acquisition can
ultimately exacerbate the problem of interpolating the data at
some later stage. In particular, it is noted there that generat-
ing rectangular slice profiles with narrow transition regions,
in order to achieve precise localization with minimal slice-to-
slice interaction, has the effect of increasing the content of high
spatial frequencies in the data.

Later, during data processing, these same design criteria that
were deemed desirable in acquiring the data present challenges
if the data need to be interpolated.

For effective interpolation it is helpful if the data that are to
be interpolated follow a smooth function with a band-limited
spectral character; i.e., one that tapers smoothly to zero at a
frequency below Nyquist. Then an interpolation operator can
be chosen whose spectral shape encompasses the frequencies in

the data. However, the sharp boundaries in a typical rectangular
slice profile produce frequencies in k-space at or above the
Nyquist frequency. The combination of significant spectral
energy right at Nyquist and some aliased data in the z dimen-
sion make it difficult to interpolate the data effectively between
slices.

Practical guidelines for two-dimensional data acquisition to
allow for more effective between-slice interpolation are offered
in [14]. First, it is suggested that the use of a slice-profile excita-
tion pulse which achieves the desired slice localization yet limits
energy at high spatial frequencies will be helpful. After evalu-
ating several types of pulses, they concluded that a Gaussian
shape pulse exhibits the desired properties.

Second, [14] suggests eliminating the gap between slices or
even the step of overlapping adjacent slices. This facilitates
through-plane interpolation by increasing the density of infor-
mation in the z dimension. Of course, this type of profile would
use an interleaved ordering of slices during acquisition in order
to keep crosstalk and signal loss at a minimum in the areas of
overlap (see, e.g., [4]).

It is also possible to approach the solution of this problem
from the other side; viz., by designing more effective interpo-
lation operators. The goal is to select an interpolator whose
spectral characteristics best accommodate the behavior of the
Kz data. The sinc function is widely accepted as an ideal inter-
polating function under the right conditions (see, e.g., [1],
p. 62; [13], p. 79). In particular, the sinc operator has a flat
spectrum which effectively captures the spectral content of the
data up to its cutoff frequency. (As noted in Section 40.3, there
can be undesirable artifacts that accompany sinc interpolation,
depending on its implementation).

In [14] the performance of the (Hamming) windowed sinc
operator is compared with a linear one. The results of their
simulation studies indicated that the optimal way to handle
two-dimensional MR data seemed to be, first, to taper the spec-
tral content of the data by using the Gaussian-type excitation
pulse for slice selection; second, to use a sinc-type interpolator
which can perform optimally on the band-limited data.

40.5 Conclusions

Because registration is an early, critical image-processing step
not only for medical imaging, but also for satellite remote sens-
ing and other fields, many papers on this subject have been
added to the image processing literature since the reviews by [3]
and [12]. For instance, in the medical imaging literature [18]
focuses on a broader class of basis functions for doing inter-
polation in medical images. In both the medical imaging and
remote sensing fields another topic of interest is registration or
fusion of data to produce subpixel resolution [19]. For exam-
ple, one method used in remote sensing, called pansharpening,
involves the fusion of two or more datasets with inherently dif-
ferent spatial resolution in a manner that sharpens the details
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in the lower resolution data using the added information of the
higher resolution dataset [22].

The focus of this paper is limited to the issue of information
preservation in the registration of MR images. There is a vari-
ety of readily available and popular methods for resampling
(or reconstructing) MR data. They are not all equally effec-
tive. The major distinction is whether or not they conserve the
information in the image. There are two primary issues that
we have addressed. One is selection of an appropriate or opti-
mal method and the second is the proper implementation of
the method, because the failure to conserve information could
stem from either issue.

In the final section of this chapter we considered some issues
specific to resampling data in a 3D sense and suggested the use
of spectral tapering in conjunction with optimal interpolation.
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41.1 Introduction

Image registration is generally defined as the alignment of
two or more image volumes into the same geometric space.
Registration can be applied to the same image modality—
intramodality registration (e.g., magnetic resonance imaging
[MRI] to MRI)—or across modalities—intermodality regis-
tration (e.g., positron emission tomography [PET] to MRI).
Registration can also be applied to alignment of images from
various subjects to a common space—intersubject registration
(e.g., patient scan to an atlas of a mean normal or control data
of combined images).

Numerous registration methods with various merits and lim-
itations are employed for clinical purposes. The methods may
be classified as either rigid-body or nonrigid transformations.
Rigid-body methods assume no change in shape or deforma-
tion in structure between images. This assumption is generally
valid for most intrasubject brain registration applications, and
this is why most clinical applications are emerging fastest in
neuroimaging. Rigid-body techniques are the best-validated
methods. They are also the simplest, since only six degrees of
freedom are involved—three translations along the x-, y-, and
z-axes, and three rotations around each of the respective axes.
Nonrigid transformations, especially those based on nonlinear
models for warping, are much more computationally complex
and difficult to validate. Still, methods of image deformation or
warping are increasingly being adapted for clinical application.

In this chapter,areas of present and some future clinical appli-
cation of registration will be reviewed. The applications include
only those in neuroimaging and cover in particular the exam-
ination of dementia, multiple sclerosis (MS), central nervous
system (CNS) tumors, and epilepsy.

41.2 Intramodality Registration

One of the most obvious clinical applications of image registra-
tion is the area of serial imaging. Scans from a given patient
acquired over various time intervals can be routinely com-
pared to follow disease progression and response to treatment.
Unfortunately, diagnostic imaging scans are not routinely regis-
tered in most radiology departments; in contrast, the common
practice for an examiner is to do one’s best to look at film mon-
tages of slices that do not match and try to assess disease change.
For gross changes, this method of comparison may be adequate,
although it is never optimal. For subtle change, visual compar-
ison of unmatched images is entirely inadequate. This problem
is especially prevalent in assessment of disease changes in MS
and brain tumors.

Image registration is still not applied commonly in these
clinical settings in spite of available fully automated, validated,
highly accurate registration algorithms [1–3]. In contrast to
the clinical setting, as soon as valid methods were developed,
researchers quickly took advantage of registration techniques in
serial imaging to study objective, measurable changes in image
variables. For example, MS researchers reported on the use of
registration to quantitatively study brain white matter signal
changes on MRI where new contrast enhancing lesions do and
do not arise in patients with relapsing and remitting MS [4].
Figure 41.1 is an illustration of the dynamic nature of contrast
enhancing lesions in MS examined monthly over 6 months. This
figure illustrates the value of simply comparing serial disease
changes with accurate alignment of images alone.

To further take advantage of registration in serial imaging,
one can employ subtraction techniques. Subtraction of one
aligned image from another produces a difference image that

Copyright © 2008 by Elsevier, Inc.
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FIGURE 41.1 MRI to MRI registration—evolution of lesions in a
33-year-old woman with relapsing and remitting multiple sclero-
sis. Each vertical pair of T1 and proton density images represents a
monthly interval acquired over a total of 6 months of disease change.
Accurate alignment of images allows precise comparison of lesion
changes over time. Image is courtesy of William Rooney (High-Field
MRI Lab, Department of Chemistry, Brookhaven National Laboratory,
Upton, New York).

allows another level of visualizing changes in serial images,
ideally changes that cannot be appreciated otherwise. Image
subtraction is in theory a simple arithmetic subtraction of signal
intensity on an image voxel-by-voxel basis. However, because
global values change from one scan to another, normaliza-
tion of intensity values across datasets is necessary. Usually,
this is accomplished by referencing individual intensity values
to a mean for the entire dataset. To define subtle changes with
subtraction and at the same time exclude those due to slight mis-
alignment, especially in regions near the surface of the brain,
highly accurate, subvoxel registration is required. Figure 41.2
illustrates registration of serial MRIs from a patient after sur-
gical resection of a left temporal lobe brain tumor. Alignment
of images with registration enabled identification of a small
focal area of IV contrast enhancement. Prior to registration, it

was not possible to say confidently that the enhancement was
present on one and not the other scan, since precise slice-by-slice
visual comparison was not possible.

Subvoxel registration and subtraction that results in com-
plete cancellation of signals from unchanged structures in
high-resolution brain images has been reported by Hajnal
et al. [5]. Their work demonstrated the capability to detect sub-
tle changes in serially acquired images including normal brain
maturation and development, detection of small changes in the
size of tumors, and small displacements of the brain related to
minor head trauma. Curati et al. [6] demonstrated increased
sensitivity to detecting changes associated with IV contrast
enhancement. With registration and subtraction, they were
able to detect additional, unequivocal, but subtle changes with
respect to degree and distribution of enhancement in the CNS
inflammatory diseases, MS lesions, and benign and malignant
tumors. They further pointed out that registration and subtrac-
tion were of particular value in the following: (1) recognition of
small degrees of enhancement; (2) tissue or fluid enhancement
with very low or high baseline signals; (3) enhancement at inter-
faces, boundaries, or other regions of complex anatomy; and
(4) assessment of enhancement when thin slices are acquired.
Also noted is the potential value of applying registration and
subtraction in serial images with susceptibility-sensitive and
diffusion-weighted sequences for serial evaluation of bleed-
ing in the brain and disturbance of tissue blood perfusion,
respectively.

Localization of partial epilepsy (an epilepsy type with seizures
that start in a confined part of the brain) with single photon
emission computed tomography (SPECT) is now a recognized
field for the application of registration and subtraction. Using
radiotracers 99Tcm-hexamethyl-proyleneamine-oxime (99Tcm-
HMPAO) or 99Tcm-ethyl cysteinate diethylester (99Tcm-ECD),

29 29 29

FIGURE 41.2 MRI to MRI registration—serial subtraction imaging in a 30-year-old male patient who is status post resection of a left temporal
lobe glioma. MRI scan on the left was acquired 3 months prior to middle scan. Both scans were perfomed using intravenous contrast enhancement.
Image alignment alone provides an excellent picture for accurate visual comparison. The right subtraction image (middle scan—left scan) leaves
only the difference in tumor change (none apparent) and gadolinium enhancement.
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localized cerebral blood flow (CBF) changes can be visualized
during partial seizures, an imaging tool of great value to patients
with medically uncontrolled partial epilepsy who are evaluated
for epilepsy surgery. Both HMPAO and ECD have a very high
first-pass brain extraction rate with maximal uptake achieved
within 30–60 seconds of IV injection. The isotope is effectively
trapped in the brain at this time, allowing a picture of CBF
during a seizure. A relatively long half-life allows the image to
be conveniently created up to 3–4 hours later.

Until the demonstration of registration and subtraction
[7–9], ictal (during seizure) SPECT imaging had many limita-
tions. First, SPECT scans are of relatively low spatial resolution.
As a result, interpretation of anatomic detail is not possible
without registration to MRI or CT. Second, intraindividual dif-
ferences make difficult comparison with a baseline interictal
(between seizures) scan. Many patients have interictal regions
of relative focal decrease in CBF, especially in regions of seizure
onset. Others have baseline relative focal increases in CBF.
Third, further complicating visual comparison between ictal
and interictal scans are global differences in signal intensity and
most importantly unmatched slice orientations. Figure 41.3
demonstrates these problems and their correction with reg-

istration, image normalization, and subtraction. O’Brien and
colleagues were the first to demonstrate successful application
of registration and subtraction of ictal SPECT in a large series of
epilepsy patients [8]. They subsequently validated the method
using phantom studies and also addressed normalization and
significant difference issues [7]. Their general method, called
subtraction ictal SPECT coregistered to MRI (SISCOM), has
become widely adopted by epilepsy centers around the world.

Another potential area of intrasubject serial image registra-
tion with clinical utility is enhancement of images with signal
averaging [10]. Increased contrast and better spatial resolution,
features that allow better visibility of neuroanatomic detail, can
be obtained from any given MRI scanner using signal averaging.
The gain in signal is expected to increase as the root of the num-
ber of contributing scans. Although a single scan acquired at a
duration equal to the total of a number of contributing scans
achieves the same increase in signal-to-noise, subject move-
ment (especially swallowing) severely limits total scan time;
even the most motivated subjects cannot remain completely
motionless for more than about 10 minutes. Figure 41.4 illus-
trates a twofold improvement in signal-to-noise from averaging
four MRI scans in an epilepsy patient with a subtle neocortical

Subtraction

Ictal Interictal

SISCOM

Coregistration
to MRI

1. SPECT registration
2. Image intensity normalization

FIGURE 41.3 Subtraction ictal SPECT with coregistration to MRI (SISCOM)—seizure imaging of cerebral blood flow in a 40-year-old male
with medically intractable epilepsy. Note that the global intensity scaling between the ictal and interictal scans is different. After normalization
of scaling, subtraction of interictal from ictal scans allows visualization of focal increased blood flow in the right frontal lobe, a finding that is
apparent from comparison of the ictal and interictal scans but the degree and extent to which the true change is not clear. (See also color insert).
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FIGURE 41.4 MRI to MRI registration—signal averaging to improve signal-to-noise. Hoizontal pairs of T1 weighted gradient echo images were
acquired from a 54-year-old patient with medically refractory focal epilepsy. The first of each horizontal pair of images (numbered in the bottom
right corner of each slice) is from a single scan, while the second of the pair is the average of four coregistered scans. A subtle epileptogenic lesion,
present in the right lateral occipital cortex (partially transparent white arrow), is better delineated in the averaged scan because of markedly
improved contrast, a result of a twofold improvement in signal-to-noise.

lesion of uncertain significance (ultimately defined as epilep-
togenic with intracranial electrode recording of seizures). Most
notable is the relative decrease in noise, especially in the white
matter, that allows better definition of the gray-matter-based
lesion.

Registration for signal averaging in clinical neuroimaging
remains to be fully exploited for clinical imaging. One exam-
ple would be to use signal averaging to compensate for the
loss of signal with decreasing voxel sizes. Another is to com-
pensate for decreased signal in fast acquisition scans used to
image patients who cannot stay still. Optimal scan sequences
to best take advantage of signal averaging still need to be
developed and will be defined by the goals of the clinical
application.

41.3 Intermodality (or Multimodality)
Registration

Combination of functional and structural imaging provides
unique information not available from independent analysis
of each modality. Coregistration instead of registration is
commonly used in the context of intermodality registration.
Coregistered high-resolution anatomy in MRI or CT images
provides a much more precise anatomical basis for the interpre-
tation of functional image data. This includes improved detec-
tion of focal functional disturbances of cerebral activity, better
comprehension of pathophysiologic structural-functional rela-
tionships, and more accurate identification of specific patterns
of disturbances among patients or patient subpopulations of



41 Clinical Applications of Image Registration 689

interest. Conversely, coregistered functional imaging may help
interpret the clinical significance of ambiguous, subtle, or non-
specific structural lesions and other abnormalities on MRI
or CT.

Intermodality coregistration can aid analysis of clinical imag-
ing for numerous important treatment issues, but few are
more critical than the evaluation and treatment of brain
tumors [11–13]. Nelson et al. [12] demonstrated the value of
coregistering volumetric MRI and high-resolution [18F] fluo-
rodeoxyglucose PET (FDG-PET) in the evaluation of patients
with brain tumors. They showed that relying on changes in
MRI contrast enhancement can be misleading because of non-
tumor-recurrence changes from injury to the brain caused by
radiation, stroke, or benign postoperative changes. Also, an
active tumor may not enhance on MRI but may be metaboli-
cally an active on FDG-PET. Imaging an active tumor with PET
scans can distinguish an active tumor from radiation necrosis,
but exact localization of lesion and gray matter anatomy is nec-
essary. Particularly helped are contrast-enhancing lesions close
to the cortex that distorted normal anatomy and abnormalities
where absolute levels of FDG uptake were equal to or lower than
that of normal gray matter [12].

Intermodality image registration is also valuable in planning
radiation treatment [14, 15]. The crucial step for radiation
treatment planning is the accurate registration of tumor vol-
ume with simulation films (X-ray-based images typically used
for targeting tumor location). Otherwise, radiation targeting
may include normal tissue or miss the tumor. With conven-
tional techniques, error is approximately 20%. The goal with
registration is to transfer data from a previously acquired “non-
planning” study, frequently a higher resolution preintervention
image, to a“planning”X-ray computed tomographic (CT) scan.
Often the planning CT may not show the entire tumor, and a
prior scan is needed to target the original tumor volume. This is
especially a problem with lymphoma when the tumor volume
is almost invariably decreased greatly from chemotherapy by
the time radiation treatment planning takes place. Incomplete
surgical removal of a tumor is also a frequent problem where
planning images do not include the original tumor volume.
Registration of other modalities such as PET, SPECT, or mag-
netic resonance spectroscopy (MRS), which might identify
microscopic tumor spread, part of the true tumor volume,
can further enhance ability to accurately define tumor targets.
Further, registration in neurooncology should be applicable
in the near future with SPECT scans that are created using
monoclonal antibodies binding specifically to tumor tissue
proteins [16].

FDG-PET is a well-established epilepsy localization tool,
but conventional interpretation does not typically take advan-
tage of coregistered MRI for optimal interpretation. Missed
abnormalities and false interpretation of independently read
high-resolution FDG-PET scans can be correctly identified with
registration to MRI, allowing an increase in both sensitivity

and specificity in the detection of relative hypometabolism
in patients with medial and lateral temporal lobe epilepsy
[17]. It is apparent that if the threshold for detection of subtle
abnormalities on FDG-PET is to be lowered, registration to
MRI is necessary to correct anatomic asymmetries, to identify
whether any structural anomaly may be the cause of a focal
defect, and to determine if a suspected region is affected by
partial volume averaging [18]. Figure 41.5 shows an FDG-PET
scan from a patient with left mesial temporal lobe epilepsy.
The scan was interpreted as normal or nonlateralizing. Only
with coregistered MRI anatomy and partial volume average
correction was unequivocal focal hypometabolism in the left
hippocampus identified.

A more recent development that may make the lack of offline
routine PET-MRI coregistration less of an issue is combined
PET/CT scanners that are increasingly available. CT doesn’t
provide the exquisitely high resolution of MRI, but the anatomy
from CT does allow much more precision in definition of
function-structure relationship; even the ability to correct for
partial volume effect is possible. Limitations still exist with com-
bined scanners, including motion-induced misregistration, and
serial scanning [19].

Localization of the epileptogenic zone, the focal region of
the brain responsible for generation of the seizures, is the goal
of preoperative epilepsy surgery evaluations. This process uti-
lizes extensive imaging and clinical neurophysiolgic localization
techniques in what is considered a multimodality examination
of the brain [20]. Electroencephalographic (EEG) or magneto-
encephalographic (MEG) source localization can be combined
with both functional and structural anatomic imaging in an
attempt to identify the epileptogenic zone [21]. This is especially
helpful in cases that do not have an identifiable epileptogenic
lesion on MRI [22], for successful surgery is much less likely
in cases where an epileptogenic substrate has not been confi-
dently identified prior to surgery. Sometimes the pathology is
cryptogenic—not visible on conventional MRI. In other cases an
abnormality on MRI is nonspecific or of uncertain clinical sig-
nificance. In yet others the MRI abnormality is ambiguous (e.g.,
large cystic lesions) or even misleading (e.g., mesial temporal
sclerosis in patients with lateral temporal lobe epilepsy—
dual pathology). In all of these circumstances multimodality
registration with functional imaging and electrophysiologic
localization may improve the accuracy of identifying the epilep-
togenic zone. Figure 41.6 illustrates an example of cryptogenic
pathology that was detected only with multimodality regis-
tration. Cases such as these demonstrate the ability of multi-
modality image coregistration to overcome false negatives of
individual diagnostic tests, and moreover, to exploit existing
noninvasive tests to even override nondiagnostic invasive tests.

When further combined with functional brain mapping
techniques (e.g., fMRI, PET, MEG), a completely noninvasive
presurgical tumor or epilepsy surgery evaluation can be
envisioned with combined imaging techniques employing
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MRI hippocampal VOIs

VOIs resliced in PET space

Partial volume correction

FIGURE 41.5 MRI to FDG-PET registration—volume of interest (VOI) analysis with partial volume correction—image analysis from a 45-
year-old woman with left mesial temporal lobe epilepsy. Top left MRI images show hippocampal VOIs manually drawn on precise coronal MRI
anatomy. Middle images show VOI contours resliced in the original FDG-PET sinogram space. Bottom right images show the convolved MRI gray
matter coregistered to PET space; these images were used to correct for partial volume averaging. FDG-PET images were interpreted as normal
(no relative lateralized or focal hypometabolism). Before partial volume correction, hippocampal VOI specific activity of FDG was symmetric
(normal or nonlateralizing). After partial volume average correction, an 18% asymmetry of hippocampal metabolism was demonstrated in the
left atrophic hippocampus.

coregistration. Before the presurgical evaluation can become
completely noninvasive, rigorous validation must be accom-
plished with new methods measured against standard
intracranial localization techniques [22–24]. Multimodality
registration is already widely used in laboratories perform-
ing brain mapping research with PET, fMRI, EEG, and MEG.
Combining neurophysiologic and neuroimaging modalities
enables combination and validation of source localization
techniques that ultimately should be translated to better
clinically validated diagnostic and prognostic imaging tools.
Techniques for modeling dipole sources should theoretically
benefit from including anatomical constraints about volume
conduction and orientation of current flow. A priori knowl-
edge about function localization from relatively high spatial
resolution imaging modalities (fMRI and PET) should help
use source localization with high temporal resolution modali-
ties (EEG and MEG). These advances are being worked out with
functional mapping paradigms but will ultimately benefit in
vivo localization of electrophysiological,metabolic, and cerebral
blood flow disturbances characterizing most CNS diseases.

Electrode to image registration is necessary in order to per-
form validation of neurophysiologic localization. With EEG,
both scalp and intracranial electrode positions can be regis-
tered to MRI. The patient’s scalp surface and electrode positions
can be mapped with a handheld 3D magnetic digitizer wand.
Surface contours, landmarks [25], or fiducial markers can
be used for registration. An additional approach is to phys-
ically measure the coordinates of EEG electrodes and align
them with the scalp surface on an MRI [26, 27]. Intracranial
EEG electrode positions can be coregistered to other imaging
modalities by simply imaging the patient with the electrodes
implanted. Imaging of electrodes for multimodality registration
purposes is best performed with MRI or CT, but skull radio-
graphs can also be used [28]. If MRI is performed, special
(and more expensive) electrodes made of nonferromagnetic
nickel chromium alloys are used to eliminate risk of electrode
movement within the patient’s head. Whether CT or MRI is
used, artifact obscures the exact visualization of the contacts
(10 mm signal void on MRI). One option to eliminate arti-
fact and reduce cost is to coregister a postimplantation CT to
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(a)

(b)

FIGURE 41.6 MEG to MRI to FDG-PET registration—discovery of
cryptogenic epileptogenic pathology—image analysis from a 28-year-
old woman with right temporal lobe epilepsy. (a) FDG-PET overlaid
on MRI shows questionable relative focal hypometabolism in the right
superior temporal gyrus. (b, left) MEG spike dipole source localiza-
tion (white triangles, tails represent dipole orientation) overlaid on a
selected coregistered coronal MRI slice from the posterior temporal
lobes—dipole sources correspond to an active epileptiform distur-
bance of cerebral activity with scalp EEG (epileptiform sharp waves
maximum at right mid-temporal electrode); MRI is normal. (Right)
Corresponding FDG-PET slice—focal hypometabolism present in the
right superior temporal gyrus (large white arrow) is remarkably colo-
calized with MEG spike sources. Histopathology revealed cryptogenic
hamartomatous dysplasia. (See also color insert).

a preimplantation MRI [29]. Figure 41.7 shows this unique
clinical application of image registration to remove to over-
come MRI electrode artifact from electrodes placed deep in
the mesial temporal structures for a patient with intractable
epilepsy.

The surgical pathology correlates of many examples of
MRI signal alterations, especially isolated focal increased T2

signal and relative focal hypometabolism on FDG-PET, remain
unclear. In patients with epilepsy and an isolated finding of
focal-increased T2 signal, the temptation is to attribute the
change to a pathologic diagnosis of gliosis or cortical dyspla-
sia; however, it has been shown that such changes may not be
associated with any histopathologic abnormality [30]. Surgical
specimens are not typically imaged and coregistered to presur-
gical scans. In one of the first reports of mapping histology
to metabolism using registration, stained whole brain sections
from Alzheimer’s disease patients were optically imaged, dig-
itally reconstructed into a 3D volume, and coregistered to
premortem FDG-PET scans [31]. Areas of decreased FDG
uptake did not correlate with neural fibrillary tangle staining
density, a commonly presumed relationship before this study.
Although some technical difficulties remain for handling the
imaging of surgical specimens, this area of registration holds
great promise for accurately understanding the underlying
pathology of image signal changes, an aspect of diagnostic radi-
ology that has become increasingly difficult with rapid ongoing
advances in neuroimaging techniques.

41.4 Intersubject Registration

Intersubject registration allows comparison of imaging abnor-
malities within and across patient populations of interest. An
emerging application is intersubject image registration to gen-
erate mean images of a control population. In most clinical
applications the mean image acts as an atlas or reference against
which abnormalities in a patient or population of patients
can be objectively and quantitatively compared for diagnostic
discrimination.

Assessing the significance of any measurable image feature,
disturbance, or change has been widely used in the research
brain imaging environment with statistical parametric map-
ping (SPM) [32, 33]. Yet, in spite of over 15 years of extensive
development and validation with SPM application to clinically
relevant questions, intersubject registration and comparison to
brain atlases are still rarely used as a clinical diagnostic tool.
The most obvious clinical value may be envisioned in the appli-
cation to diagnostic functional imaging with fMRI, PET, and
SPECT such that analysis can be less subjective and more con-
clusively defined as negative or positive with optimal sensitivity
and specificity [34]. Early examples to show this possibility were
a couple of studies using SPM to investigate abnormalities of
central benzodiazepine binding with [11C] flumazenil PET in
two partial epilepsy patient groups (epilepsy of mesial temporal
lobe origin and neocortical origin, the latter specifically from
focal cortical dysgenesis) [35, 36]. SPM was used to objectively
measure the distribution of normal and abnormal benzodi-
azepine binding in each patient. Additionally, the coregistered
MRI allowed important correction for partial volume effects
with the use of convolving gray matter from segmented MRI.
In another more recent study, SPM analysis of PET scans in
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FIGURE 41.7 Intracranial electrode CT-MRI registration. (Top left) Original CT transaxial slice including two hippocampal depth electrode
contacts (right and left). (Top right) Coregistered CT resliced in the plane of a coronal MRI slice. (Bottom left) Coregistered CT level and window-
ing adjustment to allow only visualization of electrode contacts. (Bottom right) Overlay of electrode contacts from resliced CT to corresponding
MRI slice—MRI image contains visualization of electrodes without artifact and without need for special MRI-compatible electrodes.

patients with frontal lobe epilepsy was compared to visual anal-
ysis [37]. Although not statistically significant, SPM was able
to identify focal metabolic defects concordant with the seizure
focus in an additional 7 of 29 patients compared to visual
assessment.

Evaluation of SPECT regional CBF disturbances in demen-
tia has also been demonstrated to benefit from anatomic
standardization allowed by intersubject registration [38–40].
The application enabled more accurate observer-independent
assessment of patterns and severity of regional CBF change
in Alzheimer’s disease patients. Bartenstein et al. [38] showed
an increase in sensitivity in the detection of significant abnor-
malities in early or mild dementia, an area of great difficulty
in the diagnostic value of functional imaging. Houston et al.
[40] employed a further level of analysis in using a princi-
pal components analysis. This procedure produces a variant
“normal equivalent image” to help account for normal deviants

within the control image. Such images form additional build-
ing blocks for an atlas that allows a more realistic normative
comparison.

41.5 Conclusion

Routine clinical use of image registration remains limited in
spite of numerous applications for enhanced interpretation
and analysis of medical images. The clearest benefit exists for
improved interpretation of serial images to assess disease pro-
gression. This includes a critical need for objectively monitoring
the effect of established and potential interventions or ther-
apy on diseases such as tumors and multiple sclerosis. Further,
putting together various types of image data with intermodality
(or multimodality) registration provides information not avail-
able from analysis of the individual modalities. Initial work
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from the medical centers investigating use of registration in
clinical settings has demonstrated the expected benefit of mul-
timodality registration in assessing and directing treatment
of brain tumor recurrence and localizing epilepsy for surgi-
cal treatment. Presurgical epilepsy localization also includes
the use of registration to combine electrophysiologic epilepsy
localization with functional imaging of brain mapping to deter-
mine the safest and most effective surgical strategies with the
fewest of invasive procedures. Applying intersubject registra-
tion is probably the furthest away from routine clinical use, but
it offers a true advance for objective quantitative interpretation
of functional anatomic imaging.

Reasons for slow adoption of image registration in the clin-
ical setting are increasingly difficult to support. Many of the
reasons for not taking advantage of registration have been
mainly a result of logistical difficulty in efficiently implement-
ing automated computerized manipulation of heterogeneous
image data. Deployment of high-speed networks in most med-
ical centers is removing the obstacle of quick access to digital
image data archives. Validated registration techniques that are
sufficiently accurate for clinical purposes are also now widely
available for most applications. All that remains is for clinicians
and imaging departments to work more closely at identify-
ing specific needs for clinical image registration, and then to
simply collect, adapt, and employ existing image processing
tools.

41.6 References

1. West J, Fitzpatrick JM, Wang MY et al. Comparison
and evaluation of retrospective intermodality brain image
registration techniques. J Comput Assist Tomogr. 1997;21:
554–566.

2. Woods RP, Grafton ST, Watson JD et al. Automated image
registration: II. Intersubject validation of linear and non-
linear models. J Comput Assist Tomogr. 1998;22:153–165.

3. Pluim JP, Maintz JB, Viergever MA. Mutual-information-
based registration of medical images: A survey. IEEE Trans
Med Imaging. 2003;22:986–1004.

4. Goodkin DE, Rooney WD, Sloan R et al. A serial study
of new MS lesions and the white matter from which they
arise. Neurology. 1998;51:1689–1697.

5. Hajnal JV, Saeed N, Oatridge A et al. Detection of subtle
brain changes using subvoxel registration and subtraction
of serial MR images. J Comput Assist Tomogr. 1995;19:
677–691.

6. Curati WL, Williams EJ, Oatridge A et al. Use of sub-
voxel registration and subtraction to improve demon-
stration of contrast enhancement in MRI of the brain.
Neuroradiology. 1996;38:717–723.

7. O’Brien TJ, O’Connor MK, Mullan BP et al. Subtraction
ictal SPECT co-registered to MRI in partial epilepsy:
Description and technical validation of the method

with phantom and patient studies. Nucl Med Commun.
1998;19:31–45.

8. O’Brien TJ, So EL, Mullan BP et al. Subtraction ictal
SPECT co-registered to MRI improves clinical useful-
ness of SPECT in localizing the surgical seizure focus.
Neurology. 1998;50:445–454.

9. Zubal IG, Spencer SS, Imam K et al. Difference images
calculated from ictal and interictal technetium-99m-
HMPAO SPECT scans of epilepsy. J Nucl Med. 1995;36:
684–689.

10. Holmes CJ, Hoge R, Collins L et al. Enhancement of MR
images using registration for signal averaging. J Comput
Assist Tomogr. 1998;22:324–333.

11. Wu HM, Hoh CK, Huang SC et al. Quantification of
serial tumor glucose metabolism. J Nucl Med. 1996;37:
506–513.

12. Nelson SJ, Day MR, Buffone PJ et al. Alignment of volume
MR images and high resolution [18F]fluorodeoxyglucose
PET images for the evaluation of patients with brain
tumors. J Comput Assist Tomogr. 1997;21:183–191.

13. Connor SE, Gunny R, Hampton T, O’Gorman R. Magnetic
resonance image registration and subtraction in the assess-
ment of minor changes in low grade glioma volume. Eur
Radiol. 2004;14:2061–2066.

14. Rosenman JG, Miller EP, Tracton G, Cullip TJ. Image
registration: An essential part of radiation therapy treat-
ment planning. Int J Radiat Oncol Biol Phys. 1998;40:
197–205.

15. Veninga T, Huisman H, van der Maazen RW, Huizenga H.
Clinical validation of the normalized mutual informa-
tion method for registration of CT and MR images in
radiotherapy of brain tumors. J Appl Clin Med Phys.
2004;5:66–79.

16. Quinones-Hinojosa A, Sanai N, Smith JS, McDermott
MW. Techniques to assess the proliferative potential of
brain tumors. J Neurooncol. 2005;74:19–30.

17. Knowlton RC, Laxer KD, Ende G et al. High-resolution
PET in mesial temporal lobe epilepsy: An evaluation
of patients without hippocampal abnormalities on MRI.
Neurology. 1995;45:A314.

18. Baete K, Nuyts J, Van Laere K et al. Evaluation of anatomy
based reconstruction for partial volume correction in
brain FDG-PET. Neuroimage. 2004;23:305–317.

19. Pietrzyk U. Does PET/CT render software registration
obsolete? Nuklearmedizin. 2005;44(Suppl 1):S13–17.

20. Knowlton RC. The role of FDG-PET, ictal SPECT, and
MEG in the epilepsy surgery evaluation. Epilepsy Behav.
2006;8:91–101.

21. Knowlton RC, Laxer KD, Aminoff MJ et al. Magnetoence-
phalography in partial epilepsy: Clinical yield and local-
ization accuracy. Ann Neurol. 1997;42:622–631.

22. Knowlton RC, Elgavish R, Howell J et al. Magnetic
source imaging versus intracranial electroencephalogram



694 Handbook of Medical Image Processing and Analysis

in epilepsy surgery: A prospective study. Ann Neurol.
2006;59:835–842.

23. Minassian BA, Otsubo H, Weiss S et al. Magnetoence-
phalographic localization in pediatric epilepsy surgery:
Comparison with invasive intracranial electroencephalog-
raphy. Ann Neurol. 1999;46:627–633.

24. Roberts TPL, Zusman E, McDermott M et al. Correlation
of functional magnetic source imaging with intraopera-
tive cortical stimulation in neurosurgical patients. J Image
Guided Surg. 1995;1:339–347.

25. Boesecke R, Bruckner T, Ende G. Landmark based cor-
relation of medical images. Phys Med Biol. 1990;35:
121–126.

26. De Munck J, Vijn P, Spekreijse H. A practical
method for determining electrode positions on the
head. Electroencephalogr Clin Neurophysiol. 1991;89:
85–87.

27. Le J, Lu M, Pellouchoud E, Gevins A. A rapid method
for determining standard 10/10 electrode positions for
high resolution EEG studies. Electroencephalogr Clin
Neurophysiol. 1998;106:554–558.

28. Grzeszczuk R, Tan KK, Levin DN et al. Retrospective
fusion of radiographic and MR data for localization of
subdural electrodes. J Comput Assist Tomogr. 1992;16:
764–773.

29. Nelles M, Koenig R, Kandyba J et al. Fusion of MRI and
CT with subdural grid electrodes. Zentralbl Neurochir.
2004;65:174–179.

30. Mitchell LA, Jackson GD, Kalnins RM et al. Anterior
temporal abnormality in temporal lobe epilepsy: A
quantitative MRI and histopathologic study. Neurology.
1999;52:327–336.

31. Mega MS, Chen SS, Thompson PM et al. Mapping
histology to metabolism: Coregistration of stained whole-
brain sections to premortem PET in Alzheimer’s disease.
Neuroimage. 1997;5:147–153.

32. Friston KJ, Frackowiak RSJ. Imaging of functional ana-
tomy. In Lassen NA, Ingavar DH, Raichle ME, Friberg L,
(eds). Brain Work and Mental Activity: Quantitative Studies
with Radioactive Tracers. Copenhagen: Munskgaard, 1991:
267–279.

33. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Com-
paring functional (PET) images: The assessment of signif-
icant change. J Cereb Blood Flow Metab. 1991;11:690–699.

34. Signorini M, Paulesu E, Friston K et al. Rapid assessment
of regional cerebral metabolic abnormalities in single sub-
jects with quantitative and nonquantitative [18F]FDG
PET: A clinical validation of statistical parametric map-
ping. Neuroimage. 1999;9:63–80.

35. Richardson MP, Friston KJ, Sisodiya SM et al. Cortical grey
matter and benzodiazepine receptors in malformations
of cortical development. A voxel-based comparison of
structural and functional imaging data. Brain. 1997;120
(Pt 11):1961–1973.

36. Koepp MJ, Richardson MP, Brooks DJ et al. Cerebral
benzodiazepine receptors in hippocampal sclerosis.
An objective in vivo analysis. Brain. 1996;119(Pt 5):
1677–1687.

37. Kim YK, Lee DS, Lee SK et al. (18)F-FDG PET in local-
ization of frontal lobe epilepsy: Comparison of visual and
SPM analysis. J Nucl Med. 2002;43:1167–1174.

38. Bartenstein P, Minoshima S, Hirsch C et al. Quantitative
assessment of cerebral blood flow in patients with
Alzheimer’s disease by SPECT. J Nucl Med. 1997;38:
1095–1101.

39. Imran MB, Kawashima R, Sato K et al. Mean regional
cerebral blood flow images of normal subjects using
technetium-99m-HMPAO by automated image registra-
tion. J Nucl Med. 1998;39:203–207.

40. Houston AS, Kemp PM, Macleod MA. A method for
assessing the significance of abnormalities in HMPO brain
SPECT images. J Nucl Med. 1994;35:239–244.



42
Registration for Image-Guided

Surgery

Eric Grimson
Department of Electrical Engineering
and Computer Science,
Massachusetts Institute of
Technology

Ron Kikinis
Brigham & Women’s Hospital

42.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
42.2 Image-Guided Neurosurgery System . . . . . . . . . . . . . . . . . . . . . 696

42.2.1 Imagery Subsystem • 42.2.2 Registration Subsystem • 42.2.3 Tracking Subsystem
• 42.2.4 Visualization Subsystem

42.3 Operating Room Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 700
42.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
42.5 Operating Room Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
42.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
42.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

42.1 Introduction

Many surgical procedures require highly precise localization,
often of deeply buried structures, in order for the surgeon to
extract targeted tissue with minimal damage to nearby struc-
tures. Although methods such as MRI and CT are invaluable in
imaging and displaying the internal 3D structure of the body,
the surgeon still faces a key problem in applying that infor-
mation to the actual procedure. Since he is limited to seeing
exposed surfaces within the surgical opening, he cannot easily
visualize paths to targets or positions of nearby, but hidden,
critical structures. As well, the lack of visible landmarks within
the surgical opening may inhibit his ability to determine his
current position, and thus to navigate safe trajectories to other
structures.

Because traditional clinical practice often only utilizes 2D
slices of MR or CT imagery, the surgeon must mentally trans-
form critical image information to the actual patient. Thus,
there is a need for techniques to register a 3D reconstruction of
internal anatomy with the surgical field. Such registered infor-
mation would support image-guided surgery, by allowing the
surgeon to directly visualize important structures, and plan and
act accordingly. Visualization methods include “enhanced real-
ity visualization” [14], in which rendered internal structures
are overlaid on the surgeon’s field-of-view, and instrument
tracking, in which medical instruments acting on the patient
are localized and visualized in the 3D MR or CT imagery.

The benefits of image guided surgical methods include the
following:

• Accelerated migration to minimally-invasive surgeries via
improved hand–eye coordination and better transfer of a
priori plans to the patient.

• Shorter procedures through increased visualization of the
surgical field.

• Reduced risk of sensitive tissue damage.
• More accurate and complete tissue resection, ablation, or

biopsy.

The key stages of an accurate, reliable, image-guided surgery
system are as follows:

• Creating accurate, detailed, patient-specific models of
relevant anatomy for the surgical procedure.

• Registering the models, and the corresponding imagery,
to the patient.

• Maintaining the registration throughout the surgical
procedure.

• Tracking medical instruments in the surgical field in order
to visualize them in the context of the MR/CT imagery
and the reconstructed models.

In this chapter, we describe the registration process used to align
preoperative imagery with the actual patient position, and the

Copyright © 2008 by Elsevier, Inc.
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process by which a surgeon visualizes and navigates through the
patient using that information. We do this using an example
of a neurosurgical image guidance system, although the same
issues arise in other areas as well.

42.2 Image-Guided Neurosurgery System

Neurosurgery is an ideal application for image-guided tech-
niques, by virtue of the high precision it requires, the need
to visualize nearby tissue, the need for planning of optimal
trajectories to target tissue, and the need to localize visually
indistinguishable, but functionally different, tissue types. One
method for aligning imagery to the patient is to use some
form of extrinsic marker—a set of landmarks or other frame
structures that attach to the patient prior to imaging, and
that can then be used to establish a correspondence between
position in the image and position on the patient. Examples
include stereotactic frames, bone screws, and skin markers (e.g.,
[3, 11, 15, 16, 18, 19, 23–26, 28]).

In other words, by placing markers on the patient prior to
imaging, and keeping them rigidly attached through the com-
pletion of surgery, one obtains a coordinate frame visible in
the imagery that directly supports transference of information
to the surgical field of view. Stereotactic frames, though, not
only are uncomfortable for the patient, but are cumbersome
for the surgeon. They are limited to guidance along fixed paths
and prevent access to some parts of the head. We would like
to use a frameless system both for its simplicity and gener-
ality, and for its potential for use in other parts of the body.
More recently, frameless stereotaxy systems have been pursued
by many groups (e.g., [1, 2, 6, 21, 29, 35]) and usually consist
of two components: registration and tracking. We have added a
third, initial, component to our system—reconstructed mod-
els of the patient’s anatomy. The system’s components are
described next, with emphasis on the use of registration to align
imagery with patient and surgeon’s viewpoint.

The architecture of our image-guided surgery system
(Figure 42.1) supports frameless, nonfiducial, registration of
medical imagery by matching surface data between patient
and image model. The system consists of a portable cart
(Figure 42.2) containing a Sun UltraSPARC workstation and
the hardware to drive the laser scanner and Flashpoint tracking
system. On top of the cart is mounted an articulated extendable
arm to which we attach a bar housing the laser scanner and
Flashpoint cameras. The three linear Flashpoint cameras are
inside the bar. The laser is attached to one end of the bar, and a
video camera to the other. The joint between the arm and scan-
ning bar has three degrees of freedom to allow easy placement
of the bar in desired configurations.

42.2.1 Imagery Subsystem

MRI is the prime imaging modality for the neurosurgery cases
we support. The images are acquired prior to surgery with no

need for special landmarking strategies. To use the imagery,
it is important to create detailed models of the tissues being
imaged. This means that we must segment the images: iden-
tify the type of tissue associated with each voxel (or volume
element) in the imagery, and then create connected geomet-
ric models of the different types of tissue. A wide range of
methods (e.g., [27, 30, 33, 34, 37]) have been applied to the
segmentation problem. Classes of methods include statistical
classifiers (e.g., [33, 37]), which use variations in recorded
tissue response to label individual elements of the medi-
cal scan, then extract surface boundaries of connected tissue
regions to create structural models; deformable surface meth-
ods (e.g., [27, 30]), which directly fit boundary models to
delineations between adjacent tissue types; and atlas-driven
segmenters (e.g., [34]), which use generic models of stan-
dard anatomy to guide the labeling and segmentation of new
scans.

Our current approach to segmentation uses an automated
method to initially segment into major tissue classes while
removing gain artifacts from the imagery [17, 37], then uses
operator-driven interactive tools to refine this segmentation.
This latter step primarily relies on 3D visualization and data
manipulation techniques to correct and refine the initial auto-
mated segmentation. The segmented tissue types include skin,
used for registration, and internal structures such as white
matter, gray matter, tumor, vessels, cerebrospinal fluid, and
structures. These segmented structures are processed by the
Marching Cube algorithm [20] to construct isosurfaces and to
support surface rendering for visualization.

The structural models of patients constructed using such
methods can be augmented with functional information. For
example, functional MRI methods or transcranial magnetic
stimulation methods (e.g., [9]) can be used to identify motor
or sensory cortex. The key issue is then merging this data
with the structural models, and to do this we use a particu-
lar type of registration method [7, 8, 38]. This approach uses
stochastic sampling to find the registration that optimizes the
mutual information between the two data sets. Optimizing
mutual information makes the method insensitive to inten-
sity differences between the two sensory modalities, and hence
it can find the best alignment even if different anatomical
features are highlighted in the scans (see also Chapter 37,
“Across-Modality Registration using Intensity-Based Cost
Functions”).

The result is an augmented, patient-specific, geometric
model of relevant structural and functional information.
Examples are shown in Figure 42.3.

42.2.2 Registration Subsystem

Registration is the process by which the MRI or CT data is
transformed to the coordinate frame of the patient. Excellent
reviews of registration methods include [22, 24, 32].
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Extrinsic forms of registration use fiducials (e.g., [1, 21, 31,
35]): either markers attached to the skin or bone prior to imag-
ing or anatomically salient features on the head. The fiducials
are manually localized in both the MR or CT imagery and on
the patient, and the resulting correspondences are used to solve
for the registration. Fiducial systems may not be as accurate
as frame-based methods—Peters [28] reports fiducial accuracy
about an order of magnitude worse than frame-based methods,
but Maciunas [21] reports high accuracy achieved with novel
implantable fiducials. Chapter 33, “Validation of Registration
Accuracy” addresses the issues of fiducial-based accuracy in
much more detail.

Intrinsic registration is often based on surface alignment, in
which the skin surface extracted from the MRI data is aligned

with the patient’s scalp surface in the operating room. Ryan
[29] generates the patient’s scalp surface by probing about 150
points with a trackable medical instrument. Colchester [6] uses
an active stereo system to construct the scalp surface. We also
perform the registration using surface alignment [12], benefit-
ing from its dense data representation, but use either a laser
scanner to construct the patient’s scalp surface or a trackable
probe to obtain data points from the patient’s skin surface for
registration.

We have used two related methods to register the recon-
structed model to the actual patient position. In the first
method, we use a laser scanner to collect 3D data of the patient’s
scalp surface as positioned on the operating table. The scan-
ner is a laser striping triangulation system consisting of a laser
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FIGURE 42.3 Examples of patient reconstructions by segmenting
MRI scans into different tissue types. (See also color insert).

unit (low-power laser source and cylindrical lens mounted on
a stepper motor) and a video camera. The laser is calibrated
a priori by using a calibration gauge of known dimensions to
calculate the camera parameters and the sweeping angles of the
laser. In the operating room the laser scanner is placed to maxi-
mize coverage of the salient bony features of the head, such
as nose and eye orbits. To ensure accurate registration we can
supplement the laser data with points probed with a Flashpoint
pointer, similar to Ryan [29], to include skin points that are
not visible to the laser in the registration. The acquired laser
data is overlaid on the laser scanner’s video image of the patient
for specification of the region of interest. This process uses a
simple mouse interface to outline the region of the head on
which we want to base the registration. This process need not
be perfect—the registration is designed to deal robustly with
outliers. The laser scan takes about 30 seconds once the sensor
is appropriately placed above the patient.

An alternative method is to simply use a trackable probe to
acquire data. In this case, we trace paths on the skin of the
patient with the trackable probe, recording positional informa-
tion at points along each path. These points are not landmarks,
but simply replace the lines of laser data. The registration pro-
cess is the same, whether matching laser data or trackable probe
data to the skin surface of the MRI model.

The key to our system is the integration of a reliable and
accurate data-to-MRI registration algorithm. Our registration
process is described in detail in Grimson [14]. It is a three-step
process performing an optimization on a six-parameter rigid
transformation, which aligns the data surface points with the
MRI skin surface.

42.2.2.1 Initial Alignment

A manual initial alignment can be used to roughly align the two
surfaces. Accurate manual alignment can be very difficult, but
we aim only to be within 20◦ of the correct transformation, for
which subsequent steps will solve. One method for achieving
this uses a pair of displays and takes about 60 seconds. In one
display, the rendered MRI skin is overlaid on the laser scan-
ner’s video view of the patient, and the MRI data is rotated
and translated in three dimensions to achieve a qualitatively
close alignment. In the second display, the laser data is pro-
jected onto three orthogonal projections of the MRI data. The
projected MRI data is colored such that intensity is inversely
proportional to distance from the viewer. In each overlay view,
the laser data may be rotated and translated in two dimensions
to align the projections. An alternative to manual initial align-
ment is to record three known points using the trackable probe
(e.g., tip of the nose, tip of the ear), then identify roughly the
same point in the MRI model, using a mouse-driven graphical
interface. This process determines a rough initial alignment of
the data to the MR reconstruction and typically takes less then
5 seconds.

It is also possible to automate this process, by using search
methods from the computer vision literature. In [14], we
describe an efficient search algorithm that matches selected
points from the patient’s skin to candidate matches from the
skin surface of the MRI model. By using constraints on the
distance and orientation between the sets of points, these algo-
rithms can quickly identify possible registrations of the two data
sets. Applying the coordinate frame transformation defined by
each match, the full set of data points from the patient’s skin
surface can then be transformed to the MRI frame of reference.
Residual distances between the transformed data points and the
MRI skin surface serve as a measure of fit and can be used to
determine good candidate initial alignments.

42.2.2.2 Refined Alignment

Given the initial alignment of the two data sets, we typically
have registrations on the order of a few centimeters and a few
tens of degrees. We need to automatically refine this alignment
to a more accurate one. Ideally, we need algorithms that can
converge to an optimal alignment from a large range of initial
positions [12–14].

Our method iteratively refines its estimate of the transfor-
mation that aligns patient data and MRI data. Given a current
estimate of the transformation, it applies that estimate to the
patient data to bring it into the MRI coordinate frame. For each
transformed data point, it then measures a Gaussian weighted
distance between the data point and the nearest surface point
in the MRI model. These Gaussian weighted distances are
summed for all data points, which defines a measure of the
goodness of fit of the current estimated transformation. This
objective function is then optimized using a gradient descent
algorithm. The role of the Gaussian weighting is to facilitate
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“pulling in” of one data set to the other, without needing to
know the exact correspondence between data points. The
process can be executed in a multiresolution manner, by first
using Gaussian distributions with large spreads (to get the
registration close), then reducing the spread of the distribution,
and resolving in a sequence of steps.

This process runs in about 10 seconds on a Sun UltraSPARC
workstation. The method basically solves for the transform
that optimizes a Gaussian weighted least-squares fit of the two
data sets.

42.2.2.3 Detailed Alignment

Automated detailed alignment then seeks to accurately localize
the best surface data to MRI transformation [12–14]. Starting
from the best transformation of the previous step, the method
then solves a second minimization problem. In this case it
measures the least-squares fit of the two data sets under the
current estimated transformation (subject to a maximum dis-
tance allowed between a transformed data point and the nearest
point on the skin surface, to discount the effects of outliers in the
data). This minimization can again be solved using a gradient
descent algorithm.

This process runs in about 10 seconds on a Sun UltraSPARC
workstation. The method basically solves a truncated least-
squares fit of the two data sets, refining the transformation
obtained in the previous step.

42.2.2.4 Stochastic Perturbation

To ensure that the solution found using this process is not a
local minimum, the method arbitrarily perturbs the transfor-
mation and reruns the process. If the system converges to the
same solution after several trials, the system terminates with
this registration.

42.2.2.5 Camera Calibration

The final stage of the process is to determine the relationship
between a video camera viewing the patient, and the patient
position. This can be accomplished by using a trackable probe to
identify the positions of points on a calibration object in patient
coordinates. By relating those coordinates to the observed posi-
tions in the video image, one can solve for the transformation
relating the camera to the patient [12–14].

42.2.2.6 Augmented Reality Visualization

By coupling all of these transformations together, we can pro-
vide visualizations of internal structures to the surgeon. In
particular, we can transform the segmented MRI model (or any
portions thereof) into the coordinate frame of the patient, then
render those structures through the camera transformation, to
create a synthetic image of how those structures should appear
in the camera. This can then be mixed with a live video view to
overlay the structures onto the actual image (Figure 42.4).

FIGURE 42.4 Example of augmented reality visualization. Tumor
and ventricles have been overlaid onto live video view of patient. (See
also color insert).

42.2.2.7 Verifying the Registration

Three verification tools are used to inspect the registration
results, as the objective functions optimized by the registration
algorithm may not be sufficient to guarantee the correct solu-
tion. One verification tool overlays the MRI skin on the video
image of the patient (Figure 42.5), except that we animate the
visualization by varying the blending of the MRI skin and video
image. A second verification tool overlays the sensed data on the
MRI skin by color-coding the sensed data by distance between
the data points and the nearest MRI skin points. Such a residual
error display identifies possible biases remaining in the regis-
tration solution. A third verification tool compares locations of
landmarks. Throughout the surgery, the surgeon uses the opti-
cally tracked probe to point to distinctive anatomical structures.
The offset of the probe position from the actual point in the MR
volume is then observed in the display. This serves to measure
residual registration errors within the surgical cavity.

42.2.3 Tracking Subsystem

Tracking is the process by which objects are dynamically local-
ized in the patient’s coordinate system. Of particular interest
to us is the tracking of medical instruments and the patient’s
head. The two most common methods of tracking are articu-
lated arms and optical tracking. Articulated arms are attached
to the head clamp or operating table and use encoders to accu-
rately compute the angles of its joints and the resulting 3D
position of its end point. Such devices, though, may be bulky in
the operating room and, because of their mechanical nature,
are not as fault tolerant as other methods. Optical trackers
use multiple cameras to triangulate the 3D location of flash-
ing LEDs that may be mounted on any object to be tracked.
Such devices are generally perceived as the most accurate, effi-
cient, and reliable localization system [2, 5]. Other methods
such as acoustic or magnetic field sensing are being explored as
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well, but can be more sensitive to environmental effects. We use
optical tracking (the Flashpoint system by IGT Inc., Boulder,
CO, USA) because of its accuracy and ease-of-use benefits,
though magnetic tracking systems are of similar capability.

Tracking patient head motion is often necessary for a variety
of reasons. The head is not always clamped to the operating
table, the head may move relative to the clamp, the operating
table may be moved, or the hardware performing the track-
ing may be moved to rearrange lights or other equipment in the
operating room. Although not all image-guided surgery systems
account for patient motion, [1, 2, 6, 21, 29] solve this prob-
lem by attaching trackable markers to the head or clamp. We
currently utilize an optically trackable configuration of mark-
ers attached to a Mayfield clamp (Figure 42.6). We have also
experimented with directly attaching trackable LEDs to the skin
surface of the patient. Our experience is that while in most cases
this worked well, it required that the surgeon carefully plan the
location of the LEDs to ensure that they did not move between
initial placement and opening of the skin flap.

We require direct line-of-sight from the Flashpoint cameras
to the LEDs at times when the surgeon requires image guidance.
In order to maintain such line-of-sight, we can relocate the
scanning bar such that it is out of the way of the surgeon but
maintains visibility of the LEDs. Such dynamic reconfiguration
of the scanning bar is a benefit of the head tracking process.

Instrument tracking is performed by attaching two LEDs to a
sterile pointer. The two LEDs allow us to track the 3D position
of the tip of the pointer as well as its orientation, up to the
twist angle, which is not needed for this application. Figure 42.6
shows the surgeon using the trackable pointer in the opened
craniotomy.

42.2.4 Visualization Subsystem

Two types of visualizations are provided to the surgeon on the
workstation monitor. One is an enhanced reality visualization in
which internal structures are overlaid on the video image of the
patient. The video image is set up to duplicate the surgeon’s view
of the patient. Any segmented MR structures may be displayed
at varying colors and opacities (see Figure 42.5).

A second visualization shows the location of the pointer tip
in a 3D rendering of selected MRI structures and in three
orthogonal MRI slices (see Figure 42.7). These visualizations
are updated twice per second as the pointer is moved.

42.3 Operating Room Procedure

Using our system, as seen from the surgeon’s perspective,
involves the following steps:

1. Prepare patient for surgery as per usual procedure,
including clamping the head. Head is still visible.

2. Attach a configuration of LEDs to the head clamp, and
record the positions of the LEDs in the Flashpoint system.

3. Register MRI to patient by placing our scanner bar over
patient’s head. The bar is generally about 1.5 m away from
head. Scan patient’s head by swabbing a trackable probe
across the skin. Typically several swabs are used, designed
to cover a wide range of positions on the patient. It is often
convenient to include swabs along known paths such as
across the cheeks or down the nose, as these paths will aid
in inspecting the resulting registration.

4. The Flashpoint/laser bar may be repositioned at any point
to avoid interference with equipment and to maintain
visibility of LEDs.

5. Sterilize and drape patient. Any motion of the patient
during this process will be recorded by movements of the
LED configuration attached to the head clamp.

6. Proceed with craniotomy and surgical procedure.
7. At any point, use sterile Flashpoint pointer to explore

structures in the MR imagery.

42.4 Performance Analysis

To evaluate the performance of our registration and tracking
subsystems, we have performed an extensive set of controlled
perturbation studies [10]. In these studies, we have taken
existing data sets, simulated data acquisition from the sur-
face of the data, added noise to the simulated surface data,
then perturbed the position of data and solved for the opti-
mal registration. Since we know the starting point of the data,
we can measure the accuracy with which the two data sets are
registered.

Although extensive details of the testing are reported in
Ettinger [10], the main conclusions of the analysis are as follows:

• Accurate and stable registration is achieved for up to 45◦
rotational offsets of the data sets, with other perturba-
tions.

• Accurate and stable registration is achieved for up to
75◦ rotational offsets of the data sets, with no other
perturbations.

• Robust registration is obtained when the surface data
spans at least 40% of the full range of the surface, and
is generally obtained with as little as 25% coverage.

• Small numbers of outliers do not affect the registration
process.

42.5 Operating Room Results

We have used the described image-guided neurosurgery system
on more than 100 patients. These cases included high-grade and
low-grade supratentorials; meningiomas; metastases; posterior
fossa; meningioangiomatosis; intractable epilepsy; vascular;
biopsies; and demyelinating lesion.
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FIGURE 42.5 (Left ) Initial registration, showing overlay of MRI skin data onto registered video image. (Right ) Enhanced reality
visualization of the patient showing hidden internal structures overlaid on the surgeon’s view of the patient. (See also color insert).

FIGURE 42.6 Trackable configuration of LEDs attached to head clamp, or to the skin flap.

FIGURE 42.7 Pointer tracking in 3D MRI rendering and three orthogonal MRI slices.
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In all cases the system effectively supported the surgery as
follows:

• By providing guidance in planning bone cap removal—
this was done through the augmented reality visualization
in which the surgeon could visualize paths to the critical
tissue and plan an appropriate entry point.

• Identifying margins of tumor—this was done by tracing
the boundaries of tissue with the trackable probe.

• Localizing key blood vessels.
• Orienting the surgeon’s frame of reference.

Selected examples are shown in Figure 42.8.

To qualitatively validate the system’s performance, the sur-
geon placed the pointer on several known landmarks: skull
marks from previous surgeries, ventricle tip, inner skull bones
such as eye orbits, sagittal sinus, and small cysts or necrotic
tissues. He then estimated their position in the MRI scan,
and we compared the distance between the expected posi-
tion and the system’s tracked position. Typically, this error
was less than two voxels (MRI resolution was 0.9375 mm
by 0.9375 mm by 1.5 mm), although this does depend in
some cases on the administration of drugs to control brain
swelling.

One example of the effectiveness of the system is illus-
trated by the following study. Twenty patients with low-grade

FIGURE 42.8 Examples of neurosurgical cases. The last example includes a fusion of fMRI data overlaid on top of the structure
model. (See also color insert).
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FIGURE 42.9 Grid of electrodes placed on cortical surface. Location of grid points overlaid on MR reconstruction, with
focal area highlighted.

gliomas underwent surgery with the system. The pathologies
included 10 low-grade astrocytomas (grades I, II out of IV), 7
oligoastrocytomas (without anaplastic features), and 3 oligo-
dendrogliomas. Thirteen patients underwent cortical mapping,
including 7 who underwent speech and motor mapping,
2 motor alone, 1 speech alone, and 3 motor and sensory. This
cortical mapping was then registered with the structural MRI
model and used to provide guidance to the surgeon. In these
cases, 31% had a subtotal resection; the remainder had total
resection. One patient exhibited temporary left-sided weakness.
Cortical mapping had represented the sensory cortex diffusely
behind this patient’s gross tumor. The postoperative weakness
was temporary and was thought to be due to swelling. One
patient showed a mild, left upper extremity proprioreceptive
deficit, which was due to a vascular accident on postopera-
tive day 1. The remaining patients were neurologically intact
following the procedure.

In addition to the tumor resection cases, we have also used
the system in 10 pediatric epilepsy cases [4]. In the first stage
of this two-stage surgery, the patient’s cortex is exposed and a
grid of electrical pickups is placed on the cortical surface. A lead
from each pickup is threaded out through the skin for future
monitoring. In addition to registering the MRI model of the
patient to his/her position, the location of each electrical contact
is recorded and transformed to MRI coordinates. The patient
is then closed up and monitored for several days. During any
seizure event, the activity from each cortical probe is monitored,
and transformed to the MRI model. This enables the surgeon
to isolate potential foci in MRI coordinates. During a second
surgical procedure, the augmented MRI model is reregistered
to the patient and the locations of the hypothesized foci are

presented to the surgeon for navigational guidance. An example
of this is shown in Figure 42.9.

To see the range of cases handled by our system, we encou-
rage readers to visit the Web site http://splweb.bwh.harvard.
edu:8000/pages/comonth.html,which shows selected cases with
descriptions of the use and impact of the navigation system on
the case.

42.6 Summary

We have described an image-guided neurosurgery system,
now in use in the operating room. The system achieves high
positional accuracy with a simple, efficient interface that inter-
feres little with normal operating room procedures, while
supporting a wide range of cases. Qualitative assessment of
the system in the operating room indicates strong potential.
In addition to performing quantitative testing on the sys-
tem, we are also extending its capabilities by integrating a
screw-based head tracking system and improved visualization
capabilities.
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43.1 Introduction

An atlas of the brain allows us to define its spatial characteristics.
Where is a given structure, and relative to what other features;
what are its shape and characteristics; and how do we refer to
it? Where is this region of functional activation? How different
is this brain compared with a normal database? An atlas allows
us to answer these and related questions quantitatively.

Brain atlases are built from one or more representations of
the brain [121]. They describe one or more aspects of brain
structure and/or function and their relationships after applying
appropriate registration and warping strategies [123], index-
ing schemes, and nomenclature systems. Atlases made from
multiple modalities and individuals provide the capability to
describe image data with statistical and visual power.

Atlases have enabled a tremendous increase in the num-
ber of investigations focusing on the structural and functional
organization of the brain. In humans and other species, the
brain’s complexity and variability across subjects is so great
that reliance on atlases is essential to manipulate, analyze, and
interpret brain data effectively.

Central to these tasks is the construction of averages, tem-
plates, and models to describe how the brain and its component
parts are organized. Design of appropriate reference systems for
brain data presents considerable challenges, since these systems
must capture how brain structure and function vary in large
populations, across age and gender, in different disease states,
across imaging modalities, and even across species.

There are many examples of brain atlases. Initially intended
to catalog morphological descriptions, atlases today show
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considerable diversity in composition and intent. There are
atlases of brain structure based upon 3D tomographic images
[22, 56], anatomic specimens [28, 71, 103, 104], and a variety
of histologic preparations that reveal regional cytoarchitecture
[9]. There are atlases that include regional molecular con-
tent such as myelination patterns [60, 95], receptor binding
sites [45], protein densities, and mRNA distributions. Other
brain atlases describe function, quantified by positron emis-
sion tomography (PET; [68]), functional MRI [57], or electro-
physiology [3, 75]. Others represent neuronal connectivity and
circuitry [126] based on compilations of empirical evidence
[5, 9, 79].

Although the differences among these examples help pro-
vide a comprehensive view of brain structure and function
collectively, none is inherently compatible with any other.
Without appropriate registration and warping strategies (see
Section 43.7), these brain maps will remain as individual and
independent efforts, and the correlative potential of the many
diverse mapping approaches will be underexploited.

43.2 Structure of a Brain Atlas

Brain atlases provide a structural framework to address these
difficulties. Most brain atlases (regardless of species) are based
on a detailed representation of a single subject’s anatomy (or
at best a few) in a standardized 3D coordinate system, or
stereotaxic space. The earliest attempts were created from post
mortem specimens (e.g., [9, 62, 71, 77, 89, 90, 102–104]). Such
atlases take the form of anatomical references or represent a
particular feature of the brain [124, 125]. They also may focus
on the cellular architecture of the cerebral cortex [9], or even a
specific neurochemical distribution [61].

43.2.1 Brain Templates

The single subject chosen to represent a population acts as a
template on which other brain maps (such as functional images)
can be overlaid. The anatomic data provides the additional
detail necessary to accurately locate activation sites, as well as
providing other structural perspectives such as chemoarchitec-
ture. A common 3D coordinate space is a prerequisite, as it
supplies a quantitative spatial reference system in which brain
data from multiple subjects and modalities can be compared
and correlated.

Since there is neither a single representative brain nor a
simple method to construct an average anatomy or to rep-
resent the complex variations around it, the construction
of brain atlases to represent large human populations has
become a major research focus [63]. Population-based atlases
can be used to guide knowledge-based image analysis algo-
rithms and can even support pathology detection in individ-
ual subjects or groups. Single modality atlases may also be

insufficient, because of the need to establish the relationship
between different measurements of anatomy and physiology.
In response to these challenges, multimodal atlases combine
detailed structural maps from multiple imaging sensors in the
same 3D coordinate space (Figure 43.1). Anatomic labels can
be used to identify the source of functional activation sites,
for example, helping in the analysis of metabolic or func-
tional studies based on PET or functional MRI [30, 53, 58,
93, 117]. Multimodal atlases provide the best of all worlds,
offering a realistically complex representation of brain mor-
phology and function in its full spatial and multidimensional
complexity.

Because of individual variations in anatomy among normal
subjects, early registration approaches used proportional scal-
ing systems to reference a given brain to an atlas brain [104].
More sophisticated elastic or fluid transformations, involv-
ing local matching, are rapidly becoming commonplace (see
Section 43.7). These approaches locally deform a digital atlas to
reflect the anatomy of new subjects.

43.3 Types of Atlases

43.3.1 MRI

Beyond the anatomic atlases based upon postmortem and
histologic material mentioned previously, the application
of magnetic resonance to acquire detailed descriptions of
anatomy in vivo is a driving force in brain mapping research.
MRI data have the advantage of intrinsic three-axis registration
and spatial coordinates [22], but have relatively low resolution
and lack anatomic contrast in important subregions. Even
high-resolution MR atlases, with up to 100–150 slices, a section
thickness of 2 mm, and 2562 pixel imaging planes [30, 58],
still result in resolutions lower than the complexity of many
neuroanatomic structures. However, advances in the technol-
ogy continue to push improvements in spatial and contrast
resolution. A recent innovation in the collection of atlas-quality
MRI involves the averaging of multiple coregistered scans
(N =27) from a single subject to overcome the lack of contrast
and relatively poor signal-to-noise [51].

43.3.2 Multimodality Atlases

Characterizing a single subject with multiple imaging devices
clearly combines the strengths of each imaging modality. In
the Visible Human Project [96], two (male and female) cadav-
ers were cryoplaned and imaged at 1.0 mm intervals, and the
entire bodies were also reconstructed via 5000 postmortem
CT and MRI images. The resulting digital datasets consist of
over 15 gigabytes of image data. While not an atlas per se, the
Visible Human imagery has sufficient quality and accessibility
to make it a test platform for developing methods and standards
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FIGURE 43.1 Multimodality brain atlases. These atlases combine data from multiple imaging devices in a common coordinate space, providing
a more comprehensive description of brain structure and function than can be obtained with a single modality. Brain structure can be mapped
in vivo with computed tomography (CT) and magnetic resonance imaging (MRI). Full-color digital images of cryosectioned head specimens
(Cryo) can be reconstructed in 3D, allowing anatomy to be delineated at an even finer scale [118]. Tissue sections can be stained histologically
to reveal molecular content and regional biochemistry. Optical intrinsic signal imaging (OIS) monitors reflectance changes in electrically active
cortex. Because of its high spatial and temporal resolution, OIS may complement assessments of brain function based on positron emission
tomography (PET) or functional MRI. Comparison of data from multiple sources requires specialized registration approaches, which may invoke
statistical dependencies between the imaging signals from different sensors [127, 130, 132]. (See also color insert).

[96]. The data has served as the foundation for develop-
ing related atlases of regions of the cerebral cortex [27] and
high-quality brain models and visualizations [91, 100]. Using
multimodality data from a patient with a localized pathology,
and more recently the Visible Human data, Höhne and co-
workers developed a commercially available brain atlas designed
for teaching neuroanatomy (VOXEL-MAN; [49, 50, 80, 117]).
Data from single subjects, premortem and postmortem, pro-
vides a unique view into the relationship between in vivo
imaging and histologic assessment. Mega et al. [64] scanned
Alzheimer’s patients in the terminal stages of their disease using
both MRI and PET. These data were combined with 3D histo-
logic images from the same subject postmortem, showing the
gross anatomy [118] and a Gallyas stain of neurofibrillary tan-
gles. This multimodal, but single subject, atlas of Alzheimer’s
disease relates the anatomic and histopathologic underpin-
nings to in vivo metabolic and perfusion maps of this disease
(Figure 43.2).

43.3.3 3D Anatomical Models

Modeling strategies currently used to represent brain data
have been motivated by the need to extract and analyze the
complex shape of anatomical structures, for high-resolution
visualization and quantitative comparisons. Using standard
3D modeling approaches to examine often-studied structures
such as the ventricles can provide a framework for mapping

variation within and between different populations. Figure 43.3
shows models of the ventricles used to study the differences
between a population diagnosed with a degenerative dement-
ing disease and age-matched controls. Ray-tracing and surface
rendering techniques can then be applied to parameterized or
triangulated structure models [78, 119] to visualize complex
anatomic systems. An underlying 3D coordinate system is cen-
tral to all atlas systems, since it supports the linkage of structure
models and associated image data with spatially indexed neu-
roanatomic labels, preserving spatial information and adding
anatomical knowledge.

43.4 Coordinate Systems

The coordinate system used to equate brain topology with
an index must include carefully selected features common to
all brains. Further, these features must be readily identifiable
and sufficiently distributed anatomically to avoid bias. Once
defined, rigorous systems for matching or spatially normal-
izing a brain to this coordinate system must be developed.
This allows individual data to be transformed to match the
space occupied by the atlas. In the Talairach stereotaxic sys-
tem [103, 104], piecewise affine transformations are applied
to 12 rectangular regions of brain, defined by vectors from
the anterior and posterior commissures to the extrema of
the cortex. These transformations reposition the anterior



710 Handbook of Medical Image Processing and Analysis

commissure of the subject’s scan at the origin of the 3D
coordinate space, vertically align the interhemispheric plane,
and horizontally orient the line connecting the two commis-
sures. Each point in the incoming brain image, after it is
registered into the atlas space, is labeled by an (x , y , z) address
indexed to the atlas brain. Although originally developed to

help interpret brainstem and ventricular studies acquired using
pneumoen-cephalography [103], the Talairach stereotaxic sys-
tem rapidly became an international standard for reporting
functional activation sites in PET studies, allowing researchers
to compare and contrast results from different laboratories
[35, 36, 38, 39].

FIGURE 43.2 Warping algorithms integrate multimodality brain data. Histologic tissue sections, stained here to reveal neurofibrillary tangle
density in a subject with Alzheimer’s disease, can be compared with functional imaging data acquired from the same subject in vivo [64]. Images
of stained tissue sections (top left) are elastically warped back (bottom left) into their original configuration in the cryosection blockface (top
right). An additional warp reconfigures the postmortem cryosection and histologic data back into their in vivo configuration, as imaged by
premortem MRI. All maps can then be correlated with PET data acquired in vivo from the same patient (bottom right), which is aligned to the
MR template using an additional cross-modality registration (Data adapted from [64]). (See also color insert).



43 Image Registration and the Construction of Multidimensional Brain Atlases 711

(a) (b, c, d, e)

14
12
10
8
6
4

40 R L

3D r.m.s.
Variability

(mm)
Normal Elderly

Alzheimer's
Disease

40 R L0 40

14
12
10
8
6
4

3D r.m.s.
Vatriability

(mm)240

0

40

0 40

FIGURE 43.3 Population-based maps of ventricular anatomy in normal aging and Alzheimer’s disease. (a) 3D parametric surface meshes [106]
were used to model a connected system of 14 tissue elements at the ventricular surface (partitioned along cytoarchitectural boundaries),
based on high-resolution 3D MRI scans of 10 Alzheimer’s patients (age: 71.9 ± 10.9 yrs) and 10 controls matched for age (72.9 ± 5.6 yrs),
gender, and handedness [112]. 3D meshes representing each surface element were averaged by hemisphere in each group. (b, c) The color
map encodes a 3D RMS measure of group anatomic variability shown pointwise on an average surface representation for each group, in the
Talairach stereotaxic space. Oblique side views reveal enlarged occipital horns in the Alzheimer’s patients, and high stereotaxic variability in
both groups. (d, e) A top view of these averaged surface meshes reveals localized patterns of asymmetry, variability, and displacement within
and between groups. Asymmetry patterns at the ventricles and Sylvian fissure (see Figure 43.4) emerge only after averaging of anatomical maps
in large groups of subjects. Patterns of 3D variation can be encoded probabilistically to detect structural anomalies in individual patients or
groups [110, 112]. (See also color insert).

43.5 Registration

Registration is not as simple as equating the origin of similar
coordinate systems. Rather, registration must accommodate a
diversity of atlas types, spatial scales, and extents of coverage.
Registration is also needed to compare one brain atlas with
another. The success of any brain atlas depends on how well
the anatomies of individual subjects match the representation
of anatomy in the atlas. Although registration can bring the
individual into correspondence with the atlas, and a common
coordinate system enables the pooling of activation data and
multisubject comparisons, the accuracy and utility of the atlas
are equally dependent on the anatomical template itself [84].
The Talairach templates were based on post mortem sections
of a 60-year-old female subject’s brain, which clearly did not
reflect the in vivo anatomy of subjects in activation studies. The
atlas plates were also compromised by having a variable slice
separation (3 to 4 mm), and data from orthogonal planes were
inconsistent. To address these limitations, a composite MRI
dataset was constructed from several hundred young normal

subjects (239 males, 66 females; age: 23.4± 4.1 yrs) whose scans
were individually registered into the Talairach system by linear
transformation, intensity normalized, and averaged on a voxel-
by-voxel basis [31, 32]. Although the resulting average brain
has regions where individual structures are blurred out because
of spatial variability in the population [31, 32], the effect of
anatomical variability in different brain areas is illustrated qual-
itatively by this map. Meanwhile, automated methods were
rapidly being developed to register new MRI and PET data into
a common space. These algorithms could be used to optimally
align new MR data with the template by maximizing a measure
of intensity similarity, such as 3D cross-correlation [17–19],
ratio image uniformity [131],or mutual information [127,130].
Any alignment transformation defined for one modality, such
as MRI, can be identically applied to another modality, such as
PET, if a previous cross-modality intrasubject registration has
been performed [132]. For the first time then, PET data could
be mapped into stereotaxic space via a correlated MR dataset
[32, 132]. Registration algorithms therefore made it feasible to
automatically map data from a variety of modalities into an
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atlas coordinate space based directly on the Talairach reference
system.

43.6 Deformable Brain Atlases

43.6.1 Anatomic Variability

The use of spatial normalization schemes based upon deep
white matter features (the AC and PC), as outlined previously,
will never completely accommodate the most variable of brain
structures, the cortex. The cortex is also the site of interest
for most functional activation studies. Considerable normal
variations in sulcal geometry are well documented in primary
motor, somatosensory, and auditory cortex [69, 82], primary

and association visual cortex [99], frontal and prefrontal areas
[83], and lateral perisylvian cortex [44, 71, 97, 98]. More recent
3D analyses of anatomic variability, based on post mortem and
normal and diseased populations in vivo, have found a highly
heterogeneous pattern of anatomic variation ([107, 112, 115],
Figure 43.4).

Given this complex structural variability between normal
individuals, and particularly between different populations
(healthy and diseased), a fixed brain atlas may fail to serve as
a faithful representation of every brain [63, 84]. Since no two
brains are the same, this presents a challenge for attempts to
create standardized atlases. Even in the absence of any pathol-
ogy, brain structures vary between individuals in every metric:
shape, size, position, and orientation relative to each other. Such
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FIGURE 43.4 Population-based maps of 3D structural variation and asymmetry. Statistics of 3D deformation maps can be computed to determine
confidence limits on normal anatomic variation. 3D maps of anatomic variability and asymmetry are shown for 10 subjects with Alzheimer’s
disease (AD; age: 71.9± 10.9 yrs), and 10 normal elderly subjects matched for age (72.9 ± 5.6 yrs), gender, handedness, and educational level
[112]. Normal Sylvian fissure asymmetries (right higher than left; p < 0.0005), mapped for the first time in three dimensions, were significantly
greater in AD than in controls (p < 0.0002, top panels). In the 3D variability maps derived for each group (lower panels), the color encodes the
root mean square magnitude of the displacement vectors required to map the surfaces from each of the 10 patients’ brains onto the average.
Confidence limits on 3D cortical variation (lower right panel) exhibited severe increases in AD from 2–4 mm at the corpus callosum to a peak
standard deviation of 19.6 mm at the posterior left Sylvian fissure. (See also color insert).
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normal variations have complicated the goals of comparing
functional and anatomic data from many subjects [82, 84].

Numerous studies have measured how severe the inter-
subject variations in anatomy are, even after transforming
individual anatomic data into the Talairach stereotaxic system
(Figure 43.4). Clearly, direct averaging of digital brain maps,
after transformation to a common 3D coordinate space, is only
valid if homologous cortical regions in different subjects have
been brought into register by spatial normalization transfor-
mation. Extreme variations in cortical patterns, observed in
normal subjects and exacerbated in disease states by addi-
tional pathologic influence, suggest that caution is necessary
in selecting the transformation system to support cross-subject
and cross-group comparisons of cortically based observations
or functional maps. The most severe challenge occurs when
the topology itself is undergoing considerable dynamic change
because of development or degeneration, for example. Direct
digital subtraction of stereotaxic functional maps in studies of
disease states, such as dementia, may lead to spurious results:
maps of apparent significance may reflect differences that are
anatomic, rather than functional, in character [66, 133]. These
difficulties have led to the suggestion that direct reference to the
sulci that frame architectonic fields may present a more reliable
basis for functional mapping than reference to a single standard
or idealized brain [82, 98, 106, 112, 114, 129].

43.7 Warping

The fact that the Talairach brain fails to match individual scans
stems partly from two facts. First, Talairach registration is only
based on linear transformations (rotation, scaling, translation).
Second, the origin of the coordinate system was selected to solve
mapping and localization problems deep in the brain where
individual variability is relatively low.

Atlases can be greatly improved if they are elastically
deformed to fit a new image set from an incoming subject.
Local warping transformations (including local dilations, con-
tractions, and shearing) can adapt the shape of a digital atlas
to reflect the anatomy of an individual subject, producing
an individualized brain atlas. Introduced by Bajcsy and col-
leagues at the University of Pennsylvania [4, 10, 42, 43], this
approach was adopted by the Karolinska Brain Atlas Program
[53, 93, 116], where warping transformations are applied to a
digital cryosection atlas to adapt it to individual CT or MR data
and coregistered functional scans.

Image warping algorithms, specifically designed to handle
3D neuroanatomic data [2, 11, 14, 15, 17, 19, 23, 81, 104a, 108,
134], can transfer all the information in a 3D digital brain atlas
onto the scan of any given subject, while respecting the intricate
patterns of structural variation in their anatomy. These trans-
formations must allow any segment of the atlas anatomy to
grow, shrink, twist, and rotate to produce a transformation that
encodes local differences in topography from one individual

to another. Deformable atlases [14, 31, 42, 67, 85, 87, 88, 93]
resulting from these transformations can carry 3D maps of
functional and vascular territories into the coordinate system
of different subjects. The transformations also can be used to
equate information on different tissue types, boundaries of
cytoarchitectonic fields, and their neurochemical composition.

Warping algorithms calculate a 3D deformation field that
can be used to nonlinearly register one brain with another (or
with a neuroanatomic atlas). The resultant deformation fields
can subsequently be used to transfer physiologic data from dif-
ferent individuals to a single anatomic template. This enables
functional data from different subjects to be compared and
integrated in a context where confounding effects of anatom-
ical shape differences are factored out. Nonlinear registration
algorithms therefore support the integration of multisubject
brain data in a stereotaxic framework and are increasingly used
in functional image analysis packages [40, 93].

Any successful warping transform for cross-subject regis-
tration of brain data must be high-dimensional, in order to
accommodate fine anatomic variations [16, 112]. This warping
is required to bring the atlas anatomy into structural corre-
spondence with the target scan at a very local level. Another
difficulty arises from the fact that the topology and connectiv-
ity of the deforming atlas have to be maintained under these
complex transforms. This is difficult to achieve in traditional
image warping manipulations [15]. Physical continuum models
of the deformation address these difficulties by considering the
deforming atlas image to be embedded in a three-dimensional
deformable medium, which can be either an elastic material or
a viscous fluid. The medium is subjected to certain distributed
internal forces, which reconfigure the medium and eventually
lead the image to match the target. These forces can be based
mathematically on the local intensity patterns in the datasets,
with local forces designed to match image regions of similar
intensity.

43.7.1 Model-Driven Registration

To guide the mapping of an atlas onto an individual, higher-
level structural information can be invoked to guarantee the
biological validity of the resulting transform [20, 23, 55, 108].
In one approach [108], anatomic surfaces, curves, and points
are extracted (with a combination of automatic and manual
methods) and forced to match (Figure 43.5). The procedure cal-
culates the volumetric warp of one brain image into the shape
of another, by calculating the deformation field required to elas-
tically transform functionally important surfaces in one brain
into precise structural correspondence with their counterparts
in a target brain. The scheme involves the determination of
several model surfaces, a warp between these surfaces, and the
construction of a volumetric warp from the surface warp.

Model-driven warping algorithms perform well when warp-
ing neuroanatomic data not only between subjects but
also between modalities. This presents new opportunities to
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Individual Subject

Individualized Atlas

Cryosection Atlas

Tensor Map

FIGURE 43.5 A deformable brain atlas measures patterns of anatomic differences. Structure boundaries from a patient with clinically determined
Alzheimer’s disease (top left ) are overlaid on a cryosection atlas (top right ), which has been registered to it using a simple linear transformation.
A surface-based image warping algorithm is applied to drive the atlas into the configuration of the patient’s anatomy (bottom left ). Histologic
and neurochemical maps accessible only postmortem can be transferred onto the living subject’s scan [64]. The amount of deformation required
can be displayed as a tensor map (here only two components of the fully three-dimensional transformation are shown). Tensor maps and
derived vector or scalar fields can be analyzed in a statistical setting to examine anatomic variation, detect pathology, or track structural changes
over time. (See also color insert).

transfer cytoarchitectural and neurochemical maps from
high-resolution 3D cryosection data onto in vivo functional
scans, and digitally correlate the resulting maps within a
stereotaxic atlas space. Recent studies have used a deformable
cryosection atlas to correlate histologic markers of Alzheimer’s
disease with metabolic PET signals in vivo, while correcting for
tissue deformation due to post mortem changes and histologic
processing [64]. Deformable atlas approaches offer a powerful
means to transfer multimodal 3D maps of functional and neu-
rochemical territories between individuals and neuroanatomic

atlases, respecting complex differences in the topography of the
cortex and deep anatomic systems. These algorithms can also
be applied to high-resolution brain atlases based on 3D digital
cryosection images, to produce flexible high-resolution tem-
plates of neuroanatomy that can be adapted to reflect individual
subjects’ anatomy [122].

Automated deformable atlases promise to have considerable
impact on clinical and research imaging applications. Atlas
deformations can carry presegmented digital anatomic models,
defined in atlas space, into new patients’ scans, automatically
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labeling their anatomy [19]. Nonlinear registration of 3D geo-
metric atlases onto individual datasets has been used to support
automated brain structure labeling for hippocampal mor-
phometry [48], analysis of subcortical structure volumes in
schizophrenia [52], estimation of structural variation in normal
and diseased populations [17, 111], and segmentation and clas-
sification of multiple sclerosis lesions [128]. Projection of digital
anatomic models into PET data can also serve to define regions
of interest for quantitative calculations of regional cerebral
blood flow [53].

43.7.2 Measuring Structural Differences

Deformable atlas algorithms produce extremely detailed 3D
maps of regional differences that can be used to investigate
dynamic structure alterations in disease or during brain devel-
opment. The complex profiles of dilation and contraction
required to warp a digital atlas onto a new subject’s brain
provide an index of the anatomical shape differences between
that subject’s brain and the atlas [7, 9, 24, 101, 110]. Atlas
deformation maps offer a framework for pathology detection
[9, 47, 110, 112], identification of gender-specific anatomic
patterns [23], and mapping of dynamic patterns of struc-
tural change in neurodevelopmental and degenerative disease
processes [113, 120].

43.8 Multiple Modalities and Dimensions

As noted earlier, because of pronounced anatomic variabil-
ity between individual human brains, any atlas or clinical
diagnostic system based on a single subject’s anatomy cannot
succeed fully. A deformable brain atlas counteracts some of
the limitations of a fixed atlas by using mathematically flexi-
ble transformations. Nonetheless, its success is still based on
the premise that brains resemble a prototypical template of
anatomy and can be produced by continuously deforming it.

Atlasing considerations suggest that a statistical confidence
limit, rather than an absolute representation of neuroanatomy,
may be more appropriate for representing particular sub-
populations. Methods to create probabilistic brain atlases cur-
rently fall into three major categories, each differing slightly
in its conceptual foundations. The three methods are density-
based, label-based, and deformation-based approaches.

1. Density-Based Approaches. Initial approaches to
population-based atlasing concentrated on generating
average representations of anatomy by intensity averaging
of multiple MRI scans [1, 31]. The average that results
has large areas, especially at the cortex, where individual
structures are blurred because of spatial variability in the
population. Although this blurring limits their usefulness
as a quantitative tool, the templates can be used as targets

for the automated registration and mapping of MR and
coregistered functional data into stereotaxic space [32].

2. Label-Based Approaches. In label-based approaches ([32];
also known as SPAM approaches, short for statisti-
cal/probabilistic anatomy maps), large ensembles of brain
data are manually labeled, or “segmented,” into subvol-
umes, after registration into stereotaxic space. A probabil-
ity map is then constructed for each segmented structure,
by determining the proportion of subjects assigned a
given anatomic label at each voxel position [32, 74, 76].
The information these probability maps provide on the
location of various tissue classes in stereotaxic space has
been useful in designing automated tissue classifiers and
approaches to correct radiofrequency and intensity inho-
mogeneities in MR scans [137]. In our laboratory, we
have also used SPAM probabilistic maps to constrain the
search space for significant activations in PET and SPECT
imaging experiments [25, 65].

3. Deformation-Based Approaches. As noted earlier, when
applied to two different 3D brain scans, a nonlinear regis-
tration calculates a deformation map (Figures 43.5, 43.6)
that matches brain structures in one scan with their coun-
terparts in the other. In probabilistic atlases based on
deformation maps [109, 110, 112], statistical properties of
these deformation maps are encoded locally to determine
the magnitude and directional biases of anatomic varia-
tion. Encoding of local variation can then be used to assess
the severity of structural variants outside of the normal
range, which may be a sign of disease [109]. A major goal
in designing this type of pathology detection system is to
recognize that both the magnitude and local directional
biases of structural variability in the brain may be differ-
ent at every single anatomic point [107]. In contrast to the
intensity averaging of other current approaches [1, 31], an
anisotropic random vector field framework is introduced
to encode directional biases in anatomic variability and
map out abnormalities in new subjects [111].

The three major approaches for probabilistic atlas construc-
tion differ only in the attribute whose statistical distribution
is modeled and analyzed. Random vector fields (i.e., vector
distributions of deformation vectors at each point in space)
are analyzed in approaches based on deformation maps, while
random scalar fields are used to model MR intensity statistics
in the density-based approach, and to model the incidence of
binary labels in space in the label-based approach.

43.9 Atlases of Cortical Patterns

Cortical morphology is notoriously complex and presents
unique challenges in anatomic modeling investigations. In
response to these challenges, much research has been devoted
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FIGURE 43.6 Maps of the human cerebral cortex: flat maps, spherical maps, and tensor maps. Extreme variations in cortical anatomy (3D models;
top left ) present challenges in brain mapping, because of the need to compare and integrate cortically derived brain maps from many subjects.
Comparisons of cortical geometry can be based on the warped mapping of one subject’s cortex onto another (top right, [109]). These warps
can also be used to transfer functional maps from one subject to another, or onto a common anatomic template for comparison. Accurate and
comprehensive matching of cortical surfaces requires more than the matching of overall cortical geometry. Connected systems of curved sulcal
landmarks, distributed over the cortical surface, must also be driven into correspondence with their counterparts in each target brain. Current
approaches for deforming one cortex into the shape of another typically simplify the problem by first representing cortical features on a 2D
plane, sphere or ellipsoid, where the matching procedure (i.e., finding u(r2), shown in figure) is subsequently performed [24, 26, 108]. In one
approach [109] active surface extraction of the cortex provides a continuous inverse mapping from the cortex of each subject to the spherical
template used to extract it. Application of these inverse maps to connected networks of curved sulci in each subject transforms the problem into
one of computing an angular flow vector field u(r2), in spherical coordinates, which drives the network elements into register on the sphere
(middle panel, [108]). The full mapping (top right ) can be recovered in 3D space as a displacement vector field which drives cortical points and
regions in one brain into precise structural registration with their counterparts in the other brain. Tensor maps (middle and lower left ): Although
these simple two-parameter surfaces can serve as proxies for the cortex, different amounts of local dilation and contraction (encoded in the
metric tensor if the mapping, gjk(r)) are required to transform the cortex into a simpler two-parameter surface. These variations complicate the
direct application of 2D regularization equations for matching their features. A covariant tensor approach is introduced in [112] (see red box)
to address this difficulty. The regularization operator L is replaced by its covariant form L∗, in which correction terms (Christoffel symbols, �i

jk)
compensate for fluctuations in the metric tensor of the flattening procedure. A covariant tensor approach [112] allows either flat or spherical
maps to support cross-subject comparisons and registrations of cortical data by eliminating the confounding effects of metric distortions that
necessarily occur during the flattening procedure. (See also color insert).
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to developing cortical parameterization and flattening algo-
rithms. These methods optimally transform maps of cortical
features onto a simpler, nonconvoluted surface such as a 2D
plane [12, 26, 27, 92, 126], and an ellipsoid [21, 94], or a sphere
[23, 33, 110] (see Figure 43.6).

43.9.1 Warping the Cerebral Cortex

Despite the advantages provided by transformations that sim-
plify its geometry, the cortical surface presents significant
challenges for all brain mapping and registration algorithms
that strive to match the anatomy of one subject’s cortex with
another. The need to make comparative measurements at the
cortex across subjects requires a surface-to-surface warp that
not only matches overall cortical geometry, but also enforces
point-to-point correspondence to a higher degree. Specialized
approaches have been developed to match cortical regions,
so that networks of sulci and gyri are individually matched
(Figure 43.6; [108, 112]). Differences in the serial organization
of cortical gyri prevent exact gyrus-by-gyrus matching of one
cortex with another. Some cortical areas are particularly subject
to variations in the incidence and topology of accessory gyri,
and one subject may have two or three gyri where one gyrus is
found in another subject. This feature is especially notable in
studies of paracingulate and temporo-parietal regions, in par-
ticular the planum temporale and posterior perisylvian areas
that form a critical part of the language representation of the
left hemisphere [59, 71, 76].

43.10 Disease States

Cortical structure is severely affected in a variety of disease
states such as Alzheimer’s disease, Pick’s disease, and other
dementias, by tumor growth, and in cases of epilepsy, cortical
dysplasias, and schizophrenia. Cortical matching approaches
can be exploited by algorithms that detect these alterations.
In one approach [109], a probability space of random trans-
formations, based on the theory of anisotropic Gaussian
random fields, encodes information on complex variations in
gyral and sulcal topography from one individual to another
(Figure 43.6). Confidence limits in stereotaxic space are deter-
mined, for cortical surface points in a new subject’s brain,
and color-coded probability maps are created to highlight and
quantify regional patterns of deformity in the anatomy of new
subjects.

43.10.1 Genotype vs Phenotype

Structural image databases from twin monozygotic versus
dizygotic populations provide tremendous opportunities to
investigate the relationship between genotype and phenotype.
Striking similarities in brain structure for both mono- and dizy-
gotic twins have been reported in studies of corpus callosum

morphology [6, 72] and gyral patterning [70]. These structural
affinities can be exploited in clinical studies, since twins dis-
cordant for a specific disease-linked gene may be examined for
regional structural differences in a context where effects of their
shared genes are factored out [46, 70]. An ongoing twin study
[41] focuses on 200 MR scans acquired from elderly Swedish
twin pairs, where one member of each twin pair has Alzheimer’s
disease or vascular dementia. Among 12 pairs of twins dis-
cordant for AD, the affected twin had greater temporal horn
dilation, temporal lobe atrophy, and third ventricle enlarge-
ment, while significant within-pair correlations were found for
measures of intracranial area, cerebellar area, temporal lobe
volume, and white matter lesions [41].

43.11 Dynamic Brain Atlases

43.11.1 4D Coordinate Systems

Atlasing of developmental brain data presents unique chal-
lenges. Imposition of standardized coordinate systems is dif-
ficult, and their relationship to anatomic nomenclature is hard
to define, when potentially drastic morphological differences
exist among data sets. In Yoon et al. [136], a photographic
atlas of the human embryo was created, based on detailed
observations in utero from the 4th to the 7th week after ovula-
tion (Carnegie Stages 10–18). In Chong et al. [13], 26 normal
formalin-fixed fetal specimens with a gestational age of 9 to 24
weeks were examined with high-resolution MRI using a con-
ventional clinical magnet and pulse sequences, and MR findings
were correlated with histologic atlas data. Although templates
of normal development helped to identify expected develop-
mental features, it was noted that direct correlation of fetal
MR images with anatomic atlases might result in a mistaken
diagnosis of delayed development, because of a time lag in the
detection of structures on MR images.

Current atlases of fetal development [29, 73] use collections
of labeled data from multiple imaging modalities to charac-
terize specific developmental stages. The first comprehensive
MRI atlas of pediatric cranial anatomy [86] incorporates 180
MRI scans acquired parallel to the orbito-meatal anatomical
plane, and 360 explanatory diagrams depicting functional neu-
roanatomy from birth through 16 years of age. In this collection,
3D horizontal and sagittal images facilitate identification of
sulci and gyri. However, stereotaxic coordinate systems were
not applied to the atlas data because of difficulties in using
them to reference embryonic and pediatric data. In the spirit of
the deformable atlas methods described earlier, extreme defor-
mations could be imposed to fit all stages of development into
a standardized atlas, but this would hardly meet the primary
requirement of atlasing, which is to provide a natural coordinate
framework in which to localize and classify structures present
in developing brains. Alternatively, different atlases and coor-
dinate systems for several discrete stages of development might
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be used. Numerous anatomic features, because of their emer-
gence and disappearance during development, could be used
to place individual brains into an appropriate atlas in the set.
Warping approaches could then be applied to the atlas coordi-
nate systems as a basis to compare and quantitate development
[112, 113, 120].

In many ways, static representations of brain structure are
ill suited to analyzing dynamic processes of brain develop-
ment and disease. Dramatic changes in brain geometry in brain
development and disease mandate the design of mathemati-
cal systems to track anatomical changes over time, and map
dynamic patterns of growth or degeneration.

43.11.2 Temporal Maps of Brain Structure

Current structural brain imaging investigations typically focus
on the analysis of 3D models of brain structure, derived from
volumetric images acquired at a single time point from each
subject in the study. However, serial scanning of human sub-
jects, when combined with warping and analysis algorithms, can
enable disease and growth processes to be tracked in their full
spatial and temporal complexity. Maps of anatomical change
can be generated by warping scans acquired from the same
subject over time [105, 112]. Serial scanning of human sub-
jects [34, 37, 112] or experimental animals [54] in a dynamic
state of disease or development offers the potential to create 4D
models of brain structure. These models incorporate dynamic
descriptors of how the brain changes during maturation or
disease.

In our initial human studies [113] we developed several algo-
rithms to create 4D quantitative maps of growth patterns in
the developing human brain. Time series of high-resolution
pediatric MRI scans were analyzed. The resulting tensor maps
of growth provided spatially detailed information on local
growth patterns, quantifying rates of tissue maturation, atro-
phy, shearing, and dilation in the dynamically changing brain
architecture. Pairs of scans were selected to determine pat-
terns of structural change across the interval between the two
scans. These scan pairs were preprocessed with a radiofre-
quency bias field correction algorithm, and rigidly registered
using automated image registration software [132]. Registered
scans were then histogram-matched and a preliminary map
of differences in MR signal intensities between the two scans
was constructed (Figure 43.7). Parameterized cortical surface
models were automatically extracted from each of the mutually
registered histogram-matched scans. Deformation processes
recovered by the warping algorithm were then analyzed using
vector field operators to produce a variety of tensor maps
(Figures 43.8, 43.9). These maps were designed to reflect the
magnitude and principal directions of dilation or contraction,
the rate of strain, and the local curl, divergence, and gradient of
flow fields representing the growth processes recovered by the
transformation.

4-year Interval 2 weeks

FIGURE 43.7 Growth patterns in the developing human brain. A young
normal subject was scanned at the age of 7, and again four years later,
aged 11, with the same protocol (data from [112]). Scan histograms
were matched, rigidly registered, and a voxel-by-voxel map of inten-
sity differences (left ) reveals global growth. In a control experiment,
identical procedures were applied to two scans from a 7-year-old sub-
ject acquired just 2 weeks apart, to detect possible artifactual change
due to mechanical effects, and due to tissue hydration or CSF pres-
sure differences in the young subject between the scans. These artifacts
were minimal, as shown by the difference image, which, as expected, is
largely noise. Rigid registration of the scans does not localize anatomic
change, but is a precursor to more complex tensor models of struc-
tural change (see main text). Tensor maps of growth [112] not only
map local patterns of differences or change in three dimensions, but
also allow calculations of rates of dilation, contraction, shearing, and
torsion [112, 120]. (See also color insert).

It is to be hoped that in the near future we will be able to
create 4D atlases that map growth and degeneration in their
full spatial and temporal complexity. In spite of logistic and
technical challenges, these mapping approaches hold tremen-
dous promise for representing, analyzing, and understanding
the extremely complex dynamic processes that affect regional
anatomy in the healthy and diseased brain.

43.12 Conclusion

As we have seen, the uses of brain atlases are as varied as their
construction. Their utility results from their capacity to mea-
sure, visualize, compare, and summarize brain images. An atlas
can take on many forms, from descriptions of structure or
function of the whole brain to maps of groups or populations.
Individual systems of the brain can be mapped, as can changes
over time, as in development or degeneration. An atlas enables
comparison across individuals, modalities, or states. Differences
between species can be catalogued. But in most cases, the value
added by brain atlases is the unique and critical ability to inte-
grate information from multiple sources. The utility of an atlas
is dependent upon appropriate coordinate systems, registra-
tion, and deformation methods along with useful visualization
strategies. Accurate and representative atlases of the brain
hold the most promise for helping to create a comprehensive
understanding of the brain in health and disease.
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FIGURE 43.8 Tensor maps of growth. (Top panel) A complex pattern
of growth is detected in the corpus callosum of a young normal male
subject in the 4-year period from 7 to 11 years of age. Vector field
operators emphasize patterns of contractions and dilations, emphasiz-
ing their regional character. The color code shows values of the local
Jacobian of the warping field, which indicates local volume loss or gain.
The effects of the transformation are shown on a regular grid ruled
over the reference anatomy and passively carried along in the trans-
formation that matches it with the later anatomy. Despite minimal
changes in overall cerebral volume, callosal growth is dramatic, with
peak values occurring throughout the posterior midbody. Pronounced
neuroanatomical growth in the 4-year interval (top panel) contrasts
sharply with the negligible change detected over a 2-week time-span
(middle panel). Rapid heterogeneous growth, with a strikingly similar
topographic pattern, is also observed in a young normal female (bot-
tom panel), during a 4-year period spanning puberty, from 9 to 13
years of age. (See also color insert).
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V
Visualization

Richard A. Robb, Ph.D.

Visualization plays an important, even critical, role in biomedical imaging applications. Formulation of new theories and refine-
ment of algorithms, development and implementation of comprehensive tools and systems, and extension of these capabilities
to a wide variety of biological and medical applications have accelerated at a remarkable pace. Visualization in biological and
medical research has emerged as a unique and significant discipline aimed at developing approaches and tools to allow researchers
and practitioners to “see into” and comprehend the living systems they are studying. Topics of investigation and development in
the discipline span from basic theory through tools and systems to complete applications. Biomedical visualization depends on
computing environments, graphics hardware and software tools that facilitate human-machine-data interaction for exploration
and analysis of complex biological systems. Approaches to biomedical visualization include generation of realistic displays for
presentation of images and related information in two, three and four dimensions, development of interactive and automated
methods for manipulation of multidimensional images and associated parametric data, implementation of measurement tools
for quantitative evaluation and assessment of images and image-derived data, and design and validation of models and paradigms
that enhance interpretive and decision-making processes in biomedical applications.

Biomedical visualization has its roots in several traditional disciplines of biological and medical science which are significantly
grounded in the observation of living structures and in the measurement of various properties of these structures (e.g., their
functions). These observations and measurements are often recorded as images. Ever since the invention of the microscope and
discovery of X-rays, physicians, surgeons, and life scientists have been using images to diagnose and treat disease and to better
understand basic anatomy, physiology and biology. The value of biomedical images depends upon the context in which they are
obtained, and the scientific or medical interests and goals which motivate their production and use. These contexts range over
several traditional disciplines of biological science and medical care, from biophysics, biochemistry, physiology, and molecular
and cellular biology, to diagnostic medicine and clinical treatment. In each discipline, the information derived from or conveyed
by images is quite different, as are the imaging devices which produce them. But common to all is some form of visualization,
which includes, in its broadest definition, both display and analysis of images.

The imaging modalities used in biology and medicine are based on a variety of energy sources, including light, electrons, lasers,
X-rays, radionuclides, ultrasound and nuclear magnetic resonance. The images produced span orders of magnitude in scale,
ranging from molecules and cells to organ systems and the full body. The advantages and limitations of each imaging modality
are primarily governed by the basic physical and biological principles which influence the way each energy form interacts with
tissues, and by the specific engineering implementation for a particular medical or biological application. The variety of disease
processes and abnormalities affecting all regions of the human body are so numerous and different that each imaging modality
possesses attributes that make it uniquely helpful in providing the desired understanding and/or discrimination of the disease or
abnormality, and therefore no single method has prevailed to the complete exclusion of others. Even though significant disparity
in scale and/or characteristic features separate the imaging realms, striking parallels and common approaches exist relative to



726 Part V Visualization

visualization and analysis of these images. In general, the methodologies are complementary, together providing a powerful
and synergistic armamentarium of clinical diagnostic, therapeutic and biomedical research capabilities which has potential to
significantly advance the practice of medicine and the frontiers of biological understanding.

The process of forming an image involves the mapping of an object, and/or some property of an object, into or onto what may be
called “image space”. This space is used to visualize the object and its properties, and may be used to quantitatively characterize its
structure and/or its function. Imaging and visualization science may be defined as the study of these mappings and development
of ways to better understand them, to improve them and to productively use them. Generally, the steps involved in imaging and
visualization procedures include image-data acquisition, image display and analysis, and image interpretation (i.e., perception,
cognition, and understanding). Most modern imaging devices are digital computer-based, and produce images in the form of arrays
of 2D picture elements (pixels) or 3D volume elements (voxels). The numbers associated with these pixels and voxels represent the
mappings of object properties that can be detected and localized spatially and/or functionally and which quantitatively characterize
the object properties. The agenda for the field of imaging science is to develop a comprehensive understanding of all of the steps
involved in the biomedical imaging process, and the complex ways in which they are interdependent, so that parameters pertaining
to each step can be optimized to improve the basic scientific, diagnostic and therapeutic value of biomedical images.

The particular challenge of biomedical visualization is to define and formulate a rationale basis and associated capabilities for
acquisition, processing, display and quantitative analysis which will significantly increase the faithful extraction of both scientific
and clinical information contained in biomedical images. This is a formidable task, one which consistently suggests that continued
advances are required to address it effectively. The need for new approaches to image visualization and analysis will become
increasingly important and pressing as improvements in imaging technology enable more complex objects and processes to be
imaged and simulated. The revolutionary capabilities of new 3D and 4D medical imaging modalities and 3D scanning microscope
technologies based on computed tomography, along with computer reconstruction and rendering of multidimensional medical,
biological and histologic volume image data, obviate the need for physical dissection or abstract assembly and provide powerful
new data display and analysis tools for both biologists and physicians.

Virtual reality (VR) refers to a human-computer interface that facilitates highly interactive, immersive visualization and control
of computer generated 3D scenes and their related components with sufficient detail and speed so as to evoke sensorial experience
similar to that of real experience. VR technology opens new realms in the teaching and practice of medicine and biology by
permitting the computed 3D images obtained from medical and biologic imaging systems to be manipulated with intuitive
immediacy similar to that of real objects, by allowing the viewer to “enter” the visualizations to take up any viewpoint, by enabling
the objects to be dynamic - either in response to viewer actions or to illustrate normal or abnormal motion - and by engaging other
senses such as touch and hearing (or even smell) to enrich the simulation. Applications extend across a vast range of scale from
individual molecules and cells through the varieties of tissue to organs and organ systems, including functional attributes of these
systems, such as biophysical and physiological properties. Medical applications include anatomy instruction, enhanced diagnosis,
and treatment planning and rehearsal. The greatest potential for revolutionary innovation in the teaching and practice of medicine
and biology lies in dynamic, fully immersive, multisensory fusion of real and virtual information data streams. Although this
technology is still under development, and not yet generally available to the medical practitioner, modern computer technology
has facilitated major advances, and there are several practical applications involving varying levels of interactivity and immersion
that are possible - applications that will have a positive impact on medicine and biology now and in the near future. The most
complex and challenging applications, those which show the greatest promise of significantly changing the practice of medical
research, diagnosis and treatment, require an intimate and immediate union of patient-specific images and models with other
real-world, real-time data. It may well be that the ultimate value of 3D visualization and VR in medicine will derive more from
the sensory enhancement of real experience than from the simulation of normally-sensed reality. Preliminary results suggest that
virtual procedures can provide accurate, reproducible and clinically useful visualizations and minimally invasive interventions.
These results will help drive improvements in and lend credibility to virtual procedures and simulations as routine clinical tools
in the next millennium.

Novel and efficient visualization methods are continually under development for processing of volumetric image data which
provide realistic, surgery planning capabilities, as well as capabilities to effectively enhance surgical performance, on-line and
real-time. These methods, sometimes referred to as Image Guided Intervention (IGI) or Image Guided Therapy (IGT), offer the
promise of highly interactive, natural control of the visualization process, providing realistic simulations of surgery for training,
planning and rehearsal. Efficient methods have been developed for the production of accurate models of anatomic structures
computed from patient-specific volumetric image data (such as CT or MRI). The models can be enhanced with textures mapped
from photographic samples of the actual anatomy, and when used on an advanced visualization system, such models provide
realistic and interactive capabilities for procedure training, procedure planning and procedure rehearsal on specific patient data.
Visualization technology (e.g., IGI or IGT systems) can also be deployed in the operating room to provide the surgeon with on-line,
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intra-operative access to all pre-operative planning data and experience, translated faithfully to the patient on the operating table.
These pre-operative images and models can be fused with real-time image data in the procedure room to provide enhanced reality
visualization during the actual surgical procedures. Additionally, the adjunctive value of full 3D imaging (e.g., looking “outside”
of the normal field of view) during the virtual surgical procedure or endoscopic exam is being evaluated. Quantitative analyses of
local geometric, densitometric and other tissue properties obtained from computer analyses of diagnostic and/or screening images
provides advanced capabilities for highly sensitive and specific diagnoses, sometimes referred to as Computer Aided Diagnosis
(CAD), and offers potential to obviate more invasive methods of “confirmatory” diagnosis, such as exploratory surgery or biopsy.
Certain virtual procedures (e.g.,“virtual biopsy”) are being developed and compared with direct measures (e.g., tissue biopsies) to
demonstrate efficacy. Preliminary results suggest that CAD can provide accurate, reproducible and clinically useful visualizations
and measurements, and may soon replace more invasive, painful procedures.

Virtual endoscopy is an important subset of diagnostic and surgery planning systems that provides adjunctive diagnostic
capabilities, potentially fully non-invasive screening. Virtual endoscopy is the fountain head of an entire generation of new
diagnostic opportunities that will influence surgical practice. Theoretically, all internal body structures can be visualized non-
invasively using this modality. Virtual endoscopy epitomizes a significant major realization of the remarkable promise of modern
imaging and computing technologies. Virtual endoscopy is a new method of diagnosis using computer processing of 3D image
datasets (such as CT or MRI scans) to provide simulated visualizations of patient specific organs similar or equivalent to those
produced by standard endoscopic procedures. Conventional endoscopy is invasive and often uncomfortable for patients. It
sometimes has serious side effects such as perforation, infection and hemorrhage. Virtual endoscopic visualization avoids these
risks and can minimize difficulties and decrease morbidity when used before actual endoscopic procedures are indicated. In
addition, there are many body regions not compatible with real endoscopy that can be explored with virtual endoscopy. Eventually,
virtual endoscopy may replace many forms of real endoscopy. Other applications of virtual reality technology in medicine being
developed include anesthesiology training, virtual histology, and virtual biology, all of which provide faithful virtual simulations
for training, planning, rehearsing, and/or analyzing using medical and/or biological image data.

There remains a critical need to refine and validate advanced visualization procedures, such as IGI and CAD, before they are
acceptable for routine clinical use. The Visible Human Dataset from the National Library of Medicine has been extensively used to
develop and test these procedures and to evaluate their use in a variety of clinical applications. Specific clinical protocols are under
way to evaluate image-guided surgery and virtual surgery against traditional surgical outcomes and to compare virtual endoscopy
with real endoscopy. Such future technologies hold significant promise for optimizing many surgical procedures, for minimizing
patient risk and morbidity, and for reducing health care costs. Practicing surgeons, physicians and therapists, working with
scientists and engineers, are committed to development, evaluation and routine clinical implementation of advanced visualization
systems for medical diagnosis and treatment.

This section on Biomedical Visualization features five complementary chapters which cover these topics and issues, from
principles to practice. The first chapter by Solaiyappan provides an introductory overview and background of visualization.
It introduces fundamental concepts in scientific visualization and provides appreciation for their underlying role in different
applications. The chapter by Hanson and Robb discusses both 2D and 3D image processing, visualization and analysis methods
and illustrates their use in a variety of biomedical applications. It documents the accelerating progress in biomedical visualization
applications precipitated by modern multi-dimensional, multi-modality imaging systems, with reasoned extrapolation to future
advances. The chapter by Mueller and Kaufman provides detailed explanations of the principal technologies used for image volume
visualization. This chapter presents in succinct tutorial form both fundamental and advanced concepts in volume visualization and
volume graphics. The chapter by Livant, Parker and Johnson addresses the important topic of efficient extraction of homologous
surfaces from large image volumes for visualization of geometric models. Such isosurfaces are a powerful tool for investigation
of volumetric objects, including human anatomy and biology. And finally the chapter by Huang and Summers describes virtual
endoscopy, a specific visualization technique, and emphasizes the computer processing methods used. The chapter also addresses
the important problems of evaluating the efficacy and promise of new visualization techniques. Although some redundancy may
be present among the chapters, they each contribute unique information and focus. Together they provide a synergistic and
durable introduction to basic principles and advanced applications in Biomedical Visualization.
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44.1 Visualization in Medicine

Visualization is one of the rapidly developing areas of scien-
tific computing. The cost of high performance computing has
become increasingly more affordable in recent years. This has
promoted the use of scientific visualization in many disciplines
where the complex datasets are rich in quality and overwhelm-
ing in quantity. In medicine,more than cost,advancement of the
physics of imaging has become a major influencing factor that
has spurred the growth of image computing and visualization.
The increasing cost of health care has created a strong demand
for investigating safe and cost-effective approaches to practice
diagnosis and deliver treatment. This trend has created a need
for powerful ways of delivering information to physicians at
every step in patient care delivery that might help the physicians
to understand the problem better and faster without leaving any
room for potential instrument or human error. Traditionally,
the practice of medicine requires information to be handled in a

variety of ways, such as by touch, sound, appearance, and smell,
in a manner comparable to a craft. The craftsmanship involved
in medicine becomes more obvious when it comes to therapy or
treatment procedures where the physician’s hand-eye coordina-
tion is the final step that decides the outcome of what may be
considered an extensive and expensive investigation. From an
engineering standpoint, these aspects pose new challenges, since
most of the information is qualitatively rich while quantita-
tively difficult to characterize. Thus, visualizing the information
that describes the nature of the underlying “functional” source
becomes vital in medicine. Functional visualization is a particu-
larly effective approach, as plurality of functional characteristics
can be mapped onto different visual cues that facilitate the
interpretation of multidimensional information as well as the
correlation of qualitative and quantitative information. Some
examples are three-dimensional perspective realism for repre-
senting spatial relationships effectively, animated displays for
representing temporal information, and other forms of visual
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cues such as hues and textures for representing quantitative or
functional information. Although information visualization is
one aspect of the problem, the paradigm of interaction between
the physician and the information is an equally significant one
for craftsmanship needs.

The rapid development and culmination of technology that
meets such needs in graphics computing, virtual interaction,
and tactile feedback systems have created a synergy of research
between physicians and engineers; this synergy, in turn, has
led to the development of new frontiers in visualization in
medicine. The impacts these advancements are creating in
biomedical visualization are many, and they can be broadly
classified to different areas based on the application such as
clinical diagnostic visualization, image-guided therapy, proce-
dure training simulation, pretreatment planning, and clinical
hypothesis validation.

The chief purpose of this chapter is to introduce visualiza-
tion concepts to the reader. Given that such concepts change in
unison with technology, it is also important to present here the
underlying problems, through case examples in medical visu-
alization. This provides a better appreciation of these concepts
from an application point of view and will allow the reader to
follow the future course of development of these concepts.

44.1.1 The Genealogy of Visualization

44.1.1.1 Visualization Phenotypes

Based on their visual characteristics resulting from their inter-
action with the user environment, visualization in medicine
can be grouped into three major classes: illustrative visual-
ization, investigative visualization, and imitative visualization
(Figure 44.1). The extent to which they embrace the technology

of visualization can be considered as minimal, high, and
maximum, respectively.

Illustrative Visualization. Illustrative visualization developed
over the past two decades from early attempts to separate visual-
ization into two distinctive processes: extraction of information
and its presentation. Fast processing is desirable but not criti-
cal, whereas quality and accuracy are essential. The concepts of
illustrative visualization form the basis of the other two classes
of visualization. Illustrative systems do not rely on interactive
data manipulation but present information that may have been
carefully extracted from the data by other means.

The initial expectations of biomedical visualization based on
this approach reached a practical limit, as the approach does not
take advantage of the still little understood ability of human
visual perception. Soon it became imperative in biomedical
research to provide rapid visualization systems that take advan-
tage of this human ability. This presented the motivation for
investigative visualization systems.

Investigative Visualization. Investigative visualization focuses
on the explorative aspect of visualization. These techniques
generally do not aim to provide a strict quantitative solution;
instead, they aim to provide a qualitative visual solution that
the human eye might be able to easily perceive. In general
these approaches do not require the detailed knowledge about
the data that quantitative approaches require. The explorative
aspect of this class of visualization is very appealing because it
is essential for the routine clinical application of new imaging
methods. Some of the most common methods in this category
are interactive or real-time volumetric visualization, dynamic
visualization, multimodality registration, functional (multidi-
mensional) visualization, and navigational visualization. The
emphasis is generally on speed, as the interactive ability is the
key to making these visualization tools useful in practice.

Technology of visualization Sensory perception

Virtual reality

Simulation and modeling
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Navigational

Morphometric
Dynamic

3-D displays such as surface, volume rendering

2-D displays such as contour plots
1-D displays such as real-time displays

IM
IT

A
T

IV
E

IN
V

E
S

T
IG

A
T

IV
E

IL
LU

S
T

R
A

T
IV

E

FIGURE 44.1 Visualization pathways.



44 Visualization Pathways in Biomedicine 731

Imitative Visualization. This category of visualization
attempts to imitate closely the realism in the data through visu-
alization. The imitation can be a visual perception, as in virtual
reality type systems, or functional imitation, as in simulation
and modeling. The challenge is to provide a realistic simulation
in a virtual environment. In medicine, such a challenge arises
in the area of pretreatment planning and training for interven-
tional and intraoperative surgical procedures. Both processing
speed and the quality of visualization are critical here, and so is
the paradigm of interaction.

44.1.2 Visualization Genotypes

In medicine, because of the inherent complexity in visualizing
the information in the data, different concepts of visualiza-
tion evolved as the technologies that could enable them became
available. For the purpose of discussion, the evolution of dif-
ferent concepts of visualization in medicine can be grouped as
different stages of generations:

First generation systems are essentially 1D waveform displays
such as those that appear in patient monitoring systems.

Second generation systems perform 2D image processing and
display. Contours and stack of contour lines that can rep-
resent the three-dimensional form of the data were also
developed during this period.

Third generation systems generally involve 3D image process-
ing and visualization. Isosurfaces, contour surfaces, shell-
rendering, and volume-rendering techniques belong to this
generation.

Fourth generation systems addressed processing of multidi-
mensional data such as dynamic volume or 4D datasets,
where higher order parameters associated with volumetric
data can be represented using color space mapping or as
cine images.

Fifth generation systems are virtual reality type visualization
systems that combine multidimensional data with three-
dimensional (i.e., six degree of freedom) interaction.

Next generation of visualization systems represent emerging
technologies such as sensory feedback techniques in which
the user interacting with the structures could feel the phys-
ical properties of the material and obtain valuable spatial
and sensory information in simulation type systems.

The main focus of this chapter on investigative and imitative
visualization helps to illustrate the concepts of visualization
and their significance with specific research examples from
medicine and biology.

44.2 Illustrative Visualization

This class of visualization is the earliest one to develop and
includes the first three generations, with their 1D, 2D, and 3D

visualization displays. The concepts developed here are applied
in the other two visualization phenotypes.

44.2.1 First Generation Systems

44.2.1.1 Real-Time Patient Monitoring

Prior to the arrival of image-based information in radiology,
the most basic forms of visualization in biomedicine were the
one-dimensional (1D) waveforms that one would see on such
devices as ECG monitors. Though primitive, this form of visu-
alization is a very powerful tool for conveying the physiological
state of the subject during a clinical intervention. Depending on
the time scale of the waveforms, one would be able to under-
stand both the current state of the subject or an integrated
trend that may not be obvious in the instantaneous display.
Such information may be difficult to appreciate in any other
form other than a simple graphical scheme.

Subsequently, more advanced forms of these 1D displays were
generated to convey the combined physiological state using
different signals such as ECG, blood pressure, and respiratory
waveforms. These various signals were appropriately combined
and presented in a form that would help clinicians rapidly
observe potential problems during a clinical intervention. Thus,
the “multimodality” of information helped clinicians to under-
stand the “functional” state of the physiology of the subject.
These early developments already indicated the potential ben-
efit of visualization in patient care. Anesthesiologists who
operate various instruments for delivering and maintaining
proper respiratory and hemodynamic state during an intra-
operative procedure may need to read various displays to avoid
potential human errors. Their task is often described as analo-
gous to the task of monitoring an aircraft cockpit. As heads-up
display visualization techniques helped revolutionize the orga-
nization of the cockpit, the use of high-end visualization
became common for even the simplest forms of biomedi-
cal signals. Thus, the term “cockpit visualization technology”
became popular for describing the impact of visualization in
medicine.

44.2.2 Second Generation Systems

Two-dimensional (2D) image processing techniques and dis-
plays represent the second generation systems. Some of the
earliest 2D visualization tools were image processing techniques
for enhancing image features that otherwise might be difficult to
appreciate. Feature extraction techniques, expert systems, and
neural networks applications constituted as major progress in
second generation visualization systems.

44.2.2.1 Interpolation

In medical images, the number of pixels might vary depending
on the modality of imaging, and it is usually in the range of
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128 × 128 to 512 × 512. Recently, 1024 × 1024 images have
begun to appear with the advancement of Multi-Detector CT
systems. Lower ranges of the resolution severely limit the dis-
played sizes of the image. If one wants to scale the images
to proper display size, suitable interpolation techniques are
required. A popular interpolation technique, known as bilinear
interpolation, refers to linear interpolation along the horizon-
tal and vertical direction. The pixel value at any display point
is computed based on a weighted sum of pixel values at the
corner locations of the smallest rectangular cell in the image
that surrounds the point. The weighting factor is the ratio of
the area formed by the diagonally opposite corner with the
given display point to the area of the rectangular cell formed
by the pixel image. Although bilinear interpolation may pro-
vide satisfactory results for many applications, more elaborate
interpolation techniques may also be required. Interpolation
techniques are discussed in detail in Chapter 28.

44.2.2.2 2D Contours and Deformable Models

Manipulation of the entire 2D image appeared to be a cumber-
some approach when the feature of interest could be represented
as contour lines delineating structures of interest. Besides, such
contours could provide quantitative information such as area
and perimeter, and they could also be used to build 3D mod-
els. Considering such benefits, both manual (supervised) and
automatic approaches have been developed. Many of the auto-
matic contour extraction techniques suffered setbacks due to
the insufficient quality of the image. To overcome the problems
associated with direct contour extraction methods, deformable
models were developed to preserve the continuity of the con-
tour and its topology. Based on an initial contour provided by
the user, the deformable model shrinks or expands the contour
to minimize a cost function associated with its shape evaluated
at each iterative step as the contour progressively approaches
the boundary of interest. When appropriate penalty values are
defined to prevent irregularities, the contour continuity in the
vicinity of fragmented parts of the image can be preserved.
This approach, also known as active contours, or metaphor-
ically as snakes, created considerable technical interest in the
field. Deformable models are discussed in Chapter 8, and related
topics are addressed in Chapters 9, 10, and 17.

44.2.2.3 Contour Models

In early contour model approaches, a stack of serial slices was
arranged to display a topographic view of the 3D profile repre-
senting the boundary of structures. Subsequent developments
addressed the issue of stitching the adjacent contours to provide
a 3D surface model view of the contour stacks. Although simple
in its objective, these techniques required significant analysis,
especially when the contour shapes change extensively, leading
to aliasing problems in the rendered surface. A case of particular
interest is the “Y” branching frequently encountered in vascular

or airway trees. Such branches pose considerable challenges in
providing a smooth representation of the branch. Alternative
solutions to contour surfaces, such as isosurface, discussed later
in this chapter, can also be used to represent the branches.
However, due to a very large number of triangles needed to rep-
resent the branch, other methods based on an implicit analytical
representation may be implemented where processing speeds
are critical. Model-based approaches, in which a surface model
representing the branches can be appropriately parameterized
to adapt the model to fit the contour lines, may provide a more
satisfactory solution to fulfill application-specific requirements.

44.2.2.4 2D Texture Mapping and Image
Parameterization

Texture mapping is a display concept introduced in computer
graphics for providing high visual realism in a scene [22].
Painting the elements of a drawing with realistic effects every
time they appear in the scene may be an unwarranted intensive
task, especially when the purpose is to provide only a visual
context, such as the background field in a game. In those cases,
an image piece representing the picture elements, such as its
photograph, could be used to create the illusion as if those
elements were graphically generated into the scene. The sim-
plicity and popularity of this technique for a wide range of
applications enabled both graphics software developers and
graphics hardware manufacturers to promote its use exten-
sively. The technology of texture mapping rapidly advanced
as a powerful and useful feature of a graphic subsystem to
become a ubiquitous part of most of the graphics cards avail-
able today. In the scientific visualization field, texture mapping
contributes to realism and speed, but more importantly, it pro-
vides a geometric representation for the image, separating the
spatial information from its image-pixel fragments. This sub-
stantially simplifies the tasks involved in visualization problems.
By solving the problem in its geometric formulation, which in
many cases would be more straightforward, and letting the tex-
ture mapping technique take care of the pixel association with
the geometry, developers and manufacturers could build more
intricate visualization systems without much programming
overhead.

44.2.3 Third Generation Systems

With the arrival of 3D images in the biomedical field, researchers
developed various methods to display volume information [13].
The effectiveness of a graphics technique primarily depends
on the quality and dimensionality of the source image. The
most interesting challenge in the development of volume visu-
alization arises from the fact that the volumetric data have one
dimension more than the computer display. Thus, in a cer-
tain sense, every volume visualization technique reduces to a
projection of the 3D data onto a 2D image, a process wherein
information could be potentially lost or occluded. Although
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stereoscopic display may eliminate some of these concerns, the
fundamental aspect of presenting a 3D volume of information
in a form that the user can quickly interpret still remains an elu-
sive visualization task. In this context, it may be fair to consider
that the routine use of clinical visualization is still waiting for
a smart visualization system that can help the user to quickly
identify and enhance the specific feature the user is interested
to bring out from the data. Unlike 1D and 2D systems, which
gained instantaneous clinical appeal, 3D systems are taking a
relatively longer time to gain the acceptance for routine clini-
cal use where throughput is a major factor as compared to the
much sought-after roles in clinical research programs.

44.2.3.1 Surface Visualization

Although presenting a 3D-volume image is a fairly complex
problem, there are other ways of displaying or extracting geo-
metrical information that have been well accepted for certain
applications. The approach, which is similar to isocontour lines
in topographic data, extends this concept to create a 3D surface
to characterize 3D image data. The technique came to be known
as isosurface extraction and was originally proposed by Marc
Levoy and Bill Lorensen [15]. The method works fairly success-
fully for CT volume where the homogeneity of the structures in
image data allows their effective classification by suitable thresh-
old values. This facilitates convenient extraction of the surfaces
based on the surface threshold value.

Isosurface Extraction (“Marching Cubes”). Volumetric images
consist of a stack of 2D images and can be considered as a
3D matrix of image data points. The smallest fragment of the
image is called a voxel, analogous to a pixel in a 2D image.
The surface is extracted using a threshold-based algorithm for
each cube of the lattice and marching through the entire vol-
ume. In each cube, each pair of connected corners is examined
for a threshold-crossover point based on linear interpolation.
These points along each of the edges are linked to form the
isosurface within each cube, and the process is repeated for the
remainder of the volume. Special interpretation is required to
handle cases that correspond to multiple surfaces within the
cube. The surfaces are usually represented with triangles. A
detailed description of this method and its recent advances are
presented in Chapter 47.

The advantage of this method is that it produces a fairly
detailed surface representation for the objects of interest, par-
ticularly when the objects are easily separable by their signal
distribution in the data. However, its computational load is
high, and each time a new threshold value is selected, the gen-
eration of the new surface may cause delays. The number of
triangles produced by the method in a typical set of volume
image data is very large, typically on the order of tens of thou-
sands. Thus, displaying them all can be an intensive graphic
task. Adaptive surface extraction techniques were developed to
address this problem using an approach that merges coplanar
triangles to be represented by a larger polygon. This approach

can substantially improve the performance because the num-
ber of vertices that need to be processed in the transformation
pipeline is significantly reduced. Reduction can be obtained
with Delaunay triangulation (also known as thin-plate tech-
niques), where coalescing can be extended to include triangles
that are approximately coplanar, within a given tolerance. This
can reduce the triangle population at the expense of a negligible
drop in quality.

Deformable Surfaces, Balloons, and Shrinkwrap Surfaces.
Surface extraction proves to be very effective when the signal-to-
noise ratio of the data is high and structures are well segmented.
However, extraction results could become unpredictable when
the data are noisy or when structures cannot be easily seg-
mented, as is often the case with some MR images. Following
the approach used to solve similar problems in 2D images using
deformable contours [40], elastic surface approaches were pro-
posed to solve the problem in the 3D data. These surfaces
are sometimes called balloons (to indicate their expanding
properties) or shrinkwrapping surfaces (to imply their elastic
properties) or, in general, as deformable surfaces. Like snakes,
these techniques usually tend to be computationally intensive
because of their iterative steps.

“Statistical” Surfaces. Recent approaches that attempt to pro-
duce efficient results for noisy data are “statistical” surfaces;
these surfaces employ space-partitioning techniques based on
local statistical measures to produce a mean estimated surface
within a given error deviation. This technique may not preserve
the topology connectivity that deformable techniques could
provide.

Wavelet Surfaces. As discussed earlier, one of the prob-
lems of surface representation is the number of triangles used
to represent the surface. Recently, wavelet techniques, which
are intrinsically multiresolution in their approach, have been
applied to describe surfaces. One major advantage of this
approach is that one can decide the desired resolution at dis-
play time; thus, during periods of interaction a low-resolution
surface could be displayed, and when the interaction ceases, the
higher resolution display of the surface can be generated.

44.2.3.2 Volume Visualization

The inherent limitation of the surface extraction method is that
it represents a specific threshold value in the data and becomes
restrictive or selective. Also, occasionally, false surface frag-
ments may be produced because of the interpolation involved.
Volumetric visualization methods overcome these limitations
and could help visualize as much information as possible from
the 3D volume image. This chapter presents a brief survey of
issues in volume visualization. More detailed descriptions of
these methods are presented in Chapters 45 and 46.

Maximum Intensity Projection. The earliest volume visualiza-
tion method is known as maximum intensity projection (MIP).
As the name suggests, in this approach, the maximum intensity
value in the volume data is projected on the viewing plane along
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each ray of the projection. This technique is particularly useful
for displaying vascular structures acquired using angiographic
methods.

Volume Rendering. The “ray-casting” approach was further
explored to produce new visualization concepts in medicine
that shared a common principle but approached the solution
differently. Instead of choosing the maximum value along each
ray, the general idea was to accumulate all data points along
the ray with appropriate weights and to produce an aggre-
gate value that is projected on the viewing plane. This led
to the development of various volume rendering techniques
[19–21].

Different accumulation models were employed to produce
various rendering results. For instance, a simple summation
of all the points along the ray can produce line-integral projec-
tions similar to X-ray images. The simple summation operation
is a less-intensive operation than other complex accumulation
operations. This may be useful for simulating an X-ray type
image. However, since the image will be dominated by struc-
tures that have maximum data values irrespective of their spatial
distance from the viewing plane, this technique is less desirable
to produce a 3D effect in the rendered image. The most popular
technique turned out to be one that used a“blending”operation
similar to the one used for antialiasing during scan conversion
or scene composition [18]. The blending operation corresponds
to a weighted mean between the data point and the background
value. The weighting factor could be given a physical mean-
ing of “opacity” of the data point, from which the transparency
(the complement of opacity) of the data point can be com-
puted. For generating the rendered image, each ray is traversed
along the volume, from back to front with respect to the view-
ing plane, starting with initial background value 0. Data points
are accumulated as the sum of the data value times its opacity,
and the background times its transparency. The sum gives an
effective blended value for the data points, which are treated as
semitransparent. An interesting aspect of this technique is that
advanced graphics cards available today have blending func-
tions that support this operation on a per pixel basis, as these
functions are also used for scene composition and antialiasing
effects. The weighting factor became equivalent to the “alpha
coefficient,” the fourth component in the four-components-
per-pixel representations (red, green, blue, alpha) available in
most of the recent graphics cards.

Trilinear Interpolation. During ray traversal through the vol-
ume, the rays need not pass through exact data points at
oblique orientations. In this case, it becomes necessary to esti-
mate the data point values along the ray at equal distances.
One simple way would be to use the “nearest- neighbor” value,
which can produce fast results. However, this gives rise to poor
resolution of the feature,and the nearest neighbor can flip under
even a simple rotation, causing undesirable artifacts. Thus, a
smooth interpolation along the ray becomes very important,
and the quality of rendering substantially improves with a good

interpolation method. One popular and simple interpolation
technique is the trilinear interpolation approach, similar to the
well-known bilinear approach. The data value at any given loca-
tion inside the image lattice is computed using the smallest cubic
cell that contains the point. The interpolated value is a linear
weighted sum of the contributions from all eight corners of this
cell. The weighting factor for each corner is computed as the
ratio of the volume of the cube whose diagonal axis is formed
by the given point and the diagonally opposite corner to the
volume of the cube formed by the cell.

The volume rendering operation requires a fairly large num-
ber of data samples, to prevent the blending from being
dominated by a few data values, which would produce a strong
aliasing effect. When the number of sample points is low, the
results may have poor quality. Also, in some applications, the
number of rays needed to produce the desired rendering may be
greater than the data points can support. In such cases, inter-
polation becomes the single major factor that can determine
the quality of the rendered image. More elaborate interpolation
techniques can take into consideration the 26 neighboring cells
around the voxel point to compute a cubic polynomial interpo-
lation. Such interpolation techniques may give highly desirable
results, but the additional speed penalty may also be quite high.
When the dimensions of the original volume of data are fairly
large, for instance, greater than 256× 256× 64, trilinear inter-
polation may provide good results to fulfill many visualization
purposes.

Lighting and Shading. One of the important benefits of sur-
face rendering compared to volume rendering is the lighting and
shading effects that can improve visual cues in the 2D displayed
image. The pseudo 3D effect is figuratively called 2-1/2D. Thus,
the lack of lighting in the early volume rendering models and
in the MIP display represented a notable drawback. Lighting
calculations were introduced in the blending equations with a
weighting factor that represented the local gradient in the scalar
3D field data. The gradient vector was estimated using the gra-
dations in the data along the three principal axes of the volume
or the 26 neighbors.

Lighting effects are particularly useful with CT image data
where the surface features in the data are well pronounced
because of the limited number of features that CT imaging
resolves. However, with MR images, lighting does not always
produce better results. Its contributions depend on the data
contrast and noise. Noise in the data can affect gradient cal-
culation much more strongly than the linear interpolation
estimations.

Transfer Functions. The hidden difficulty of volume render-
ing resides within the weighting factor of the accumulation
equations. The weighting factor or the opacity value can be
assigned for different data points in the volume to enhance or
suppress their influence in the rendered image. The transfer
function that represents a lookup table for the weighting factor
serves this purpose. Since the data points are usually represented
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as discrete data of 8, 12, or 16 bits, such table sizes are not
very large. However, for floating-point representation of the
data, a transfer function (a piecewise linear or a continuous
polynomial representation) can be used.

Although the transfer function provides considerable flexibil-
ity for controlling transparency or opacity, it may be sometimes
very difficult to enhance the feature of interest that the user
wants to visualize. A small change in the transfer function may
cause large differences in the final image because many inter-
polated samples are rendered along each ray, and this large
accumulation can produce oversaturation or underrepresen-
tation in the computations. Many automatic approaches to
compute the transfer functions have been proposed, but they
still represent a major limitation of the volume rendering tech-
nique. Hardware-accelerated volume rendering [23–26] and
dramatic improvements in the speed of computing and graphic
systems led to the development of interactive approaches where
the user could quickly see the result of the selected trans-
fer function to determine the desired one. However, a smart
transfer function technique that can operate with minimal user
interaction is critical for a wider clinical acceptance of volume
rendering. Alternatively, more versatile rendering techniques
that do not depend on such sensitive input parameters need be
developed.

Shell Rendering. Many techniques were investigated soon
after the shortcomings of volume rendering and surface ren-
dering techniques came to be known. Notable among them is
a shell rendering technique [16] in which the general principle
is to combine the strengths of surface rendering and volume
rendering and overcome their weaknesses. Surface rendering is
very selective in extracting particular structures from the vol-
ume data. In cases where the anatomical structures of interest
cannot be extracted with a unique threshold, surface rendering
may be difficult to use. Volume rendering blends the data over
a range suitably weighted by a transfer function. However, in
its original form, it does not take into account the spatial con-
nectivity between various structures in the data, thus making
it sometimes difficult to select a particular structure of inter-
est. Shell rendering combines spatial connectivity information
addressed by surface rendering with voxel-level blending of data
provided by volume rendering. Thus, if surface rendering is
considered as a “hard-shell” based on its specific threshold val-
ues, the shell rendering can be thought of as a “soft-shell” based
on its fuzzy threshold.

Volume Encoding (Octrees). During the development of vari-
ous rendering techniques, encoding of volume data emerged as
a research topic. Volume data, when they became first available,
were relatively large in comparison to the limited disk storage
capacity of the time. Representation and processing of volume
data required a great deal of memory and computing power.
Octree encoding of the volume took advantage of clusters of
data points that could be grouped. Appropriate grouping of
these data points could result in substantial reduction in storage

and yield high throughput in volume rendering. A cluster of
cells partitioned by octree encoding can be processed in one
step instead of the several steps that may otherwise be required.

A versatile approach would be to apply 3D wavelets that could
help maintain multilevel resolution of the volume. It could pro-
vide image compression and improve the speed of rendering
during interaction by using low-resolution representation.

Texture Mapping for 3D Images. The concept of 2D texture
mapping was extended to 3D images. However, unlike 2D tex-
ture mapping, the 3D texture mapping technique does not
produce a 3D rendered image directly from a texture map.
It provides only a fundamental but powerful capability called
multiplanar reformatting (MPR) that can be used for any 3D
rendering application. MPR enables one to extract any arbitrary
plane of image data from the 3D volume image that has been
defined as a 3D texture. Applications can use this capability to
produce a 3D-rendered image. For instance, if the volume is
sliced into stacks of slices parallel to the viewing plane and then
blended back-to-front (with respect to the viewing plane), the
volume-rendered image can be obtained. This process is also
known as depth compositing. The alpha component and the
hardware-accelerated per pixel blending operation can be used
for rendering.

44.3 Investigative Visualization

As the concepts in illustrative visualization became mature
enough, they became widely used in various applications. The
concept of investigative visualization gradually emerged as a
form of visualization for addressing specific questions that
required collective use of various graphics concepts described
in the earlier section on illustrative visualization. These devel-
opments represent the fourth generation systems.

The application of many 3D volume visualization techniques
remained limited to specific purposes where the needs could
not be fulfilled otherwise. The use of 3D visualization tech-
niques was not widespread because of several limiting factors:
the user needed to learn certain aspects of the rendering tech-
nique, while the computation time and the cost of the graphics
systems were both high. It is interesting to note that imaging
advances in medicine help scanning systems to produce more
detailed sectional images by slicing the sampling space into sets
of image planes, while the rendering techniques are basically
putting those sections back together to produce a 3D image.
Thus, volume rendering may be considered to be clinically use-
ful only in situations in which the 3D morphology could provide
an added advantage.

When new forms of imaging techniques were developed that
contained functional information associated with the anatom-
ical information in the images, volume rendering became very
useful to visualize the functional information that could not
be very well appreciated otherwise. Thus, volume rendering
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benefited various functional visualization applications that
required investigative type imaging. To illustrate such investiga-
tive visualization, this chapter presents several examples. The
difference between investigative visualization and illustrative
visualization is not in their basic concepts, but in their specific
applications.

44.3.1 Stereoscopic 3D Visualization

One of the most important developments in volume visualiza-
tion that demonstrated the full potential of volume rendering
is stereoscopic 3D rendering. A stereo pair (left- and right-
eye views) of plain volume rendered images could be viewed
using stereo goggles that help to direct the left- and right-eye
views to provide a stereoscopic (binocular) perception of the
volume-rendered image. Stereoscopic visualization represented
an important milestone in volume visualization, as it enabled
the full appreciation of 3D rendering. The traditional display
methods that present a 3D object on a 2D display do not make
use of the depth perception as a powerful visual cue to con-
vey the 3D spatial information. The depth perceptions give an
added advantage of allowing the human eye to filter out or
suppress the effect of noise in the image. Noise in images such
as MRI volume usually appears around the structures of inter-
est. When the rendered image is presented in 2D, the noise
appears projected or smeared over the structures and obscures

its detail. However, when the data are presented in 3D stereo,
noise is resolved by depth perception and it poses marginal
distraction when the visual focus is directed toward the struc-
ture of interest. A disadvantage of the stereoscopic visualization,
however, is that its computational load is nearly double because
it involves creating a pair of views with suitable perspective
orientation.

44.3.2 Dynamic Visualization

One of the simplest functional imaging examples is the cine-MR
technique used to image the beating of the heart (Figures 44.2
and 44.3). Displaying the slices as cine-frames provides the
motion cues that represent the functional aspect of the beat-
ing heart. But in such a 2D display, the through-image-plane
motion would be suppressed, amounting to moderation of
actual motion. Thus, volume rendering as a real-time display
could provide in one sequence all the necessary information
that can describe the motion of the beating heart with its
three-dimensional dynamic properties [29, 30].

44.3.3 Developmental Visualization and 3D
Volume Morphing

The study of 3D shape changes in volumetric morphology
is a challenging area of investigation, but in many cases
there may not be a unique way of deriving this information

FIGURE 44.2 Visualization of beating heart: interactive dynamic volume rending
of cardiac cine-MR images. The cine frame snapshots show the contraction cycle.
(Images courtesy of M. Solaiyappan, Tim Poston, Pheng Ann Heng, Elias Zerhouni,
Elliot McVeigh.)
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FIGURE 44.3 Visualization of left ventricle strain fields (color-coded)
combined with tagged MR volume. (See also color insert).

without making certain basic assumptions about the morpho-
logical changes. Such assumptions may cause loss of generality,
but in an investigative study, permitting those assumptions
and visualizing the corresponding results may provide a

better understanding of the functional information present in
the image. One such specific developmental visualization is in
the field of craniofacial modeling and visualization. For exam-
ple, given two different stages in the craniofacial development
in children with normal and abnormal growth, it would be
instructive to visualize how the normal and abnormal growth
functions would exhibit themselves if they were expressed in the
opposite group (Figure 44.4). To describe the growth function,
a set of homologous landmarks that can be uniquely identi-
fied in craniofacial morphology are provided in the two stages
that describe the growth. However, because there are few such
homologous points, usually around 60 or so, the visualization
problem here would be to interpolate the growth function over
the 3D space that represents the volume [42]. Using such a
growth function, one can then model the morphing of the
volume-rendered image to produce the developmental visu-
alization. Thus, by applying the growth function to a different
subject, one could get a qualitative view of the effect of pseudo
craniofacial development on the subject. Thus, developmen-
tal visualization is essentially a 3D morphing technique that
uses biologically appropriate control functions to describe the
morphing. Also, it is important to note that these morphing
techniques attempt to morph (i.e., translate, rotate, scale) every
voxel in the volume, unlike the more conventional morph-
ing techniques used for 3D surfaces. Volumetric morphing is

FIGURE 44.4 Visualization of volumetric morphing. Study of sagittal synostosis. Growth form derived from sagittal syn-
ostosis patients is applied on normal subject (left ) to visualize the simulated synostosis (right ). (Images courtesy of Joan
Richtsmeier, Shiaofen Fang, R. Srinivasan, Raghu Raghavan, M. Solaiyappan, Diana Hauser.)
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computationally intensive; however, it can avoid topological
problems, such as self-intersection, that 3D surface morphing
can easily generate.

44.3.4 Multimodality Visualization

Three-dimensional visualization can be used for morpholog-
ical correlation between different classes of volumetric data,
such as those acquired using different types of imaging modal-
ities or exams, primarily on the same subject (Figures 44.5
and 44.6). Such spatial comparisons or localizations help to
validate the efficacy of examinations. Often, direct correlation
measures do not provide a good quantitative description of the
correspondence between the data because statistical variations
deteriorate the correlation measure. Multimodality volumetric
visualization provides correlation information and helps the
user to visualize the presence of spatial localization in the data.
When the two sets of data have different spatial orientations,
automated 3D registration may be difficult, and interactive visu-
alization may help one to explore and understand the data. The

FIGURE 44.5 Multiple projection 2D photographs, back-projected
onto the surface obtained from CT and fused with MR of the brain.
(Image courtesy of M. Solaiyappan, Nick Bryan, Pheng Ann Heng.)

technical challenges in this class of volume rendering are not too
demanding, but the logic of combining two or more volumes
requires attention. The data may need to be combined pixel
by pixel, or pixels may need to be substituted or interleaved
from one image to another. The latter method is particularly
useful for visualization of multimodality data that typically
are complementary in nature. A combined visualization has
the potential to provide more information than the individual
datasets. This is the case, for instance, when one combines a CT
image, which can distinguish the skull from soft tissue, with an
MRI image, which can resolve soft tissues but cannot show the
skull (Figure 44.5) [36, 38, 39].

44.3.5 Navigational Visualization

Generally, visualizing structures from the outside is useful in
understanding the 3D morphology. Sometimes it would be
informative to look at the structures from the inside, such
as in a vascular or bronchial tree or other tubular structures
(Figure 44.7). Such types of visualization are called navigational
visualization [49] based on their ability to provide necessary
visualization for navigating through the internal structures.
This class of visualization techniques became popular by their
similarity to such systems as endoscopes, bronchioscopes, or
colonoscopes. In this aspect, these techniques are close to
simulation-type visualization. The advantage of using navi-
gational visualization on a 3D volume is that its full spatial
orientation is known at all times, unlike real endoscopes or
bronchoscopes, where it may be difficult to know the exact spa-
tial location of the probe. Thus, it may be easier to get both the
internal view and the surrounding spatial localization informa-
tion, providing a“road-map”image [31]. The volume rendering
technique used in this type of visualization addresses the strong
perspective orientations that arise during this visualization. A
detailed description of navigational visualization is presented
in Chapter 48.

44.3.6 Real-Time Visualization for Image-Guided
Procedures

Recent advances in imaging techniques have made it possible to
acquire images in real time during an interventional procedure
(Figure 44.8). During such procedures, usually, the real-time
images themselves may be sufficient to provide the neces-
sary guidance information needed for the procedure. However,
there are instances when this information may not be suffi-
cient and advanced visualization becomes necessary to provide
useful guidance information [34]. Information acquired in
real time can be combined with more detailed information
obtained prior to the procedure to provide real-time guidance.
Registration is an important factor, and speed is a major issue
in this kind of visualization due to real-time requirements.
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FIGURE 44.6 Visualization of the functional correlation of vascular volume and vascular permeability in tumor mass obtained in vivo using
MR microscopy (125-micron) technique. Three-dimensional volume visualization using color space registration shows that there is little overlap
between vascular volume (green) and vascular permeability (red), confirming previous observations. (Images courtesy of M. Solaiyappan, Zaver
Bhujwalla, Dmitri Artemov.) (See also color insert).

FIGURE 44.7 Visualization of breathing lung: navigational visualiza-
tion (virtual bronchoscopy) using segmented bronchial tree. (Images
courtesy of M. Solaiyappan, S. A. Wood, E. Zerhouni, W. Mitzner.)

44.3.7 Flow (Vector) Visualization

In volume visualization, the data at each point in the volume
lattice is a scalar quantity. Novel MR imaging techniques such as
diffusion images of water molecules provide information that
is of vector nature at each data point, and new types of visual-
ization techniques for such vector field data become necessary.
For instance, one approach would be to produce continuous
“flow-field-lines” through the volume that follow the vectors in

the 3D space. Such visualization techniques present unique line
patterns that can help to identify sources, sinks, and vortices in
the volume of vector data (Figure 44.9) [27, 28, 32, 33].

44.3.8 Rapid Back-Projection Reconstruction

Although volume visualization is an area of continuing
progress, there is another need that is growing with new types
of imaging techniques; this need involves visualization of a 3D
structure using a set of projection images, i.e., images acquired
from different orientations. Concerns of exposure to radiation
and the need for fast acquisition make 2D projection images
a preferred mode of acquisition for some of the clinical appli-
cations. The imaging speed requirements in this application
may be difficult to meet with 3D volumetric acquisition. In this
case, if the geometric nature of the object is known, a repre-
sentative shape of the object can be reconstructed using image
back-projection techniques. Although this principle is similar
to the tomographic reconstruction used in CT, lack of suffi-
cient accuracy and angular resolution may restrict the use of
such approaches. Back-projection refers to a graphic technique
in which a raster or scan line of an image is smeared, i.e., painted
parallel to the direction in which the image is acquired, on an
image reconstruction buffer. When corresponding scan lines
from each projection image are back-projected into the recon-
struction buffer, transverse-images of the desired 3D image can
be obtained (Figure 44.10) [23]. Recent advances in graphics
hardware, such as texture mapping, enable rapid reconstruc-
tion using the back-projection technique compared to generic
computational-based approaches.
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FIGURE 44.8 Three-dimensional visualization of intravascular MR probes obtained using real-time MR fluoroscopy imaging. Depth projection
(third image from the left) is reconstructed from coronal and sagittal projections and shown registered with MR roadmap images for navigating
the probe. (Images courtesy of M. Solaiyappan, Joanna Lee, Ergin Atalar.)

FIGURE 44.9 Three-dimensional reconstruction of brain fiber from diffusion tensor imaging. (Left ) White matter tracts that form the corona
radiata are shown: corpus callosum (yellow), anterior talamic radiation (red), corticobalbar/cortiscospinal tract (green), optic radiation (blue).
(Right ) Association of fibers and tracts in the limbic system is shown: cingulum (green), fimbria (red), superior (pink) and inferior (yellow)
longitudinal fasciculus, uncinate fasciculus (light blue), and inferior fronto-occipital fasciculus (blue). (Images courtesy of Susumu Mori, R.
Xue, B. Crain, M. Solaiyappan, V. P. Chacko, P. C. M. van Zijl.) (See also color insert).
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FIGURE 44.10 Visualization using back-projection reconstruction. (Left ) Illustration of reconstruction. (Right ) Clinical applications. (Top)
Coronary vessel studies. (Bottom) Aneurysm localization studies using conventional sweep arm rotational angio systems. (Images courtesy of
M. Solaiyappan, Nick Bryan, Timothy Eckel, Cliff Belden.)

44.4 Imitative Visualization

The development of illustrative and investigative visualization
systems facilitated the development of visualization systems
that focus on creating realism through visualization. Such vir-
tual realism could be exhibited in visualizing the structures or
in visualizing the functions by simulation and modeling. These
two classes of visualization techniques represent fifth generation
systems.

44.4.1 Fifth Generation Systems: Modeling and
Simulation

Modeling represents a significant thrust in biomedical research.
It attempts to build analytical formulations that describe phys-
iological functions and involves such multidisciplinary fields
as finite-element modeling and computation fluid dynamics
(Figures 44.11–44.14). Visualization needs in modeling have
been minimal in the past, primarily due to the complexity

of the models. The focus was on quantitative or analytical
aspects of the modeling and not so much on the visual vali-
dation of the modeling. However, over the years, the scope of
models that could be built and the extent to which they can
be studied became limited when all of the necessary informa-
tion to define the model parameters became difficult to obtain
experimentally. Visualization approaches are needed to address
such problems in modeling, as they could enable researchers
to qualitatively validate the model. While existing visualization
techniques are primarily tailored to engineering applications,
new ones are needed for biomedical applications, which deal
with large volumetric images. Visualization techniques that are
needed for biomedical modeling and simulation applications
should be compatible with finite-element [43–45] and fluid
dynamics techniques [46]. This will enable researchers to build
rapid prototypes of the models for quick visual validation and
determine the role of certain parameters of the model [47].
Also, this approach can enable them to build the model using
actual geometry rather than the simplified representation the
earlier modeling techniques preferred.
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FIGURE 44.11 Modeling of the blood flow through an aneurysm and its visualization. (Left ) Synthetic model. (Middle) Blood flow in the
absence of coils in aneurysm. (Right ) When there are coils to reduce the blood flow and thereby its potential to rupture. (Images courtesy of
TseMin Tsai, Jim Anderson.)

44.4.2 Fifth Generation Systems: Virtual Reality

Virtual reality visualization represents the next major milestone
in biomedical visualization. While stereoscopic visualization
provided the 3D perception, such a display also required intrin-
sically intuitive 3D interaction. In the traditional interaction
paradigm, the pointing tool such as a digitizer stylus or mouse
is located away from the screen the user is looking at, and thus it
lacks the intuitive control necessary for hand-eye coordination.
A more natural and intuitive interaction can be provided by
introducing the pointing tool into the volumetric space where
the image is perceived in 3D. This can be achieved with a stylus
using 3D positional sensors. However, placing such a stylus
that the hand can manipulate directly on the image would
obstruct the view of the image because the stylus would appear
in between the viewer and the display image.

Early virtual reality systems overcome this problem by using
a helmet-mounted display system that presents a virtual world
through the stereo goggles mounted onto a helmet that the
user wears to achieve the convenience of virtual space inter-
action. This is generally called an “immersive” virtual reality
paradigm. It may be suitable for representing a virtual world
where the physical scale of the objects is larger than the viewers,
as in architectural visualization, where the users can imagine
immersing themselves into such a virtual world. However, such
a paradigm may not be suitable for visualizing objects of simi-
lar or smaller physical scale, as is often the case in medicine.
A more suitable virtual reality paradigm proposed for such
interaction is the virtual workbench or virtual work volume
concept (Figures 44.15 and 44.16). A mirror arrangement is
placed at a suitable angle to the stereo display, reflecting the 3D

image to the viewer, so that the viewer, looking at the mirror
using a pair of stereo goggles, perceives 3D objects behind the
mirror. The virtual object that appears within the“reach-in”dis-
tance of the hand can be manipulated exactly where it appears
in the virtual work volume. The 3D stylus or mouse can be
replaced by a suitable visual motif to functionally represent the
tool in the image. Augmented reality visualization follows the
same principle and instead of presenting a fully synthetic virtual
world, it is optically superimposed onto the real world through
a semitransparent mirror so that the viewer perceives the virtual
objects placed in a real working space. This approach is useful
during an intraoperative procedure, for instance, to combine
a 3D MRI image that can show subtle differences in the brain
tissues with a real image of the brain during the surgery where
the unaided eye would not be able to see the differences very
well. Real-time registration of the actual anatomy with the vir-
tual image is crucial for such integration [51, 52]. For such
purposes, a stereotaxic reference frame that is stationary with
respect to the subject and remains physically attached to the
subject during imaging and surgery is used. A major issue in
such augmented reality systems, however, is the shape changes
in the structures such as the brain matter that occur during the
craniotomy when the skull is opened up for surgery.

44.4.3 Imitative Visualization by Sensory
Feedback

In the future developments of next generation visualization sys-
tems, the concept of visualization probably will extend beyond
graphical displays and include other forms of perception that
convey additional information. For instance, force feedback or
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FIGURE 44.12 Finite-element modeling of tumor growth and its visualization using 3D morphing to visualize the morphological changes
in the surrounding anatomy. (Top) FEM mesh (white: white matter, gray: gray matter, red: boundary nodes). (Bottom) FEM embedded 3D
visualization. (Left ) Undeformed brain. (Right ) Deformed brain. (Images courtesy of Stelios Kyriacou, M. Solaiyappan, Christos Davatzikos.)
(See also color insert).

sensory feedback can help in understanding not only the spatial
structure, but the physical characteristics that the data may rep-
resent, such as deformability and homogeneity. Such multisen-
sory visualization may increase the channels of communication
for the exploration of the data through human interaction.

44.5 Visualization in Biology

Use of visualization systems in core biology areas has become
popular in recent years, with an increasing trend toward using
more powerful visualization tools. It is important to note that
many of the investigative research techniques in biology and
in medicine are pursuing similar paths: imaging methods in
medicine are increasingly becoming microscopic in scale, while

imaging in biology requires addressing the functional prop-
erties of microscopic structures (Figures 44.17–44.20). These
trends maylead to the development of new types of visualization
systems that try to merge the two extreme scales of structures
and functions. Image data in medicine are functionally rich,
while image datasets in biology are large because of the micro-
scopic resolution that these data represent. Such large data sizes
in biology prompted the development of virtual microscopy
visualization, where tiles of microscope images acquired from
different areas on a specimen are seamlessly stitched to form a
single large virtual image that can be zoomed and panned as if
it was acquired with a very large field of view (Figure 44.17).
Merging anatomical-level image data with such microscopic-
level image data will challenge the technical limits of current
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FIGURE 44.13 Finite element modeling of the electrical activity of the heart and its 3D visualization. Depolarization of the heart with both
normal and abnormal cells, with the abnormal cells having ionic properties similar to those seen in patients with congestive heart failure. This
simulation leads to a sustained reentrant wave of activation. The ECG of this arrhythmia is similar to those seen in CHF patients. (Images
courtesy of Raimond Winslow, Dave Scollan, Prasad Gharnpure, M. Solaiyappan.)

visualization techniques to develop more advanced super scale
visualization capabilities.

44.6 Visualization in Spatial Biostatistics

Large collections of image databases in epidemiological stud-
ies have been growing rapidly over the years, and spatial
statistical techniques are now being applied to images of large

populations. Applications include relationships between such
attributes as lesions and functional deficits (Figure 44.21) [35].
Gene expression studies carried out with the help of imaging
techniques such as in situ hybridization suggest future needs
for correlating the information over a large number of stud-
ies in different groups. In such spatial statistical studies, each
data point could be potentially represented as a multidimen-
sional vector and presented to the viewer using visualization
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FIGURE 44.14 Real-time interactive surgical simulator. Finite element-based modeling of the interaction of catheter and guide-wire devices
with the vascular structures of the human body. Visualization provides training and planning information through the simulated fluoroscopic
display. (Image courtesy of Yao Ping Wang, Chee Kong Chui, H. L. Lim, Y. Y. Cai, K. H. Mak, R. Mullick, R. Raghavan, James Anderson.)

techniques to provide a big-picture view of the underlying
biostatistical data.

44.7 Parametric Visualization

Parametric visualization addresses a requirement arising from
the analysis of images to characterize functional information
present in the images. Traditionally, parameters that describe
certain functional information are computed and stored as
numeric images that can be displayed like any other image.
However, handling such numeric images may require a large
amount of storage space and processing time because they
are usually represented as floating-point numbers and vector
quantities. To simplify the representation of such information,
one uses parametric fields to provide an underlying model
that can be evaluated at any image location using its analytical
formulation [37].

One of the major advantages of a parametric field is that it
can efficiently make use of graphics architectures to provide
the visualization of the data, eliminating the precomputation
time and the need for high-resolution storage for visualization.
Furthermore, successive derivative parametric images, such as
velocity or acceleration maps from the motion fields, can be
displayed in real time.

The example presented in Figure 44.22 is a 4D B-spline
based motion field representation of cardiac-tagged MR images.
A motion field with 7 × 7 × 7 × 15 control points has been
shown to adequately describe the full motion of the heart dur-
ing cardiac cycle. When this field is used, material points can be
tracked over time, and local mechanical properties (e.g., strain)
can be computed. The visualization method presented here uti-
lizes the similarity between the B-spline representation of the
motion fields and the graphics hardware support for nonuni-
form rational B-spline (NURBS) display with texture mapping
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FIGURE 44.15 Dextroscope—a 3D Virtual Workbench from Volume Interactions Pvt. Ltd. The schematic diagram illustrates the concept of
3D virtual workspace. (Illustration design courtesy of Luis Serra, Beng Choon Chua, Volume Interactions Pvt. Ltd.)

to achieve high-performance visualization of such parametric
fields.

44.8 Discussion

44.8.1 Speed Issues in Visualization Systems

Speed concerns often become the critical factors that deter-
mine the usefulness of a visualization system. Visualization
involves two types of basic graphic operations: one is related
to the geometry, such as the transformation of the vertices of a
polygon, and the other is associated with displaying pixels. In
the graphics processing pipeline, the overhead can happen in
either of these two operations and adversely affect the speed of
the entire system. Thus, for instance, drawing a large number
of small triangles would cause overhead in the transformation
computations associated with the vertices, while the pixel filling
operation for the small triangles would be fast. The converse is
true when the number of triangles is few but their size is large.
Thus, an optimal balance between the two factors yields a good
overall system performance. Another factor that affects speed is

the geometric technique used in visualization. A simple graph-
ics technique may execute faster because the code that generates
the graphics may be resident in the instruction cache of the pro-
cessor, whereas a more intelligent and elaborate technique that
does not make effective use of the instruction and memory
cache may happen to run slower. Since biomedical images are
generally large, a careful consideration should be given to the
choice of simple versus elaborate approaches while developing
a targeted application.

44.8.2 Future Issues in Visualization

Many potentially important visualization concepts did not
develop successfully in the past because of the lack of proper
graphic systems around that time. These concepts had mem-
ory and processor speed requirements that might have been
considered unreasonable. This led to the development of log-
ically more complex systems, which, in turn, created several
other diversions. With processors and memory becoming more
efficient and less expensive, and with the rapid advancement
of graphics accelerators, many of those initial and simpler
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FIGURE 44.16 Presurgical planning: separation of siamese twins. Three-dimensional visualization and 3D interactions in the virtual
workspace environment using MRA and MR volumes to visualize vascular and brain morphology assisted surgeons in devising strategies
in planning the extremely complex and most delicate neurosurgical procedure of separating craniopagus Siamese twins (under the notably
challenging circumstance that the patients were in a distant location and could not be reached prior to surgery). December 1997, Zambia.
Pediatric neurosurgeon: Benjamin Carson (JHU). Software (VIVIAN): Luis Serra, Ng Hern (KRDL, Singapore). Tushar Goradia, James
Anderson (JHU).

concepts can be revisited to provide more powerful and richer
solutions. Other complex programs that required advanced
computers will become more affordable and useful. The synergy
of these developments could produce new ideas for visualiza-
tion systems. Yet, the challenges in visualization will continue
to grow. For instance, as the capabilities of imaging systems
advance, the spatial, temporal, and channel resolutions of data
will increase. A twofold increase in spatial resolution means
a fourfold increase in image area and an eightfold increase in
volume dimension. New types of visualization techniques that
handle very large data sizes need to be developed. As the number
of imaging modalities increases, system architectures for visu-
alization may change from integrated systems to distributed
visualization systems.

Targeting visualization applications can be thought of as a
visualization problem in itself. The rapid progress in computing
and imaging technology makes the planning and coordina-
tion of new applications extremely challenging. Traditionally,
planning of such applications is thought of as shooting a mov-
ing target (Figure 44.23). The moving target represents an

application whose specification evolves during the research
and development cycle, as is often the case in visualization
applications. Rapid advances in both imaging and computing
technology take the shooting game to a more challenging level,
by staging it to take place on a rapidly advancing platform of
technology. This emphasizes the need to foresee and understand
the shrinking gap between the capability of the technology and
the demands of the application so that the development process
does not fall short or overshoot cost or performance factors
when it approaches meeting the target. The newly emerging
trend represents another level of complexity, where promising
technology need not be the best solution if market forces are not
conducive to the survival of such technology. Thus, the shoot-
ing game becomes one that takes place in a rollercoaster ride
where not only is the platform of technology important, but
also its stability under the influence of market forces and the
strength of the supporting structure become important factors.

One of the fundamental research aims in biology and
medicine is to relate structures and functions at the cellular
level with structures and functions at the organ or anatomical
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FIGURE 44.17 Virtual microscopy: visualization of nerve cells. (Left top) Tiles of images (∼150pcs each 640 × 480 pixels) acquired using
light microscope at 1000 ×. (Left bottom) Seamlessly stitched virtual field of view image that can help follow single axons of the cell. (Right )
Ventral spinal root from an individual dying of acute motor axonal neuropathy. Macrophages are seen insinuating their way into periaxonal
space through the node of Ranvien. (Images courtesy of M. Solaiyappan, Tony Ho, Aline Fang-Ling Li, John Griffin, Raghu Raghavan.)

level. In this paradigm, diseases can be better understood
and the effect of treatments on diseases can be studied more
effectively. Such investigations will create needs for super-scale
visualization systems that allow researchers to visualize
and correlate information across different scales, including
molecules, cells, organs, body, and epidemiological studies in
human populations.

The interaction between different disciplines presents
another level of complexity in multidisciplinary research in

biology and medicine. Such interactions provide beneficial syn-
ergy. However, such synergy requires precise synchronization
of information flow between different disciplines. It may be
helpful to visualize the complexity of such synergy and syn-
chronization needed for such multidisciplinary research. For
example, the clockwork arrangement shown in Figure 44.24
illustrates how various research components may depend on
each other to drive the development of a multidisciplinary
center for cancer imaging research.
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FIGURE 44.18 Three-dimensional visualization of microtubules.
Immunofluorescence labeling of U2OS (human osteosarcoma) cells
with monoclonal antibody to tubulin and a rhodamine-labeled sec-
ondary antibody against mouse monoclonal antibody. The images
were acquired using a Noran confocal microscope. (Image courtesy
of Douglas Murphy, M. Solaiyappan.)

FIGURE 44.19 Three-dimensional visualization of actin filaments.
Reconstruction of a mouse fibroblast with antibodies revealing micro-
tubules and actin filaments, imaged using a Zeiss confocal microscope
exciting in the FITC and TRITC fluorescence spectra.

FIGURE 44.20 Three-dimensional visualization of live human embryo, age 5 days (blastocyst). (Left ) Four images from optical microscope
at varying focal plane. (Right ) 3D volume by deconvolution showing the inner cell mass. (Images courtesy of M. Solaiyappan, Fong Chui Yee,
Ariffeen Bongso, Rakesh Mullick, Raghu Raghavan.)
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FIGURE 44.21 Three-dimensional visualization of lesion-deficit associations. The development of attention deficit hyperactivity disorder
(ADHD) was studied using a voxel-based approach for a spatial statistical technique (Fisher’s exact test) applied to a population of children
involved in frontal lobe injury. Higher intensity (left image) shows higher confidence of association in those regions. Right image shows the
associated regions in a color-mapped 3D Talairach atlas registered to the volume. (Images courtesy of V. Megalooikonomou, C. Davatzikos,
E. H. Herskovits, M. Solaiyappan.) (See also color insert).

FIGURE 44.22 Visualization of the displacement field during heart motion. (Left ) Triplanar view of a 3D parametric map (top) used for the 3D
texture mapping of a NURBS representation of the displacement field (center) and modulated with image data (bottom). (Right ) Cine-frames
of volumetric rendering of the NURBS-generated displacement fields during the full cardiac cycle, starting from end diastole at top left. (Frame
order: left-to-right, top-to-bottom.) (Images courtesy of M. Solaiyappan, Cengizhan Ozturk, Elliot McVeigh, Albert Lardo.)
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FIGURE 44.23 Targeting visualization applications.
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FIGURE 44.24 Synergy and synchronization form the clockwork in multicentric cross-disciplinary research. Clockwork demands both coop-
erative actions and precision timing of those actions. This depends on optimal coupling of the actions and inertia of each discipline involved.
For instance, the illustration demonstrates the role of an In Vivo Cellular and Molecular Imaging Cancer Center as one such clockwork in
cancer research. Imaging here represents the coupling wheel that transforms the actions from discoveries in one area to research momentum in
another area with precision timing that can help generate revolutions in cancer research. Critical to such clockwork is also the ability to produce
independent action within each unit, lack of which could mean degeneration of actions that could potentially bring the clockwork to a halt.

44.8.3 Software and Computing Systems Used
for Figures

In-house visualization research software tools were used to
generate the figures presented in this chapter. For the FEM mod-
eling of the tumor growth and the fluid dynamics modeling of
the blood flow, ABAQUS and Fluent software, respectively, were
used. The Onyx Reality Engine system from Silicon Graphics,
Inc., was used as the computing and visualization platform for
the production of these images.
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45.1 Introduction

The practice of medicine and study of biology have always
relied on visualizations to study the relationship of anatomic
structure to biologic function and to detect and treat disease
and trauma that disturb or threaten normal life processes.
Traditionally, these visualizations have either been direct, via
surgery or biopsy, or indirect, requiring extensive mental recon-
struction. The revolutionary capabilities of new 3D and 4D
medical imaging modalities (CT, MRI, PET, US, etc.), along
with computer reconstruction and rendering of multidimen-
sional medical and histologic volume image data, obviate the
need for physical dissection or abstract assembly of anatomy,
and provide powerful new opportunities for medical diagnosis
and treatment, as well as for biological investigations [54, 58].
Locked within 3D biomedical images is significant informa-
tion about the objects and their properties from which the
images are derived. Efforts to unlock this information to reveal
answers to the mysteries of form and function are couched in
the domain of image processing and visualization. A variety of
both standard and sophisticated methods have been developed
to process (modify) images to selectively enhance the visibility
and measurability of desired object features and properties. For
example, both realism-preserving and perception-modulating
approaches to image display have significantly advanced the
practical usefulness of 3D biomedical imaging.

The value of biomedical images depends largely on the
context from which they are obtained and the scientific or

medical interest and goals that motivate their production and
use. However, the significant potential for 3D visualization in
medicine remains largely unexploited and practical tools unde-
veloped. Many life-threatening diseases and/or quality of life
afflictions still require physical interventions into the body to
reduce or remove disease or to alleviate harmful or painful con-
ditions. But minimally invasive or noninvasive interventions
are now within reach which effectively increase physician per-
formance in arresting or curing disease; which reduce risk, pain,
complications, and reoccurrence for the patient; and which
decrease health care costs. What is yet required is focused
reduction to practice of recent and continuing advances in
visualization technology to provide new tools and procedures
that physicians “must have” to treat their patients and that
will empower scientists in biomedical studies of structure to
function relationships.

Forming an image is mapping some property of an object
onto image space. This space is used to visualize the object and
its properties and may be used to characterize quantitatively
its structure or function. Imaging science may be defined as
the study of these mappings and the development of ways to
better understand them, to improve them, and to use them
productively. The challenge of imaging science is to provide
advanced capabilities for acquisition, processing, visualization,
and quantitative analysis of biomedical images in order to
increase substantially the faithful extraction of useful infor-
mation that they contain. The particular challenge of imaging
science in biomedical applications is to provide realistic and

Copyright © 2008 by Elsevier, Inc.
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faithful displays; interactive manipulation and simulation; and
accurate, reproducible measurements [3, 25, 60, 65, 74].

Since the 1970s the advent of multimodality 3D and 4D
body imaging (CT, MR, PET, MEG, US, etc.) and 3D tomo-
graphic microscopy (i.e., confocal, atomic force, etc.) has fueled
developments in imaging science based on multispectral image
data classification, segmentation, registration, fusion and visua-
lization [5, 16, 21, 30, 33, 35, 36, 39, 42, 52, 54, 56, 58, 73].
The multimodality datasets are often very large in size, rang-
ing from a few million bytes to several billion bytes and even
a trillion bytes! Effective management, processing, analysis,
and visualization of these datasets can be accomplished only
with high-performance computing. Useful applications can
be implemented on current workstations, particularly those
with specialized hardware (for acceleration of graphics, for
example). There are numerous examples of exciting problems
in medicine, biology, and associated sciences that can be readily
approached by today’s computer and imaging science techno-
logy. The applications extend across scale space to incorporate
both the outer and inner universes, ranging from imaging of
organs and organ systems to microscopic imaging of cells and
molecules.

The goal of visualization in biomedical computing is to
formulate and realize a rational basis and efficient architec-
ture for productive use of biomedical image data. This is a
formidable task, one which consistently suggests that contin-
ued advances are required to address it effectively. The need for
new approaches to image visualization and analysis will become
increasingly important and pressing as improvements in tech-
nology enable the acquisition of more data of complex objects
and processes.

45.2 Background

The References section contains a list of many visualization
publications documenting and describing historic develop-
ments, fundamental algorithms and systems, advanced visu-
alization paradigms, and a variety of useful biological and
clinical applications. Biomedical image visualization involves
the transformation, presentation, and interaction with mul-
tidimensional medical and/or biological image datasets. In
discussing this subject, it is instructive at the outset to pro-
vide some definitions, especially to differentiate between the
commonly used terms “imaging” and “visualization.”

Three-dimensional (or 3D) imaging primarily refers to acqui-
ring digital samples of objects distributed throughout 3-space,
i.e., in x , y , z dimensions, usually but not necessarily with
isotropic spacing (equal separation in all 3 directions). The term
is often generalized to include processing, displaying, and ana-
lyzing such 3D datasets (however, “3D visualization” is a better
term for the gestalt). A 3D image or 3D imaging process can
sometimes (not always) be synthesized by appropriate succes-
sive 2D steps, but ideally the image is acquired simultaneously in

3D, and the imaging process (function) is applied congruently
in 3D.

Multimodal imaging generally refers to the use of different
imaging systems (e.g., CT, MRI, PET), to acquire images of the
same object (e.g., a patient brain), providing complementary
and more complete information about the object than can be
obtained from any single image type (unimodal); the term may
also be used to describe a spatiotemporal “fusion” (integration,
combining) of images of the same object obtained from differ-
ent imaging systems, determined by spatially and/or temporally
registering the different images with sophisticated mathemati-
cal algorithms so that their individual samples all align in space
and/or time.

Real-time visualization in computer display applications
implies a frame refresh/update rate sufficiently high to avoid
perception of “jerkiness” or stutter (conversely, a “smooth” dis-
play), and is generally accepted to be 15–30 frames per second.
This means the display system must compute and display each
complete new view in approximately 75msec or less. In data
collection, generally video rates are considered real time, i.e.,
30 frames/sec.

Interactive visualization refers to sufficiently high response
time and repetition rate of the system which senses a user action
of some type (e.g., mouse movement, key press, wand motion)
and computing a corresponding result (e.g., updating the view
on the screen) so that the user will perceive (near) instanta-
neous response to his or her actions. This generally requires
a response/repetition rate of 10–20/sec. However, interactiv-
ity is dependent on the application or procedure; i.e., higher
response rates are needed for highly dynamic situations (for
example, catheter positioning) and lower rates for more static
activity (e.g., tumor approach).

Three-dimensional (or 3D) visualization generally refers to
transformation and display of 3D objects so as to effectively
represent the 3D nature of the objects. Such displays range from
shaded graphics in 2D display devices (sometimes referred to
as 21

2-D) to stereoscopic-type displays requiring the aid of spe-
cial glasses, to autostereoscopic and/or holographic 3D displays
requiring no physical aids, to “immersive” displays that project
the viewer “into” the scene, such as in virtual reality environ-
ments. But the term“visualization”as used in computer imaging
also explicitly includes the capability to manipulate and ana-
lyze the displayed information. Additionally, this term implies
inclusion of cognitive and interpretive elements.

Interactive visualization (near real time) and advanced dis-
play technologies (3D and beyond) open new realms into the
practice of medicine by permitting the images obtained from
modern medical imaging systems to be directly displayed and
manipulated with intuitive immediacy and with sufficient detail
and speed so as to evoke sensorial experience similar to that of
real experience. Such interactive 3D environments allow physi-
cians to “enter the visualizations” to take up any viewpoint, to
see dynamic functional processes as well as detailed anatomy,
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to make accurate online measurements, and to manipulate and
control interventional processes. The value of such visualization
technology in medicine will derive more from the enhancement
of real experience than from the simulation of reality [12, 55].

Visualizable objects in medicine extend across a vast range of
scale, from individual molecules and cells, through the varieties
of tissue and interstitial interfaces, to complete organs, organ
systems, and body parts, and include functional attributes of
these systems, such as biophysical, biomechanical, and physi-
ological properties [8, 28, 30, 37, 47, 54, 58, 72, 75]. Medical
applications include accurate anatomy and function map-
ping, enhanced diagnosis, and accurate treatment planning
and rehearsal. However, the greatest potential for revolution-
ary innovation in the practice of medicine lies in direct, fully
immersive, real-time multisensory fusion of real and virtual
information data streams into an online, real-time visualization
during an actual clinical procedure. Such capabilities are not yet
available to the general practitioner. However, current advanced
computer image processing research has recently facilitated
major progress toward fully interactive 3D visualization and
realistic simulation. The continuing goals for development and
acceptance of important visualization display technology are
(1) improvement in speed, quality, and dimensionality of the
display; and (2) improved access to the data represented in the
display through interactive, intuitive manipulation and mea-
surement of the data represented by the display. Included in
these objectives is determination of the quantitative informa-
tion about the properties of anatomic tissues and their functions
which relate to and are affected by disease. With these advances
in hand, there are several important clinical applications that
will have a significant impact on medicine and study of biology.

45.3 Methods

Various computational visualization methods are used in
biomedical research and in clinical applications. For 3D datasets
these include both 2D and 3D display techniques. For 2D, three
types of multiplanar sectioning and display are described,
including orthogonal, oblique, and curved planes. For 3D, two
types of display are discussed, namely volume renderings and
volume modeling. Advanced visualizations derived from fused
sources, such as parametric displays, are briefly discussed and
illustrated in the application section.

45.3.1 2D Image Generation and Display

There are many situations in 3D biomedical imaging in which
identification, generation, and display of the optimal 2D image
plane is critical. The utility of 2D images often depends on
the physical orientation of the image plane with respect to the
structure of interest [2, 16, 51, 54]. Most biomedical imaging
systems have limited capability to create this optimal 2D image

directly, as structure positioning and scanner orientation are
generally restricted. Therefore, techniques to generate and dis-
play these optimal 2D visualizations from 3D volume images
are particularly important, allowing the orientation of the 2D
image plane to ultimately result in a clear, unrestricted view of
important features.

45.3.1.1 Multiplanar Reformatting

The 3D nature of volume images allows for simple and efficient
computation of images that lie along the orthogonal orienta-
tions of the volume [16, 54]. This is demonstrated in Figure 45.1
for a 3D volume image of the heart from a 3D CT scan
originally acquired in the transaxial plane. Implementations
of multiplanar reformatting techniques on modern computers
allow interactive generation and display of coronal and sagittal
images, as well as the acquired transverse images. Display of
multiplanar images usually consists of multipanel displays, as
demonstrated in Figure 45.1. Display of a sequence of adjacent
planar images without position change on the screen provides
an effective mechanism for visualization of section-to-section
change in structures, often augmenting the visual synthesis of
the 3D structures through structure coherence as the images are
rapidly displayed.

45.3.1.2 Oblique Sectioning

A desired 2D image may not be parallel to the orthogonal orien-
tation in which the 3D volume image was acquired, but is more
likely to lie along an arbitrarily oriented plane at some oblique
angle to the orthogonal axes of the volume image. Specification
of the orientation and efficient generation of the oblique image
require additional visualization and computation techniques
[2, 51, 54]. Two methods can be used for definition of the
oblique plane orientation. Selection of any three points or land-
marks in the volume will uniquely define the orientation of the
plane, which may need to be rotated within the volume for
proper display orientation. Alternatively, two selected points
define an axis along which oblique planes perpendicular to the
axis can be generated. The oblique image may be generated any-
where along the axis—useful when a stack of oblique images
needs to be generated through the extent of a specific struc-
ture. Interactive placement and orientation of oblique planes
can be facilitated by superimposing a line on the orthogonal
images indicating the intersection of the oblique image with
the orthogonal images, as shown in Figure 45.2, with inter-
active movement of these lines generating the oblique image.
Interactive manipulation of the oblique plane orientation may
be accomplished using aeronautical maneuver terms (i.e., pitch,
roll, yaw) with angle increment specification and control but-
tons for each maneuver, as also shown in Figure 45.2. Another
method is to depict the intersection of the oblique plane with a
volume rendering (upper right in Figure 45.2), providing direct
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FIGURE 45.1 Multiplanar reformatting of a 3D CT volume image of the heart. Multiple images in the original transaxial plane of acquisition
(top row) and the orthogonally reformatted coronal plane (middle row) and sagittal plane (bottom row) can be interactively computed and
displayed.

3D visual feedback with familiar structural features [54, 58].
The oblique image in Figure 45.2 shows sections of the aorta,
left ventricle, and left atrium all within the same 2D image plane.

45.3.1.3 Curved Sectioning

Often structures of interest may have curvilinear morphology
that multiplanar and oblique images cannot capture in a single
2D planar image [51, 54]. This restriction can be overcome
using curvilinear sectioning techniques, as demonstrated in
Figure 45.3. A trace along an arbitrary path on any orthogonal
image defines a set of pixels in the orthogonal image that have
a corresponding row of voxels through the volume image. Each
row of voxels for each pixel on the trace can be displayed as a line
of a new image, which corresponds to the curved planar struc-
ture lying along the trace. This technique is useful for curved
structures that remain constant in shape through one orthog-
onal dimension (one degree of freedom), like the major vessels
in the heart (Figure 45.3), spinal canal, orbits of the eyes, and
menisci in the knee.

45.3.2 3D Image Generation and Display

Various methods and systems have been developed for 3D
display [19, 56, 63, 65]. As previously noted, display and
visualization are not fully synonymous. Visualization of 3D
biomedical volume images has traditionally been divided into

two different techniques: surface rendering (volume modeling)
[7, 15, 20, 21, 34, 54] and volume rendering [6, 11, 26, 31, 48, 54,
57]. Both techniques produce a visualization of selected struc-
tures in the 3D volume image, but the methods involved in these
techniques are quite different, and each has its advantages and
disadvantages. Selection between these two approaches is often
predicated on the particular nature of the biomedical image
data, the application to which the visualization is being applied,
and the desired result of the visualization.

45.3.2.1 Volume Rendering

One of the most versatile and powerful 3D image visualization
and manipulation techniques is volume rendering [6, 11, 31,
57]. Volume rendering techniques based on ray-casting algo-
rithms have become the method of choice for visualization of
3D biomedical volume images [23, 54]. These methods pro-
vide direct visualization of the volume images, often without
the need for prior object segmentation or surface definition,
preserving the values and context of the original volume image
data. Volume rendering techniques allow for the application
of various rendering algorithms during the ray-casting pro-
cess, each of which may produce an optimal visualization for
the structure(s) of interest. The rendered structures can be
dynamically determined by changing the ray-casting and tissue
recognition conditions during the rendering process. A func-
tion of different attributes of the voxels, such as their acquired
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FIGURE 45.2 Arbitrarily oriented section (top left ) cut obliquely through the 3D CT volume can be interactively selected and computed.
Interactive orientation is controlled by graphical manipulation of the intersection of the oblique plane with orthogonal images (yellow lines
in bottom row) or by aeronautical maneuvers (pitch, roll, yaw, elevate options in upper left ). Plane integrated with volume rendering provides
additional orientation feedback (upper right ). (See also color insert).

signal value, gradient values and/or spatial coordinates, can be
invoked during the projection process to produce “on-the-fly”
segmented surfaces, cutting planes anywhere in the volume,
and/or selected degrees of transparency/opacity within the
volume. The direct relationship between the rendering and the
intact volume image provides for the ability to section the ren-
dered image and visualize the actual image data (see the oblique
rendering in Figure 45.2 as an example), and to make voxel
value-based measurements from the rendered image. Volume
set operations (union, intersection, difference of volume) can
also be invoked during the projection process. However, 3D
biomedical volume image datasets are characteristically large,
taxing the computation abilities of volume rendering tech-
niques and the systems on which they are implemented. This is
particularly true when the rendering process must preserve res-
olution of detail with sufficient fidelity for accurate visualization

of the displayed structures. Highly optimized volume ren-
dering algorithms and high-performance computer hardware,
including direct implementation with graphics hardware, can
significantly increase computational efficiency for rapid volume
rendering.

The mapping of a three-dimensional structure to a two-
dimensional rendered representation of that structure requires
a rasterization of the 3D volume image via ray tracing into the
2D rendered image. The most common geometries for the vol-
ume rendering ray-casting process are depicted in Figure 45.4,
consisting of a source point (called eye), a focal point (where
the eye is looking), and a matrix of pixels (the screen) [57].
The visible object to render (called the scene) is in the front of
this geometric viewing model within a truncated volume called
the viewing pyramid, as shown in Figure 45.4. The purpose
of a ray-tracing model is to define the geometry of the rays
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FIGURE 45.3 Tracing along an arbitrary path on an orthogonal image (left ) interactively generates and displays a curved planar image (right )
sampled through the 3D volume image along that trace.
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FIGURE 45.4 Ray-casting geometry models depicting viewing pyramid for divergent rays (left ) and parallel rays (right ) commonly used in
volume rendering methods.

cast through the scene to form the rendered image on the
screen. To connect the source point to the scene, for each pixel
of the rendering screen, the model defines a ray as a straight
line from the source point passing through each pixel in the
screen. Parallel rays can be used if the rendering is being gene-
rated from a viewpoint outside the volume; i.e., the eye point is
assumed to be at infinity (Figure 45.4, right). This builds effi-
ciencies into the rendering process; each ray’s position is simply
indexed through the screen with identical stepping along each
ray. For renderings close to the structure or inside the volume
image, as with virtual endoscopy, divergent rays must be used
to provide spatial perspective to the rendering (Figure 45.4,
left). To generate the rendering, the process assigns the ren-
dered pixel values appropriate intensities “sampled” by the rays

passing everywhere through the scene (voxels in the volume
image). For instance, for a shaded surface display, the ren-
dered pixel values are computed according to lighting models
[intensities and orientation of light source(s), reflections, tex-
tures, surface orientations, etc.] where the rays have intersected
the scene.

There are two general classes of volume rendering algorithms:
transmission and reflection [57]. An example of a transmitted
image is an X-ray radiograph; an example of a reflected image
is a photograph. For the radiograph, the film is located behind
the scene, and only the rays transmitted through and filtered
by the objects in the scene are recorded on the film. For the
photograph, the film is located in front of the scene, so the
film records the light reflected by the objects in the scene. For
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FIGURE 45.5 Tissue map construction for volumetric compositing. A single trapezoidal tissue mapping function is shown for the opacity
weighting and colors assigned to a cardiac CT volume image. The relationship between voxel value and assigned opacity/color can be directly
visualized in the coronal image at the right. Image values can also be directly sampled from the image to automatically derive tissue classes. (See
also color insert).

transmission-oriented displays, there is no surface identifica-
tion involved. A ray passes totally through the volume and the
rendered pixel value is computed as an integrated function of
the voxels along the ray path. The pixels in the rendering can-
not be directly tied to a specific 3D voxel along the ray because
multiple voxels are integrated into the output rendered value.
For all reflection display types, voxel values are used to specify
surfaces within the volume image. For example, if the value of
a voxel intersected by a ray is between a specified maximum
and minimum (a threshold), this voxel is defined as being on
the surface. The resulting rendering contains a representation
of each selected voxel along the ray path.

Many transmission-based volume rendering algorithms are
used commonly in 3D visualization, including volumetric
compositing, maximum intensity projection (MIP), minimum
intensity projection (MinIP), summed intensity projection, and
surface projection (projection of a thick surface layer). The
most used algorithm and the one recognized as producing the
most photorealistic visualizations is volumetric compositing
[6, 11, 31]. In volumetric compositing, each voxel along the ray
path is assigned a fractional opacity and color value based on its
tissue or element type (e.g., bone, muscle, blood, air), and these
partitioned voxel densities contribute to homologous tissue or
anatomic structures deposited on the screen during the ray cast-
ing process. The opacity and color weighting are determined by
a lookup table, known as a tissue map or transfer function,
which provides a specific opacity value and color for each sig-
nal value and each anticipated tissue component contained in
the volume image, as shown in Figure 45.5. The derivation of
the relationship between image signal value and a represen-
tative color and transparency value for optimal rendering is

key in this paradigm. Tissue maps can be built interactively
by the user while directly observing the results in the rendered
visualization. For image types with standardized signal value
representations, such as the Hounsfield scale for CT images,
predefined tissue maps can be loaded to achieve direct, repeat-
able visualization of specific tissue components. Figure 45.6
demonstrates volumetric compositing renderings created from
CT volume images of different anatomic structures. Volumetric
compositing is used less frequently with imaging types that do
not have a standardized range of value representation, such as
MRI or ultrasound. Additionally, to realize visualization of spe-
cific anatomic structures, the image values that correspond to
sampled voxels in these structures must exist in a value range
separate from other structures, which often confounds direct
viewing of structures without additional segmentation.

Maximum and minimum intensity projection rendering
algorithms select the maximum or minimum image value,
respectively, along each ray path and place that value into the
output rendered pixel. Maximum intensity projection (MIP) is
often used in creation of visualizations for vascular data, par-
ticularly where the signal in the vasculature has been increased
through contrast enhancement, as shown in Figure 45.7. The
maximum or minimum image value may occur in multiple
voxels along each ray path, producing ambiguity in the visuali-
zation of the specific structure being rendered by each ray. This
ambiguity can be mediated by weighting the rendered value by
the depth of the first voxel along the ray path that exhibits max-
imal value, as shown in the upper right of Figure 45.7. Often
this spatial location ambiguity is also managed by generation
of rotational sequences, which during playback exhibit parallax
between rendered structures to reveal their spatial depth and
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FIGURE 45.6 Volumetric compositing renderings of three CT volume images: full trunk visualization (left ) including apical heart, descending
aorta and connecting vasculature, kidneys, and skeletal structure; cardiac visualization (upper right ) depicting heart chambers, pulmonary
vasculature, and aorta; and head rendering (lower right ) with clipping planes to view internal skull-based aneurysm. (See also color insert).

FIGURE 45.7 Volume-rendered projection images of a cardiac CT volume image using four different projection algorithms: maximum intensity
projection (upper left ); depth-weighted maximum intensity projection (upper right ); summed voxel projection (lower left ); and surface shell
projection (lower right ).

3D relationships. Summing the voxel values along the rendering
rays provides an integrated visualization of all structures along
the path, as shown in the lower left of Figure 45.7. With CT
volume images, this rendering process is related to the original
X-ray attenuation process used to acquire the projections prior

to reconstruction. This produces visualizations that appear to
be simulated radiographs, or what are now known as Digitally
Reconstructed Radiographs (DRRs). Finally, surface projection
combines single voxel selection along each ray path at a specific
structure surface with limited summed voxel projection from
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FIGURE 45.8 Diagram of ray-tracing geometry and spatial gradient shading using 6-voxel or 26-voxel neighborhoods.

this surface voxel, allowing a“shell”with a given thickness inside
the surface to be visualized. Shallow structures underneath the
first surface encountered during the rendering become visi-
ble, as shown by the ventricular chamber in the lower right
rendering of Figure 45.7.

Reflection-based volume rendering algorithms use voxel val-
ues and other spatial voxel controls to determine surfaces within
the volume image. The first voxel along the ray path to meet all
of the voxel conditions is selected to be rendered, including
thresholds, clipping planes, viewing angles, segmented struc-
ture visibility, and many others. Shading for the output rendered
pixel is computed as a function of the reflectance model, based
on the light position and a normal computed to the surface
through the voxel, and the depth of the voxel along the ray
path. The normal vector to each rendered voxel is computed by
finding the gradient of the volume image values in the neigh-
borhood of that voxel, as shown in Figure 45.8. The gradient
can be computed using a 6- or 26-voxel neighborhood about
the voxel being rendered. A lighting model can then be used,
with both diffuse and specular reflection components, to shade
the voxel in the output rendered image.

In addition to voxel value controls, groups of voxels that
have been classified prior to rendering using segmentation

techniques can be directly rendered and offer additional flexi-
bility in specific anatomic component visualization. Given the
assignment of each voxel to a specific object, attributes can
control the parameters used to visualize the rendered voxels
along each ray path. For example, color and transparency can
be assigned to each object (group of voxels) to integrate all
of the objects currently visible into the output rendering, as
shown in Figure 45.9. This is different from volumetric com-
positing, where opacity and color were assigned based on voxel
value. Here, these attributes are assigned to a voxel based on
object inclusion. Similarly, specific objects can be “turned off”;
i.e., the visibility or “renderability” of the voxels in a specific
group can be controlled as either being visible or not visi-
ble, as shown in the right panel of Figure 45.9. This provides
powerful control to selectively visualize only the structure(s)
of interest in the complex volume image. Combined with the
other rendering algorithms, such as volumetric compositing
and projections, hybrid visualizations can be generated, taking
advantage of the advanced visualization capabilities of these
rendering types and the classification of voxel sets via segmenta-
tion. Figure 45.10 demonstrates examples of multiple rendering
types for a single MRI volume image of the head, including
interactive tools to explore and visualize the actual MRI images



764 Handbook of Medical Image Processing and Analysis

FIGURE 45.9 Volume renderings using segmented objects for intracardiac structure visualization from CT images. Control of transparency
(middle) and object visibility (right ) allows direct visualization of specific anatomical components. (See also color insert).

FIGURE 45.10 Examples of interactive volume rendering operations, including selective surfaces, cut-planes, orthogonal dissections, and render
masks, that permit mixing of rendering types (e.g., a transmission projection within a reflection surface).

directly from the volume image. Figure 45.11 also depicts this
key relationship between the rendered object and the intact MRI
volume image for displaying sectional images. The ability to
combine volume rendering types with segmentation and inter-
active exploration will further augment the utility and direct
use of these visualizations in research and clinical practice.

45.3.2.2 Volume Modeling (Surface Rendering)

Volume modeling techniques characteristically require the
extraction of contours (edges) that define the surface of the
structure to be visualized, and representing that surface by a
mosaic of connected polygons, as shown in Figure 45.12. A
tiling algorithm is applied that places surface patches (polygons
or tiles) at each contour point, and with hidden surface removal
and shading, the surface is rendered visible. The advantage of
this technique lies in the relatively small amount of contour

data, resulting in fast rendering speeds. Also, standard computer
graphics techniques can be applied, including shading models
(Phong, Gouraud), and the technique can take advantage of
particular graphics hardware to speed the geometric transfor-
mation and rendering processes. The polygon-based surface
descriptions can be transformed into analytical descriptions,
which permits use with other geometric visualization packages
(i.e., CAD/CAM software), and the contours can be used to
drive machinery to create models of the structure. Other ana-
lytically defined structures can be easily superposed with the
surface-rendered structures. The disadvantages of this tech-
nique are largely based on the need to discretely extract the
contours defining the structure to be visualized. Other vol-
ume image information is lost in this process, which may be
important for slice generation or value measurement. This also
prohibits any interactive, dynamic determination of the surface
to be rendered, as the decision has been made during contour
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FIGURE 45.11 Interactive sectioning during volume rendering using orthogonal planes (left ) and/or oblique plane (right ). Viewing the sections
alongside or inserted into the 3D volume provides helpful orientation and localization of any structure within the volume.

General flow of Anatomy modelling

Acquire 3D
anatomy

Segment
objects

Identify
surface

Extract feature
(shape)

Adaptive
tiling

Shrinking

Growing

FIGURE 45.12 Diagrammatic flow of procedure to create volume models from 3D image datasets. The raw data need not be segmented for
volume rendering, but modeling requires segmentation, surface identification (with or without feature extraction), and surface tiling.

extraction specifically which surface will be visualized. Finally,
due to the discrete nature of the surface polygon placement,
this technique is prone to sampling and aliasing artifacts on the
rendered surface [23].

Shaded surface renderings are useful if there is a need or
desire for rapid visualization of specific 3D surfaces, which is
the case in many medical simulation and training applications.
Several methods for 3D shaded surface displays of anatomic
structures have been implemented [7, 20, 21, 34, 54, 58]. Some

follow an approach similar to the techniques used in solid mod-
eling. In most algorithms, the surfaces are described in terms
of polygon patches that join to form the complete surface.
The main difficulty in display of biological structures is fitting
polygons to a complex 3D surface. This problem can be circum-
vented by defining the surface elements as the 3D voxel borders,
which makes the algorithm easy to apply to“real”data. However,
the task of displaying a smooth surface from such elements is an
issue. One approach is to employ a contextual shading scheme in
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which the shading of a displayed face depends on the orientation
of its neighbors, its distance from the observer, and the incident
angle of the light [57]. Implementation of this type of algo-
rithm has produced useful displays of 3D images but has also
proven to be cumbersome, especially when the algorithm is used
to detect and display soft tissues. The time required to segment
the volume, isolate the desired surfaces (as is required by any 3D
surface display), and convert the polygons to the internal surface
description can be substantial. Modern computational systems
can process tens of thousands of polygon patches per second,
a rendering speed that permits satisfactory interactive capabili-
ties in computer-aided design applications but does not always
satisfy the requirements of interactive display of biological/
medical images. Some computed 3D surfaces of anatomic struc-
tures may contain hundreds of thousands of polygons. Unless
the number of polygon faces can be greatly reduced, even state-
of-the-art display systems may not provide acceptable user
interaction. Special-purpose graphics hardware can achieve the
necessary speed but increases the cost of the system.

The structure of surface rendering algorithms generally per-
mits incorporation of special display effects, such as dissection
of the volume. This is implemented by inserting a preprocess-
ing step to manipulate the binary volume prior to the contour
extraction. For example,“volume dissection”is accomplished by
producing new binary volumes such that the voxels in a region
of interest are isolated and processed separately. The region of
interest can be related to the entire volume at subsequent points
in the analysis.

45.3.2.3 Comparison of Volume Rendering and
Volume Modeling

Figure 45.13 shows a comparison of volume rendering and vol-
ume modeling of a segmented brain obtained from a 3D MRI
scan of the head. The volume-rendered image shows intri-
cate detail in the convolutions of the brain parenchyma, and
this level of detail can be displayed throughout the volume.
The volume model is less detailed, but can be rendered more

VR VM

FIGURE 45.13 Comparison of volume rendering (left ) with surface-
rendered volume model (right ) of brain segmented from MRI head
scan. (See also color insert).

rapidly, and can also be made transparent to reveal underlying
surfaces that have been segmented and tiled within the brain
volume. In particular the interior ventricular system is shown
in Figure 45.13. The reduced level of detail in the volume mod-
eling approach allows the images to be manipulated in real time
or near real time. The models convey accurate size and shape
useful in applications such as surgical planning. Figure 45.14
indicates the level of detail that can be rendered in volume
models if high resolution scans are obtained. This image data
was rendered from careful segmentation and surface model-
ing of the high spatial resolution (1/3 mm slices) cryosection
data from the Visible Human Female Dataset from the National
Library of Medicine [1]. The ocular orbits, cornea, ocular mus-
cles and optic nerves can be seen, along with structural elements
of the inner ear, including the semi-circular canals, cochlea,
and vestibule.

Figure 45.15 shows similar high-resolution volume render-
ings of registered multimodality data, in particular CT and
MR image data. The rendering of the skull in the upper left
corner shows the image quality that can be obtained with cur-
rent volume rendering algorithms. The rendering can be made
transparent, as shown in the upper right corner, to reveal inner
hard tissue interfaces such as the sinuses. Transparency can also
be used to render soft tissue visible underlying hard tissue, as
indicated in the lower left panel where the cerebral cortex is
revealed through the skull bone. Using perspective in the vol-
ume rendering permits accurate close-up views from within the
rendered structures, as shown in the lower right corner. Here, a
posterior-to-anterior view from inside the head is constructed,
revealing the mandible and frontal sinuses from a point of view
near the back of the jaw. Finally, Figure 45.16 shows an example
of a deformable volume model texture mapping [6, 32, 70, 71].
A portion of the torso of the Visible Human Male [1] is seg-
mented and modeled with a mesh of 40,000 polygons, each
of which is mapped with color values from corresponding
points on the raw cryosection data. Cutting can be simulated
by deforming the polygon mesh and applying the new textures
in near real time in response to imposed forces applied locally
to the volume model [32].

45.4 Applications

This section will illustrate the employment of multimodal
imaging and visualization in a few clinical and biological appli-
cations. The examples are not intended to be exclusive, but
they are real and suggest the breadth and value of the use of
visualization methods in science and medicine.

45.4.1 Virtual Endoscopy

One of the important clinical applications of 3D visualiza-
tion and volume rendering is virtual endoscopy [18, 35, 41,
49, 50, 53, 54, 58, 61, 62, 72, 73]. Virtual endoscopy has the
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FIGURE 45.14 Segmentation and volume modeling of skull and selected contents from high-resolution cryosection images from Visible Human
Female Dataset. In addition to skull, ocular orbits, muscles, and optic nerve can be visualized, as well as the semicircular canals, cochlea, and
vestibule of the inner ear. (See also color insert).

FIGURE 45.15 High-quality volume rendering with transparency of coregistered MR and CT images of the head showing skull (upper left ),
interior sinuses (upper right ), cerebral cortex through the skull (lower left ), and endoscopic (interior) view of mandible and frontal sinuses
(lower right ). (See also color insert).

advantage of noninvasive exploration of body cavities, which
may be useful as a screening procedure. Two approaches are
used for producing 3D-computed endoscopic visualizations.
The first is direct volume rendering, placing the perspective

viewpoint within the volume of interest and casting divergent
rays in any viewing direction [61], with application of any or
all of the operating conditions used in conventional volume
rendering. The other approach, illustrated in Figure 45.17, is to
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FIGURE 45.16 Volume modeling with texture mapping and deformation to simulate tissue cutting. (See also color insert).
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FIGURE 45.17 Diagram of approach to virtual endoscopy using volume modeling.

produce volume models to obtain real-time exploration of the
region of interest [53, 54, 58]. In this technique, a 3D volume
scan, generally from CT or MRI, is segmented and modeled,
as previously described. A common viewpoint is then located
within the anatomic model, and a sequence of surface-rendered
views is produced by changing viewpoint positions within the
model. Virtual endoscopic views computed within various body
organs from the Visible Human Male Dataset [1] are shown
in Figure 45.18. The higher resolution Visible Human Female
Dataset [1] has also been segmented with many endoscopic
views, as shown in Figure 45.19. Segmentations of the right
breast are shown superimposed on the body section at the
top of Figure 45.19 with glandular tissue and vessels rendered,
including an angioscopic view within one of the mammary
vessels. At the bottom of the figure are shown the segmented
ovaries, fallopian tubes, uterus, and bladder, with endoscopic

views in both the left and right fallopian tubes and in one of the
ureters.

Texture mapping can lend significant realism to rendered
views of segmented anatomic objects [32]. Figure 45.20 shows
segmentations of the lungs and airways from the Visible Human
Female Dataset [1] with RGB color values from the cryosec-
tion data mapped for each voxel onto the segmented external
and internal surfaces of the lung and the trachea. The textured
luminal surface inside the trachea in the pullout endoscopic
view shows the endo-tracheal surfaces looking inferiorly toward
the carina. Figure 45.21 shows endoscopic views within the
colon computed from a spiral CT scan of a patient with polyps.
A polyp in the sigmoid rising out of the luminal surface can be
detected and enhanced, as shown in the upper right panel, and
further segmented to reveal its vascular components. The geo-
metry and composition of the polyp can be measured from the
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FIGURE 45.18 Virtual endoscopic views within various anatomic structures from the Visible Human Male. Top right and proceeding clockwise:
the skull looking down through the spinal column; inside the trachea; inside the heart; within one of the ureters; within the colon; in the spinal
column; in the stomach; and in the esophagus. (See also color insert).

correlated raw CT data to help determine metastatic potential
of the polyp and thus help guide therapy decisions.

While precise location, size, and shape of abnormal struc-
tures such as lesions and masses can be accurately visualized
with virtual endoscopy from any orientation, both within and
outside the region of interest, there are several disadvantages of
virtual endoscopy. CT and MRI scans do not capture the fine
detail in the mucosal lining of anatomic structures like the air-
ways or colon that can be seen with a real light endoscope. Small
blood vessels and color of inflamed regions are often important
diagnostic features that are not captured by medical scanners.
Artificial texture mapping can be used to enhance realism in
the computed endoscopic views, but this is not patient-specific
and can be misleading. Correlation of the virtual endoscopic
views with the real light endoscopic video during the pro-
cedure alleviates these issues, as shown in Figure 45.22 for a
colonoscopy procedure. The colonoscope is physically tracked
using a 3D tracking technology to determine the position of the
colonoscope during the interventional procedure. The tracked
position of the colonoscope can be registered to the virtual
image data, allowing correlation between the virtual model and
the video from the colonoscope camera. This information can
be used to identify regions of the colon that may not have been
adequately examined during the procedure, with the tracking
information allowing the colonoscope to be accurately placed
back into position for additional examination.

45.4.2 Neurosurgery

Visualization to preoperatively assess and guide surgical opera-
tions has been used successfully and increasingly over the past

two decades [3, 15, 25, 29, 49, 54, 58–60, 74]. Neurosurgery has
benefited from and in turn significantly driven this evolution
[2, 10, 33, 38, 46, 63, 67]. Neurosurgery is a complex procedure,
involving extended knowledge and understanding of intricate
relationships between normal anatomy and pathology. Patients
with brain tumors, arterial venous malformations, or other
complicated internal brain pathology undergo multimoda-
lity image scanning preoperatively to help the neurosurgeon
understand the anatomy of interest. Different scans can be
coregistered in order to produce single visualizations of com-
plementary information, as shown by the visualizations in
Figure 45.23. The tumor is derived from a contrast-enhanced
T1–weight MRI scan, while the vessels are segmented from
an MR angiogram (MRA). The surgeon can then use this
information to more carefully plan the surgical approach and
determine the margins of pathology with respect to cerebral
vasculature and eloquent cortical tissue, as the measurements in
Figure 45.23 demonstrate. Figure 45.23 also shows an example
of data fusion in augmented reality (left column). Volume-
rendered 3D images are registered with live video images in
the operating room to reveal the deep-seated brain tumor. The
location and position of tumors and vessels in relation to the
brain surface can be visualized before resection begins.

Figure 45.24 shows an example of multimodal imaging, regis-
tration, and image fusion for visualizing brain activity and
structural anatomy in patients with epilepsy. This procedure,
called Subtraction Ictal Spect CO-registered to Mri (SISCOM),
uses an ictal (during seizure) SPECT scan and an interictal (at
rest) SPECT scan to accurately determine areas of hyperperfu-
sion (increased activity) and hypoperfusion (decreased activity)
during seizure. The SPECT scans are registered, normalized,
and numerically processed to find the statistically signification
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FIGURE 45.19 Segmentation, rendering, and endoscopic visualization of breast, mammary glands and mammary vessels (top) and of ovaries,
fallopian tubes, uterus, and bladder (bottom) from the Visible Human Female.

regions of hyper- and hypoperfusion, as shown in the orange
(hyper) and blue (hypo) regions at the right of Figure 45.24. The
SPECT volumes are also registered to a stereotactic MRI volume
image, allowing direct mapping of the hyper/hypoperfusion
regions to critical brain anatomy, as shown in Figure 45.24.
The SPECT-derived area of primary activity increase (great-
est hyperperfusion) can be represented as a rendered object
in 3D visualizations derived from the structural MRI volume
image, as shown in Figure 45.25. These visualizations assist in
the planning for the surgical resection of diseased tissue caus-
ing seizures in the epilepsy patient. Often subdural electrode
arrays are also implanted for further refinement of the seizure
focus region, which can be imaged with CT and integrated
into the visualization to accurately identify the electrode posi-
tion on the brain and reconstruct the skull surface. All images

(SISCOM SPECT, MRI, CT) are registered together, and the sur-
gical plan can be developed from sequences of visualizations of
the registered data, as indicated in Figure 45.25. The preferred
location of the burr hole opening, localization of the offend-
ing tissue, the margins of eloquent adjacent functional tissue,
and the most effective resection margins can all be preoper-
atively planned from such visualizations. The fused SISCOM
SPECT/MRI volume image can also be used directly in the
operating room with stereotactic navigation systems to provide
direct image guidance for optimal cortical resection, as shown
in Figure 45.26. The margins for the region of increased acti-
vation during seizure are viewed directly during the procedure,
allowing the neurosurgeon to see the map between function and
structure as the cortical resection is completed, with reduction
in patient morbidity and improved seizure control.
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FIGURE 45.20 Segmented and texture-mapped volume models of lungs and trachea with interior endoscopic view reconstructed from Visible
Human Female Dataset. (See also color insert).

While imaging procedures provide sufficiently high-
resolution, three-dimensional images to view the intricate detail
of anatomic relationships required to optimize the surgical pro-
cedure, the brain itself changes position and shape during the
neurosurgical intervention, shifting and deforming as the skull
and dura are opened. Therefore, the brain has changed rela-
tive to the preoperative imaging procedure, making the use of
the preoperative images for navigation difficult without fur-
ther calibrating against this brain change [38, 67]. Current
approaches to these issues provide real-time, online data fusion
of preoperative high-resolution 3D multimodality image scans
of the patient with intraoperative video or ultrasound imaging
of the patient during the surgical procedure. Patient-specific
accurate models of the brain are computed from the preoper-
ative MRI and CT scans, which can be accurately segmented
and registered with advanced software. These patient-specific
models can be projected onto real-time images of the surface
of the patient’s exposed brain during the operation, facilitating

exact localization of underlying tumors or other pathology, as
shown in Figure 45.23, a technique that is sometimes referred
to as augmented reality [12, 29]. To account for brain shape
and position change, accurate segmented brain models can be
deformed in real time in the operating room based on anatomic
position information obtained from the patient while on the
table. This may be provided by optical tracking, video images
focused on the actual operating site, and/or ultrasound scan
images of the exposed cortical surface of the brain. This infor-
mation influences the deformation of the brain model to assure
the correct shape, size, and location of the shifted brain within
the cranium. A heads-up display system will allow the surgeon
to view 3D models transparently through the surface of the
cerebral cortex. Alternatively, the surgeon can be equipped with
light head-mounted display equipment to look into the patient
with super vision during the operation and to get immedi-
ate 3D visual updates of the surgical field. This can be rapidly
compared to preoperative planning and rehearsal images.
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FIGURE 45.21 Virtual endoscopic visualization of polyp within sigmoid, showing enhancement of detail and measurement of polyp geometry
and composition.

FIGURE 45.22 Visualization in virtual and real colonoscopy procedures. The volume rendering of the polyp on the right shows the internal
vasculature. The path of the tracked colonoscope is shown on the left, with the current video frame corresponding to the identified location on
this path. (See also color insert).

Real-time measurements of size, shape, distances, volumes, etc.,
can be provided to guide the surgery quantitatively. Projection
of the segmented objects of interest within the surgical micro-
scope will be most useful. The majority of the resection of the
tumor will be performed under the guidance and improved
visualization of high-quality surgical microscopes.

These exciting visualization procedures will enable more
precise and expedient navigation to the target site and will
provide more accurate delineation of margins for resection in
brain surgery than current procedures. Importantly, the new
procedures will provide online, updated information to accom-
modate any shifts in brain position during the operational
procedure. This will result in significantly increased physician

performance, reduction in time in the operating room, and an
associated increase in patient throughput and decrease in health
care costs by comparison to current practice.

45.4.3 Prostate Cancer

It is common practice to surgically remove many cancerous
prostates, even though subsequent pathological examination of
the excised tissues suggest that some surgeries could have been
avoided [13, 68]. Radical prostatectomy is a challenging proce-
dure due to anatomical variability and the presence of adjacent
vital structures, including the external urinary sphincter and
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FIGURE 45.23 Visualization of 3D tumor and cerebral vessels registered and fused with live video image of craniotomy (left ) during
neurosurgery. Such visualizations provide useful navigation and tumor targeting, critical presurgical planning measurements, and accurate
cytoreduction margins during the operation. (See also color insert).

FIGURE 45.24 Three-dimensional image registration and fusion of SISCOM activation maps in epilepsy diagnosis and surgery planning. Areas
of increased activity (hyperperfusion) during seizure are shown in orange (right ), while areas of hypoperfusion are indicated in blue. (See also
color insert).
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FIGURE 45.25 Three-dimensional visualization of registered and fused MR, CT, and SPECT scans of patient with epilepsy to define surgical
target for resection. MR image shows brain parenchyma, CT image shows skull and subdural electrodes for identification of motor strip, and
SPECT image shows activation region causing seizures. Fused images can be used to simulate, rehearse, and quantitatively define margins used
in the surgery. (See also color insert).

FIGURE 45.26 Visualization system for intraoperative navigation and image guidance for resection of a portion of the cortex responsible for
epileptic seizure activity. The real-world surgical instrument is tracked, registered, and displayed with the 3D SISCOM volume image for precise
localization of epilepsy seizure focus. (See also color insert).
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FIGURE 45.27 Volume models from 3D MRI scan of patient with prostate cancer. Models can be viewed from any angle of view and at any
scale, with or without transparency, to study preoperatively the location of the cancer relative to other critical anatomic structures, such as the
urethra, seminal vesicles, and neurovascular bundles. (See also color insert).

FIGURE 45.28 Volume analysis of preferentially stained histological sections of prostate gland obtained from biopsy of patient with prostate
cancer. This “3D assay” provides detailed information about microvessel patterns relative to glandular structures. In this case a marked difference
of microvessel architecture is noted in the normal tissue (left ) versus the cancerous tissue (right ). (See also color insert).

neurovascular bundles. There is significant risk of serious mor-
bidity in the form of urinary incontinence and impotence. The
crux of the practice dilemma [13] is the need for improved
noninvasive preoperative techniques that can more accurately
measure tumor volume and extent, and thereby more clearly
indicate the need for surgery. Several measures of the pathologic
state of prostate cancer have been proposed to allow stratifica-
tion of patients into either treatment or “watchful waiting.”
These measures include prostate tumor size and microvessel
density, which have been shown to be useful indicators of the
metastatic potential of the tumor.

An important application of volume modeling in prostate
cancer treatment is shown in Figure 45.27 where 3D MRI scans
of the prostate gland and surrounding region are segmented
and rendered in four different views, with transparency [54, 58].
The ability to visualize the tumor in relationship to the intricate
anatomic structures in this region, including the neurovascular

bundles and seminal vesicles, is helpful to preoperative plan-
ning of surgical approaches to tumor resection which spare the
critical tissues [27]. The lower right panel shows the tumor next
to the urethra as it courses through the prostate, and the faint
shadow of a seminal vesicle can be seen adjacent to the tumor
in the background. The accurate localization of the prostate
tumor relative to critical anatomic structures, such as the uri-
nary sphincter, seminal vesicles, and neurovascular bundles,
improves physician navigation and performance in resection
of pathology during the prostatectomy procedure.

Three-dimensional visualization can also be applied to histo-
logical sections that have been obtained from prostate biopsies
[28]. Preliminary findings show that the ratio of gland vol-
ume to vessel length (as measured in 3D reconstructions of
serial microscope sections) exhibits a twofold increase between
benign and malignant tumors [28]. Shown in Figure 45.28
is a comparison of 3D-rendered biopsy specimens from two
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FIGURE 45.29 Dynamic volume models of beating heart and coronary arteries at end-diastole and end-systole (left–right ) seen from opposite
(180E) viewpoints (top–bottom). (See also color insert).

different sites within the prostate gland in a patient with prostate
cancer. The normal tissue shows a very characteristic circumfer-
ential pattern of the microvessels relative to the glandular tissue.
In the region containing the adenocarcinoma, the pattern of
microvessels is tortuous and radically diffused throughout the
glandular volume. The volume of tissue required for the analy-
sis is similar to that obtained via needle biopsy [75]. Therefore,
a procedure of image-guided stereotactic biopsy may be com-
bined with 3D analysis of the biopsy sample to (1) provide a
marker for presurgical stage and outcome, (2) improve patient
population stratification and eliminate unnecessary surgeries,
and (3) serve as high-accuracy location and extent informa-
tion to improve the outcome of necessary surgeries. The use of
preacquired 3D MRI images of the pelvis to guide needle biopsy
will result in fewer needle insertions being required to reliably
sample a suspicious tumor. The 3D tissue analysis may provide a
reliable and sensitive marker of metastatic potential, improving
the confidence of surgical decisions and potentially reducing the
total number of prostatectomies, particularly in elderly patients.

45.4.4 Cardiac and Coronary Artery Disease

There are significant evolving applications of 3D interactive
visualization in the treatment of heart and coronary artery
disease [14, 22]. Figure 45.29 shows unique visualizations

of rendered reconstructions from the Mayo Dynamic Spatial
Reconstructor [52]. These volume models show the left ven-
tricular chamber at end-diastole and end-systole with the
associated coronary artery tree at the same two points in the
cardiac cycle. The two views are 180˚ apart. Similar dynamic
visualizations are possible using data from modern multidetec-
tor CT (MDCT) scanners, emerging cardiac MRI technology,
and new 3D ultrasound devices, and permit quantitative assess-
ment of cardiac function, including ejection fractions, coronary
flow, and myocardial mechanics and perfusion.

Through use of intravascular ultrasound (IVUS) imaging
catheters, the intraluminal space of the coronary arteries can
be imaged and various segmentation and rendering algorithms
applied to do quantitative analysis of plaques and narrowing
of arteries [16, 24, 43]. The image can also be used to guide
precise placement of stents in the coronary arteries to effec-
tively recover normal functional flow and minimize restenosis.
IVUS images can be submitted to multispectral analysis [39]
for quantitative characterization of the lumen, including the
atherosclerotic plaques. These spectral characteristics can be
compared with histological analysis of the diseased arteries
[43, 69] to determine specific attributes of the plaques that
are associated with the multispectral patterns in the images.
This information can be used to quantitatively determine the
disposition of the plaques to rupturing [14] and producing
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thrombi (“plaque vulnerability”) as well as their susceptibi-
lity to focused treatment by targeted local delivery of drugs or
radiation. The reconstructed lumen and plaque burden can be
accurately modeled and rendered in three dimensions, and each
IVUS cross-section registered to it for examination and precise
determination of the stenosis, extent of plaquing, and localiza-
tion of the stent, as illustrated in Figure 45.30. Re-examination
or review display of the pull-back sequence of images can be
accomplished by pointing at locations on the 3D-rendered
lumen or running the sequence forward and backward while
the cursor moves on the 3D model. The luminal surface may
be color-coded with local cross-sectional area, effective radius,
and shortest distance to the centroid to draw specific attention
to the stenoses. Local statistics about the lumen can be com-
puted and read out as the reference images change, also shown
in Figure 45.30.

Application of interactive volume modeling and visualiza-
tion can also be used for image guidance of cardiac ablation
procedures to treat chronic arrhythmias in the heart [9, 44, 45,
54, 58, 66]. Patients with cardiac arrhythmias can be treated
with direct surgical resection of the heart muscle involved
or by catheter-based ablation of the affected anatomic region
using focused high-energy beams. A 3D-image-guided proce-
dure can provide detailed real-time four-dimensional anatomy
and electrophysiology of a patient’s heart to the electrophysiol-
ogist or the cardiologist in an interactive visual context during
the ablation procedure. Three-dimensional views of the heart
in motion can be created from any point of view inside or

Percent occlusion: 55%
Minimum diameter: 2.2 mm
Length of stenosis: 12 mm
Volume: 152 mm 3

FIGURE 45.30 Three-dimensional volume model of coronary artery
reconstructed from IVUS scan through a segment showing plaque
burden and regions of vessel narrowing. Individual IVUS sections
can be precisely registered and localized relative to this vessel volume
model. Quantitative analysis of coronary artery lumen and composit-
ing plaque facilitates both accurate diagnosis and effective therapeutic
decisions. (See also color insert).

outside the heart with progression of nerve activation signals
shown as a continuous pattern of colors mapped onto the
walls of the heart chambers. The displays can be created from
a model consisting of time-varying dynamic geometry of the
inner and outer surfaces of the beating heart, combined with
time and spatially varying conduction field variables describing
the dynamic electrophysiology activity at every point on the
moving surfaces. Motion captured by the real-time ultrasound
images from different orientations are registered to and used to
deform the 3D heart model so it will closely approximate the
specific global motions of the individual patient’s heart dur-
ing the procedure. The intracatheter electrodes are identified
in the ultrasound images and localized globally on the heart
model. Individualized digitized electrode signals are analyzed
and used to produce a dynamic parametric display consisting
of calibrated color values on the heart surface at each electrode
location. The global mapping for each instance of the cardiac
cycle can be computed by advanced piecewise interpolation
algorithms along the surface between electrode positions.

Realistic and interactive real-time manipulation of the model
can be accomplished using virtual reality display technology,
such as head-mounted displays [44]. In such an immersive envi-
ronment, the electrophysiologist or cardiologist will be able
to view the dynamic three-dimensional visualization simply
by moving his or her head around and through the model.
This can all be accomplished in real time during the procedure.
Figure 45.31 shows such an image-guided ablation procedure,
wherein the catheter can be precisely positioned under visual
guidance to point toward the offending region of tissue (left
panel). The ablation can be accurately accomplished under such
guidance, without the time-consuming “trial-and-error” itera-
tive sequence routinely used in this procedure. Following the
ablation, normal rhythm is returned and can be observed by
the same mapping technique (right panel).

45.4.5 Craniofacial Surgery Planning

Three-dimensional volume modeling from CT images has
long been used to help plan craniofacial surgery procedures
[29, 54, 58–60]. Figure 45.32 shows a procedure for facial
reconstruction using the normal contralateral side to design a
prosthetic implant that will exactly fit the deficit in the damaged
side (mirror imaging), in this case a hole left by an old facial
fracture. The implant can be designed on the workstation and
the data taken to a rapid prototyping system (physical model
building device) where the implant is constructed to the precise
size and shape required and taken into the operating room for
placement in the patient.

45.4.6 Surgical Separation of Conjoined Twins

A compelling use of this advanced 3D visualization techno-
logy under very unique circumstances has been applied several
times at the Mayo Clinic to the presurgical planning for the
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FIGURE 45.31 Left panel shows close-up of endocardial surface with tissue target in line with ablation catheter, which has been placed in correct
position using real-time visualization of anatomy (from ultrasound) accurately registered to and mapped with electrophysiologic myocardial
activation times (from electrode array). Right panel shows activation map return to normal after ablation. (See also color insert).

Old facial fracture Mirror imaging Bone graft
planning

44 mm

28 mm

34 mm

12 mm

FIGURE 45.32 Three-dimensional volume rendering of CT scan in craniofacial surgery planning using mirror imaging to compute precise
implants for placement in patients with anatomic defects.

separation of conjoined twins [56, 58, 59]. While occurring in
only 1 in 250,000 live births, conjoined twins are identical twins
with parts of their physical anatomy joined at birth. Imaging
and advanced 3D display play a critical role in understanding the
detailed anatomy of both separate and shared organs, leading to
critically important decisions in the surgical plan. Figure 45.33
shows a recent example of conjoined twins that were joined
from the chest through part of the abdomen. Several organs
were shared and tangled together, including the liver, pancreas,
and small intestine. The hearts were separate, but were over-
lapping and out of normal position anatomically. Of primary
concern was the shared blood supply and bile drainage system
in the shared liver. Comprehensive imaging studies were con-
ducted to provide details of the anatomic structure and function
of the organ systems in the twins. Contrast-enhanced CT scans
were performed separately on each baby to determine individ-
ual blood supplies to the liver, with a combination of these scans
via registration and fusion revealing areas of joint perfusion

(lower left in Figure 45.33). CT colangiography was performed
for detailed visualization of the biliary system, including the gall
bladders, bile ducts, and liver.

Registration and fusion of all 3D volume images, followed by
extensive segmentation of key anatomic structures, led to the
creation of comprehensive 3D anatomic and functional visu-
alizations for the surgeons, as shown in Figure 45.33. The top
left panel illustrates the skeletal structure, individual hearts (red
and blue), the joined liver (dark red), entangled intestines (yel-
low), and separate gall bladders (green). Each heart, along with
the associated major vessels, was segmented from the indivi-
dual contrast-enhanced CT scans. The liver and gall bladders
were derived from the CT colangiogram, and the intestines and
skeletal structure segmented from a dual-injection contrast CT
volume. The combined display of all the anatomic components
derived from multiple scan volumes demonstrates the power of
registration, fusion, and segmentation in producing a combined
visualization not possible by any other means.
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FIGURE 45.33 Visualizations of segmented 3D anatomic structures in conjoined twins. Individual skeletal structures, hearts and major vessels
(red and blue), and gall bladders (green) are shown in upper left, along with shared liver (dark red) and intestines (yellow). Detailed view of
blood vessels and biliary system in shared liver is shown in upper right. Areas of individual blood perfusion (red and blue) and shared perfusion
(yellow) in the liver are shown in lower left. Lower right shows a physical model of the shared liver produced from a CT volume image. (See also
color insert).

Of critical importance in this case was the vascular and biliary
anatomy of the liver. The visualization in the upper right of
Figure 45.33 shows a more detailed view of the liver with the
combined blood supply (red for one baby, blue for the other)
and the gall bladders and bile ducts (green). The bottom left
panel is a perfusion map of the liver derived from the individ-
ual contrast-enhanced scans, where the red indicates the region
of the liver perfused by one baby and the blue perfused by
the other. Of particular interest is a region of perfusion over-
lap (yellow), which along with the individually perfused regions
provides a better understanding of how the liver may be divided
to give each baby a working liver. In addition to these visual-
izations, life-size physical models of key anatomic components,
such as the liver, were constructed using volume modeling tech-
niques. A photograph of the physical liver model is shown in
the bottom right of Figure 45.33. The successful outcome of
the separation surgery is credited in part to these advanced 3D
visualizations and volume models.

45.4.7 Radiation Treatment Planning

Figure 45.34 shows application of 3D visualization to radiation
treatment planning. Through use of fused CT and MRI scans,
3D dosimetry can be computed for simulated treatment beams
positioned to maximize dose to the target (tumor) and mini-
mize dose to critical structures in the treatment field. This is
called conformal therapy [4, 74], where the beam profiles are
actually “shaped” to deliver cancer-killing dose to the irregular

tumor volume while sparing eloquent tissues in the treat-
ment field. Critical structures can be segmented and displayed
separately with the regional dose superimposed in order to
visually evaluate both the efficacy and safety margins of the
proposed treatment plan.

45.4.8 Microscopy Imaging

Application of 3D visualization and analysis techniques to the
field of microscopy has grown significantly in recent years
[8, 17, 37, 40, 47, 54, 58, 64]. These techniques have been success-
fully applied in light and electron microscopy, but the advent
of confocal microscopy and other 3D microscope modalities
has led to the rapid growth of 3D visualization of microscopic
structures. Light microscope images digitized directly from the
microscope can provide a 3D volume image by incrementally
adjusting the focal plane, usually followed by image process-
ing to deconvolve the image, removing the blurred out-of-focus
structures. Similarly, electron microscopy will generate multiple
planes by controlling the plane of focus, with further process-
ing necessary for selective focal plane reconstruction. Confocal
microscopy, however, uses laser energy with precise optical con-
trol to selectively image specific parallel sections within the
microscopic structure. Multiple image planes can be selected,
providing direct volume image acquisition without the need
to remove signal from structures outside the plane of interest.
Often these images are acquired using specific fluorescent dyes
to selectively image a particular component of the structure
under study.
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FIGURE 45.34 Three-dimensional visualization in radiation treatment planning. Dosimetry from several simulated treatment beams can be
fused with 3D images to shape dose to tumor site. Critical structures such as the spinal cord and optic nerves can be segmented and examined
individually to evaluate local dose and decide whether the plan needs to be adjusted.

Visualization techniques have been used to examine the
morphology and function of neurons from selected gan-
glia in the mammalian peripheral autonomic nervous system
[17, 40, 64]. To understand neuron physiology, one needs infor-
mation about a neuron’s shape and dimensions to integrate and
localize multiple synaptic inputs. The number and location
of selective neurotransmitter receptor sites provides valuable
information about the potential response of a neuron to a
specific neurotransmitter. Such visualization applications may
be termed “spatial physiology” [17, 40, 64], in which func-
tion of microstructures is studied. Three-dimensional images
of miniature structures, including the ganglia and individual
cells contained therein, obtained with 3D microscopy can be
appropriately positioned within 3D renderings or models of
the body to provide visualizations that span several orders of
magnitude in scale space. Figure 45.35 illustrates such a global
framework and context for study of microstructures. This fig-
ure shows two successively magnified views (top) at centimeter
scale of a portion of the torso model obtained from the Visible
Human Male that contains the inferior mesenteric ganglia, and
two magnified views (bottom) at micron scale showing individ-
ual neuron models within the ganglia as obtained by confocal
microscopy. The individual neuron models are produced the
same way organ models are obtained from medical scanners,
previously described. This type of spatial synthesis of micro and
gross anatomy visualizations demonstrates the potential for a
seamless integration of human anatomy and spatial physiologic
function from macroscopic to microscopic levels.

45.5 Discussion

The advances in medical imaging capabilities since 1970 have
been developed, applied, and accepted at a volume and pace
unprecedented in medical history. Computer and digital radio-
graphic technology and techniques have significantly expanded
the possibilities for accurate, quantitative, and noninvasive
visualization and measurement of intracorporeal morphology
and function. These advances have provided a variety of new
diagnostic methodologies for clinical evaluation of health and
disease. Three-dimensional imaging and visualization methods
are emerging as the method of choice in many clinical exam-
inations, replacing some previously routine procedures, and
significantly complementing others. The continuing evolution
of 3D imaging and visualization promises even greater capabil-
ities for accurate noninvasive clinical diagnoses and treatment,
as well as for quantitative biological investigations and scien-
tific exploration, targeted at ever increasing our understanding
of the human condition and how to improve it.

The effective extraction of all information contained in
3D and 4D images requires new conceptual approaches and
methodologies in image processing. Multidimensional image
visualization and analysis are largely exploratory processes,
directed at understanding better the nature of the object
imaged. There are essentially three major tasks associated
with any analysis of biomedical imagery: (1) display, (2) edit-
ing, and (3) measurement. These tasks are interrelated, often
overlapping, and co-exist in a rather classical channel of
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FIGURE 45.35 Synthesis of cell models into gross anatomic framework using the Visible Human Male torso model. Upper left panel shows
gross anatomy of spine and dorsal root at centimeter scale. Upper right panel shows magnified view of synthesized conductance pathway through
dorsal root toward mesenteric ganglia. Lower panels show two groups of neurons within ganglia at micron scale. The individual neurons are
modeled and rendered from confocal microscope data, just as macrostructures (e.g., the brain) are produced from CT or MRI scans. Virtual
endoscopic flythroughs along the conduction pathways can be produced, beginning at the gross anatomy level for spatial context, proceeding to
finer and finer resolutions through magnification of field of view, ending in virtual exploration within single cells. (See also color insert).

feedback, feed-forward information passing. The capabilities
of a multidimensional image visualization and analysis system
should be fine-tuned to effectively facilitate these tasks and to
provide adroit exploration of all relationships (i.e., structural
and functional) existing within the data. The rate of evolu-
tion and acceptance of 3D biomedical imaging systems will be
increasingly dependent on effective, compliant, and extensible
software packages and user interfaces [3, 25, 58]. In the near
term these will be carefully customized and implemented with
user-specific needs and style in mind, but there are exciting
prospects for a universal interface for multiple applications that
will greatly facilitate the uniform delivery of health care and
sharing of health care resources, resulting in significant savings
in health care costs.

It is perhaps of value to consider where the recent impressive
and continuing advances in biomedical imaging and visualiza-
tion capabilities are leading and how they fit into the overall
future picture of diagnostic medicine and associated biolog-
ical disciplines. Without question, the cutting edge in these
disciplines and most other aspects of the biomedical sciences
is increasingly in the molecular biochemical and biophysical
spheres, and quite certainly the most important advances dur-
ing the foreseeable future will be in the realms of molecular and
genetic engineering and mapping. The increases in biomed-
ical investigative power being provided by current imaging
modalities to obtain dynamic quantitative images of structural-
functional relationships within organs and organ systems by
minimally invasive methods will provide the basis for the last
frontier of continued important advances in these disciplines,

at least in the macroscopic realm [3, 25]. It is a reasonable
prediction that further development and exploitation of these
techniques will be of continuing importance, but increasingly
significant future advances will most probably be at the molecu-
lar and submolecular rather than at macroscopic anatomic and
functional levels.

Perhaps the most exciting development in this regard will
be the ability to image (measure) accurately the spatial distri-
bution and magnitude of any selected chemical element and/or
metabolic function in any region of the body. This challenging,
but not impossible, extension of the state of the art in medi-
cal imaging might be called “tomochemistry” or “biochemical
imaging.”Even though the state of the art in the current techno-
logy of energy sources and selective detectors does not permit
practical application, they do exist in experimental laborato-
ries. For example, rapid progress is being made in the field
of laser imaging. Furthermore, miniature detectors with ade-
quate energy discriminating and signal-to-noise characteristics
are being developed. Thus, fabrication of a clinically useful
3D reconstruction machine with both anatomic structural and
chemical composition sensing capabilities is possible in the near
future. The “ideal” 3D imaging and visualization system would
provide simultaneously and rapidly all of the advantages and
eliminate all of the limitations of the different current imaging
modalities, as well as those yet to be conceived.

The extent to which such a system may ultimately evolve is
speculation, but it is evident that 21st century medicine will
represent a culmination of continuing evolutionary progress
in multidimensional imaging and visualization methods. The
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medical and scientific communities can expect to benefit
in improved health care from a continuum of marvelous
synergistic advances in imaging and visualization technology.
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46.1 Introduction

Volume visualization is a method of extracting meaningful
information from volumetric data using interactive graphics
and imaging. It is concerned with volume data representa-
tion, modeling, manipulation, and rendering [24, 80, 81, 136].
Volume data are three-dimensional (possibly time-varying)
entities that may have information inside them, might not
consist of tangible surfaces and edges, or might be too volu-
minous to be represented geometrically. They are obtained by
sampling, simulation, or modeling techniques. In medicine,
for example, a sequence of 2D slices obtained from Magnetic
Resonance Imaging (MRI), Computed Tomography (CT),
functional MRI (fMRI), or Positron Emission Tomography
(PET), is 3D reconstructed into a volume model and visual-
ized for diagnostic purposes or for planning of treatment or
surgery. The same technology is often used with industrial
CT for non-destructive inspection of composite materials or
mechanical parts. Similarly, confocal microscopes produce data
which is visualized to study the morphology of biological struc-
tures. In many computational fields, such as in computational

fluid dynamics, the results of simulations typically running on a
supercomputer are often visualized as volume data for analysis
and verification. In addition, the area of volume graphics [82]
has been expanding, and many traditional geometric computer
graphics applications, such as CAD and flight simulation, have
been exploiting the advantages of volume techniques.

Over the years many techniques have been developed to
render volumetric data. Since methods for displaying geomet-
ric primitives were already well-established, most of the early
methods involve approximating a surface contained within the
data using geometric primitives. When volumetric data are
visualized using a surface rendering technique, a dimension of
information is essentially lost. In response to this, volume ren-
dering techniques were developed that attempt to capture the
entire 3D data in a single 2D image. Volume rendering conveys
more information than surface rendering images, but at the cost
of increased algorithm complexity, and consequently increased
rendering times. To improve inter-activity in volume rendering,
many optimization methods both for software and for graphics
accelerator implementations, as well as several special-purpose
volume rendering machines, have been developed.

Copyright © 2008 by Elsevier, Inc.
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46.2 Volumetric Data

A volumetric data set is typically a set V of samples (x , y , z , v),
also called voxels, representing the value v of some property
of the data, at a 3D location (x , y , z). If the value is simply a
0 or an integer i within a set I , with a value of 0 indicating
background and the value of i indicating the presence of an
object Oi , then the data is referred to as binary data. The data
may instead be multi-valued, with the value representing some
measurable property of the data, including, for example, color,
density, heat or pressure. The value v may even be a vector,
representing, for example, velocity at each location, results from
multiple scanning modalities, such as anatomical (CT, MRI)
and functional imaging (PET, fMRI), or color (RGB) triples,
such as the Visible Human cryosection dataset [73]. Finally, the
volume data may be time-varying, in which case V becomes a
4D set of samples (x , y , z , t , v).

In general, the samples may be taken at purely random loca-
tions in space, but in most cases the set V is isotropic containing
samples taken at regularly spaced intervals along three orthog-
onal axes. When the spacing between samples along each axis
is a constant, but there may be three different spacing con-
stants for the three axes the set V is anisotropic. Since the set
of samples is defined on a regular grid, a 3D array (also called
the volume buffer, 3D raster, or simply the volume) is typically
used to store the values, with the element location indicating
position of the sample on the grid. For this reason, the set V
will be referred to as the array of values V (x , y , z), which is
defined only at grid locations. Alternatively, either rectilinear,
curvilinear (structured), or unstructured grids, are employed
(e.g., [188]). In a rectilinear grid the cells are axis-aligned, but
grid spacings along the axes are arbitrary. When such a grid has
been non-linearly transformed while preserving the grid topol-
ogy, the grid becomes curvilinear. Usually, the rectilinear grid
defining the logical organization is called computational space,
and the curvilinear grid is called physical space. Otherwise the
grid is called unstructured or irregular. An unstructured or irreg-
ular volume data is a collection of cells whose connectivity has
to be specified explicitly. These cells can be of an arbitrary shape
such as tetrahedra, hexahedra, or prisms.

46.3 Rendering via Geometric Primitives

To reduce the complexity of the volume rendering task, sev-
eral techniques have been developed which approximate a
surface contained within the volumetric data by ways of geo-
metric primitives, most commonly triangles, which can then
be rendered using conventional graphics accelerator hardware.
A surface can be defined by applying a binary segmentation
function B(v) to the volumetric data, where B(v) evaluates to 1
if the value v is considered part of the object, and evaluates to
0 if the value v is part of the background. The surface is then
contained in the region where B(v) changes from 0 to 1.

Most commonly, B(v) is either a step function B(v) = 1,
∀v ≥ viso (where viso is called the iso-value),or an interval [v1,v2]
in which B(v) = 1, ∀v ∈ [v1, v2] (where [v1, v2] is called the
iso-interval). For the former, the resulting surface is called the
iso-surface, while for the latter the resulting structure is called
the iso-contour. Several methods for extracting and rendering
iso-surfaces have been developed, a few are briefly described
here. The Marching Cubes algorithm [110] was developed to
approximate an iso-valued surface with a triangle mesh. The
algorithm breaks down the ways in which a surface can pass
through a grid cell into 256 cases, based on the B(v) mem-
bership of the 8 voxels that form the cell’s vertices. By ways of
symmetry, the 256 cases reduce to 15 base topologies, although
some of these have duals, and a technique called Asymptotic
Decider [146] can be applied to select the correct dual case and
thus prevent the incidence of holes in the triangle mesh. For
each of the 15 cases (and their duals), a generic set of triangles
representing the surface is stored in a look-up table. Each cell
through which a surface passes maps to one of the base cases,
with the actual triangle vertex locations being determined using
linear interpolation of the cell vertices on the cell edges (see
Figure 46.1). A normal value is estimated for each triangle ver-
tex, and standard graphics hardware can be utilized to project
the triangles, resulting in a relatively smooth shaded image of
the iso-valued surface.

When rendering a sufficiently large data set with the
Marching Cubes algorithm, with an average of 3 triangles per
cell, millions of triangles may be generated, and this can impede
interactive rendering of the generated polygon mesh. To reduce
the number of triangles, one may either post-process the mesh
by applying one of the many mesh decimation methods (see
e.g., [54, 71, 175]), or produce a reduced set of primitives
in the mesh generation process, via a feature-sensitive octree
method [178] or discretized Marching Cubes [131]. The fact
that during viewing many of the primitives may map to a single
pixel on the image plane led to the development of screen-
adaptive surface rendering algorithms that use 3D points as
the geometric primitive. One such algorithm is Dividing Cubes
[28], which subdivides each cell through which a surface passes
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FIGURE 46.1 A grid cell with voxel values as indicated, intersected by
an iso-surface (iso-value = 125). This is base case #1 of the Marching
Cubes algorithm: a single triangle separating surface interior (black
vertex) from exterior (white vertices). The positions of the triangle
vertices are estimated by linear interpolation along the cell edges.
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into subcells. The number of divisions is selected such that the
subcells project onto a single pixel on the image plane. Another
algorithm which uses 3D points as the geometric primitive is
the Trimmed Voxel Lists method [184]. Instead of subdividing,
this method uses one 3D point (with normal) per visible surface
cell, projecting that cell on up to three pixels of the image plane
to insure coverage in the image.

The traditional Marching Cubes algorithm simply marches
across the grid and inspects every cell for a possible iso-surface.
This can be wasteful when users want to interactively change the
iso-value, viso, and iso-surface to explore the different surfaces
embedded in the data. By realizing that an iso-surface can only
pass through a cell if at least one voxel has a value above or equal
viso and at least one voxel has a value below or equal viso, one can
devise data structures that only inspect cells where this criterion
is fulfilled. Examples are the NOISE algorithm [108] that uses a
K-D tree embedded into span-space for quickly identifying the
candidate cells (this method was later improved by [27] who
used an interval tree), as well as the ISSUE algorithm [179].
Finally, since often triangles are generated that are later occluded
during the rendering process, it is advisable to visit the cells in
front-to-back order and only extract and render triangles that
fall outside previously occluded areas [53].

46.4 Direct Volume Rendering: Prelude

Representing a surface contained within a volumetric data set
using geometric primitives can be useful in many applications,
however, there are several main drawbacks to this approach.
First, geometric primitives can only approximate surfaces con-
tained within the original data. Adequate approximations may
require an excessive amount of geometric primitives. Therefore,
a trade-off must be made between accuracy and space require-
ments. Second, since only a surface representation is used, much
of the information contained within the data is lost during

vmin

vmax

viso

viso

Candidate cells

FIGURE 46.2 Each grid cell is characterized by its lowest (vmin) and
its highest (vmax) voxel value, and represented by a point in span space.
Given an iso-value viso, only cells that satisfy both vmin ≤ viso and vmax ≥
viso contain the iso-surface and are quickly extracted from a K-D tree
[108] or interval-tree [27] embedding of the span-space points.

the rendering process. For example, in CT scanned data useful
information is contained not only on the surfaces, but within
the data as well. Also, amorphous phenomena, such as clouds,
fog, and fire cannot be adequately represented using surfaces,
and therefore must have a volumetric representation, and must
be displayed using volume rendering techniques.

However, before moving to techniques that visualize the data
directly, without going through an intermediate surface extrac-
tion step, we first discuss in the next section some of the general
principles that govern the theory of discretized functions and
signals, such as the discrete volume data. We also present some
specialized theoretical concepts, more relevant in the context of
volume visualization.

46.5 Volumetric Function Interpolation

The volume grid V only defines the value of some measured
property f (x , y , z) at discrete locations in space. If one requires
the value of f (x , y , z) at an off-grid location (x , y , z), a pro-
cess called interpolation must be employed to estimate the
unknown value from the known grid samples V (x , y , z). There
are many possible interpolation functions (also called filters or
filter kernels). The simplest interpolation function is known
as zero-order interpolation, which is actually just a nearest-
neighbor function, i.e., the value at any location (x , y , z) is
simply that of the grid sample closest to that location:

f (x , y , z) = V (round(x), round(y), round(z)), (46.1)

which gives rise to a box filter (black curve in Figure 46.4). With
this interpolation method there is a region of constant value
around each sample in V . The human eye is very sensitive to the
jagged edges and unpleasant staircasing that result from a zero-
order interpolation, and therefore this kind of interpolation
gives generally the poorest visual results (see Figure 46.3a).

Linear or first-order interpolation (magenta curve in
Figure 46.4) is the next-best choice, and its 2D and 3D versions
are called bi-linear and tri-linear interpolation, respectively. It
can be written as 3 stages of 7 linear interpolations, since the

(a) (b)

FIGURE 46.3 Magnification via interpolation with (a) a box filter;
and (b) a bi-linear filter. The latter gives a much more pleasing result.
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FIGURE 46.4 Popular filters in the spatial domain: box (black), linear
(magenta), cubic (blue), Gaussian (red). (See also color insert).

filter function is separable in higher dimensions. The first 4
linear interpolations are along x :

f (u, v0,1, w0,1) = (1− u)(V (0, v0,1, w0,1)+ uV (1, v01, w0,1)).

(46.2)

Using these results, 2 linear interpolations along y follow:

f (u, v , w0,1) = (1− v)f (u, 0, w0,1)+ v f (u, 1, w0,1). (46.3)

One final interpolation along z yields the interpolation result:

f (x , y , z) = f (u, v , w) = (1− w)f (u, v , 0)+ wf (u, v , 1).
(46.4)

Here the u, v , w are the distances (assuming a cell of size 13,
without loss of generality) of the sample at (x , y , z) from the
lower, left, rear voxel in the cell containing the sample point
(e.g., the voxel with value 50 in Figure 46.1). A function interpo-
lated with a linear filter no longer suffers from staircase artifacts
(see Figure 46.3b). However, it has discontinuous derivatives at
cell boundaries, which can lead to noticeable banding when the
visual quantities change rapidly from one cell to the next.

A second-order interpolation filter that yields a f (x , y , z)
with a continuous first derivative is the cardinal spline function,
whose 1D function is given by (see blue curve in Figure 46.4):

h(u) =
⎛
⎜⎝ (a + 2)|u|3 − (a + 3)|u|2 + 1 0 ≤ |u| < 1

a|u|3 − 5a|u|2 + 8a|u| − 4a 1 ≤ |u| ≤ 2

0 |u| > 2

⎞
⎟⎠.

(46.5)

Here, u measures the distance of the sample location to the grid
points that fall within the extent of the kernel, and a = −0.5
yields the Catmull-Rom spline which interpolates a discrete
function with the lowest third-order error [85]. The 3D ver-
sion of this filter h(u, v , w) is separable, i.e., h(u, v , w) =
h(u)h(v)h(w), and therefore interpolation in 3D can be written
as a 3-stage nested loop.

A more general form of the cubic function has two param-
eters and the interpolation results obtained with different
settings of these parameters has been investigated by Mitchell
and Netravali [128]. In fact, the choice of filters and their
parameters always presents trade-offs between the sensitivity
to noise, sampling frequency ripple, aliasing (see below), ring-
ing, and blurring, and there is no optimal setting that works for
all applications. Marschner and Lobb [119] extended the filter
discussion to volume rendering and created a challenging vol-
umetric test function with a uniform frequency spectrum that
can be employed to visually observe the characteristics of differ-
ent filters (see Figure 46.5). Finally, Möller et al. [130] applied
a Taylor series expansion to devise a set of optimal n-th order
filters that minimize the (n + 1)-th order error.

Generally, higher filter quality comes at the price of wider
spatial extent (compare Figure 46.4) and therefore larger com-
putational effort. The best filter possible in the numerical sense
is the sinc filter, but it has infinite spatial extent and also
tends to noticeable ringing [128]. Sinc filters make excellent,
albeit expensive, interpolation filters when used in truncated
form and multiplied by a window function [119, 196], pos-
sibly adaptive to local detail [116]. In practice, first-order or
linear filters give satisfactory results for most applications, pro-
viding good cost-quality tradeoffs, but cubic filters are also used.
Zero-order filters give acceptable results when the discrete func-
tion has already been sampled at a very high rate, for example
in high-definition function lookup tables [216].

All filters presented thus far are grid-interpolating filters, i.e.,
their interpolation yields f (x , y , z) = V (x , y , z) at grid points
[198]. When presented with a uniform grid signal they also

(a) (b)

FIGURE 46.5 Marschner-Lobb test function, sampled into a 203grid:
(a) the whole function, (b) close-up, reconstructed and rendered with
a cubic filter.
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interpolate a uniform f (x , y , z) everywhere. This is not the case
with a Gaussian filter function (red curve in Figure 46.4) which
can be written as:

h(u, v , w) = b · e−a(u2+v2+w2). (46.6)

Here, a determines the width of the filter and b is a scale
factor. The Gaussian has infinite continuity in the interpolated
function’s derivative, but it introduces a slight ripple (about
0.1%) into an interpolated uniform function. The Gaussian is
most popular when a radially symmetric interpolation kernel is
needed [143, 214] and for grids that assume that the frequency
spectrum of f (x , y , z) is radially bandlimited [142, 197].

It should be noted that interpolation cannot restore sharp
edges that may have existed in the original function forg(x , y , z)
prior to sampling into the grid. Filtering will always smooth
or lowpass the original function somewhat. Non-linear filter
kernels [74] or transformations of the interpolated results [140]
are needed to recreate sharp edges, as we shall see later.

A frequent artifact that can occur is aliasing. It results from
inadequate sampling and gives rise to strange patterns that did
not exist in the sampled signal. Proper pre-filtering (bandlim-
iting) has to be performed whenever a signal is sampled below
its Nyquist limit, i.e., twice the maximum frequency that occurs
in the signal. Filtering after aliasing will not undo these adverse
effects. Figure 46.6 illustrates this by ways of an example, and
the interested reader may consult standard texts, such as [222]
and [49], for more detail.

(a) (d)

(b) (c) (e)

FIGURE 46.6 Anti-aliasing: (a) original image; (b) reduction by sim-
ple subsampling—disturbing patterns emerge, caused by aliasing the
higher frequency content; (c) blurring of (b) does not eliminate pat-
terns; (d) pre-filtering (blurring) of the original image reduces its high
frequency content; (e) subsampling of (d) does not cause aliasing due
to the prior bandlimiting operation.

The gradient of f (x , y , z) is also of great interest in volume
visualization, mostly for the purpose of estimating the amount
of light reflected from volumetric surfaces towards the eye (for
example, strong gradients indicate stronger surfaces and there-
fore stronger reflections). There are three popular methods to
estimate a gradient from the volume data [129]. The first com-
putes the gradient vector at each grid point via a process called
central differencing, expressed as⎡

⎣ gx

gy

gz

⎤
⎦ =

⎡
⎣ V (x − 1, y , z)

V (x , y − 1, z)
V (x , y , z − 1)

⎤
⎦−

⎡
⎣ V (x + 1, y , z)

V (x , y + 1, z)
V (x , y , z + 1)

⎤
⎦, (46.7)

and then interpolates the gradient vectors at a (x , y , z) using
any of the filters described above. The second method also uses
central differencing, but it does it at (x , y , z) by interpolating
the required support samples on the fly. The third method is
the most direct and employs a gradient filter [9] in each of the
three axis directions to estimate the gradients. These three gra-
dient filters could be simply the (u, v , w) partial derivatives of
the filters described above or they could be a set of optimized
filters [129]. The third method gives the best results since it only
performs one interpolation step, while the other two methods
have lower complexity and often have practical application-
specific advantages. An important observation is that gradients
are much more sensitive to the quality of the interpolation
filter since they are used in illumination calculations, which
consist of higher-order functions that involve the normal vec-
tors, which in turn are calculated from the gradients via
normalization [130].

46.6 Volume Rendering Techniques

In the next subsections various fundamental volume rendering
techniques are explored. Volume rendering or direct volume ren-
dering is the process of creating a 2D image directly from 3D
volumetric data, hence it is often called direct volume rendering.
Although several of the methods described in these subsections
render surfaces contained within volumetric data, these meth-
ods operate on the actual data samples, without generating the
intermediate geometric primitive representations used by the
algorithms in the previous section.

Volume rendering can be achieved using an object-order, an
image-order, or a domain-based technique. Hybrid techniques
have also been proposed. Object-order volume rendering tech-
niques use a forward mapping scheme where the volume data
is mapped onto the image plane. In image-order algorithms, a
backward mapping scheme is used where rays are cast from
each pixel in the image plane through the volume data to
determine the final pixel value. In a domain-based technique
the spatial volume data is first transformed into an alternative
domain, such as compression, frequency, and wavelet, and then
a projection is generated directly from that domain.
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46.6.1 Image-Order Techniques

There are four basic volume rendering modes: X-ray rendering,
Maximum Intensity Projection (MIP), iso-surface rendering and
full volume rendering, where the third mode is just a special case
of the fourth. These four modes share two common operations:
(i) They all cast rays from the image pixels, sampling the grid
at discrete locations along their paths, and (ii) they all obtain
the samples via interpolation, using the methods described in
the previous section. The modes differ, however, in how the
samples taken along a ray are combined. In X-ray, the interpo-
lated samples are simply summed, giving rise to a typical image
obtained in projective diagnostic imaging (Figure 46.7a), while
in MIP only the interpolated sample with the largest value is
written to the pixel (Figure 46.7b). In full volume rendering
(Figure 46.7c and d), on the other hand, the interpolated sam-
ples are further processed to simulate the light transport within
a volumetric medium according to one of many possible mod-
els. In the remainder of this section, we shall concentrate on the
full volume rendering mode since it provides the greatest degree
of freedom, although rendering algorithms have been proposed
that merge the different modes into a hybrid image generation
model [65].

The fundamental element in full volume rendering is the
volume rendering integral. In this section we shall assume the
low-albedo scenario, in which a certain light ray only scatters
once before leaving the volume. The low-albedo optical model
was first described by [11] and [78], and then formally derived

(b)

(c) (d)

(a)

FIGURE 46.7 CT head rendered in the four main volume rendering
modes: (a) X-ray; (b) MIP; (c) Iso-surface; (d) Translucent. (See also
color insert).

by [120]. It computes, for each cast ray, the quantity Iλ(x, r),
which is the amount of light of wavelength λ coming from ray
direction r that is received at point x on the image plane:

Iλ(x, r) =
L∫

0

Cλ(s)μ(s) exp

⎛
⎝− s∫

0

μ(t )dt

⎞
⎠ds. (46.8)

Here L is the length of ray r. We can think of the volume as
being composed of particles with certain mass density values
μ (Max calls them light extinction values [120]). These values,
as well as the other quantities in this integral, are derived from
the interpolated volume densities f (x , y , z) via some mapping
function. The particles can contribute light to the ray in three
different ways: via emission [172], transmission, and reflec-
tion [202], thus Cλ(s) = Eλ(s)+ Tλ(s)+ Rλ(s). The latter two
terms, Tλ and Rλ, transform light received from surrounding
light sources, while the former, Eλ, is due to the light-generating
capacity of the particle. The reflection term takes into account
the specular and diffuse material properties of the particles. To
account for the higher reflectivity of particles with larger mass
densities, one must weight Cλ by μ. In low-albedo, we only
track the light that is received on the image plane. Thus, in
Equation 46.8, Cλ is the portion of the light of wavelength λ
available at location s that is transported in the direction of r.
This light then gets attenuated by the mass densities of the parti-
cles along r, according to the exponential attenuation function.

Rλ(s) is computed via the standard illumination equa-
tion [49]:

R(s) = kaCa + kdClCo(s)(N (s) · L(s))+ ksCl(N (s) ·H (s))ns ,
(46.9)

where we have dropped the subscript λ for reasons of brevity.
Here, Ca is the ambient color, ka is the ambient material coef-
ficient, Cl is the color of the light source, Co is the color of the
object (determined by the density-color mapping function), kd

is the diffuse material coefficient, N is the normal vector (deter-
mined by the gradient), L is the light direction vector, ks is the
specular material coefficient, H is the halfvector, and ns is the
Phong exponent.

Equation 46.8 only models the attenuation of light from s
to the eye (blue ray in Figure 46.8). But the light received at s
is also attenuated by the volume densities on its path from the
light source to s (red ray in Figure 46.8). This gives rise to
the following term for Cl in Equation 46.9, which is now
dependent on the location s:

Cl(s) = CL exp

⎛
⎝− T∫

s

μ(t )dt

⎞
⎠. (46.10)

Here, CL is the color of the lightsource and T is the distance
from s to the light source (see Figure 46.8). The inclusion of this
term into Equation 46.9 produces volumetric shadows, which
give greater realism to the image [151, 232] (see Figure 46.9).
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Sample point s

Delivered light
Light source

Reflected light

Eye

FIGURE 46.8 Transport of light to the eye.

FIGURE 46.9 CT lobster rendered without shadows (left ) and with
shadows (right ). The shadows on the wall behind the lobster as well as
the self-shadowing of the legs creates greater realism. (See also color
insert).

In practice, applications that compute volumetric shadows are
less common, due to the added computational complexity,
but an interactive hardware-based approach has been recently
proposed [90, 91].

The analytic volume rendering integral cannot, in the general
case, be computed efficiently, if at all, and therefore a variety of
approximations are in use. An approximation of Equation 46.8
can be formulated using a discrete Riemann sum, where the
rays interpolate a set of samples, most commonly spaced apart
by a distance�s:

Iλ(x, r) =
L/�s−1∑

i=0

Cλ(i�s)μ(i�s)�s
i−1∏
j=0

exp(−μ(j�s)�s).

(46.11)

A few more approximations make the computation of this
equation more efficient. First, the transparency t (i�s) is def-
ined as exp(−μ(i�s)�s). Transparency assumes values in the
range [0.0, 1.0]. The opacity α(i�s) = (1− t (i�s)) is the
inverse of the transparency. Further, the exponential term in
Equation 46.11 can be approximated by the first two terms
of its Taylor series expansion: t (i�s) = exp(−μ(i�s)�s) ≈
1– μ (i�s) �s. Then, one can write: μ(i�s)�s ≈ 1– t(i�s)
= α(i�s). This transforms (46.11) into the well-known com-
positing equation:

Iλ(x, r) =
L/�s−1∑

i=0

Cλ(i�s)α(i�s) ·
i−1∏
j=0

(1− α(j�s)). (46.12)

This is a recursive equation in (1− α) and gives rise to the
recursive front-to-back compositing formula [104, 164]:

c = C(i�s)α(i�s)(1− α)+ c

α = α(i�s)(1− α)+ α. (46.13)

Thus, a practical implementation of volumetric ray would tra-
verse the volume from front to back, calculating colors and
opacities at each sampling site, weighting these colors and
opacities by the current accumulated transparency (1− α),
and adding these terms to the accumulated color and trans-
parency to form the terms for the next sample along the ray.
An attractive property of the front-to-back traversal is that a ray
can be stopped once α approaches 1.0, which means that light
originating from structures further back is completely blocked
by the cumulative opaque material in front. This provides
for accelerated rendering and is called early ray termination.
An alternative form of Equation 46.13 is the back-to-front
compositing equation:

c = c(1− α(i�s))+ C(i�s)

α = α(1− α(i�s))+ α(i�s). (46.14)

Back-to-front compositing is a generalization of the Painter’s
algorithm and does not enjoy speed-up opportunities of early
ray termination and is therefore less frequently used.

Equation 46.12 assumes that a ray interpolates a volume
that stores at each grid point a color vector (usually a (red,
green, blue) = RGB triple) as well as an α value [104, 105].
There, the colors are obtained by shading each grid point using
Equation 46.9. Before we describe the alternative representa-
tion, let us first discuss how the voxel densities are mapped to
the colors C0 in Equation 46.9.

The mapping is implemented as a set of mapping functions,
often implemented as 2D tables, called transfer functions. By
ways of the transfer functions, users can interactively change the
properties of the volume dataset. Most applications give access
to four mapping functions: R(d), G(d), B(d), A(d), where d
is the value of a grid voxel, typically in the range of [0, 255]
for 8-bit volume data. Thus, users can specify semi-transparent
materials by mapping their densities to opacities <1.0, which
allows rays to acquire a mix of colors that is due to all tra-
versed materials. More advanced applications also give users
access to transfer functions that map ks(d), kd(d), ns(d), and
others. Wittenbrink pointed out that the colors and opacities at
each voxel should be multiplied prior to interpolation to avoid
artifacts on object boundaries [221].

The model in Equation 46.12 is called the pre-classified model,
since voxel densities are mapped to colors and opacities prior
to interpolation. This model cannot resolve high frequency
detail in the transfer functions (see Figure 46.10 for an exam-
ple), and also typically gives blurry images under magnification
[140]. An alternative model that is more often used is the post-
classified model. Here, the raw volume values are interpolated
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(a) (b)

FIGURE 46.10 Transfer function aliasing. When the volume is ren-
dered pre-classified, then both the red (density d1) and the blue (density
d2) voxels receive a color of zero, according to the transfer function
shown on the left. At ray sampling this voxel neighborhood at s would
then interpolate a color of zero as well. On the other hand, in post-
classified rendering, the ray at s would interpolate a density close to d12

(between d1 and d2) and retrieve the strong color associated with d12

in the transfer function. (See also color insert).

by the rays, and the interpolation result is mapped to color and
opacity:

Iλ(x, r) =
L/�s−1∑

i=0

Cλ( f (i�s), g (i�s)) α( f (i�s))

×
i−1∏
j=0

(1− α( f ( j�s))). (46.15)

The function value f (i�s) and the gradient vector g (i�s) are
interpolated from fd(x , y , z) using a 3D interpolation kernel,
and Cλ and α are now the transfer and shading functions that
translate the interpolated volume function values into color
and opacity. This generates considerably sharper images (see
Figure 46.11).

A quick transition from 0 to 1 at some density value di in
the opacity transfer function selects the iso-surface diso = di .
Thus, iso-surface rendering is merely a subset of full volume
rendering, where the ray hits a material with d = diso and then
immediately becomes opaque and terminates.

Post-classified rendering only eliminates some of the prob-
lems that come with busy transfer functions. Consider again
Figure 46.10a, and now assume a very narrow peak in the trans-
fer function at d12. With this kind of transfer function, a ray
point-sampling the volume at s may easily miss interpolating
d12, but may have interpolated it, had it just sampled the vol-
ume at s + δs. Pre-integrated transfer functions [45] solve this
problem by pre-computing a 2D table that stores the analyti-
cal volume rendering integration for all possible density pairs
(df , db). This table is then indexed during rendering by each ray
sample pair (db , df ), interpolated at sample locations �s apart
(see Figure 46.10b). The pre-integration assumes a piecewise

FIGURE 46.11 Pre-classified (left column) vs. post-classified render-
ing (right column). The latter yeilds sharper images since the opacity
and color classification is performed after interpolation. This elimi-
nates the blurry edges introduced by the interpolation filter. (See also
color insert).

linear function within the density pairs, and thus guarantees
that no transfer function detail falling between two interpolated
(df , db) fails to be considered in the discrete ray integration.

46.6.2 Object-Order Techniques

Object-order techniques decompose the volume into a set of
basis elements or basis functions which are individually pro-
jected to the screen and assemble into an image. If the volume
rendering mode is X-ray or MIP, then the basis functions can
be projected in any order, since in X-ray and MIP the volume
rendering integral degenerates to a commutative sum or MAX
operation. In contrast, depth ordering is required when solv-
ing for the generalized volume rendering integral (46.8). Early
work represented the voxels as disjoint cubes, which gave rise to
the cuberille representation [55, 68]. Since a cube is equivalent
to a nearest neighbor kernel, the rendering results were inferior.
Therefore, more recent approaches have turned to kernels of
higher quality.

To better understand the issues associated with object-order
projection it helps to view the volume as a field of basis func-
tions h, with one such basis kernel located at each grid point
where it is modulated by the grid point’s value (see Figure 46.12
where two such kernels are shown). This ensemble of mod-
ulated basis functions then makes up the continuous object
representation, i.e., one could interpolate a sample anywhere
in the volume by simply adding up the contributions of the
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Splat

Screen

FIGURE 46.12 Object-order volume rendering with kernal splatting
implemented as footprint mapping. (See also color insert).

modulated kernels that overlap at the location of the sample
value. Hence, one could still traverse this ensemble with rays
and render it in image-order. However, a more efficient method
emerges when realizing that the contribution of a voxel j with
value dj is given by dj ·

∫
h(s)ds, where s follows the line of kernel

integration along the ray. Further, if the basis kernel is radially
symmetric, then the integration

∫
h(s)ds is independent of the

viewing direction. Therefore, one can perform a pre-integration
of

∫
h(s)ds and store the result into a lookup-table. This table is

called the kernel footprint, and the kernel projection process is
referred to as kernel splatting or simply, splatting. If the kernel
is a Gaussian, then the footprint is a Gaussian as well. Since the
kernel is identical for all voxels, we can use it for all voxels. We
can generate an image by going through the list of object vox-
els in depth-order and performing the following steps for each
(see again Figure 46.12): (i) Calculate the screen-space coordi-
nate of the projected grid point; (ii) center the footprint around
that point and stretch it according to the image magnification
factor; (iii) rasterize the footprint to the screen, using the pre-
integrated footprint table and multiplying the indexed values
by the voxel’s value [214–216]. This rasterization can either be
performed via fast DDA procedures [116, 135], or in graphics
hardware, by texture-mapping the footprint (basis image) onto
a polygon [33].

There are three types of splatting: composite-only, axis-
aligned sheet-buffered, and image-aligned sheet-buffered splat-
ting. The composite-only method was proposed first [215] and
is the most basic one (see Figure 46.12). Here, the object points
are traversed in either front-to-back or back-to-front order.
Each is first assigned a color and opacity using the shading
(Equation 46.9) and the transfer functions. Then, each point
is splatted into the screen’s color and opacity buffers and the
result is composited with the present image (Equation 46.13).
In this approach, color bleeding and slight sparkling artifacts
in animated viewing may be noticeable since the interpolation
and compositing operations cannot be separated due to the
pre-integration of the basis (interpolation) kernel [216].

An attempt to solve this problem gave way to the axis-aligned
sheet-buffered splatting approach [214] (see Figure 46.13a).
Here, the grid points are organized into sheets (basically the
volume slices most parallel to the image plane), assigned a
color and opacity, and splatted into the sheet’s color and opacity
buffers. The important difference is that now all splats within
a sheet are added and not composited, while only subsequent
sheets are composited. This prevents potential color bleeding of

Add

Composite

Add

Composite

(a) (b)

FIGURE 46.13 Sheet-Buffered splatting: (a) axis-aligned — the entire
kernal within the current sheet is added, (b) image-aligned—only slices
of the kernels intersected by the current sheet-slab are added. (See also
color insert).

voxels located in consecutive sheets, due to the more accurate
reconstruction of the opacity layer. The fact that the voxel sheets
must be formed by the volume slices most parallel to the view-
ing axis leads to a sudden switch of the compositing order when
the major viewing direction changes and an orthogonal stack of
volume slices must be used to organize the voxels. This causes
noticeable popping artifacts where some surfaces suddenly
reflect less light and others more [134]. The solution to this
problem is to align the compositing sheet with the image plane
at all times, which gives rise to the image-aligned sheet-buffered
splatting approach [134, 139] (see Figure 46.13b). Here, a slab
is advanced across the volume and all kernels that intersect the
slab are sliced and projected. Kernel slices can be pre-integrated
into footprints as well, and thus this sheet-buffered approach
differs from the original one in that each voxel has to be con-
sidered more than once. The image-aligned splatting method
provides the most accurate reconstruction of the voxel field
prior to compositing and eliminates both color bleeding and
popping artifacts. It is also best suited for post-classified ren-
dering since the density (and gradient) field is reconstructed
accurately in each sheet. However, it is more expensive due to
the multiple splatting of a voxel.

The divergence of rays under perspective viewing causes
undersampling of the volume portions further away from the
viewpoint [192](see Figure 46.14). This leads to aliasing in these
areas. As was demonstrated in Figure 46.6, lowpassing can elimi-
nate the artifacts caused by aliasing and replace them by blur
(see Figure 46.15). For perspective rendering the amount of
required lowpassing increases with distance from the viewpoint.
The kernel-based approaches can achieve this progressive low-
passing by simply stretching the footprints of the voxels as a
function of depth, since stretched kernels act as lowpass filters
(see Figure 46.14). EWA (Elliptical Weighted Average) Splatting
[235] provides a general framework to define the screen-space
shape of the footprints, and their mapping into a generic
footprint, for generalized grids under perspective viewing. An
equivalent approach for raycasting is to split the rays in more
distant volume slices to always maintain the proper sampling
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zk

FIGURE 46.14 Stretching the basis function in volume layers z > zk ,
where the sampling rate of the ray grid is progressively less than the
volume resolution. (See also color insert).

FIGURE 46.15 Anti-aliased splatting: (left ) A checkerboard tunnel
rendered in perspective with equal-sized splats. Aliasing occurs at dis-
tances beyond the black square. (right ) The same checkerboard tunnel
rendered with scaled splats. The aliasing has been replaced by blur.

rate [150]. Kreeger et al. [95] proposed an improvement of this
scheme that splits and merges rays in an optimal way.

A major advantage of object-order methods is that only the
points (or other basis primitives, such as tetrahedral or hexa-
gonal cells [218]) which make up the object must be stored.
This can be advantageous when the object has an intricate
shape, with many pockets of empty space [124]. While raycast-
ing would spend much effort traversing (and storing) the empty
space, kernel-based or point-based objects will not consider the
empty space, neither during rendering nor for storage. However,
there are trade-offs, since the rasterization of a footprint takes
more time than the commonly used trilinear interpolation of
ray samples, because the radially symmetric kernels employed
for splatting must be larger than the trilinear kernels to ensure
proper blending. Hence, objects with compact structure are
more favorably rendered with image-order methods or hybrid
methods (see next section). Another disadvantage of object-
order methods is that early ray termination is not available
to cull occluded material early from the rendering pipeline.
The object-order equivalent is early point elimination, which
is more difficult to achieve than early ray termination. Finally,
image-order methods allow the extension of raycasting to ray-
tracing, where secondary and higher-order rays are spawned
at reflection sites. This facilitates mirroring on shiny surfaces,
inter-reflections between objects, and soft shadows.

There are a number of ways to store and manage point-based
objects. These schemes are mainly distinguished by their ability
to exploit spatial coherence during rendering. The lack of spatial
coherence requires more depth sorting during rendering and
also means more storage for spatial parameters. The least spatial
coherence results from storing the points sorted by density [32].
This has the advantage that irrelevant points, being assigned
transparent values in the transfer functions, can be quickly
culled from the rendering pipeline. However, it requires that
(x , y , z) coordinates and, possibly gradient vectors, are stored
along with the points since neighborhood relations are com-
pletely lost. It also requires that all points be view-transformed
first before they can be culled due to occlusion or exclusion
from the viewing pyramid. The method also requires that the
points be depth-sorted during rendering, or at least, tossed into
depth bins [137]. A compromise is struck by Ihm and Lee [75]
who sort points by density within volume slices only, which
gives implicit depth-ordering when used in conjunction with
an axis-aligned sheet-buffer method. A number of approaches
exist that organize the points into RLE (Run Length Encoded)
lists, which allow the spatial coordinates to be incrementally
computed when traversing the runs [86, 142]. However, these
approaches do not allow points to be easily culled based on their
density value. Finally, one may also decompose the volume into
a spatial octree and maintain a list of voxels in each node. This
provides depth sorting on the node-level.

A number of surface-based splatting methods have also
been described. These do not provide the flexibility of volume
exploration via transfer functions, since the original volume is
discarded after the surface has been extracted. They only allow a
fixed geometric representation of the object that can be viewed
at different orientations and with different shadings. A popular
method is shell-rendering [203] which extracts from the volume
(possibly with a sophisticated segmentation algorithm) a cer-
tain thin or thick surface or contour and represents it as a closed
shell of points. Shell-rendering is fast since the number of points
is minimized and the data structure used has high cache coher-
ence. More advanced point-based surface rendering methods
are QSplat [171], Surfels [160], and Surface Splats [234], which
have been predominantly developed for point-clouds obtained
with range scanners, but can also be used for surfaces extracted
from volumes [235].

46.6.3 Hybrid Techniques

Hybrid techniques seek to combine the advantages of the
image-order and object-order methods, i.e., they use object-
centered storage for fast selection of relevant material (which
is a hallmark of object-order methods) and they use early ray
termination for fast occlusion culling (which is a hallmark of
image-order methods).

The shear-warp algorithm [99] is such a hybrid method. In
shear-warp, the volume is rendered by a simultaneous traversal
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of RLE-encoded voxel and pixel runs, where opaque pixels and
transparent voxels are efficiently skipped during these traver-
sals (see Figure 46.16a). Further speed comes from the fact that
sampling only occurs in the volume slices via bilinear interpola-
tion, and that the ray grid resolution matches that of the volume
slices, and therefore the same bilinear weights can be used for
all rays within a slice (see Figure 46.16b). The caveat is that
the image must first be rendered from a sheared volume onto a
so-called base-plane, that is aligned with the volume slice most
parallel to the true image plane (Figure 46.16a). After com-
pleting the base-plane rendering, the base plane image must
be warped onto the true image plane and the resulting image
is displayed. All of this combined enables framerates in excess
of 10 frames/s on current PC processors, for a 1283 volume.
There are a number of compromises that had to be made in the
process:

• Since the interpolation only occurs within one slice at
a time, more accurate tri-linear interpolation reduces to
less accurate bilinear interpolation and the ray sampling
distance varies between 1 and

√
3 , depending on the view

orientation. This leads to aliasing and staircasing effects
at viewing angles near 45◦.

• Since the volume is run-length one needs to use three
sets of voxel encodings (but it could be reduced to two

(a)

(b)

WorkSkip

Non-transparent RLE run

Baseplane

Post-rendering warp

Work Skip

Skip

Opaque run

Image plane

Ray sample points within slice

FIGURE 46.16 The shear-warp algorithm. (a) mechanism, (b) inter-
polation scheme.

[193]), one for each major viewing direction. This triples
the memory required for the runs, but in return, the RLE
encoding saves considerable space.

• Since there is only one interpolated value per voxel-
slice 4-neighborhood, zooming can only occur during
the warping phase and not during the projection phase.
This leads to considerable blurring artifacts at zoom fac-
tors greater than 2. The post-rendering magnification in
fact is a major source of the speedup for the shear-warp
algorithm.

An implementation of the shear-warp algorithm is publicly
available as the volpack package [72] from Stanford University.

46.6.4 Domain Volume Rendering

In domain rendering, the spatial 3D data is first transformed
into another domain, such as the compression, frequency, and
wavelet domain, and then a projection is generated directly
from that domain or with the help of information from that
domain. The frequency domain rendering applies the Fourier
slice projection theorem, which states that a projection of the
3D data volume from a certain view direction can be obtained
by extracting a 2D slice perpendicular to that view direction out
of the 3D Fourier spectrum and then inverse Fourier transform-
ing it. This approach obtains the 3D volume projection directly
from the 3D spectrum of the data, and therefore reduces the
computational complexity for volume rendering from O(N 3)

to O(N 2log(N )) [41, 117, 200]. A major problem of frequency
domain volume rendering is the fact that the resulting pro-
jection is a line integral along the view direction which does
not exhibit any occlusion and attenuation effects. Totsuka and
Levoy [200] proposed a linear approximation to the expo-
nential attenuation [172] and an alternative shading model to
fit the computation within the frequency-domain rendering
framework.

The compression domain rendering performs volume ren-
dering from compressed scalar data without decompressing
the entire data set, and therefore reduces the storage, compu-
tation and transmission overhead of otherwise large volume
data. For example, Ning and Hesselink [147, 148] first applied
vector quantization in the spatial domain to compress the vol-
ume and then directly rendered the quantized blocks using
regular spatial domain volume rendering algorithms. Fowler
and Yagel [50] combined differential pulse-code modulation
and Huffman coding, and developed a loss-less volume com-
pression algorithm, but their algorithm is not coupled with
rendering. Yeo and Liu [230] applied discrete cosine trans-
form based compression technique on overlapping blocks of
the data. Chiueh et al. [25] applied the 3D Hartley trans-
form to extend the JPEG still image compression algorithm
[207] for the compression of subcubes of the volume, and per-
formed frequency domain rendering on the subcubes before
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compositing the resulting sub-images in the spatial domain.
Each of the 3D Fourier coefficients in each subcube is then
quantized, linearly sequenced through a 3D zig-zag order, and
then entropy encoded. In this way, they alleviated the prob-
lem of lack of attenuation and occlusion in frequency domain
rendering while achieving high compression ratios, fast render-
ing speed compared to spatial volume rendering, and improved
image quality over conventional frequency domain rendering
techniques. More recently, Guthe et al. [61] and also Sohn
and Bajaj [187] have used principles from MPEG encoding to
render time-varying datasets in the compression domain.

Rooted in time-frequency analysis, wavelet theory [26, 37]
has gained popularity in the recent years. A wavelet is a fast
decaying function with zero averaging. The nice features of
wavelets are that they have local property in both the spatial
and frequency domain, and can be used to fully represent the
volumes with a small number of wavelet coefficients. Muraki
[141] first applied a wavelet transform to volumetric data
sets, Gross et al. [58] found an approximate solution for the
volume rendering equation using orthonormal wavelet func-
tions, and Westermann [213] combined volume rendering with
wavelet-based compression. However, all of these algorithms
have not focused on the acceleration of volume rendering using
wavelets. The greater potential of the wavelet domain, based on
the elegant multiresolution hierarchy provided by the wavelet
transform, is to exploit the local frequency variance provided
by the wavelet transform to accelerate the volume rendering in
homogeneous areas. Guthe and Strasser [62] have recently used
the wavelet transform to render very large volumes at interac-
tive frame rates, on texture mapping hardware. They employ a
wavelet pyramid encoding of the volume to reconstruct, on the
fly, a decomposition of the volume into blocks of different res-
olutions. Here, the resolution of each block is chosen based on
the local error committed and the resolution of the screen area
the block is projected onto. Each block is rendered individually
with 3D texture mapping hardware, and the block decomposi-
tion can be used for a number of frames, which amortizes the
work spent on the inverse wavelet transform to construct the
blocks.

46.7 Acceleration Techniques

The high computational complexity of volume rendering has
led to a great variety of approaches for its acceleration. In the
current section, we will discuss general acceleration techniques
that can benefit software as well as hardware implementations.
We have already mentioned a few acceleration techniques in
the previous section, such as early ray termination [104], post-
rendering warps for magnified viewing [99], and the splatting
of pre-integrated voxel basis functions [216]. The latter two
gave rise to independent algorithms, that is, shear-warp [99]
and splatting [216]. Acceleration techniques generally seek to
take advantage of properties of the data, such as empty space,

occluded space, and entropy, as well as properties of the human
perceptional system, such as its insensitivity to noise over
structural artifacts.

A number of techniques have been proposed to accelerate the
grid traversal of rays in image-order rendering. Examples are
the 3D DDA (Digital Differential Analyzer) method [1, 51], in
which new grid positions are calculated by fast integer-based
incremental arithmetic, and the template-based method [227],
in which templates of the ray paths are precomputed and used
during rendering to quickly identify the voxels to visit. Early-
ray termination can be sophisticated into a Russian Roulette
scheme [36] in which some rays terminate with lower and oth-
ers with higher accumulated opacities. This capitalizes on the
human eye’s tolerance to error masked as noise [115]. In the
object-order techniques, fast differential techniques to deter-
mine the screen-space projection of the points as well as to
rasterize the footprints [116, 135] are also available.

Most of the object-order approaches deal well with empty
space—they simply don’t store and process it. In contrast, ray
casting relies on the presence of the entire volume grid since
it requires it for sample interpolation and address computa-
tion during grid traversal. Although opaque space is quickly
culled, via early ray termination, the fast leaping across empty
space is more difficult. A number of techniques are available to
achieve this (see Figure 46.17 for an illustration of the meth-
ods described in the following text). The simplest form of
space leaping is facilitated by enclosing the object into a set
of boxes, possibly hierarchical, and first quickly determining

FIGURE 46.17 Various object approximation techniques: (blue) iso-
surface of the object, (lightly shaded) discretized object (proximity
cloud = 0), (red) bounding box, (green) polygonal hull used in PARC,
(darker shaded areas) proximity clouds with grey level indicating dis-
tance to the object. Note also that while the right magenta ray is
correctly sped up by the proximity clouds, the left magenta ray missing
the object is unnecessarily slowed down. (See also color insert).
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and testing the rays’ intersection with each of the boxes before
engaging into more time-consuming volumetric traversal of
the material within [84]. A better geometrical approximation
is obtained by a polyhedral representation, chosen crudely
enough to still maintain ease of intersection. In fact, one case
utilized conventional graphics hardware to perform the inter-
section calculation, where one projects the polygons twice to
create two Z- (depth) buffers. The first Z-buffer is the standard
closest-distance Z-buffer, while the second is a farthest-distance
Z-buffer. Since the object is completely contained within the
representation, the two Z-buffer values for a given image plane
pixel can be used as the starting and ending points of a ray
segment on which samples are taken. This algorithm has been
known as PARC (Polygon Assisted Ray Casting) [186] and it is
part of the VolVis volume visualization system [2, 3], which also
provides a multi-algorithm progressive refinement approach
for interactivity. By using available graphics hardware, the user
is given the ability to interactively manipulate a polyhedral rep-
resentation of the data. When the user is satisfied with the
placement of the data, light sources, and viewpoint, the Z-buffer
information is passed to the PARC algorithm, which produces
a ray-cast image.

A different technique for empty-space leaping was devised
by Zuiderfeld et al. [233] as well as Cohen and Shefer [29] who
introduced the concept of proximity clouds. Proximity clouds
employ a distance transform of the object to accelerate the rays
in regions far from the object boundaries. In fact, since the vol-
ume densities are irrelevant in empty volume regions, one can
simply store the distance transform values in their place and
therefore storage is not increased. Since the proximity clouds
are the iso-distance layers around the object’s boundaries, they
are insensitive to the viewing direction. Thus, rays that ulti-
mately miss the object are often still slowed down. To address
this shortcoming, Sramek and Kaufman [189] proposed a view-
sensitive extension of the proximity clouds approach. Wan [208]
places a sphere at every empty voxel position, where the sphere
radius indicates the closest non-empty voxel. They apply this
technique for navigation inside hollow volumetric objects, as
occurring in virtual colonoscopy [69], and reduce a ray’s space
traversal to just a few hops until a boundary wall is reached.
Finally, Meissner [125] suggested an algorithm that quickly
re-computes the proximity cloud when the transfer function
changes.

Proximity clouds only handle the quick leaping across empty
space, but methods are also available that traverse occupied
space faster when the entropy is low. These methods gener-
ally utilize a hierarchical decomposition of the volume where
each non-leaf node is obtained by low-pass filtering its chil-
dren. Commonly this hierarchical representation is formed by
an octree [122] since these are easy to traverse and store. An
octree is the 3D extension of a quadtree [173], which is the 2D
extension of a binary tree. Most often a non-leaf node stores the
average of its children, which is synonymous with a box filtering

of the volume, but more sophisticated filters are possible. Octree
don’t have to be balanced [219] nor fully expanded into a single
root node or into single-voxel leaf nodes. The latter two give
rise to a brick-of-bricks decomposition, where the volume is
stored as a flat hierarchy of bricks of size n3 to improve cache-
coherence in the volume traversal. Parker et al. [153, 154] utilize
this decomposition for the raycasting of very large volumes, and
they also gives an efficient indexing scheme to quickly find the
memory address of the voxels located in the 8-neighborhood
required for trilinear interpolation.

When octrees are used for entropy-based rendering, non-
leaf nodes store either an entropy metric of its children, such
as standard deviation [36], minimum-maximum range [219],
or Lipschitz range [190], or a measure of the error committed
when the children are not rendered, such as the root mean
square or the absolute error [62]. The idea is to either have the
user specify a tolerable error before the frame is rendered or to
make the error dependent on the time maximally allowed to
render the frame, which is known as time-critical rendering. In
either case, the rays traversing the volume will advance across
the volume, but also transcend up and down the octree, based
on the metric used, which will either accelerate or decelerate
them on their path. A method called β-acceleration will make
this traversal also sensitive to the ray’s accumulated opacity so
far. The philosophy here is that the observable error from using
a coarser node will be relatively small when it is weighted by a
small transparency in Equation 46.13.

Octrees are also easily used with object-order techniques,
such as splatting. Laur and Hanrahan [101] have proposed
an implementation that approximates non-leaf octree nodes
by kernels of a radius that is twice the radius of the chil-
drens’ kernels, which gives rise to a magnified footprint. They
store the childrens’ average as well as an error metric based
on their standard deviation in each parent node and use a
pre-set error to select the nodes during rendering. While this
approach uses non-leaves nodes during rendering, other splat-
ting approaches only exploit them for fast occlusion culling.
Lee and Ihm [102] as well as Mora et al. [132] store the vol-
ume as a set of bricks which they render in conjunction with
a dynamically computed hierarchical occlusion map to quickly
cull voxels within occluded bricks from the rendering pipeline.
Hierarchical occlusion maps [231] are continuously updated
during the rendering and thus store a hierarchical opacity map
of the image rendered so far. Regions in which the opacity is
high are tagged, and when octree nodes fall within such a region
all voxels contained in them can be immediately culled. If the
octree node does not fall into a fully opaque region then it has
to be subdivided and its children are subjected to the same test.
An alternative scheme that performs occlusion culling on a finer
scale than the box-basis of an octree decomposition is to calcu-
late an occlusion map in which each pixel represents the average
of all pixels within the box-neighborhood covered by a foot-
print [137]. Occlusion of a particular voxel is then determined
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by indexing the occlusion map with the voxel’s screen-space
coordinate to determine if its footprint must be rasterized. One
could attempt to merge these two methods to benefit both from
the large-scale culling afforded by the octree-nodes and from
the fine-scale culling of the average-occlusion map.

Hierarchical decomposition is not the only way to reduce
the number of point primitives needed to represent an object
for rendering. An attractive solution that does not reduce the
volume’s frequency content, by ways of averaging, is to exploit
more space-efficient grids for storage. The most optimal reg-
ular lattices are the face-centered cartesian (FCC) lattices (see
Figure 46.19) [30, 40]. The FCC lattices give the densest pack-
ings of a set of equal-sized spheres. If the frequency spectrum
of the signal represented in the volume is spherical (and many
of them are due to the sampling kernel used for volume gen-
eration), then they can be packed in the FCC lattice (see
Figure 46.18 for the 2D equivalent, the hexagonal lattice). The
FCC lattice’s dual in the spatial domain is the body-centered
cartesian (BCC) lattice, and the spacing of samples there is the
reciprocal of that in the frequency domain, according to the
Fourier scaling theorem [12]. This BCC grid gives rise to two
interleaved CC grids, each with a sampling interval of

√
2 and

1/(
√

2) apart, which implies that a volume, when sampled into
a BCC grid, only requires

√
2/2 = 71% of the samples of the

FIGURE 46.18 The cartesian grid (left) vs. the hexagonal grid (right)
as two possible frequency domain lattices. The latter provides the tight-
est packing of a discrete 2D signal’s circularity-bounded frequency
spectrum. (Here, the dark, red circle contains the main spectrum, while
the others contain the replicas or alises.) (See also color insert).
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FIGURE 46.19 Various grid cells, drawn in relative proportions. We
assume that the sampling interval in the CC grid is T =1. (a) Cubic
cartesian (CC) for cartesian grids (all other grid cells shown are for
grids that can hold the same spherically bandlimited signal content);
(b) Face-centered cubic (FCC); (c) Body-centered (BCC) cell.

usual cubic cartesian (CC) grid [142, 197] (see Figure 46.19
for an illustration of the grid and Figure 46.20 for images).
The theorem extends to higher dimensions as well, for exam-
ple, a time-varying (4D) volume can be stored in a 4D BCC at
only 50% of the 4D CC samples. The BCC grids are best used
in conjunction with point-based object-order methods, since
these use the spherical (radially symmetric) filter required to
preserve the spherical shape of the BCC grid-sampled volume’s
frequency spectrum. The reconstruction of a BCC grid with
trilinear filters can lead to aliasing since the trilinear filter’s fre-
quency response is not radially symmetric and therefore will
include higher spectra when used for interpolation.

A comprehensive system for accelerated software-based vol-
ume rendering is the UltraVis system devised by Knittel [92].
It can render a 2563 volume at 10 frames/s. It achieves this
by optimizing cache performance during both volume traver-
sal and shading, which is rooted in the fact that good cache
management is key to achieve fast volume rendering, since the
data are so massive. As we have mentioned before, this was also
realized by Parker et al. [153, 154], and it plays a key role in
both custom and commodity hardware approaches as well, as
we shall see later. The UltraVis system manages the cache by
dividing it into four blocks: one block each for volume bricks,
transfer function tables, image blocks, and temporary buffers.
Since the volume can only map into a private cache block, it can
never be swapped out by a competing data structure, such as a
transfer function table or an image tile array. This requires that
the main memory footprint of the volume is four times as high
since no volume data may be stored in an address space that
would map outside the volume’s private cache slots. By using a
bricked volume decomposition in conjunction with a flock of
rays that are traced simultaneously across the brick, the brick’s
data will only have to be brought in once before it can be dis-
carded when all rays have finished its traversal. A number of
additional acceleration techniques give further performance.

Another type of acceleration is achieved by breaking the vol-
ume integral of Equations 46.12 or 46.15 into segments and
storing the composited color and opacity for each partial ray

FIGURE 46.20 Foot dataset rendered on: (left) Cubic Cartesian (CC)
grid, (right) Body Centered (BCC) grid. The renderings are almost
identical, but the BCC rendering took 70% of the time of the CC
rendering.
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into a data structure. The idea is then to re-combine these
partial rays into complete rays for images rendered at view-
points near the one for which the partial rays were originally
obtained (see Figure 46.21). This saves the cost for fully inte-
grating all rays for each new viewpoint and reduces it to the
expense of compositing a few partial segments per ray, which
is much lower. This method falls into the domain of image-
based rendering (IBR) [22, 23, 121, 176] and is, in some sense, a
volumetric extension of the lumigraph [56] or lightfield [106],
albeit dynamically computed. However, one could just as well
store a set of partial rays into a static data structure to be used
for volumetric-style lumigraph rendering. This idea of using
a cache of partial rays for accelerated rendering was exploited
by Brady et al. [13, 14] for volume rendering at great perspec-
tive distortions, such as found in virtual endoscopy applications
[69]. Mueller et al. [138] stored the rays in the form of a stack
of depth-layered images and rendered these images warped and
composited from novel viewpoints within a 30◦ view cone,using
standard graphics hardware (see Figure 46.22a). Since gaps may
quickly emerge when the layers are kept planar, it helps to also
compute, on the fly, a coarse polygonal mesh for each layer that
approximates the underlying object, and then map the images
onto this mesh when rendering them from a new viewpoint
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FIGURE 46.21 (a) The volume is decomposed into slabs, and each
slab is rendered into an image from view direction Va . The ray integrals
for view direction Vb can now be approximated with higher accuracy
by combining the appropriate partial ray integrals from view Va(stored
in the slab image). Interpolation is used to obtain partial integrals at
non-grid positions. (b) The three billboard images can be composited
for any view, such as Vb shown here.

(a) (b) (c)

FIGURE 46.22 IBR-assisted volume rendering: (a) on-the-fly com-
puted mesh derived from the slab’s closest-voxel buffer, (b) head
rendered from original view point, (c) head rendered from a view
30◦ away. (See also color insert).

(see Figure 46.22b and c). An alternative method that uses a
precomputed triangle mesh to achieve similar goals for iso-
surface volume rendering was proposed by Chen et al. [21],
while Yagel and Shi [228] warped complete images to nearby
viewpoints, aided by a depth buffer.

46.8 Classification and Transfer Functions

In volume rendering we seek to explore the volumetric data
using visuals. This exploration process aims to discover and
emphasize interesting structures and phenomena embedded
in the data, while de-emphasizing or completely culling away
occluding structures that are currently not of interest. Clipping
planes and more general clipping primitives [211] provide geo-
metric tools to remove or displace occluding structures in their
entirety. On the other hand, transfer functions which map the
raw volume density data to color and transparencies can alter
the overall look-and-feel of the dataset in a continuous fashion.

The exploration of a volume via transfer functions consti-
tutes a navigation task, which is performed in a 4D transfer
function space, assuming three axes for RGB color and one for
transparency (or opacity). It is often easier to specify colors
in HSV (Hue, Saturation, Value) color space, since it provides
separate mappings for color and brightness. Simple algorithms
exist to convert the HSV values into the RGB triples used in
the volume rendering [49]. Figure 46.23 shows a transfer func-
tion editor that also allows the mapping of the other rendering
attributes in Equation 46.9.

A generalization of the usual RGB color model has been pur-
sued in spectral volume rendering [156], where the light trans-
port occurs within any number of spectral bands. Noordmans
[149] employed this concept to enable achromatic, elastic, and
inelastic light scattering, which facilitates the rendering of inner

FIGURE 46.23 A transfer function editor with a HSV color palette
and mapping of densities to various material properties. (See also color
insert).
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structures through semi-transparent, yet solid (i.e., non-fuzzy)
exterior structures. Bergner et al. [10] described a spectral
renderer that achieves interactive speeds by factoring the illu-
mination term out of the spectral volume rendering integral
and using post-illumination for the final lighting (a related
technique, in RGB space, using a Fourier series approach was
presented by Kaneda et al. [79]). They describe a system which
allows designers of a guided visualization to specify a set of
lights and materials, whose spectral properties allow users
to emphasize, de-emphasize, or merge specific structures by
simply varying the intensity of the light sources.

Given the large space of possible settings, choosing an effec-
tive transfer function can be a daunting task. It is generally
more convenient to gather more information about the data
before the exploration via transfer functions begins. The easiest
presentation of support data is in the form of 1D histograms,
which are data statistics collected as a function of raw den-
sity, or some other quantity. A histogram of density values can
be a useful indicator to point out dominant structures with
narrow density ranges. A fuzzy classification function [39] can
then be employed to assign different colors and opacities to
these structures (see Figure 46.24). This works well if the data
are relatively noise-free, the density ranges of the features are
well isolated, and not many distinct materials, such as bone,
fat, and skin, are present. In most cases, however, this is not
the case. In these settings, it helps to also include the first and
second derivative into the histogram-based analysis [87]. The
magnitude of the first derivative (the gradient strength) is use-
ful since it peaks at densities where interfaces between different
features exist (see Figure 46.25). Plotting a histogram of first
derivatives over density yields an arc that peaks at the inter-
face density (see Figure 46.26). Knowing the densities at which
feature boundaries exist narrows down the transfer function
exploration task considerably. One may now visualize these
structures by assigning different colors and opacities within a
narrow interval around these peaks. Levoy [104] showed that a
constant width of (thick) surface can be obtained by making the
width of the chosen density interval a linear function of the gra-
dient strength (see Figure 46.27). Kindlemann and Durkin [87]
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FIGURE 46.24 Histogram and a fuzzy classification into different
materials.
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FIGURE 46.25 The relationship of densities and their first and second
derivatives at a material interface.
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FIGURE 46.26 Histograms of (a) first and (b) second derivative
strengths over density. In the concentric ring image (top row), the
first arc is due to the background-outer ring interface, the second arc
is due to the outer-inner ring interface, and the large arc is due to the
background-inner ring interface that spans the widest density range.
The second row shows the results of the same analysis for the CT engine
volume.
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FIGURE 46.27 Gradient strength-dependent density range for iso-
surface opacities [104].

proposed a technique that uses the first and second derivative to
generate feature-sensitive transfer functions automatically. This
method provides a segmentation of the data, where the segmen-
tation metric is a histogram of the first and second derivative.
Tenginakai and Machiraju [195] extended the arsenal of metrics
to higher order moments, and compute from them additional
measures, such as kurtosis and skew, in small neighborhoods.
These can provide better delineations of features in histogram
space. Another proposed analysis method is based on maxima
in cumulative Laplacian-weighted density histograms [157].



46 Volume Visualization in Medicine 801

There are numerous articles (we can only reference a few
here) on the topic of automatic segmentation of images
and higher-dimensional datasets, using neural network-type
approaches [114], statistical classifiers [177], region growing
[94], the watershed algorithm [181], and many others. To
that end, Tiede [199] describes an algorithm for rendering
the tagged and segmented volumes at high quality. However,
despite the great advances that have been made, automated
segmentation of images and volumes remains a difficult task
and is also in many cases observer and task dependent. In
this regard, semi-supervised segmentation algorithms where
users guide the segmentation process in an interactive fash-
ion have a competitive edge. There are two examples for such
systems: the PAVLOV architecture that implements an inter-
active region-grow to delineate volumetric features of interest
[94], and the dual-domain approach of Kniss et al. [88, 89], who
embed Kindlemann’s algorithm into an interactive segmenta-
tion application. Here, users work simultaneously within two
domains, i.e., the histogram-coupled transfer function domain
and the volume rendering domain, to bring out certain features
of interest. To be effective, an interactive (hardware-based) vol-
ume renderer is required, and the technique could embed more
advanced metrics as well [195].

Another way to analyze the data is to look for topological
changes in the iso-contours of the volume, such as a merge of
split of two contours (see Figure 46.28). These events are called
critical points. By topologically sorting the critical points as a
function of density one can construct a contour graph, contour
tree, or Hyper Reeb Graph which yields a roadmap for an explo-
ration of the volume [4, 5, 20, 52, 96, 155, 180, 194]. One can
either use the contour graph to come up with an automatic
transfer function (simply position an iso-surface between two
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FIGURE 46.28 Simple contour graph. The first topological event
occurs when the two inner contours are born at an iso-value of 10. The
second topological event occurs at the iso-value at which the two inner
contours just touch and give way to a single contour at iso-value= 30.

nodes), or one can use it to guide users in the volume explo-
ration process. A large number of critical points is potentially
generated, especially when the data are noisy.

There has also been a significant body of work on more spe-
cific segmentation and volume analysis processes, which aim
to identify, track, and tag particular features of interest, such
as vortices, streamlines, and turbulences [7, 8, 182, 183, 220].
Once extracted, the features can then be visualized in the form of
icons, glyphs, geometry, or volumetric objects. These data min-
ing methods are particular attractive for the exploration of very
large data sets, where volume exploration with conventional
means can become intractable.

All of the methods presented so far base the transfer func-
tion selection on a prior analysis of the volume data. Another
suggested strategy has been to render a large number of images
with arbitrary transfer function settings and present these to the
user, who then selects a subset of these for further refinement
by application of genetic algorithms. This approach has been
taken by the Design Galleries project [118], which is based, in
part, on the method published by He et al. [66]. A good sam-
ple of all of the existing approaches (interactive trial-and-error,
metric-based, contour graph, and design galleries) were squared
off in a symposium panel [158]. A recent framework uses a set
of case examples to derive a 1D mapping of a high-dimensional
parameterization of a transfer function [168].

46.9 Volumetric Global Illumination

In the local illumination Equation 46.9, the global distribution
of light energy is ignored and shading calculations are per-
formed assuming full visibility of and a direct path to all light
sources. While this is useful as a first approximation, the incor-
poration of global light visibility information (shadows, one
instance of global illumination) adds a great deal of intuitive
information to the image. This low albedo [78, 185] lighting
simulation has the ability to cast soft shadows by volume den-
sity objects. Generous improvements in realism are achieved
by incorporating a high albedo lighting simulation [78, 185],
which is important in a number of applications (e.g., clouds
[120], skin [64], and stone [38]). While some of these used hier-
archical and deterministic methods, most of these simulations
used stochastic techniques to transport lighting energy among
the elements of the scene. We wish to solve the illumination
transport equation for the general case of global illumination.
The reflected illumination I (γ ,ω) in direction ω at any voxel γ
can be described as the integral of all incident radiation from
directions ω′, modulated by the phase function q(ω,ω′):

I (γ ,ω) =
∫∫

V	
q(ω, ω′)I (γ , ω′)dω′dv , (46.16)

where 	 is the set of all directions and V is the set of all voxels
v . This means that the illumination at any voxel is dependent
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upon the illumination at every other voxel. In practice, this
integral-equation is solved by finite repeated projection of
energy among voxels. This leads to a finite energy transport
path, which is generally sufficient for visual fidelity.

In physics, equations of this sort are solved via Monte-Carlo
simulations. A large set of rays is cast from the energy sources
into the volume and at each voxel a “dice is rolled” to deter-
mine how much energy is absorbed and how much energy
is scattered and into what direction. After many iterations
the simulation is stopped, and a final scattering of the radio-
sity volume is performed towards an arbitrarily positioned eye
point. A practical implementation of this process is volumet-
ric backprojection. Backprojection is usually performed on a
voxel-by-voxel basis, since this is the most obvious and direct
method of computation. For example, in volumetric ray trac-
ing [185], as illumination is computed for a volume sample,
and rays are cast toward the light sources, sampling the partial
visibility of each. In computing high-albedo scattering illumi-
nation, Max [120] used the method of discrete ordinates to
transport energy from voxel to voxel. For calculations of volu-
metric radiosity, voxels are usually regarded as discrete elements
in the usual radiosity calculation on pairs of elements, thereby
computing on a voxel-by-voxel basis [170, 185]. Particle tracing
methods for global illumination track paths of scattered light
energy through space starting at the light sources [77].

In many cases, the backprojection can be reorganized into
a single sweep through the volume, processing slice-by-slice.
Because sunlight travels in parallel rays in one direction only,
Kajiya and Von Herzen [78] calculated the light intensity of
a cloud-like volume one horizontal slice at a time. A similar
technique was demonstrated as part of the Heidelberg ray-
tracing model [123] in which shadow rays were propagated
simultaneously slice-by-slice and in the same general direction
as rendering. Dachille et al. [35] described a backprojection
approach that scatters the energy in the volume by a multi-pass
slice-by-slice sweep at random angles. He also devised a custom
hardware architecture for a cache-efficient implementation of
this algorithm.

Kniss et al. [90, 91] proposed a single-pass algorithm that
approximates the scattering of light within a volume by a
recursive slice-blurring operation, starting at the light source.
The profile of the blurring filter is determined by the user-
specified phase function. The method exploits 3D texture
mapping hardware in conjunction with a dual image buffer,
and runs at interactive frame rates. One buffer, the repeatedly
blurred (light) buffer, contains the transported and scattered
light energy on its path away from the source, and the other
(frame) buffer holds the energy headed for the eye and is atten-
uated by the densities along the path to the eye. At each path
increment energy is transferred from the light buffer to the
frame buffer. Wyman et al. [224] introduced a method where
a precomputed global illumination volume, including direct
light, shadows, and intersections, is used to interactively render
globally illuminated isosurfaces.

46.10 Making Volume Rendering
Interactive

Medical visualization requires interactive response times in
image generation – physicians need to be able to change the
viewing parameters, such as orientation, feature emphasis and
even deformations, in an interactive fashion. Volume render-
ing is inherently a computation-intensive application, due to
its high complexity and the ever-growing dataset sizes and
demands on rendering effects and accuracy. Just to get an
idea on the rendering complexity incurred, consider the case
where we would like to generate a 5122 image from a 5123

volume dataset at a speed of 30 frames per second (note that
these image and dataset sizes are already relatively moderate
by today’s standards). Then, in the most straightforward imple-
mentation, each image pixel will receive projected contributions
at the order of 5122 volume voxels. Assuming 10 floating point
operations (Flops) for each such voxel (many more may be
needed to meet today’s rendering quality standards) we would
require rendering hardware that can deliver a sustained perfor-
mance of 5 GFlops (5 Trillion Flops). This clearly is not in the
reach of any modern CPU or even a reasonably-sized CPU clus-
ter. Therefore, the resort is to either employ specialized volume
rendering hardware, such as the VolumePro board, or to exploit
the increasing performance and programmability of general-
purpose consumer graphics boards (GPUs) to reach the desired
performance. Both will be discussed in the following sections.

46.10.1 Specialized Hardware

Special-purpose volume rendering architectures were pro-
posed relatively early on, by several researchers (see [81] at
Chapter 6). Most of the more recent research focuses on accel-
erators for ray casting of regular datasets. Ray casting offers
room for algorithmic improvements while still allowing for
high image quality. The more recent architectures include
VOGUE [93], VIRIM [60], Cube [83], and VIZARD [126, 127].
The VolumePro board [159] is a commercial implementation
of the Cube architecture.

VOGUE [93], a modular add-on accelerator, is estimated to
achieve 2.5 frames per second for 2563 datasets. For each pixel a
ray is defined by the host computer and sent to the accelerator.
The VOGUE module autonomously processes the complete ray,
consisting of evenly spaced resampling locations, and returns
the final pixel color of that ray to the host. Several VOGUE
modules can be combined to yield higher performance imple-
mentations. For example, to achieve 20 projections per second
of 5123 datasets requires 64 boards and a 5.2 GB per second
ring-connected cubic network.

VIRIM [60] is a flexible and programmable ray-casting
engine. The hardware consists of two separate units, the first
being responsible for 3D resampling of the volume using lookup
tables to implement different interpolation schemes. The
second unit performs the ray-casting through the resampled
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dataset according to user programmable lighting and viewing
parameters. The underlying ray-casting model allows for arbi-
trary parallel and perspective projections and shadows. An
existing hardware implementation for the visualization of
256× 256× 128 datasets at 10 frames per second requires 16
processing boards.

The Cube project aims at the realization of high-performance
volume rendering systems for large datasets and pioneered
several hardware architectures. Cube-1, a first generation hard-
ware prototype, was based on a specially interleaved memory
organization [83], which has also been used in all subsequent
generations of the Cube architecture. This interleaving of the
n3 voxels enables conflict-free access to any ray parallel to
a main axis of n voxels. A fully operational printed circuit
board (PCB) implementation of Cube-1 is capable of gener-
ating orthographic projections of 163 datasets from a finite
number of predetermined directions in realtime. Cube-2 was a
single-chip VLSI implementation of this prototype [6].

To achieve higher performance and to further reduce the crit-
ical memory access bottleneck, Cube-3 introduced several new
concepts [161]. A high-speed global communication network
aligns and distributes voxels from the memory to several para-
llel processing units and a circular cross-linked binary tree
of voxel combination units composites all samples into the
final pixel color. Estimated performance for arbitrary paral-
lel and perspective projections is 30 frames per second for
5123 datasets. Cube-4 [162] has only simple and local intercon-
nections, thereby allowing for easy scalability of performance.
Instead of processing individual rays, Cube-4 manipulates a
group of rays at a time. As a result, the rendering pipeline is
directly connected to the memory. Accumulating compositors
replace the binary compositing tree. A pixel-bus collects and
aligns the pixel output from the compositors. Cube-4 is eas-
ily scalable to very high resolutions of 10243 16-bit voxels and
true real-time performance implementations of 30 frames per
second.

EM-Cube [152] marked the first attempt to design a com-
mercial version of the Cube-4 architecture. Its VLSI architecture
features four rendering pipeline and four 64 Mbit SDRAMs to
hold the volume data. VolumePro500 was the final design, in
the form of an ASIC, and was released to market by Mitsubishi
Electric in 1999 [159]. VolumePro has hardware for gradient
estimation, classification, and per-sample Phong illumination.
It is a hardware implementation of the shear-warp algorithm,
but with true trilinear interpolation which affords very high
quality. The final warp is performed on the PC’s graphics
card. The VolumePro streams the data through four rendering
pipelines, maximizing memory throughput by using a two-level
memory block- and bank-skewing mechanism to take advan-
tage of the burst mode of its SDRAM. No occlusion culling
or voxel skipping is performed. Advanced features such as
gradient magnitude modulation of opacity and illumination,
supersampling, cropping and cut planes are also available. The
system renders 500 million interpolated, Phong-illuminated,

composited samples per second, which is sufficient to render
volumes with up to 16 million voxels (e.g., 2563 volumes) at 30
frames per second.

While the VolumePro uses a brute-force rendering mode
in which all rays are cast across the volume, the VIZARD II
architecture [126, 127] implements an early ray-termination
mechanism. It has been designed to run on a PCI board popu-
lated with four FPGAs, a DSP, and SDRAM and SRAM memory.
In contrast to the VolumePro, it supports perspective rendering,
but uses a table-based gradient vector lookup scheme to com-
pute the gradients at sample positions. The VIZARD II board
is anticipated to render a 2563dataset at interactive framerates.
TheVolumePro1000 [223] is the successor of theVolumePro500
and employs a different factorization of the viewing matrix,
termed shear-image order ray casting, which is a method of
ray casting that eliminates shear-warp’s intermediate image
and final warp step while preserving its memory access effi-
ciency. VolumePro1000 uses empty space skipping and early
ray termination, and it can render up to 109 samples/s.

The choice of whether one adopts a general-purpose or a
special-purpose solution to volume rendering depends upon
the circumstances. If maximum flexibility is required, general-
purpose appears to be the best way to proceed. On the other
hand, special-purpose hardware gains by their special dedica-
tion to the task at hand. The VolumePro1000, for example,
has 4 GB of memory per board and an extremely fast I/O
bus, allowing it to render time-varying datasets at real-time
speed. An important feature of graphics accelerators is that they
are integrated into a much larger environment where software
can shape the form of input and output data, thereby provid-
ing the additional flexibility that is needed. A good example
is the relationship between the needs of conventional com-
puter graphics and special-purpose graphics hardware. Nobody
would dispute the necessity for polygon graphics acceleration
despite its obvious limitations. The exact same argument can
be made for special-purpose volume rendering architectures.
The line between general-purpose and special-purpose, how-
ever, has become somewhat blurred in the past couple of years
with the arrival of advanced, programmable commodity GPUs.
Although these boards do not, and perhaps never will, pro-
vide the full flexibility of a CPU, they gain more generality as
a general computing machine with every new product cycle. In
the following section, we shall discuss the recent revolution in
GPUs in light of their impact on interactive volume rendering
and processing.

46.10.2 General Purpose Graphics Hardware

The common goal is to utilize the texture mapping capability
of the graphics hardware. The first such implementation was
devised by Cabral et al. [18] and ran on SGI Reality Engine
workstations. There are two ways to go about this. Either one
represents the volume as a stack of 2D textures, one texture
per volume slice, or as one single 3D texture. In the former
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case three texture stacks are needed, one for each major viewing
direction. An image is then rendered by choosing the stack that
is most parallel to the image plane, and rendering the textured
polygons to the screen in front-to-back or back-to-front order.
If the machine has 3D texture capabilities, then one specifies
a set of slicing planes parallel to the screen and composites
the interpolated textures in depth order. The emergence of
advanced PC consumer graphics hardware (GPUs) as used for
computer games and other entertainment and business appli-
cations has made texture-mapped volume rendering accessible
to a much broader community, at less than 2% of the cost of
the workstations that were previously required. Here, the deci-
sive factor stemming the revolution that currently dominates
the field was the decision of the manufacturers (NVIDIA and
AMD/ATI) to make two of the main graphics pipeline com-
ponents programmable. These two components are the vertex
shaders, the units responsible for the vertex transformations,
and the fragment shaders, which are the units that take over
after the rasterizer. The rasterizer reconnects the vertices into
polygons and then fills the interior of these, generating a set
of regularly-spaced fragments, one for each screen pixel. Each
such fragment is then assigned to one of the parallel fragment
shader pipelines, which executes the previously loaded frag-
ment program on it. Here it is important to know that the
incoming fragments are all processed in lock-step in a SIMD
(Same Instruction Multiple Data) fashion, that is, all fragment
shaders execute the same instruction on their assigned frag-
ment (a fragment pool is provided to buffer memory latencies).
This favors a highly efficient programming model and is one of
the prime reasons for the speed of GPUs. The latest trend is to
provide a unified architecture of pipelines which are dynami-
cally configured as vertex or fragment shaders. For example the
NVIDIA GeForce 8800 GTX has 128 processors with a hierar-
chical memory model of currently 768 MB (which is bound to
grow to 1–2 GB) and can deliver a peak performance of 520
GFlops.

The first implementation that employed GPUs for volume
rendering was published by Rezk-Salama et al. [167], who
used the stack-or-textures approach since 3D texturing was
not supported at that time. They overcame the undersampling
problems associated with the large inter-slice distance at off-
angles by interpolating, on-the-fly, intermediate slices, using
the register combiners in the fragment shader compartment.
Engel et al. [45] replaced this technique by the use of pre-
integrated transfer function tables (see our previous section on
transfer functions). The implementation could perform fully-
shaded semi-transparent and iso-surface volume rendering at
1–4 frames per second for 2563 volumes, using an NVIDIA
GeForce3. Both approaches processed volumes as a set of 2D
textures, with the texture stack being determined by the volume
axis most parallel with the viewing factor. These slices were
then composited in front-to-back order, properly shifted to
match the current viewing direction. Three stacks of textures

were required, one for each major-axis viewing direction.
Krüger and Westermann [97] then implemented an algorithm
more in line with standard ray casting, still using the stacked
texture-approach but combining it with 3D-texture interpola-
tion. This effort was followed by Weiskopf et al. [212], who
extended the framework to non-linear ray tracing. Both meth-
ods explicitly enforced the program flow by rendering control
polygons for every major step of the ray casting algorithm, using
textures to hold the intermediate computation results. The
repeated sequence of individual steps is (only the major steps
are listed here): advancing the rays, interpolation of samples in
the 3D data texture, shading, and finally compositing.

The explicit decomposition and enforcement of the volume
rendering process into these various pipeline steps created sig-
nificant overhead associated with rendering the control polygon
at each step, which required many passes (one per rendered
control polygon), limiting performance considerably. With the
addition of loop and branch capabilities into the GPU program-
ming set, a more natural and free-flowing pipeline execution
mode recently emerged. The new capabilities enable a recast-
ing program that more closely matches that typically run on a
CPU, that is, a ray is first initialized and then steps across the
volume, repeatedly executing all pipeline steps to integrate the
discrete volume rendering integral. This only requires a single
control polygon to be rendered, sending the ray fragments on
their ways. While the execution of the looped fragment pro-
gram is still SIMD, the program elements are no longer broken
up into separate steps. This GPU volume rendering approach
is termed single-pass ray casting [191] and was improved to be
more SIMD-aware by [103].

In order to compute the gradients required for shading, one
can either calculate the gradients on the fly, using the density
volume, or one can pre-compute a gradient volume, store it in
texture memory, and interpolate it during rendering. The trade-
off is computational effort vs. storage complexity. Since so far
the growth in computational performance has dominated that
in memory bandwidth and size, the latter strategy is becom-
ing more popular. For higher rendering complexity it is crucial
to focus the most computationally intensive calculations to the
volume regions that require them. A first step is to partition
the volume into cells and summarize the cell content by some
statistical measures, such as minimum/maximum value, and
use these to guide and focus the rendering effort, skipping over
non-interesting space. For this, one may use an octree or regular
adaptive level-of-detail blocks [109], but more irregular decom-
positions which can capture local features better have also been
proposed [107]. Hadwiger et al. [63] presented a GPU ray-
casting system particularly dedicated to iso-surface rendering.
Their ray-casting framework uses block-based space-skipping
via an efficient selection method and it determines the accurate
isosurface location in 3D space employing an iterative bisection
scheme with a high-quality B-spline filter which is followed by
screen-space shading. This algorithm and much more material
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FIGURE 46.29 Some images obtained with GPU-accelerated volume rendering. From left to right: human toes, knee, head, and skeleton (all
data were acquired via medical CT) (from [107] and [226]). (See also color insert).

on the topic of GPU-accelerated volume rendering have also
been described in a recent book [46].

Apart from ray casting, splatting has also been accelerated on
the GPU. However, as an object-order algorithm, it does not
enjoy the benefits of ray casting that can focus and terminate
computations on a fragment level. For example, fragments of
rays that have reached full opacity can be quickly eliminated
from the pipeline. In splatting, since point rasterization and
shading operations are done on a slice-basis, it is difficult to
focus computations onto specific fragments. To overcome this
problem, in [144, 145] a framework was described that exploits
the early-z culling utility of GPUs to eliminate extraneous splat
computations at the fragment level.

A recently introduced rendering paradigm, specifically appli-
cable to medical data such as those produced Computed
Tomography is D2VR. It from is based on the observation that
in order to enable visualization with established volume ren-
dering methods, the volume must first be reconstructed from
these projections. Since sampling is involved, this process nec-
essarily introduces errors, adversely impacting image quality.
D2VR skips the intermediate reconstruction step entirely and
instead retains the original X-ray projection data and samples
them directly. It was shown in [166] that doing so can improve
image quality significantly. But despite its great promise, a
shortcoming of the method was its comparatively slow non-
interactive rendering speed. Again, the GPU comes to the rescue,
using algorithms developed for GPU-accelerated Computed
Tomography [225]. Enhancing the basic algorithm with facili-
ties for occlusion culling and empty space skipping achieves the
desired interactive frame rates [226]. Figure 46.29 shows some
images obtained with GPU-D2VR and general GPU-accelerated
rendering.

46.11 Multi-Channel and Multi-Modal
Data

So far, we have assumed that a voxel had a scalar density value
from which other multi-variate properties could be derived,
for example, via transfer function lookup. We shall now extend
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FIGURE 46.30 Levels in the volume rendering pipeline at which data
mixing can occur. (See also color insert).

this notion to datasets where the voxel data come originally in
the form of multi-variate vectors. In the context of this discus-
sion, we shall distinguish between vectors of physical quantities,
such as flow and strain, and vectors that store a list of voxel
attributes. There is a large body of literature to visualize the
former, including line integral convolution [17], spot noise
[217], streamlines and streamballs [15], glyphs, texture splats
[33], and many more. In this section, we shall focus on the
latter scenario, that is, volumes composed of attribute vectors.
These can be (i) multi-channel, such as the RGB color volu-
mes obtained by cryosectioning the Visible Human [73] or
multi-spectra remote sensing satellite data, or (ii) multi-modal,
that is, volumes acquired by scanning an object with multiple
modalities, such as MRI, PET, and CT.

The rendering of multi-modal volumes requires the mixing
of the data at some point in the rendering pipeline. There are
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at least three locations at which this can happen [19]. For the
following discussion, let us assume a set of two co-located vol-
umes, but this is not a limitation. The simplest mixing technique
is image-level intermixing, i.e., to render each volume separately
as a scalar dataset and then blend the two images according to
some weighting function that possibly includes the Z-buffer or
opacity channel (see Figure 46.31a). This method is attractive
since it does not require a modification of the volume ren-
derer, but as Figure 46.31a (top) shows, it gives results of limi-
ted practical value since depth ordering is not preserved. This
can be fixed by intermixing the rendering results at every step
along the ray, which gives rise to accumulation level intermixing.
Here, we assign separate colors and opacities for each volume’s
ray sample, and then combine these according to some mixing
function (see Figure 46.31a (bottom)). A third method is illu-
mination model level intermixing, where one combines the ray
samples before colors and opacities are computed. One could
just use a weighted sum of the two densities to look up opaci-
ties and colors, or one could have one of the volumes act as an
emission volume and the other as an attenuation volume. This
would work quite naturally, for example, for the visualization of
the emissive metabolic activities in a SPECT volume within the
spatial context of a CT attenuation volume. Cai and Sakas [19]

(a)

(b)

(c)

FIGURE 46.31 Multi-modal rendering with data intermixing: (a)
One time step of a time-varying volume (magenta) and vol-
ume motion-blurred across 10 time steps (blue). (top): image-level
intermixing, (bottom): accumulation-level intermixing [142]. (b)
Accumulation-level intermixing of the Visible Man’s CT and a MRI
dataset. Here we assign blue if CT > MRI and green if MRI > CT.
(left): gradients specified on CT while MRI is rendered as a point
cloud; (right): surfaces rendered with gradient modulation [57].
(c) Accumulation-level intermixing of the Visible Man’s CT and a
MRI dataset, rendered in inclusive opacity mode, i.e., α = 1− (1−
αCT)(1− αMRI). (left) unweighted product of CT and MRI, (right)
more CT than MRI [57]. (See also color insert).

demonstrate this method in the scenario of dose planning in
radiation therapy, where they visualize an (emissive) radiation
beam embedded in an (attenuating) CT volume.

Multi-channel data, such as RGB data obtained by ways of
photographing slices of real volumetric objects, have the advan-
tage that there is no longer a need to search for suitable color
transfer functions to reproduce the original look of the data.
On the other hand, the photographic data do not provide an
easy mapping to densities and opacities, which are required to
compute normals and other parameters needed to bring out
structural object detail in surface-sensitive rendering. One can
overcome the perceptional nonlinearities of the RGB space by
computing gradients and higher derivatives in the perception-
ally uniform color space L∗u∗v∗ [42]. In this method, the RGB
data are first converted into the L∗u∗v∗ space, and the color
distance between two voxels is calculated by their Euclidian dis-
tance in that color space. A gradient can then be calculated
as usual via central differences, but replacing the voxel densi-
ties by the color distances. Although one cannot determine the
direction of the normal vector with this method, this is not a
limiting factor in practice. One can also derive more descriptive
quantities, such as tensor gradients, since we are now dealing
with vectors and not with densities in the gradient calculation.
These can be used for segmentation, texture analysis, and others.
Finally, opacities can be computed by using different functions
of higher-level gradients to bring out different textural and
structural aspects of the data [133].

46.12 Illustrative and Task-Driven Volume
Rendering

Illustrative volume rendering [43, 44] employs local image
processing during the rendering to produce artistic and illus-
trative effects, such as feature halos, tone shading, distance
color blending, stylized motion blur, boundary enhancements,
fading, silhouettes, sketch lines, stipple patterns, and pen+ink
drawings. The overall goal of illustrative rendering is to go
beyond the means of photo-realistic volume rendering and
produce images that emphasize critical features in the data,
such as edges, boundaries, depth, and detail, to provide the
user a better appreciation of the structures in the data. It is
aimed to highlight important features within the global con-
text, which is rendered at less detail and just provides a frame
of reference [16, 98, 174, 206]. These approaches are similar
to and have been inspired by the goals of medical and other
illustrators. Detail can be abstracted using stippling techniques
[111], pen+ink [201], textures [76], painterly effects [113], or
can be transferred from examples [112]. In [169] illustrative
techniques are used for the visualization of vascular structures,
and a recent book [165] gives a wealth of further example appli-
cations as well as theoretical background (Figure 46.33 shows
an illustrative rendering from DTI imaging). Common to all
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(a) (b)

(c) (d)

FIGURE 46.32 Rendering of multi-channel (photographic) data.
(a) The L∗ component (related to brightness); (b)The u∗ compo-
nent (related to the chromatic change in red-green colors); (c) Color
difference gradient computed in RGB color space; (b) Gradients com-
puted in L∗u∗v∗ space, using the second derivative along the gradient
direction to compute opacity (Images from [57]). (See also color
insert).

FIGURE 46.33 A visualization using illustrative rendering tech-
niques: Brain white matter fibers obtained via Diffusion Tensor MRI
(DTI) imaging are shown to pass around and also infiltrate a tumor
(from [59]). (See also color insert).

of these illustrative rendering applications is the fact that the
set of tunable parameters is even larger than for traditional
volume rendering. Therefore, interactive rendering capabilities
and the exploitation of the latest generations of commodity
programmable graphics hardware are crucial.

A common deficiency of discretized datasets is that detail
beyond the resolution of the dataset has been irrecoverably
lost. This lack of detail becomes immediately apparent once
one attempts to zoom into the dataset and only recovers blur.
In [210] a method is described that generates the missing detail
from any available and plausible high-resolution data, using
feature-constrained texture synthesis. Here, the detail genera-
tion process is guided by the underlying image or volume data
and is designed to fill in plausible detail in accordance with
the coarse structure and properties of the zoomed-in neighbor-
hood. Thus, in this method regular zooms become “semantic
zooms,” where each level of detail stems from a data source
attuned to that resolution (see Figure 46.34).

Another aspect of illustrative rendering is the development
of suitable distortion techniques to magnify features of interest
without the loss of context. With the size and resolution of vol-
ume datasets in medicine increasing at a rate much greater than
the resolution of the screens used to view them, the amount of
data that can be viewed simultaneously is limited. This poten-
tially leads to a loss of overall context of the data when the user
views or zooms into a particular area of interest. In [209] a
focus+context framework is described that uses various stan-
dard and advanced magnification lens rendering techniques to
magnify the features of interest, while compressing the remain-
ing volume regions without clipping them away completely.
Some of these lenses can be interactively configured by the
user to specify the desired magnification patterns, while others
are feature adaptive (see Figure 46.35). All lenses are acceler-
ated on the GPU to allow the user to interactively manage
the available screen area, dedicating more area to the more
resolution-important features. Finally, a more invasive method
is described in [31] a GPU-accelerated illustrative visualization
system where is created using cuts and deformations to provide
a better understanding of anatomical and biological structures
or surgical processes.

46.13 Case Study: 3D Virtual Colonoscopy

A visualization based alternative to conventional optical colon-
oscopy,known as virtual colonoscopy (VC) or CT colonography
(CTC), has gained popularity. It was concurrently developed at
Stony Brook University [69] and by a few other researchers
(e.g., [205]). In VC, the distended colon (inflated with carbon
dioxide or room air through a tiny rectal tube) is imaged by
a helical or multi-slice computed tomography (CT) scanner
during a single breathhold of typically about 40 seconds. The
acquired abdominal CT scan commonly consists of 350–750
axial images of 512× 512 submillimeter resolution, providing
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FIGURE 46.34 Different stages in the semantic zooming. The image on the upper left shows a colorized liver slice. The next few images show
high-resolution detail from liver histology data being synthesized into the liver features and blended with the original low-resolution data.
The next frames show the gradual transition from this level of resolution to the next higher level of resolution, obtained by blending with a
feature-constrained synthesis of very high-resolution histology data (from [210]). (See also color insert).

FIGURE 46.35 Various applications of lens-based distortions: (left ) Magnifying inside features in an arbitrary-shaped area on an engine,
(middle) applying a sampling-rate-based lens on a foot dataset, (right ) enlarging an area of interest of an aneurism. (See also color insert).

excellent contrast between the colon mucosa and the lumen. A
3D model of the colon is then reconstructed from the CT scan
by automatically segmenting the colon out of the rest of the
abdomen and employing an “electronic cleansing” algorithm
for computer-based removal of the residual material [100]. In
3D VC [69], the visualization software allows the physician to
interactively navigate through the volume-rendered virtual 3D
model of the colon, running on a PC. An intuitive user inter-
face with customized tools supports 3D measurements and
“virtual biopsy” to inspect suspicious regions. Unlike optical
colonoscopy, VC is patient friendly since the patient undergoes
a less rigorous bowel preparation consisting of a modified diet
with oral agents to “tag” the residual stool and fluid. VC exam-
ines the entire colon mucosa and is also a fast, non-invasive,
highly accurate, and cost-effective procedure for mass screening
of colon polyps.

A primary technological advance of 3D VC is that the 3D
volume-rendered endoscopic views are created in real time

while the physician is interacting with the system. This has two
important consequences. First, the physician does not have to
wait for a “movie” to be generated, which often takes 15–30
minutes. Secondly, the physician is able to auto-fly along the
centerline to get a good view of the colon surface, but also
interactively fly off the centerline similar to computer game
navigation, providing a better view of suspicious structures,
and allowing the physician to examine and analyze them from
any angle. An important performance measure for interactive
navigation is frame rate, with volume rendered navigation of
at least 15 frames per second (e.g., [69, 162]), at which rate the
interactive response is perceived as natural and smooth.

Previously, volume rendering was a much too expensive tech-
nique to provide fast enough framerates to allow interactive
navigation. For this reason, many early VC systems used a
surface rendering approach for which hardware acceleration
was available. It is generally accepted that volume rendering
provides a much more accurate representation of the true



46 Volume Visualization in Medicine 809

surface of the colon mucosa since it does not force piecewise
planar approximation of the surface creating artifacts which
are not present in the data while, at the same time, remov-
ing small details. Recently, interactive volume rendering has
become available on PCs as well as true real-time rendering
using the VolumePro [159] hardware acceleration card, which
is based on the Cube-4 architecture [162]. Now that volume
rendering is available from either optimized PC solutions or
hardware acceleration add-ons, it is much preferred compared
to the lower accuracy surface rendering approach.

Furthermore, when volume rendering is employed, we are
not limited to a surface view of the colon mucosa. VC pro-
vides a “translucency view,” called electronic biopsy, shown in
Figure 46.36 (bottom), of the polyp in Figure 46.36 (top). When
the physician is navigating and viewing the colon mucosa as
an opaque surface, only shape can be analyzed. The electronic
biopsy permits the physician to see behind the colon wall and
analyze the inner structure, the texture, or density make-up of
suspected abnormalities, confirming whether the abnormality
is indeed a polyp or not.

Since the inception of VC over a decade ago, more than 30
clinical trials, including one at Stony Brook University Hospital,
with a total of several thousand patients, have been published
in the medical literature. The performance has been favorable,

FIGURE 46.36 (top) A volume-rendered surface view of a polyp.
(bottom) An electronic biopsy of the polyp shown at the top. (See
also color insert).

with sensitivity (percentage of true polyps that were found with
VC) and specificity (percentage of cases where a polyp was
detected which doesn’t actually exist) for polyps larger than
10mm ranging in 75–91% and 90–93%, respectively, as reported
by per polyp comparisons [47, 48, 229]. The largest multi-center
independent clinical trial was conducted in the National Naval
Medical Center, Walter Reed Army Medical Center, and the
Naval Medical Center San Diego.

Participants (1233 asymptomatic subjects) received a VC
examination followed the same day by optical colonoscopy. The
results of the study show 93.9% sensitivity and 96.0% specificity
for polyps 8mm and larger [163]. These results demonstrate
that VC performance compared very favorably with that of opti-
cal colonoscopy, the accepted “gold standard.” Subsequently,
the US Food and Drug Administration (FDA) approved VC
as a screening tool for detecting colon cancer. VC is poised to
become the procedure of choice for mass screening for colon
polyps, the precursor of colon cancer. If all patients 50 years of
age and older will participate in these screening programs, over
92% of colorectal cancer will be prevented. Current research
in VC focuses also on computer-aided detection (CAD) of
colonic polyps. A typical CAD system will assist the radiologist
in locating polyps while using a VC system by automatically
detecting polyps while reducing the number of false positives.
The CAD system by Hong et al. [70] integrates volume ren-
dering and conformal colon flattening with texture and shape
analysis.

46.14 References

1. Amanatides J, Woo A. A Fast Voxel Traversal Algorithm for
ray tracing. Eurographics. 1987;3–10.

2. Avila R, Sobierajski L, Kaufman A. Towards a com-
prehensive volume visualization system. Proc. of IEEE
visualization. 1992;13–20.

3. Avila R, He T, Hong L, Kaufman A, Pfister H, Silva C,
Sobierajski L, Wang S. VolVis: A Diversified system
for volume visualization. Proc. of IEEE Visualization.
1994;31–38.

4. Bajaj C, Pascucci V, Schikore D. The contour spectrum.
Proc. IEEE Visualization. 1997;167–175.

5. Bajaj C, PascucciV, Rabbiolo G, Schikore D. Hyper-volume
visualization: A challenge in simplicity. Symposium on
Volume Visualization. 1998;95–102.

6. Bakalash R, Kaufman A, Pacheco R, Pfister H. An extended
volume visualization system for arbitrary parallel pro-
jection. Eurographics Workshop on Graphics Hardware.
1992.

7. Banks D, Singer B. Vortex tubes in turbulent flows; iden-
tification, representation reconstruction. Proc. of IEEE
Visualization. 1994;132–139.

8. Bauer D, Peikert R. Vortex Tracking in Scale-Space.
Joint EUROGRAPHICS-IEEE TCVG Symposium on
Visualization. 2002;233–240.



810 Handbook of Medical Image Processing and Analysis

9. Bentum M, Lichtenbelt BBA, Malzbender T. Frequency
analysis of gradient estimators in volume rendering.
IEEE Trans. on Visualization and Computer Graphics.
1996;2(3):242–254.

10. Bergner S, Möller T, Drew M, Finlayson G. Interactive
spectral volume rendering. IEEE Visualization. 2002;
101–108.

11. Blinn F. Light reflection functions for simulation of clouds
and dusty surfaces. SIGGRAPH. 1982;21–29.

12. Bracewell R. The Fourier Transform and its Applications-
3rd Edition. McGraw-Hill, 1999.

13. Brady M, Jung K, Nguyen H, Nguyen T. Two-Phase per-
spective ray casting for interactive volume navigation.
Visualization. 1997;183–189.

14. Brady M, Higgins W, Ramaswamy K, Srinivasan R.
Interactive navigation inside 3D radiological images.
Biomedical Visualization Symposium. 1995;33–40.

15. Brill M, Djatschin V, Hagen H, Klimenko SV, Rodrian H-
C. Streamball techniques for flow visualization. IEEE
Visualization. 1994;225–231.

16. Bruckner S, Grimm S, Kanitsar A, Gröller E. Illustra-
tive context-preserving volume rendering. Joint
EUROGRAPHICS-IEEE TCVG Symposium on
Visualization. May 2005;69–76.

17. Cabral B, Leedon L. Imaging vector fields using line
integral convolution. SIGGRAPH. 1993;263–272.

18. Cabral B, Cam N, Foran J. Accelerated volume rendering
and tomographic reconstruction using texture mapping
hardware. Symp. on volume visualization. 1994;91–98.

19. Cai W, Sakas G. Data intermixing and multi-volume
rendering. Computer Graphics Forum. (Eurographics).
1999;18(3):359–368.

20. Carr H, Snoeyink J, Axen U. Computing contour trees
in all dimensions. Computational Geometry Theory and
Applications. 2003;24(2):75–94.

21. Chen B, Kaufman A, Tang Q. Image-based rendering of
surfaces from volume data. Workshop on Volume Graphics.
2001;279–295.

22. Chen E. QuickTime VR-An image-based approach to
virtual environment navigation. SIGGRAPH. 1995;29–38.

23. Chen E, Williams L. View interpolation for image synthe-
sis. SIGGRAPH. 1993;279–288.

24. Chen M, Kaufman A, Yagel R (eds.), Volume Graphics.
Springer, London, February, 2000.

25. Chiueh T, He T, Kaufman A, Pfister H. Compression
domain volume rendering. Tech. Rep. 94.01.04, Computer
science, SUNY Stony Brook, 1994.

26. Chui C. An Introduction to Wavelets. Academic Press, 1992.
27. Cignoni P, Montani C, Puppo E, Scopigno R. Optimal iso-

surface extraction from irregular volume data. Symposium
on Volume Visualization. 1996;31–38.

28. Cline H, Lorensen W, Ludke S, Crawford C, Teeter B. Two
algorithms for the three-dimensional reconstruction of
tomograms. Med. Phys. 1988;15:320–327.

29. Cohen D, Shefer Z. Proximity clouds—an acceleration
technique for 3D grid traversal. The Visual Computer.
1994;10(11):27–38.

30. Conway J, Sloane N. Sphere Packings, Lattices and Groups.
Springer Verlag. 2nd edition, 1993.

31. Correa C, Silver D, Chen M. Feature aligned volume
manipulation for illustration and visualization. IEEE
Transactions on Visualization and Computer Graphics.
2006;12(5):1069–1076.

32. Crawfis R. Real-time slicing of data space. IEEE Visuali-
zation. 1996;271–277.

33. Crawfis R, Max N. Texture splats for 3D scalar and vector
field visualization. IEEE visualization. 1993;261–266.

34. Dachille F, Kreeger K, Chen B, Bitter I, Kaufman A.
High-quality volume rendering using texture mapping
hardware. SIGGRAPH/Eurographics Workshop on Graphics
Hardware, 1998;69–76.

35. Dachille F, Mueller K, Kaufman A. Volumetric back-
projection. Volume Visualization Symposium, 2000;109–
117.

36. Danskin J, Hanrahan P. Fast algorithms for volume ray
tracing. Workshop on Volume Visualization. 1992;91–98.

37. Daubechies I. Ten lectures on wavelets. CBMS-NSF Reg.
Conf. Ser. Appl. Math. SIAM. 1992.

38. Dorsey J, Edelman A, Jensen H, Legakis J, Pederson H.
Modeling and rendering of weathered stone. SIGGRAPH,
1999;225–234.

39. Drebin R, Carpenter L, Hanrahan P. Volume rendering.
SIGGRAPH. 1988;22(4):65–74.

40. Dudgeon D, Mersereau R. Multi-dimensional Digital
Signal Processing. Prentice-Hall: Englewood Cliffs, 1984.

41. Dunne S, Napel S, Rutt B. Fast reprojection of volume
data. IEEE Visualization in Biomed. Comput. 1990;11–18.

42. Ebert D, Morris C, Rheingans P, Yoo T. Designing effec-
tive transfer functions for volume rendering from pho-
tographics volumes. IEEE Trans. on Visualization and
Computer Graphics. 2002;8(2):183–197.

43. Ebert D, Rheingans P. Volume illustration: Non-pho-
torealistic rendering of volume models. IEEE Transactions
on Visualization and Computer Graphics, 2001;7(3):253–
265.

44. Ebert D, Rheingans P. Volume illustration: Non-
Photorealistic Rendering of Volume Models, IEEE
Visualization, 195–202.

45. Engel K, Kraus M, Ertl T. High-Quality Pre-Integrated
Volume Rendering Using Hardware-Accelerated Pixel
Shading. SIGGRAPH Graphics Hardware Workshop.
2001;9–16.

46. Engel K, Hadwiger M, Kniss J, Rezk-Salama C, Weiskopf
D. Real Time Volume Graphics. A.K. Peters, 2006.

47. Fenlon HM, Nunes DP, Schroy PC, Barish MA, Clarke
PD, Ferrucci JT. A comparison of virtual and conventional
colonoscopy for the detection of colorectal polyps. N Engl
J Med. November 1999;341:1496–1503.



46 Volume Visualization in Medicine 811

48. Fletcher JG, Johnson CD,Welch TJ, MacCarty RL,Ahlquist
DA, Reed JE, Harmsen WS, Wilson LA. Optimization of
CT colography technique: Prospective trial in 180 patients.
Radiology. 2000;216:704–711.

49. Foley J, Dam A, Feiner S, Hughes J. Computer Graphics:
Principles and Practice. Addison-Wesley, 2nd edition, 1996.

50. Fowler J, Yagel R. Lossless compression of volume data.
Symp. of Volume Visualization. 1994;43–50.

51. Fujimoto A, Tanaka T, Iwata K. ARTS: Accelerated ray-
tracing system, IEEE Computer Graphics and Applications,
1986;6(4):16–26.

52. Fujishiro I, Takeshima Y, Azuma T, Takahashi S. Volume
data mining using 3D field topology analysis. IEEE
Computer Graphics & Applications. 2000;20(5):46–51.

53. Gao J, Shen H. Parallel view-dependent isosurface
extraction using multi-pass occlusion culling, ACM/IEEE
Symposium on Parallel and Large Data Visualization and
Graphics. 2001;67–74.

54. Garland M, Heckbert P. Surface simplification using
quadric error metrics, Proc. of the 24th Annual Conference
on Computer Graphics and Interactive Techniques. 1997;
209–216.

55. Gordon D, Reynolds R. Image-space shading of 3-
dimensional objects. Computer Vision, Graphics, and
Image Processing, 1985;29:361–376.

56. Gortler S, Grzeszczuk R, Szeliski R, Cohen M. The
Lumigraph. SIGGRAPH. 1996;43–54.

57. Gosh A, Prabhu P, Kaufman A, Mueller K. Hardware
assisted multichannel volume rendering. Computer
Graphics International. 2003;2–7.

58. Gross M, Koch R, Lippert L, Dreger A. A new method to
approximate the volume rendering equation using wavelet
bases and piecewise polynomials. Computers & Graphics.
1995;19(1):47–62.

59. Guan X, Lai S, Lackey J, Shi J, Techavipoo U, Mueller K,
Flanders A, Andrews D. MediCAD: An Integrated visual-
ization system for DTI and fMRI Fusion with Anatomical
MRI for Presurgical Planning. 14th Scientific Meeting of the
International Society for Magnetic Resonance in Medicine
(ISMRM ’06), Seattle, WA, May, 2006.

60. Guenther T, Poliwoda C, Reinhard C, Hesser J, Maenner R,
Meinzer H, Baur H. VIRIM: A Massively parallel processor
for real-time volume visualization in medicine, Proc. of the
9th Eurographics Hardware Workshop. 1994;103–108.

61. Guthe S, Wand M, Gonser J, Strasser W. Interactive
rendering of large volume datasets. IEEE Visualization.
2002;53–60.

62. Guthe S, Straßer W. Real-time decompression and visu-
alization of animated volume data. IEEE Visualization.
2001;349–356.

63. Hadwiger M, Sigg C, Scharsach H, Bühler K, Gross M.
Real-Time Ray-Casting and advanced shading of discrete
isosurfaces. Eurographics. 2005;303–312.

64. Hanrahan P, Krueger W. Reflection from layered sur-
faces due to subsurface scattering. Computer Graphics
(SIGGRAPH). 1993;165–174.

65. Hauser H, Mroz L, Bischi G, Gröller M. Two-level volume
rendering-flushing MIP and DVR. IEEE Visualization.
2000;211–218.

66. He T, Hong L, Kaufman A, Pfister H. Generation of
transfer functions with stochastic search techniques. IEEE
Visualization. 1996;227–234.

67. Herman G, Liu H. Three-dimensional display of human
organs from computed tomograms. Comput. Graphics
Image Process. 1979;9:1–21.

68. Herman G, Udupa J. Display of three-dimensional discrete
surfaces. Proceedings SPIE. 1981;283:90–97.

69. Hong L, Muraki S, Kaufman A, Bartz D, He T. Virtual
voyage: Interactive navigation in the human colon. ACM
SIGGRAPH. August 1997;27–34.

70. Hong W, Qiu F, Kaufman A. A Pipeline for computer aided
polyp detection. IEEE Transactions on Visualization and
Computer Graphics. 2006;12(5):861–868.

71. Hoppe H. Progressive meshes. ACM SIGGRAPH. 1996;
99–108.

72. http://graphics.stanford.edu/software/volpack/
73. http://www.nlm.nih.gov/research/visible/

visible_human.html
74. Huang J, Crawfis R, Stredney D. Edge preservation in vol-

ume rendering using splatting. IEEE Volume Visualization
Symposium. 1998;63–69.

75. Ihm I, Lee R. On enhancing the speed of splatting with
indexing. IEEE Visualization. October 1995;69–76.

76. Interrante V. Illustrating surface shape in volume data via
principal direction-driven 3D line integral convolution.
ACM SIGGRAPH. August 1997;109–116.

77. Jensen H, Christensen P. Efficient Simulation of Light
transport in sciences with participating media using
photon maps. ACM SIGGRAPH. 1998;311–320.

78. Kajiya J, Herzen B. Ray tracing volume densities. ACM
SIGGRAPH. 1994;165–174.

79. Kaneda K, Dobashi Y, Yamamoto K, Yamashita H. Fast
volume rendering with adjustable color maps. Symposium
on Volume Visualization. 1996;7–14.

80. Kaufman A. Volume Visualization. IEEE computer society
press tutorial. Los Alamitos, CA.

81. Kaufman A. Volume visualization. ACM Computing
Surveys. 1996;28(1):165–167.

82. Kaufman A, Cohen D, Yagel R. Volume graphics. IEEE
Computer. 1993;26(7):51–64.

83. Kaufman A, Bakalash R. CUBE—An architecture based
on a 3-D voxel map. Theoretical Foundations of Computer
Graphics and CAD. Earnshaw R A (ed.), Springer-Verlag,
1985;689–701.

84. Kay T, Kajiya J. Ray tracing complex scenes. ACM
SIGGRAPH. 1986;269–278.



812 Handbook of Medical Image Processing and Analysis

85. Keys R. Cubic convolution interpolation for digital image
processing. IEEE Transactions. on Acoustics, Speech, Signal
Processing. 1981;29(6):1153–1160.

86. Kilthau S, Möller T. Splatting Optimizations. Technical
Report, School of Computing Science, Simon Fraser
University. (SFU-CMPT-04/01-TR2001-02), April 2001.

87. Kindlmann G, Durkin J. Semi-automatic generation of
transfer functions for direct volume rendering. Symp.
Volume Visualization. 1998;79–86.

88. Kniss J, Kindlmann G, Hansen C. Interactive volume
rendering using multidimensional transfer functions and
direct manipulation widgets. IEEE Visualization. 2001;
255–262.

89. Kniss J, Kindlmann G, Hansen C. Multidimensional
transfer functions for interactive volume rendering. IEEE
Transactions on Visualization and Computer Graphics.
2002;8(3):270–285.

90. Kniss J, Premoze S, Hansen C, Shirley P, McPherson A.
Interactive volume light transport and procedural mod-
eling. IEEE Transactions on Visualization and Computer
Graphics. 2003;109–116.

91. Kniss J, Premoze S, Hansen C, Ebert D. Interactive translu-
cent volume rendering and procedural modeling, IEEE
Visualization. 2002;109–116.

92. Knittel G. The ULTRAVIS system, Proc. of Volume
Visualization and Graphics Symposium’00. 2000;71–80.

93. Knittel G, Strasser W. A Compact volume rendering
accelerator. Volume Visualization Symposium 1994;67–74.

94. Kreeger K, Kaufman A. Interactive volume segmentation
with the PAVLOV architecture. Parallel Visualization and
Graphics Symposium. 1999;77–86.

95. Kreeger K, Bitter I, Dachille F, Chen B, Kaufman A.
Adaptive perspective ray casting. Volume Visualization
Symposium, 1998;55–62.

96. Kreveld M, Oostrum R, Bajaj C, Pascucci V, Schikore D.
Contour trees and small seed sets for isosurface traver-
sal. 13th ACM Symposium on Computational Geometry.
1997;212–220.

97. Krüger J, Westermann R. Acceleration techniques
for GPU-based volume rendering. IEEE Visualization.
2003;287–292.

98. Krüger J, Schneider J, Westermann R. ClearView: An inter-
active context preserving hotspot visualization technique.
IEEE Transactions on Visualization and Computer Graphics.
2006;12(5):941–948.

99. Lacroute P, Levoy M. Fast volume rendering using a shear-
warp factorization of the viewing transformation. SIG-
GRAPH. 1994;451–458.

100. Lakare S, Wan M, Satom, Kaufman A. 3D Digital cleans-
ing using segmentation rays. IEEE Visualization. October
2000;37–44.

101. Laur D, Hanrahan P. Hierarchical splatting: A progres-
sive refinement algorithm for volume rendering. ACM
SIGGRAPH. 1991;285–288.

102. Lee R, Ihm I. On enhancing the speed of splatting using
both object- and image space coherence. Graphical Models
and Image Processing. 2000;62(4):263–282.

103. Leung W, Neophytou N, Mueller K. SIMD-aware ray-
casting. Volume Graphics Workshop. Boston, MA, August
2006;59–62.

104. Levoy M. Display of surfaces from volume data. IEEE
Computer Graphics & Applications. 1988;8(5):29–37.

105. Levoy M. Efficient ray-tracing of volume data. ACM
Transactions on Computer Graphics. 1990;9(3):245–261.

106. Levoy M, Hanrahan P. Light field rendering. SIGGRAPH.
1996;31–42.

107. Li W, Mueller K, Kaufman A. Empty-space skipping and
occlusion clipping for texture-based volume rendering.
IEEE Visualization. October 2003;317–325.

108. Livnat Y, Shen H, Johnson C. A near optimal isosur-
face extraction algorithm for structured and unstructured
grids. IEEE Transactions on Visualization and Computer
Graphics, 1996;2(1):73–84.

109. Ljung P, Winskog C, Persson A, Lundströmc,Ynnerman A.
Full body virtual autopsies using a State-of-the-art volume
rendering pipeline. IEEE Transactions on Visualization and
Computer Graphics. 2006;12(5):869–876.

110. Lorensen E, Cline H. Marching cubes: A high resolution
3D surface construction algorithm. ACM SIGGRAPH.
1987;163–169.

111. Lu A, Morris C, Taylor J, Ebert D, Rheingans P, Hansen
C, Hartner M. Illustrative interactive stipple rendering.
IEEE Transactions on Visualization and Computer Graphics.
2003;127–138.

112. Lu A, Ebert D. Example-based volume illustrations. IEEE
Visualization. 2005;83–91.

113. Lum E, Ma K. Nonphotorealistic rendering using water-
color inspired textures and illumination. Pacific Graphics.
2001;323–333.

114. Ma F, Wang W, Tsang W, Tang Z, Xia S. Probabilistic
segmentation of volume data for visualization using
SOM-PNN classifier. Symposium on Volume Visualization.
1998;71–78.

115. Machiraju R, Gaddipati A, Yagel R. Detection and
enhancement of scale cohererent structures using wavelet
transform products. Proc. of the Technical Conference on
Wavelets in Signal and Image Processing V. SPIE Annual
Meeting. 1997;458–469.

116. Machiraju R, Yagel R. Reconstruction error and con-
trol: A sampling theory approach. IEEE Transactions on
Visualization and Graphics. 1996;2(3):364–378.

117. Malzbender T, Kitson F. A Fourier technique for vol-
ume rendering. Focus on Scientific Visualization. 1991;
305–316.

118. Marks J, Andalman B, Beardsley PA, Freeman W, Gibson
S, Hodgins J, Kang T, Mirtich B, Pfister H, Rum W. et al.
Design Galleries: A general approach to setting parameters



46 Volume Visualization in Medicine 813

for computer graphics and animation. ACM SIGGRAPH.
1997;389–400.

119. Marschner S, Lobb R. An evaluation of reconstruction
filters for volume rendering. IEEE Visualization. 1994;
100–107.

120. Max N. Optical models for direct volume rendering, IEEE
Trans. Vis. and Comp. Graph. 1995;1(2):99–108.

121. McMillan L, Bishop G. Plenoptic Modeling: An image-
based rendering system. ACM SIGGRAPH. 1995;39–46.

122. Meagher D. Geometric modeling using octree encod-
ing. Computer Graphics and Image Processing. 1982;19(2):
129–147.

123. Meinzer H, Meetz K, Scheppelmann D, Engelmann U,
Baur H. The Heidelberg raytracing model. IEEE Computer
Graphics & Applications. 1991;11(6):34–43.

124. Meißner M, Huang J, Bartz D, Mueller K, Crawfis R. A
practical comparison of popular volume rendering algo-
rithms. Symposium on Volume Visualization and Graphics.
2000;81–90.

125. Meißner M, Doggett M, Kanus U, Hirche J. Efficient space
leaping for ray casting architectures. Volume Graphics
Workshop. 2001;149–161.

126. Meißner M, Kanus U, Straßer W. VIZARD II: A PCI-card
for real-time volume rendering. Siggraph/Eurographics
Workshop on Graphics Hardware. 1998;61–67.

127. Meißner M, Kanus U, Wetekam G, Hirche J, Ehlert
A, Straßer W, Doggett M, Proksa R. VIZARD II:
A reconfigurable interactive volume rendering sys-
tem. SIGGRAPH/Eurographics Workshop on Graphics
Hardware. 2002;137–146.

128. Mitchell D, Netravali A. Reconstruction filters in computer
graphics. Proc. of SIGGRAPH ’88, 1988;221–228.

129. Möller T, Machiraju R, Mueller K, Yagel R. A comparison
of normal estimation schemes. IEEE Visualization. 1997;
19–26.

130. Möller T, Machiraju R, Mueller K, Yagel R. Evaluation
and design of filters using a Taylor Series Expansion.
IEEE Transactions on Visualization and Computer Graphics.
1997;3(2):184–199.

131. Montani C, Scateni R, Scopigno R. Discretized marching
cubes. IEEE Visualization. 1994;281–287.

132. Mora B, Jessel J, Caubet R. A new object-order ray-casting
algorithm. IEEE Visualization. 2002;203–210.

133. Morris C, Ebert D. Direct volume rendering of pho-
tographic volumes using multi-dimensional color-based
transfer functions. EUROGRAPHICS IEEE TCVG sympo-
sium on Visualization. 2002;115–124.

134. Mueller K, Crawfis R. Eliminating popping artifacts
in sheet buffer-based splatting. IEEE Visualization.
1998;239–245.

135. Mueller K, Yagel R. Fast perspective volume rendering
with splatting by using a ray-driven approach. IEEE
Visualization. 1996;65–72.

136. Mueller K, Chen M, Kaufman A (eds.), Volume Graphics
2001. Springer: London.

137. Mueller K, Shareef N, Huang J, Crawfis R. High-quality
splatting on rectilinear grids with efficient culling of
occluded voxels. IEEE Transactions on Visualization and
Computer Graphics. 1999;5(2):116–134.

138. Mueller K, Shareef N, Huang J, Crawfis R. IBR assisted
volume rendering. IEEE Visualization. 1999;5–8.

139. Mueller K, Moeller T, Swan JE, Crawfis R, Shareef N, Yagel
R. Splatting errors and antialiasing. IEEE Transactions on
Visualization and Computer Graphics. 1998;4(2):178–191.

140. Mueller K, Möller T, Crawfis R. Splatting without the blur.
IEEE Visualization. 1999;363–371.

141. Muraki S. Volume data and wavelet transform, IEEE
Computer Graphics & Applications, 1993;13(4):50–56.

142. Neophytou N, Mueller K. Space-time points: 4D splatting
on effcient grids. Symposium on Volume Visualization and
Graphics. 2002;97–106.

143. Neophytou N, Mueller K. Post-convolved splatting. Joint
Eurographics-IEEE TCVG Symposium on Visualization.
2003;223–230.

144. Neophytou N, Mueller K. GPU accelerated image aligned
splatting. Volume Graphics Workshop. June 2005;197–205.

145. Neophytou N, Mueller K, McDonnell K, Hong W, Guan
X, Qin H, Kaufman A. GPU-accelerated volume splat-
ting with elliptical RBFs. Joint Eurographics—IEEE TCVG
Symposium on Visualization (EuroVis). May 2006;13–20.

146. Nielson G, Hamann B. The Asymptotic Decider: Resolving
the ambiguity in marching cubes. IEEE Visualization.
1991;29–38.

147. Ning P, Hesselink L. Fast volume rendering of compressed
data. IEEE Visualization. 1993;11–18.

148. Ning P, Hesselink L. Vector quantization for volume
rendering. IEEE Visualization. 1992;69–74.

149. Noordmans H, Voort H, Smeulders A. Spectral vol-
ume rendering. IEEE Transactions on Visualization and
Computer Graphics 2000;6(3):196–207.

150. Novins L, Sillion FX, Greenberg DP. An efficient method
for volume rendering using perspective projection.
Computer Graphics. 1990;24(5):95–100.

151. Nulkar M, Mueller K. Splatting with shadows. Volume
Graphics Workshop. 2001;35–50.

152. Osborne R, Pfister H, Lauer H, Ohkami T, McKenzie N,
Gibson S, Hiatt W. EM-Cube: An architecture for low-
cost real-time volume rendering. Eurographics Hardware
Rendering Workshop. 1997;131–138.

153. Parker S, Parker M, Livnat Y, Sloan P, Hansen C,
Shirley P. Interactive ray tracing for volume visualization.
IEEE Transactions on Visualization and Computer Graphics.
1999;5(3):238–250.

154. Parker S, Shirley P, Livnat Y, Hansen C, Sloan P. Interactive
ray tracing for isosurface rendering. IEEE Visualization.
1998;233–238.



814 Handbook of Medical Image Processing and Analysis

155. Pascucci V, Cole-McLaughlin K. Efficient computation of
the topology of level sets. IEEE Visualization. 2002;187–
194.

156. Peercy S. Linear Color Representations for Full Spectral
Rendering. Computer Graphics. 1993;27(3):191–198.

157. Pekar V, Wiemker R, Hempel D. Fast detection of mean-
ingful isosurfaces for volume data visualization. IEEE
Visualization. 2001;223–230.

158. Pfister H, Lorensen B, Bajaj C, Kindlmann G, Schroeder W,
Avila L, Martin K, Machiraju R, Lee J. The transfer func-
tion bake-off. IEEE Computer Graphics & Applications.
2001;21(3):16–22.

159. Pfister H, Hardenbergh J, Knittel J, Lauer H, Seiler L.
The VolumePro real-time raycasting system. ACM SIG-
GRAPH. 1999;251–260.

160. Pfister H, Zwicker M, Baar J, Gross M. Surfels: Surface
elements as rendering primitives. ACM SIGGRAPH.
2000;335–342.

161. Pfister H, Kaufman A, Chiueh T. Cube-3: A Real-Time
architecture for High-resolution volume visualization,
Symposium of Volume Visualization. 1994;75–82.

162. Pfister H, Kaufman A. Cube-4: A Scalable architecture
for real-time volume rendering. Volume Visualization
Symposium. 1996;47–54.

163. Pickhardt PJ, Choi JR, Hwang I, Butler JA, Puckett ML,
Hildebrandt HA, Wong RK, Nugent PA, Mysliwiec PA,
Schindler WR. Computed tomographic virtual colonos-
copy to screen for colorectal neoplasia in asymptomatic
adults. N Engl J Med. 349, 23, December. 2003;2191–2200.

164. Porter T, Duff T. Compositing digital images. Computer
Graphics (ACM Siggraph). 1984;253–259.

165. Preim B, Bartz D. Visualization in Medicine, Theory,
Algorithms, and Applications. Morgan Kaufmann, 2007.

166. Rautek P, Csébfalvi B, Grimm S, Bruckner S, Gröller
E. D2VR: High-quality volume rendering of projection-
based volumetric data. Joint Eurographics IEEE TCVG
Symposium on Visualization. 2006;211–218.

167. Rezk-Salama C, Engel K, Bauer M, Greiner G, Ertl
T. Interactive volume rendering on standard PC
graphics hardware using multi-textures and multi-
stage-rasterization. SIGGRAPH/Eurographics Workshop
on Graphics Hardware. 2000;109–118.

168. Rezk-Salama C, Keller M, Kohlmann P, High-Level user
interfaces for transfer function design with semantics.
IEEE Transactions on Visualization and Computer Graphics.
2006;12(5):1021–1028.

169. Ritter F, Hansen C, Dicken V, Konrad-Verse O, Preim B,
Peitgen H. Real-Time illustration of vascular structures.
IEEE Transactions on Visualization and Computer Graphics
2006;12(5):877–884.

170. Rushmeier H, Torrance E. The zonal method for calcu-
lating light intensities in the presence of a participating
medium. Computer Graphics. July 1987;21(4):293–302.

171. Rusinkiewicz S, Levoy M. QSplat: A Multiresolution point
rendering system for large meshes. ACM SIGGRAPH.
2000;343–352.

172. Sabella P. A rendering algorithm for visualizing 3D
scalar fields. ACM SIGGRAPH Computer Graphics.
1988;22(4):51–58.

173. Samet H. Application of Spatial Data Structures. Reading:
Addison-Wesley, 1990.

174. Svakhine N, Ebert D, Stredney D. Illustration motifs
for effective medical volume illustration. IEEE Computer
Graphics and Applications. 2005;25(3):31–39.

175. Schroeder W, Zarge J, Lorensen W. Decimation of tri-
angle meshes. Computer Graphics (ACM SIGGRAPH).
1992;26(2):65–70.

176. Shade J, Gortler S, Li-Wei He, Szeliski R. Layered depth
images. ACM SIGGRAPH. 1998;231–242.

177. Shareef N, Wang D, Yagel R. Segmentation of medi-
cal images using LEGION. IEEE Transactions on Medical
Imaging. 1999;18(1):74–91.

178. Shekhar R, Fayyad E,Yagel R, Cornhill J. Octree-based dec-
imation of marching cubes surfaces. IEEE Visualization.
1996;335–342.

179. Shen H, Hansen C, Livnat Y, Johnson C. Isosurfacing
in span space with utmost efficiency (ISSUE). IEEE
Visualization, 1996;287–294.

180. Shinagawa Y, Kunii T. Constructing a reeb graph automat-
ically from cross sections. IEEE Computer Graphics and
Applications. 1991;11(6):45–51.

181. Sijbers J, Scheunders P, Verhoye M, Linden A, Dyck D,
Raman E. Watershed-based segmentation of 3D MR data
for volume quantization. Magnetic Resonance Imaging.
1997;15:679–688.

182. Silver D,Wang X. Tracking Scalar Features in Unstructured
Datasets. IEEE Visualization. 1998;79–86.

183. Silver D, Wang X. Tracking and visualizing turbulent 3D
features. IEEE Transactions on Visualization and Computer
Graphics. 1997;3(2):129–142.

184. Sobierajski L, Cohen D, Kaufman A, Yagel R, Acker D. A
fast display method for volumetric data. Visual Computer.
1993;10(2):116–124.

185. Sobierajski L, Kaufman A. Volumetric raytracing, Sym-
posium on Volume Visualization. 1994;11–18.

186. Sobierajski L, Avila R. A hardware acceleration method for
volumetric ray tracing. IEEE Visualization. 1995;27–35.

187. Sohn B, Bajaj C, Siddavanahalli V. Feature based volumet-
ric video compression for interactive playback. Symposium
on Volume Visualization. 2002;89–96.

188. Spearey D, Kennon S. Volume Probes: Interactive data
exploration on arbitrary grids. Computer Graphics,
1990;25(5):5–12.

189. Sramek M, Kaufman A. Fast Ray-tracing of rectilinear vol-
ume data using distance transforms. IEEE Transactions on
Visualization and Computer Graphics. 2000;3(6):236–252.



46 Volume Visualization in Medicine 815

190. Stander B, Hart J. A Lipschitz method for accelerated
volume rendering. Symposium on Volume Visualization.
1994;107–114.

191. Stegmaier S, Strengert M, Klein T, Ertl T. A simple
and flexible volume rendering framework for Graphics-
hardware-based Ray-casting. Volume Graphics Workshop.
2005;187–195.

192. Swan E, Mueller K, Moller T, Shareef N, Crawfis R,
Yagel R. An Anti-Aliasing technique for splatting. IEEE
Visualization. 1997;197–204.

193. Sweeney J, Mueller K. Shear-Warp Deluxe: The Shear-
Warp algorithm revisited. Joint Eurographics—IEEE TCVG
Symposium on Visualization. 2002;95–104.

194. Takahashi S, Ikeda T, Shinagawa Y, Kunii TL, Ueda M.
Algorithms for extracting correct critical points and con-
structing topological graphs from discrete geographical
elevation data. Computer Graphics Forum. 1995;14(3):
181–192.

195. Tenginakai S, Lee J, Machiraju R. Salient isosurface detec-
tion with model-independent statistical signatures. IEEE
Visualization. 2001;231–238.

196. Theußl T, Hauser H, Gröller M. Mastering Windows:
Improving Reconstruction. Symposium on Volume
Visualization. 2000;101–108.

197. Theußl T, Möller T, Gröller E. Optimal regular volume
sampling. IEEE Visualization. 2001;91–98.

198. Thévenaz P, Blu T, Unser M. Interpolation revisited. IEEE
Transactions on Medical Imaging. 2000;19(7):739–758.

199. Tiede U, Schiemann T, Hoehne K. High quality render-
ing of attributed volume data. IEEE Visualization. 1998;
255–262.

200. Totsuka T, Levoy M. Frequency domain volume rendering.
ACM SIGGRAPH. 1993;271–278.

201. Treavett S, Chen M. Pen-and-ink rendering in volume
visualization. IEEE Visualization. 2000;203–210.

202. Tuy H, Tuy L. Direct 2D display of 3D objects. IEEE
Computer Graphics & Applications. 1984;4(10):29–33.

203. Udupa J, Odhner D. Shell Rendering. IEEE Computer
Graphics and Applications. 1993;13(6):58–67.

204. Uselton S. Volume rendering for computational fluid
dynamics: Initial results. Tech Report RNR-91-026. Nasa
Ames Research Center, 1991.

205. Vining DJ, Gelfand DW, Bechtold RE, Sharling ES, Grishaw
EK, Shifrin RY. Technical feasibility of colon imaging with
helical CT and virtual reality (abst). Am J Roentgenol
1994;162:104.

206. Viola I, Kanitsar A, Gröller E. Importance-Driven volume
rendering. IEEE visualization. October 2004;139–145.

207. Wallace G. The JPEG still picture compression standard,
Communications of the ACM. 1991;34(4):30–44.

208. Wan M, Tang Q, Kaufman A, Liang Z, Wax M. Volume
rendering based interactive navigation within the human
colon. IEEE Visualization. 1999;397–400.

209. Wang L, Zhao Y, Mueller K, Kaufman A. The magic volume
lens: An interactive focus+Context technique for volume
rendering. IEEE Visualization. 2005;47–54.

210. Wang L, Mueller K. Generating Sub-resolution detail in
images and volumes using constrained texture synthesis.
IEEE Visualization. 2004;75–82.

211. Weiskopf D, Engel K, Ertl T. Volume clipping via Per-
Fragment operations in texture-based volume visualiza-
tion. IEEE Visualization. 2002;93–100.

212. Weiskopf D, Schafhitzel T, Ertl T. GPU-Based nonlin-
ear ray tracing. Computer Graphics Forum. 2004;23(3):
625–634.

213. Westermann R. Compression domain rendering of
time-resolved volume data. IEEE Visualization. 1995;
168–174.

214. Westover L. Footprint evaluation for volume rendering.
ACM SIGGRAPH. 1990;367–376.

215. Westover L. Interactive volume rendering. Chapel hill
volume visualization workshop. 1989;9–16.

216. Westover L. SPLATTING: A parallel, feed-forward vol-
ume rendering algorithm. PhD Dissert. UNC-Chapel Hill,
1991.

217. Wijk J. Spot Noise-Texture synthesis for data visual-
ization. ACM SIGGRAPH. July 1991;25(4):309–318.

218. Wilhelms J, Gelder A. A Coherent projection approach
for direct volume rendering. ACM SIGGRAPH. 1991;
25(4):275–284.

219. Wilhelms J, Gelder A. Octrees for faster isosurface
generation. ACM Transactions on Graphics. 1992;11(3):
201–227.

220. Wischgoll T, Scheuermann G. Detection and visualization
of closed streamlines in planar flows. IEEE Transactions
on Visualization and Computer Graphics. 2001;7(2):
165–172.

221. Wittenbrink C, Malzbender T, Goss M. Opacity-weighted
color interpolation for volume sampling. Symposium on
Volume Visualization. 1998;135–142.

222. Wolberg G. Digital Image Warping. IEEE Computer society
press. Los Alamitos, CA, 1990.

223. Wu Y, Bhatia V, Lauer H, Seiler L. Shear-Image ray cast-
ing volume rendering. ACM SIGGRAPH Symposium on
Interactive 3D Graphics. 2003;152–162.

224. Wyman C, Parker S, Shirley P, Hansen C. Interactive
display of isosurfaces with global illumination. IEEE
Transactions on Visualization and Computer Graphics.
2006;12(20:186–196.

225. Xu F, Mueller K. Real-Time 3D computed Tomo-
graphic reconstruction using commodity graphics
hardware. Physics in Medicine and Biology. 2007;52:
3405–3419.

226. Xu F, Mueller K. GPU-Accelerated D2VR. Volume
Graphics. 2006;23–30.



816 Handbook of Medical Image Processing and Analysis

227. Yagel R. Kaufman A. Template-Based volume viewing.
Computer Graphics Forum (EUROGRAPHICS). 1992;
11(3):153–167.

228. Yagel R. Shi Z, Accelerating volume animation by space-
leaping. IEEE Visualization. 1993;62–69.

229. Yee J, Akerkar GA, Hung RK, Steinauer-Gebauer AM,
Wall SD, McQuaid KR. Colorectal Neoplasia: Performance
characteristics of CT colonography for detection in 300
patients. Radiology. 219, 2001;685–692.

230. Yeo B, Liu B. Volume rendering of DCT-based com-
pressed 3D scalar data. IEEE Trans. Visualization Comput.
Graphics. 1995;1(1):29–43.

231. Zhang H, Manocha D, Hudson T, Hoff K. Visibility culling
using hierarchical occlusion maps. ACMc SIGGRAPH.
1997;77–88.

232. Zhang C, Crawfis R. Volumetric shadows using splatting.
IEEE Visualization. 2002;85–92.

233. Zuiderveld K, Koning A, Viergever M. Acceleration of
ray-casting using 3D distance transforms. Visualization in
Biomedical Computing. 1992;324–335.

234. Zwicker M, Pfister H, Baar J, Gross M. Surface splatting.
ACM SIGGRAPH. 2001;371–378.

235. Zwicker M, Pfister H, Baar J, Gross M. EWA volume
splatting. IEEE Visualization. 2001;29–36.



47
Fast Isosurface Extraction

Methods for Large Image Data sets

Yarden Livnat
Steven G. Parker
Christopher R. Johnson
University of Utah

47.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817
47.2 Accelerated Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

47.2.1 The Span Space • 47.2.2 The NOISE Algorithm • 47.2.3 Optimization
• 47.2.4 Other Span Space Algorithms

47.3 View-Dependent Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 821
47.3.1 Visibility • 47.3.2 Image Space Culling • 47.3.3 Warped Isosurface Extraction
(WISE)

47.4 Real-Time Ray-Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
47.4.1 Ray-Isosurface Intersection • 47.4.2 Optimizations • 47.4.3 Real-Time
Ray-Tracing Results

47.5 Sample Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827
47.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828

47.1 Introduction

Isosurface extraction is a powerful tool for investigating volu-
metric scalar fields and has been used extensively in medical
imaging ever since the seminal paper by Lorensen and Kline
on marching cubes [1, 2]. In medical imaging applications,
isosurfaces permit the extraction of anatomical structures and
tissues.

Since the inception of medical imaging, scanners continu-
ally have increased in their resolution capability. This increased
image resolution has been instrumental in the use of 3D images
for diagnosis, surgical planning, and with the advent of the GE
Open MRI system, for surgery itself. Such increased resolution,
however, has caused researchers to look beyond marching cubes
in order to obtain near-interactive rates for such large-scale
imaging datasets. As such, there has been a renewed interested
in creating isosurface algorithms that have optimal complexity
and can take advantage of advanced computer architectures.

In this chapter, we discuss three techniques developed by the
authors (and colleagues) for fast isosurface extraction for large-
scale imaging datasets. The first technique is the near optimal
isosurface extraction (NOISE) algorithm for rapidly extracting
isosurfaces. Using a new representation, termed the span space,
of the underlying domain, we develop an isosurface extraction
algorithm with a worst-case complexity of O(

√
n + k) for the

search phase, where n is the size of the dataset and k is the

number of cells in the isosurface. The memory requirement is
kept at O(n), while the preprocessing step is O(n log n). We note
that we can utilize the span space representation as a tool for
comparing other isosurface extraction methods on structured
(and unstructured) grids.

While algorithms such as NOISE effectively have eliminated
the search phase bottleneck, the cost of constructing and render-
ing the isosurface remains high. Many of today’s large imaging
datasets contain very large and complex isosurfaces that can
easily overwhelm even state-of-the-art graphics hardware. As
such, we discuss an output-sensitive algorithm that is based
on extracting only the visible portion of the isosurface. The
visibility tests are done in two phases. First, coarse visibil-
ity tests are performed in software determine the visible cells.
These tests are based on hierarchical tiles and shear-warp fac-
torization. The second phase resolves the visible portions of
the extracted triangles and is accomplished by the graphics
hardware.

When an isosurface is extracted from a large imaging
dataset by the preceding two techniques (or by other march-
ing cube-like methods), an explicit polygonal representation
for the surface is created. This surface is subsequently rendered
with attached graphics hardware accelerators. Such explicit
geometry-based isosurface extraction methods can generate an
extraordinary number of polygons,which take time to construct
and to render. For very large (i.e., greater than several million

Copyright © 2008 by Elsevier, Inc.
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polygons) surfaces, the isosurface extraction and rendering
times limit the interactivity.

In the third technique we describe, we generate images of iso-
surfaces directly with no intermediate surface representation
through the use of ray-tracing. Using parallel processing and
incorporating simple optimizations enables interactive render-
ing (i.e., 10 frames per second) of the 1 Gbyte full resolution
visible woman CT dataset on an SGI Origin 2000.

47.2 Accelerated Search

47.2.1 The Span Space

Let ϕ : G → V be a given field and let D be a sample set over D
such that

D = {di}; di ∈ D = G × V , (47.1)

where G ⊆ Rp is a geometric space and V ⊆ Rq, for some p, q ∈
Z , is the associated value space. Also, let d = ||D|| be the size of
the dataset.

Definition 1 (Isosurface Extraction): Given a set of samples D
over a field ϕ: G → V, and given a single value v ∈ V, find,

S = {gi} gi ∈ G such that ϕgi = v .

Note that S, the isosurface, need not be topologically simple.

Approximating an isosurface, S, as a global solution to
Equation 47.1 can be a difficult task because of the sheer size,
d , of a large imaging dataset.

In thinking about imaging datasets, one can decompose the
geometric space, G, into a set of polyhedral cells (voxels), C ,
where the data points define the vertices. While n = ||C ||, the
number of cells, is typically an order of magnitude larger than
d , the approximation of the isosurface over C becomes a man-
ageable task. Rather than finding a global solution, one can
seek a local approximation within each cell. Hence, isosurface
extraction becomes a two-stage process: locating the cells that
intersect the isosurface and then, locally, approximating the iso-
surface inside each such cell [1, 2]. We focus our attention on
the problem of finding those cells that intersect an isosurface of
a specified isovalue.

On structured grids, the position of a cell can be represented
in the geometric space G. Because this representation does not
require explicit adjacency information between cells, isosurface
extraction methods on structured grids conduct searches over
the geometric space, G. The problem as stated by these methods
[3–6] is defined as follows:

Approach 1 (Geometric Search): Given a value v ∈ V and
given a set C of cells in G space where each cell is associated

with a set of values {vj} ∈ V space, find the subset of C that an
isosurface, of value v, intersects.

Another approach is to forgo the geometric location of a cell
and examine only the values at the cell vertices. The advantage of
this approach is that one needs to examine only the minimum
and maximum values of a cell to determine if an isosurface
intersects that cell. Hence, the dimensionality of the problem
reduces to two for scalar fields.

Current methods for isosurface extraction that are based on
this value space approach [7–9] view the isosurface extraction
problem in the following way:

Approach 2 (Interval Search): Given a value v ∈ V and given
a set of cells represented as intervals,

I = {[ai , bi]} such that ai , bi ∈ V

find the subset Is such that

Is ⊆ I and ai ≤ v ≤ bi ∀(ai , bi) ∈ Is ,

where a norm should be used when the dimensionality of V is
greater than 1.

The method presented in this section addresses the search
over the value space. Our approach is not to view the problem
as a search over intervals in V but rather as a search over points
in V 2. We start with an augmented definition of the search
space.

Definition 2 (The Span Space): Let C be a given set of cells.
Define a set of points P = {pi} over V 2 such that

∀ci ∈ C associate, pi = (ai , bi),

where
ai = min

j
{vj}i and bi = max

j
{vj}i ,

and {vj} are the values of the vertices of cell i.

Though conceptually not much different from the interval
space, the span space will, nevertheless, lead to a simple and
near-optimal search algorithm.

A key aspect is that points in two dimensions exhibit no
explicit relations between themselves, whereas intervals tend
to be viewed as stacked on top of each other so that over-
lapping intervals exhibit merely coincidental links. Points do
not exhibit such arbitrary ties and in this respect lend them-
selves to many different organizations. However, as we shall
show later, previous methods grouped these points in very
similar ways because they looked at them from an interval
perspective.

Using our augmented definition, we can state the isosurface
extraction problem as follows.
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Approach 3 (The Span Search): Given a set of cells, C, and its
associated set of points, P, in the span space, and given a value
v ∈ V, find the subset Ps ⊆ P, such that

∀(xi , yi) ∈ Ps xi < v < yi .

We note that ∀(ai , yi) ∈ Ps , xi ≤ yi and thus the associ-
ated points will lie on or above the line yi = xi . A geometric
perspective of the span search is given in Figure 47.1.

47.2.2 The NOISE Algorithm

A common obstacle for all the interval methods was that the
intervals were ordered according to either their maximum or
their minimum value. The sweeping simplicies algorithm [9]
attempted to tackle this issue by maintaining two lists of the
intervals, ordered by the maximum and minimum values. What
was missing, however, was a way to combine these two lists into
a single list.

In the following, we present a solution to this obstacle. Using
the span space as our underlying domain, we employ a kd-tree
as a means for simultaneously ordering the cells according to
their maximum and minimum values.

47.2.2.1 Kd-Trees

Kd-trees were designed by Bentley in 1975 [10] as a data struc-
ture for efficient associative searching. In essence, kd-trees are
a multidimensional version of binary search trees. Each node
in the tree holds one of the data values and has two subtrees
as children. The subtrees are constructed so that all the nodes

max

V

V min

FIGURE 47.1 Search over the span space.

in one subtree—the left one, for example—hold values that are
less than the parent node’s value, while the values in the right
subtree are greater than the parent node’s value.

Binary trees partition data according to only one dimension.
Kd-trees, on the other hand, utilize multidimensional data and
partition the data by alternating between each of the dimensions
of the data at each level of the tree.

47.2.2.2 Search over the Span Space Using Kd-Tree

Given a dataset, a kd-tree that contains pointers to the data cells
is constructed. Using this kd-tree as an index to the dataset,
the algorithm can now rapidly answer isosurface queries.
Figure 47.2 depicts a typical decomposition of a span space
by a kd-tree.

47.2.2.3 Construction

The construction of the kd-trees can be done recursively in
optimal time O(n log n). The approach is to find the median
of the data values along one dimension and store it at the root
node. The data is then partitioned according to the median and
recursively stored in the two subtrees. The partition at each level
alternates between the min and max coordinates.

An efficient way to achieve O(n log n) time is to recur-
sively find the median in O(n), using the method described
by Blum et al. [11], and partition the data within the same time
bound.

A simpler approach is to sort the data into two lists according
to the maximum and minimum coordinates, respectively, in
order O(n log n). The first partition accesses the median of the

max

root

minV

2

1

22

1

2

FIGURE 47.2 A kd-tree.
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first list, the min coordinate, in constant time, and marks all the
data points with values less than the median. We then use these
marks to construct the two subgroups, in O(n), and continue
recursively.

Though the preceding methods have complexity of
O(n log n), they do have weaknesses. Finding the median in
optimal time of O(n) is theoretically possible, yet difficult to
program. The second algorithm requires sorting two lists and
maintaining a total of four lists of pointers. Although it is still
linear with respect to its memory requirement, it nevertheless
poses a problem for very large datasets.

A simple (and we think elegant) solution is to use a
Quicksort-based selection [12]. Although this method has a
worst case of O(n2), the average case is only O(n). Furthermore,
this selection algorithm requires no additional memory and
operates directly on the tree.

It is clear that the kd-tree has one node per cell, or span point,
and thus the memory requirement of the kd-tree is O(n).

47.2.2.4 Query

Given an isovalue, v , we seek to locate all the points in
Figure 47.1 that are to the left of the vertical line at v and are
above the horizontal line at v . We note that we do not need to
locate points that are on these horizontal or vertical lines if we
assume nondegenerate cells, for which minimum or maximum
values are not unique. We will remove this restriction later.

The kd-tree is traversed recursively when the isovalue is com-
pared to the value stored at the current node alternating between
the minimum and maximum values at each level. If the node is
to the left (above) of the isovalue line, then only the left (right)
subtree should be traversed. Otherwise, both subtrees should be
traversed recursively. For efficiency we define two search rou-
tines: SearchMinMax and SearchMaxMin. The dimension we
are currently checking is the first named, and the dimension we
still need to search is named second. The importance of naming
the second dimension will be evident in the next section, when
we consider optimizing the algorithm.

Following is a short pseudocode for the min-max routine.

SearchMinMax(isovalue, node)
{

if (node.min < isovalue) {
if (node.max > isovalue)

construct a polygon(s) from node
SearchMaxMin (isovalue, node.right),

}
SearchMaxMin (isovalue, node.left);

}

Estimating the complexity of the query is not straightfor-
ward. Indeed, the analysis of the worst case was developed by
Lee and Wong [13] only several years after Bentley introduced
kd-trees. Clearly, the query time is proportional to the num-
ber of nodes visited. Lee and Wong analyzed the worst case by

constructing a situation in which all the visited nodes are not
part of the final result. Their analysis showed that the worst-
case time complexity is O(

√
n + k). The average case analysis

of a region query is still an open problem, though observations
suggest it is much faster than O(

√
n + k) [12, 14]. In almost

all typical applications k ∼ n2/3 >
√

n, which suggests a com-
plexity of only O(k). On the other hand, the complexity of the
isosurface extraction problem is�(k) because it is bound from
below by the size of the output. Hence, the proposed algorithm,
NOISE, is optimal, θ(k), for almost all cases and is near optimal
in the general case.

47.2.2.5 Degenerate Cells

A degenerate cell is defined as a cell having more than one vertex
with a minimum or maximum value. When a given isovalue is
equal to the extremum value of a cell, the isosurface will not
intersect the cell. Rather, the isosurface will touch the cell at a
vertex, an edge, or a face, based on how many vertices share that
extrema value. In the first two cases, vertex or edge, the cell can
be ignored. The last case is more problematic, as ignoring this
case will lead to a hole in the isosurface. Furthermore, if the face
is not ignored, it will be drawn twice.

One solution is to perturb the isovalue by a small amount, so
that the isosurface will intersect the inside of only one of those
cells. Another solution is to check both sides of the kd-tree when
such a case occurs. While the direct cost of such an approach is
not too high, as this can happen at most twice, there is a higher
cost in performing an equality test at each level. We note that
in all the datasets we tested there was not a single case of such a
degeneracy.

47.2.3 Optimization

The algorithm presented in the previous section is not optimal
with regard to the memory requirement or search time. We now
present several strategies to optimize the algorithm.

47.2.3.1 Pointerless Kd-Tree

A kd-tree node, as presented previously, must maintain links to
its two subtrees. This introduces a high cost in terms of memory
requirements. To overcome this, we note that in our case the
kd-tree is completely balanced. At each level, one data point
is stored at the node, and the rest are equally divided between
the two subtrees. We can therefore represent a pointerless kd-
tree as a one-dimensional array of the nodes. The root node
is placed at the middle of the array, while the first n/2 nodes
represent the left subtree and the last (n − 1)/2 nodes the right
subtree.

When we use a pointerless kd-tree, the memory requirements
for our kd-tree, per node, reduce to two real numbers, for mini-
mum and maximum values, and one pointer back to the original
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cell for later usage. Considering that each cell for a 3D appli-
cation with tetrahedral cells has pointers to four vertices, the
kd-tree memory overhead is even less than the size of the set of
cells.

The use of a pointerless kd-tree enables one to compute the
tree as an offline preprocess and load the tree using a single read
in time complexity of only O(n). Data acquisition via CT/MRI
scans or scientific simulations is generally very time consuming.
The ability to build the kd-tree as a separate preprocess allows
one to shift the cost of computing the tree to the data acquisition
stage, hence reducing the impact of the initialization stage on
the extraction of isosurfaces for large datasets.

47.2.3.2 Optimized Search

The search algorithm can be further enhanced. Let us consider,
again, the min-max (max-min) routine. In the original algo-
rithm, if the isovalue is less than the minimum value of the
node, then we know we can trim the right subtree. Consider
the case in which the isovalue is greater than the node’s mini-
mum coordinate. In this case, we need to traverse both subtrees.
We have no new information with respect to the search in the
right subtree, but for the search in the left subtree, we know
that the minimum condition is satisfied. We can take advan-
tage of this fact by skipping over the odd levels from that
point on. To achieve this, we define two new routines: search-
min and search-max. Adhering to our previous notation, the
name search-min states that we are looking only for a minimum
value.

Examining the search-min routine, we note that the max-
imum requirement is already satisfied. We do not gain new
information if the isovalue is less than the current node’s min-
imum and again only trim off the right subtree. If the isovalue
is greater than the node’s minimum, we recursively traverse the
right subtree, but with regard to the left subtree, we now know
that all of its points are in the query’s domain. We therefore
need only to collect them. If we use the notion of a pointerless
kd-tree as proposed in the previous subsection, any subtree is
represented as a contiguous block of the tree’s nodes. Collecting
all the nodes of a subtree requires only sequentially traversing
this contiguous block.

We remark that with the current performance of the algo-
rithm and current available hardware, the bottleneck is no
longer in finding the isosurface or even in computing it, but
rather in the actual time needed to display it. As such, we look
next at a new view-dependent algorithm that constructs and
displays only the part of the isosurface that is visible to the user.

47.2.4 Other Span Space Algorithms

The span space representation has been used by Cignoni et al.
[15] to reduce the complexity of the search phase to O(log
n + k) at the expense of higher memory requirements. Shen

et al. [16] used a lattice decomposition of the span space for a
parallel version on a massive parallel machine.

47.3 View-Dependent Algorithm

The proposed method is based on the observation that isosur-
faces extracted from very large datasets often exhibit high depth
complexity for two reasons. First, since the datasets are very
large, the projection of individual cells tends to be subpixel.
This leads to a large number of polygons, possibly nonover-
lapping, projecting onto individual pixels. Second, for some
datasets, large sections of an isosurface are internal and, thus,
are occluded by other sections of the isosurface, as illustrated
in Figure 47.3. These internal sections, common in medical
datasets, cannot be seen from any direction unless the exter-
nal isosurface is peeled away or cut off. Therefore, if one can
extract just the visible portions of the isosurface, the num-
ber of rendered polygons will be reduced, resulting in a faster
algorithm. Figure 47.4 depicts a two-dimensional scenario. In
view-dependent methods, only the solid lines are extracted,
whereas in non-view-dependent isocontouring, both solid and
dotted are extracted.

The proposed algorithm, which is based on a hierarchi-
cal traversal of the data and a marching cubes triangulation,
exploits coherency in the object, value, and image spaces, and
balances the work between the hardware and the software. We
employ a three-step approach, depicted in Figure 47.5. First, we
augment Wilhelms and Van Gelder’s algorithm [4] by traversing
down the octree in a front-to-back order in addition to prun-
ing empty subtrees based on the min-max values stored at the

FIGURE 47.3 A slice through an isosurface reveals the internal
sections that cannot contribute to the final image.
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FIGURE 47.4 A two-dimensional scenario.
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FIGURE 47.5 The three-step algorithm.

octree nodes. The second step employs coarse software visibility
tests for each meta-cell that intersects the isosurface. The aim
of these tests is to determine whether the [meta-] cell is hidden
from the viewpoint by previously extracted sections of the iso-
surface (hence the requirement for a front-to-back traversal).
Finally, the triangulation of the visible cells is forwarded to the
graphics accelerator for rendering by the hardware. It is at this
stage that the final and exact [partial] visibility of the triangles
is resolved. A data flow diagram is depicted in Figure 47.6.

47.3.1 Visibility

Quickly determining whether a meta-cell is hidden, and thus
can be pruned, is fundamental to this algorithm. This is imple-
mented by creating a virtual screen with one bit per pixel. We
then project the triangles, as they are extracted, onto this screen
and set those bits that are covered, providing an occlusion mask.

Additional pruning of the octree nodes is accomplished by
projecting the meta-cell onto the virtual screen and checking if
any part of it is visible, i.e., if any of the pixels it covers are not
set. If the entire projection of the meta-cell is not visible, none
of its children can be visible.

We note that it is important to quickly and efficiently classify
a cell as visible. A hidden cell, and all of its children, will not
be traversed further and thus can justify the time and effort
invested in the classification. A visible cell, on the other hand,
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FIGURE 47.6 The algorithm data flow.

does not gain any benefit from this test and the cost of the
visibility test is added to the total cost of extracting the isosur-
face. As such, the cell visibility test should not depend heavily on
the projected screen area; otherwise, the cost would prohibit the
use of the test for meta-cells at high levels of the octree—exactly
those meta-cells that can potentially save the most.

Two components influence the visibility cost, namely the cost
of projecting a point, triangle, or a meta-cell onto the screen and
the cost of either scan-converting triangles or determining if a
meta-cell projected area contains any unset pixels.

In the next sections, we address these costs in two ways. First,
we employ a hierarchical tiling for the virtual screen. Second,
to reduce the cost of the projection, we use a variation of the
shear-warp factorization.

47.3.2 Image Space Culling

We employ hierarchical tiles [17] as a means of fast classifica-
tion of meta-cells and determining the coverage of extracted
triangles. The hierarchical nature of the algorithm ensures that
the cost of either of these two operations will not depend highly
on their projected area.

47.3.2.1 Hierarchical Tiles

A coverage map (a tile) is a rectangular bitmap (we use 8×8) in
which each bit represents a pixel in the final image. The algo-
rithms are based on the premise that all the possible coverage
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of a single edge crossing a tile can be precomputed and tab-
ulated based on the points where the edge intersects the tile
border (Figure 47.7). The coverage pattern of a convex polygon
for a particular tile of the image is computed by combining the
coverage maps of the polygon edges. The coverage map of a tri-
angle can thus be computed from three precomputed tiles with
no dependency on the number of pixels the triangle actually
covers (Figure 47.8). We refer the reader to the work by Greene
[17] for a detailed explanation on how the three states (Covered,
Partially covered, and Not-covered) can be represented by two
tile masks and the rules for combining coverage maps.

Rendering a polygon amounts to computing the coverage
map of the polygon for each tile in the image and isolating
only those pixels that are covered by the polygon but were not
already covered. In order to accelerate the rendering, the tiles
are organized in a hierarchical structure in which each meta-tile
represents a block of [meta-] tiles. Under this structure, a poly-
gon is projected onto the top meta-tile, and only those subtiles
in which the polygon might be visible are checked recursively,
leading to a logarithmic search.

47.3.2.2 Hierarchical Visibility Mask

Our implementation differs from the one proposed by Greene
in that we do not actually render the visible portion of a visible
triangle. Rather, we mark the triangle as visible and forward it to
the graphics hardware. It is then left to the graphics accelerator
to determine which pieces of the triangle are actually visible and
correctly render them.

One should note that it is not possible to determine a priori
the front-to-back relations between the triangles inside a single
cell. It is therefore mandatory to accept all or none of the trian-
gles, even though they need to be projected on the hierarchical

Covered

Edge

Out In

Partially covered

Not covered

FIGURE 47.7 An edge tile.

FIGURE 47.8 A triangle tile coverage map.
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Non-visible isoline (skipped)
Empty
cell (skipped)

Visible
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FIGURE 47.9 Cells and isolines visibility.

tiles one triangle at a time. Figure 47.9 shows the classifica-
tion of the cells as well as the portions of the isolines that are
extracted. Note that the entire isoline section in a visible cell
(shown in light gray) is extracted. The nonvisible portions will
be later removed by the graphics accelerator.

An additional feature we employ limits recursion down the
octree once the size of a meta-cell is approximately the size of
a single pixel. Instead, we forward a single point with an asso-
ciated normal to the graphics hardware, similar to the dividing
cubes method [18]. The normal is estimated by the gradient
of the field. The advantage of this method is that the single
point potentially represents a large number of polygons, since
the meta-cell that projects to a pixel may still be high in the
octree.

47.3.3 Warped Isosurface Extraction (WISE)

A key component in the visibility test is the projection of a
point, a triangle, or a meta-cell onto the screen. In general, the
perspective projection of a point is a 4× 4 transformation fol-
lowed by two divide operations, for a total of 16 multiplications,
12 additions, and 2 divisions per vertex. Clearly, the cost of per-
forming such transformations for each and every vertex of the
projected meta-cells and triangles is too high. In addition, the
nonlinearity of the perspective transformation prohibits the use
of a precomputed transformation table. To accelerate this crit-
ical step, we take advantage of the shear-warp factorization of
the viewing transformation.

47.3.3.1 Shear-Warp Factorization

In 1994, Lacroute [19, 20] presented a volume rendering
method that was based on the shear-warp factorization of the
viewing transformation. The underlying idea is to factor the
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FIGURE 47.10 Shear-warp in orthographic and perspective projections.

viewing transformation into a shear followed by a warp trans-
formation. The data is first projected into a sheared object
space that is used to create an intermediate, albeit warped,
image. Once this image is complete, a warping transformation
is applied to create the correct final image. Figure 47.10 illus-
trates the shear-warp transformation for both orthographic and
perspective projections.

The advantage of this method is that the intermediate image
is aligned with one of the dataset faces. This alignment enables
the use of a parallel projection of the 3D dataset. The warp stage
is then applied to a 2D image rather than to each data point.

47.3.3.2 Shear but No Warp

We now note that the visibility on the image plane and on
the warped projection plane are the same (see Figure 47.11).
In other words, any point in the dataset that is visible on the
image plane is also visible on the warped projection plane, and

similarly, points that would be occluded on the image plane
also are occluded on the warped plane. It is therefore sufficient
to perform the visibility tests on the warped projection plane.
The advantage of this approach is twofold. First, the perspective
projection is removed. Second, since the shear and scale factors

FIGURE 47.11 Warped space.
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are, with respect to the current viewpoint, constant for each
slice, we can precompute them once for each new viewpoint.

Let [X , Y , Z ] be the coordinate system of the dataset and let
[sx , sy , sz ] be the scaling vector of the data with respect to this
coordinate system. Let us assume,without loss of generality, that
the current warped projection plane is Z = 0. We first transform
the current eye location onto the [X , Y , Z ] coordinate system
and then precompute the shear and scale coefficients:

foreach Z

s = Z ∗ sz/(Z ∗ sz − eyez )

scalex [Z ] = (1− s) ∗ sx

scaley [Z ] = (1− s) ∗ sy

shearx [Z ] = s ∗ eyex

sheary [Z ] = s ∗ eyey .

The projection of any grid point p(x , y , z) can now be
computed as

Project (p) ≡
x = px ∗ scalex [pz ] + shearx [pz ]
y = py ∗ scaley [pz ] + sheary [pz ]

for a total of two multiplications and two additions per
vertex.

While the Z coordinate of every grid point is known in
advance and thus the shear and scale factor can be precom-
puted for each new viewpoint, the same does not hold true for
the vertices of the isosurface triangles. However, since the pro-
jection onto the warped projection plane is orthographic, it can
be shown that a vertex projection is

Project (p) ≡
s = Pz/(z − eyez )

x = px + s ∗ (eyex − px)

y = py + s ∗ (eyey − py)

for a total of two multiplications, five additions, and one
division.

47.4 Real-Time Ray-Tracing

Many applications, including most medical imaging techniques,
generate scalar fields ρ(x , y , z) that can be viewed by display-
ing isosurfaces where ρ(x , y , z) = ρiso . Ideally, the value for ρiso

is interactively controlled by the user. When the scalar field is
stored as a structured set of point samples, the most common
technique for generating a given isosurface is to create an explicit
polygonal representation for the surface using a technique such
as marching cubes [1, 2]. This surface is subsequently rendered
with attached graphics hardware accelerators such as the SGI
Infinite Reality. Marching cubes can generate an extraordinary
number of polygons, which take time to construct and to ren-
der. For very large (i.e., greater than several million polygons)

surfaces, the isosurface extraction and rendering times limit the
interactivity. In this chapter, we generate images of isosurfaces
directly with no intermediate surface representation through
the use of ray-tracing. Ray-tracing for isosurfaces has been used
in the past (e.g., [21–23]), but we apply it to very large datasets
in an interactive setting for the first time.

The basic ray-isosurface intersection method used in this
chapter is shown in Figure 47.12. Conventional wisdom holds
that ray-tracing is too slow to be competitive with hardware
z-buffers. However, when a surface is rendered from a suffi-
ciently large dataset, ray-tracing should become competitive,
as its low time complexity overcomes its large time constant
[24]. The same arguments apply to the isosurfacing problem.
Suppose we have an n × n × n rectilinear volume that for a
given isosurface value has O(n2) polygons generated using
marching cubes. Given intelligent preprocessing, the render-
ing time will be O(n2). Since it is hard to improve performance
using multiple graphics engines, this seems a hard limit when
using commercially available graphics accelerators unless a large
fraction of the polygons are not visible [25]. If a ray-tracing
algorithm is used to traverse the volume until a surface is
reached, we would expect each ray to do O(n) work. If the
rays are traced on p processors, then we expect the runtime for
an isosurface image to be O(n/p), albeit with a very large time
constant and a limit that p is significantly lower than the num-
ber of pixels. For sufficiently large n, ray-tracing will be faster
than a z-buffer algorithm for generating and rendering isosur-
faces. The question is whether it can occur on an n that occurs
in practice (e.g., n = 500 to 1000) with a p that exists on a real
machine (e.g., p = 8 to 128). The following demonstrates that
with a few optimizations, ray-tracing is already attractive for
at least some isosurface applications, including high-resolution
medical imaging applications.

Ray-tracing has been used for volume visualization in many
works (e.g., [26–28]). Typically, the ray-tracing of a pixel is a
kernel operation that could take place within any conventional

IsosurfaceScreen

Eye

FIGURE 47.12 A ray is intersected directly with the isosurface. No
explicit surface is computed.
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ray-tracing system. In this section we review how ray tracers are
used in visualization and how they are implemented efficiently
at a systems level.

The algorithm has three phases: traversing a ray through cells
that do not contain an isosurface, analytically computing the
isosurface when intersecting a voxel containing the isosurface,
and shading the resulting intersection point. This process is
repeated for each pixel on the screen. Since each ray is indepen-
dent, parallelization is straightforward. An additional benefit
is that adding incremental features to the rendering has only
incremental cost. For example, if one is visualizing multiple iso-
surfaces with some of them rendered transparently, the correct
compositing order is guaranteed, since we traverse the volume
in a front-to-back order along the rays. Additional shading tech-
niques, such as shadows and specular reflection, can easily be
incorporated for enhanced visual cues. Another benefit is the
ability to exploit texture maps that are much larger than texture
memory (typically up to 64 Mbytes).

In the following subsections, we describe the details of our
technique. We first address the ray-isosurface intersection and
then describe various optimizations we have performed to
achieve the interactive rates.

47.4.1 Ray-Isosurface Intersection

If we assume a regular volume with even grid point spacing
arranged in a rectilinear array, then the ray-isosurface inter-
section is straightforward. Analagous simple schemes exist for
intersection of tetrahedral cells, but the traversal of such grids
is left for future work. This work will focus on rectilinear
data.

To find an intersection (Figure 47.13), the ray a + tb tra-
verses cells in the volume, checking each cell to see if its data
range bounds an isovalue. If it does, an analytic computation is
performed to solve for the ray parameter t at the intersection
with the isosurface:

ρ(xa + txb , ya + tyb , za + tzb)− ρiso = 0.

When one is approximating ρ with a trilinear interpolation
between discrete grid points, this equation will expand to a

Ray equation:
x 5 xa1 t xb
y 5 ya1 t yb
z 5 za1 t zb �(x,y,z) 5�iso

FIGURE 47.13 The ray traverses each cell (left ), and when a cell that
has an isosurface in it is encountered (right ), an analytic ray-isosurface
intersection computation is performed.

cubic polynomial in t . This cubic can then be solved in closed
form to find the intersections of the ray with the isosurface
in that cell. Only the roots of the polynomial that are con-
tained in the cell are examined. There may be multiple roots,
corresponding to multiple intersection points. In this case, the
smallest t (closest to the eye) is used. There may also be no roots
of the polynomial, in which case the ray misses the isosurface in
the cell. The details of this intersection computation are given
in [29].

47.4.2 Optimizations

For the traversal of rays through the data, we use the incre-
mental method described by Amanatides and Woo [30]. We
found that traversing the cells is the computational bottleneck
for large datasets, so we include optimizations to accelerate
performance.

The first optimization is to improve data cache locality by
organizing the volume into“bricks”that are analogous to the use
of image tiles in image-processing software and other volume-
rendering programs [31] (Figure 47.14). The details of our
method for efficiently indexing cells are discussed in [29].

The second optimization is to use a multilevel spatial hier-
archy to accelerate the traversal of empty cells, as shown in
Figure 47.14. Cells are grouped divided into equal portions,
and then a “macrocell” is created that contains the minimum
and maximum data value for its child cells. This is a com-
mon variant of standard ray-grid techniques [32], and the use
of minimum/maximum caching has been shown to be use-
ful [3, 4, 33]. The ray-isosurface traversal algorithm examines
the min and max at each macrocell before deciding whether
to recursively examine a deeper level or to proceed to the next
cell. The average complexity of this search will be O(

√
n) for

a three-level hierarchy. Although the worst-case complexity is
still O(n), it is difficult to imagine an isosurface occurring in
practice approaching this worst case. Using a deeper hierarchy
can theoretically reduce the average case complexity slightly,
but it also dramatically increases the storage cost of intermedi-
ate levels. We have experimented with modifying the number
of levels in the hierarchy and empirically determined that a tri-
level hierarchy (one top-level cell, two intermediate macrocell
levels, and the data cells) is highly efficient. This optimum may
be data dependent and is modifiable at program startup. Using
a trilevel hierarchy, the storage overhead is negligible (< 0.5%
of the data size). The cell sizes used in the hierarchy are inde-
pendent of the brick sizes used for cache locality in the first
optimization.

Since one cannot predict a priori the complexity of extract-
ing an isosurface from a particular screen pixel, we employ a
dynamic load balancing scheme to ensure high processor uti-
lization over a wide range of views. The screen space is first
split into tiles in the image space. In our implementation,
tiles are 32 pixels wide by 4 pixels high. The width of the tile
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FIGURE 47.14 The ray-tracing algorithm uses two different hierarchies simultaneously. On the left, cells can be organized into “tiles” or “bricks”
in memory to improve locality. The numbers in the first brick represent layout in memory. Neither the number of atomic voxels nor the number
of bricks need be a power of 2. On the right is the hierarchy used to efficiently skip over empty cells. With a two-level hierarchy, rays can skip
empty space by traversing larger cells. A three-level hierarchy is used for the Visible Woman example.

(128 bytes) ensures that tiles will not share a cache line with
neighboring tiles. At the beginning of a frame, each tile becomes
an assignment in a queue. Each processor pulls a range of assign-
ments from the queue, performs the assigned work, and then
returns to the queue for more work. The assignments, which are
initially doled out in large chunks, get smaller and smaller as
the frame nears completion. The large granularity in the begin-
ning reduces contention for a large portion of the image, and
the smaller granularity near the end helps to balance the load
efficiently [34].

47.4.3 Real-Time Ray-Tracing Results

Table 47.1 shows the scalability of the algorithm from 1 to 128
processors. View 2 uses a zoomed-out viewpoint with approxi-
mately 75% pixel coverage, whereas view 1 has nearly 100%
pixel coverage. We chose to examine both cases since view 2
achieves higher frame rates. The higher frame rates cause less
parallel efficiency due to synchronization and load balancing.
Of course, maximum interaction is obtained with 128 pro-
cessors, but reasonable interaction can be achieved with fewer
processors. If a smaller number of processors were available, one
could reduce the image size in order to restore the interactive
rates. Efficiencies are 91% and 80% for views 1 and 2, respec-
tively, on 128 processors. The reduced efficiency with larger
numbers of processors (> 64) can be explained by load imbal-
ances and the time required to synchronize processors at the
required frame rate. The efficiencies would be higher for a larger
image.

Table 47.2 shows the improvements that were obtained
through the data bricking and spatial hierarchy optimizations.

TABLE 47.1 Scalability results for ray-tracing the bone isosurface in
the visible humana

View 1 View 2

#cpus FPS Speedup FPS Speedup

1 0.18 1.0 0.39 1.0
2 0.36 2.0 0.79 2.0
4 0.72 4.0 1.58 4.1
8 1.44 8.0 3.16 8.1

12 2.17 12.1 4.73 12.1
16 2.89 16.1 6.31 16.2
24 4.33 24.1 9.47 24.3
32 5.55 30.8 11.34 29.1
48 8.50 47.2 16.96 43.5
64 10.40 57.8 22.14 56.8
96 16.10 89.4 33.34 85.5

128 20.49 113.8 39.98 102.5

aA 512 × 512 image was generated using a single view of the bone isosurface.

TABLE 47.2 Times in seconds for optimizations for ray-tracing the
visible humana

View Initial Bricking Hierarchy+ Bricking

Skin: front 1.41 1.27 0.53
Bone: front 2.35 2.07 0.52
Bone: close 3.61 3.52 0.76
Bone: from feet 26.1 5.8 0.62

aA 512 × 512 image was generated on 16 processors using a single view of an isosurface.

47.5 Sample Applications

In this section, we give examples of the NOISE, view-dependent,
and real-time ray-tracing algorithms given in the previous sec-
tions. The examples we chose are from large medical imaging
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datasets, as well as from a large-scale geoscience imaging dataset.
Further examples of each of the algorithms along with detailed
performance analyses can be found in our recent papers on
isosurface extraction [16, 25, 29, 35, 36–42]. Figure 47.15
shows NOISE examples; Figure 47.16 shows view-dependent
examples, and Figures 47.17–47.21 show examples of real-time
ray-tracing.
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48.1 Overview of Virtual Endoscopy

Virtual endoscopy (VE) is a novel display method for three-
dimensional (3D) medical imaging data. It produces endoscope-
like displays of the interior of hollow anatomic structures such
as airways, the gastrointestinal tract, the bladder and urinary
tract, and blood vessels [1–7]. For example, Figure 48.1 shows
a virtual bronchoscopy reconstruction of the air passages of a
human lung with depiction of bronchi as small as fifth and sixth
order. Studies have shown VE to be useful for the visualization
of morphologic abnormalities such as aneurysms, tumors, and
stenoses [8–12].

Since VE is used to visualize small structures such as airways,
blood vessels, and colonic polyps whose size may be 1 cm or less,
image data with small voxel dimensions, desirably 1 mm3 or less,
are required to generate a VE. The smallest pathologic structure
visualized on a VE will be on the order of the voxel resolution,
which is as large or larger than the voxel dimension. The voxel
resolution depends on a host of adjustable parameters (e.g., for
CT: detector array configuration, helical pitch, reconstruction
algorithm, section index) [13, 14].

VE displays are usually produced from computed tomogra-
phy (CT), magnetic resonance (MR), or sonography images by
means of surface or volume rendering [15–18]. Surface ren-
dering is generally done by extracting an isosurface through

the imaging volume at a specified threshold value; this gen-
erates contours in three dimensions that are analogous to the
two-dimensional (2D) isocontours of temperature or pressure
(isotherms, isobars) on weather maps. In the case of VE, the
contours represent the wall of a hollow anatomic structure,
such as airways or blood vessels. One commonly used isosur-
face algorithm called marching cubes [19] generates a triangular
tessellation of the isosurface suitable for interactive display on
computers equipped with graphics accelerators. Disadvantages
of surface rendering are that a complex surface extraction must
be done as a preprocessing step, and only a fraction of the data
is retained in the final image.

In contrast to surface rendering, volume rendering is done
by considering the imaging volume to be a translucent gelatin
whose optical density and opacity are mapped to each voxel
intensity through user-adjustable transfer functions. When the
transfer function is adjusted appropriately, volume rendering
can be used to generate endoscopic views or conduct virtual
biopsies to inspect suspicious regions [20, 21]. In addition,
hardware and software improvements in rendering speed have
made volume rendering the preferred VE display method.
However, it can be difficult to identify the correct choices to
produce an accurate image. Some progress has been made
toward defining an appropriate transfer function for virtual
colonoscopy [22].
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(a)

(b)

(c)

FIGURE 48.1 Images derived from CT scans of autopsy human lung specimen. The virtual bron-
choscopy display provides a succinct depiction of the complex tubular branching structures not as
readily perceived in cross-sectional images. (a) Coronal multiplanar reformatted image shows excel-
lent resolution required to depict small airways. Airways are the black branching structures (arrow).
(b) Anteroposterior view of three-dimensional surface reconstruction of airways showing exquisite
depiction of branching to fifth and sixth order. (c) Virtual bronchoscopy view of bifurcation of a
fifth order bronchus only 2 or 3 millimeters in diameter, at or near furthest point reachable by a
conventional bronchoscope.

Clinical uses for VE presently include detection of many of
the same abnormalities for which conventional endoscopy is
indicated, for example, virtual colonoscopy to detect colonic
polyps, virtual bronchoscopy to detect bronchial stenoses and
to guide biopsies, and virtual angioscopy to detect vascular
pathology [23–26]. Relative to conventional endoscopy, VE’s
main benefits are its noninvasiveness and computer-enhanced
visualization capability, which allow doctors to see beyond
the wall of organs. While VE seeks to emulate conventional
endoscopy, which has proven to be a powerful diagnostic and
therapeutic tool, VE may surpass conventional endoscopy by
solving some of the problems of conventional endoscopy such
as underutilization due to expense and invasiveness. As com-
puter processing methods for VE continue to improve, VE
may become an accurate and cost-effective screening tool for
a general patient population.

48.2 Computer Processing Methods
for Virtual Endoscopy

Computer technology affects nearly every aspect of VE. Initially,
VE displays looked like “fly-through” movies that merely sim-
ulated conventional endoscopy. While “fly-throughs” are still
used today, computer processing methods have created new
tools for VE that are unavailable to a conventional endoscope.
Examples of such tools include navigation aids to integrate
cross-sectional images with the VE image, centerline compu-
tation for automated flight planning, unraveling of the colon to
ease polyp identification, cockpit displays to provide greater
visual coverage of the wall of the lumen and reduce blind
spots, and computer-aided detection (CAD) systems to assist
reading. These tools augment the visualization of VE displays
beyond otherwise very restricted viewing scopes provided by
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conventional endoscopy. Processing methods in progress such
as centerline extraction, surface unfolding, registration, stool
tagging and removal in virtual colonoscopy, and CAD are
reviewed in the following sections.

48.3 Centerline Extraction and Flight Path
Planning

Several path planning algorithms [27–37] have been applied to
VE. Key framing [15, 37] is a technique borrowed from com-
puter animation. A path is derived by interpolating smooth
curves through a small set of manually entered position-
orientation pairs called key frames. Although the interpolation
is efficient, the manual task of specifying key frames is time
consuming and susceptible to interobserver variability.

Topological thinning [28, 38, 39] produces high-quality
results by successively peeling away layers of voxels from a
segmented structure until a thin skeleton is left. However, the
determination of which voxels may be removed can be com-
plex and computationally expensive. Much research has been
devoted to the problem of how to speed up the basic topological
thinning algorithm. One approach is to separate the thinning
phase from the connectivity preserving considerations by first
determining a path with correct connectivity by a fast path
finding algorithm [38]. The initial path, which may not be close
to the desired medial axis, can later be iteratively improved by
thinning algorithms.

Distance mapping [40–42] is a more efficient technique in
that a goal voxel is selected in the volume, and a distance to
the goal is computed for each voxel within the structure of
interest. The distance assigned is the shortest distance along
a path to the goal through the structure. Once the distance
map is generated, a path from any starting voxel to the goal
voxel can be determined by descending through the gradient
of the distance map [41]. An advantage of this technology is
that it is computationally inexpensive. However, the shortest
path approach has a tendency to cut the corners of the organ
to minimize distance. Hence, the shortest path generally does
not qualify as a centerline. To avoid such tendency, a secondary
distance map that records the shortest distance from each voxel
to the structure boundary is created. A cost function derived
from this secondary distance map is used to repel the path from
the voxels close to the boundary and results in a path that is
closer to the centerline or axis of the structure [41]. Examples of
distance maps and the centerline path in the colon are illustrated
in Figure 48.2.

48.4 Unfolding

One fundamental problem that VE shares with conventional
endoscopy is the surface visibility limited by the camera view-
ing model. With limited camera viewing angles, haustral folds

may occlude the visibility of the colon surface on the back side of
folds, potentially hiding polyps. Vos et al. reported in [43] that
only 93.8% of the colon surface is visible with a conventional
3D virtual endoscopic display. Straightening or unfolding oper-
ations have been suggested in the literature to improve surface
visibility and reading time [43–50] for virtual colonoscopy.

There exist at least two approaches in this subject. One
approach increases the surface visibility by adjusting projection
settings. In [43], six camera views (directed to the front, back,
up, down, left, and right) are obtained and projected onto a
cube. The cube is then unfolded and displayed. The sequence of
unfolded cubes is shown as cine images. With this unfolded cube
display, the visibility of the colon surface has been improved
to 99.5%. Another approach projects or resamples the tubular
colon surface on a cylinder and displays it over a plane or in a
straightened colon. Based on electrical field theory, Wang et al.
introduced curved cross-sections that intersect the colon con-
secutively [47]. These curved cross-sections are derived from
the electrical force lines formed by a simulated charged cen-
tral path. Such curved surfaces never intersect each other and
are locally orthogonal to the center path. The advantage of
these two projection approaches is that they can be applied to
both surface and volume rendering methods. However, defor-
mations caused by projection have been a concern in medical
applications.

To minimize deformation, Haker et al. [51] mapped the
colon onto a flat surface such that local geometry is preserved
by an angular preservation criterion. Mapping operations that
satisfy the angular preservation criterion are also known as con-
formal mapping. Their approach is in the category of surface
parameterization.

Although the colon can be virtually dissected along any path,
carefully choosing a distinguishable landmark can be benefi-
cial to help register multiple scanned images [52]. The teniae
coli are three bands of longitudinal smooth muscle that extend
from the cecum to the sigmoid colon. They are morphologically
distinguishable and are named as tenia omentalis (TO), tenia
mesocolica (TM), and tenia libera (TL), respectively [52, 53].
Figure 48.3 illustrates the process of teniae coli-constrained
colon flattening by parameterization. Virtually cut along the
TO path (Figure 48.3a), the tubular colon surface can be flat-
tened and mapped onto a rectangle (Figure 48.3b). From the
flattened surface, grid lines can be derived and mapped back
to the colon to create a circumferential localization system
for location reference and registration between two or more
datasets.

48.5 Registration

Image registration is the process of establishing a common
geometric reference frame for point-by-point correspondence
between datasets. This process is necessary in order to be able to
compare and integrate the data obtained from measurements
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FIGURE 48.2 Distance maps and centerline extraction. (a) The distance map to the cecum. (b) The distance map to the colonic wall.
(c) The centerline extracted by descending through the gradient derived from the combined distance maps in (a) and (b). Appropriate
centerline extraction is important because a “good” centerline enables maximum visualization of the colonic surface from an optimal
vantage point for polyp detection, allows a smooth (not jerky) fly-through, and enables time efficient radiologic interpretation. Figures
reprinted from [42]. (See also color insert).

(a) (b) (c)

FIGURE 48.3 Teniae coli-constrained colon flattening and parameterization. (a) The teniae coli can be identified on the colonic surface
by tracing the flat bands (arrows) between haustra. (b) Flattened colon marked with grid lines. (c) Grid lines are mapped back to the
colon surface. Figures reprinted from [61]. (See also color insert).
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acquired at different points in time, at different postures, or
by different imaging devices. In VE various registration algo-
rithms have been developed to cope with elastic organs such
as the colon and complex structures such as the bronchial
tree.

48.5.1 Supine-Prone Registration for Virtual
Colonoscopy

Most existing virtual colonoscopy protocols require a patient
to be scanned in both supine and prone positions to improve
the accuracy of polyp detection [54–56]. The rationale is that
combining information from two scans (supine and prone)
can improve sensitivity, particularly when colonic segments are
not assessable in one position due to residual fluid or lack of
distension. When the patient is scanned in two positions, the
distensibility can change and fluid may shift between scans,
so that the net number of assessable colon segments increases.
In addition, specificity may be improved if potential lesions vis-
ible on both scans are examined side-by-side [55]. To achieve
these benefits, an accurate reference system for automated
supine-prone matching is required.

Today, reference systems for polyp registration in virtual
colonoscopy can be roughly categorized into three approaches.
The first approach divides the colon into anatomical sections
[57]. However, the sectional approach is not precise because
the sections are long and their boundaries poorly defined.

The second approach relies on the aforementioned endolu-
minal centerline distance along the colon [32, 58, 59]. Since
the colon is highly elastic, the length of resultant centerlines
may vary greatly between scans. Registration algorithms in this
approach are mainly developed to match the centerline paths
of supine and prone colon surface models by using stretching
and shrinking operations. Normalized distance along the cen-
terline (NDAC) algorithm [32] is the simplest method in this
approach that uniformly normalizes the centerline such that all
points lie between 0 and 1. Using a VE system with unfolded 3D
rendering [43], de Vries et al. reported that the matching error
between supine and prone positions by the NDAC method was
small [60]. The matching error can be further reduced if addi-
tional centerline information such as curvature, local extremal
points, and/or the radius of the colonic cross-section is used to
help to match each point of the centerline by using dynamic
programming [58, 59].

The third approach takes advantage of the teniae coli-
constrained surface flattening method described in the previous
section. When virtual cameras are positioned and oriented in
supine and prone scans of the colon according to the centerline
distance and teniae coli-derived circumferential localization
system [52, 61], synchronized virtual colonoscopic navigation
can be achieved. Figure 48.4 illustrates a synchronous naviga-
tion system that allows the user to examine the same region of
interest on both supine and prone VE displays simultaneously.

FIGURE 48.4 Synchronous navigation system with the supine scan
on the left and prone scan on the right. A polyp (arrows) appears in
the same location on both view panels. Reprinted from [61]. (See also
color insert).

48.5.2 CT-Video Registration for Bronchoscopy

With recent advances in CT scan screening, an increase in the
detection of small nodules in the peripheral lung has been
noted. In addition, the use of an ultrathin bronchoscope also
allows bronchoscopic examination to the higher (sixth-) order
of the tracheobronchial branching [62]. Confirmation of the
route for bronchoscopic examination of the nodules can be
done by using CT virtual bronchoscopy with path planning
algorithms [63, 64]. However, bronchoscopists are limited to
intraluminal fiber-optic or video images of the airway. This
creates challenges when they must locate the correct branch
and take a biopsy of an extraluminal lesion. Effective and accu-
rate methods are necessary to link the bronchoscope with CT
images to aid the procedure.

The overall goal of CT-video registration is to determine
the bronchoscope tip’s pose (location and orientation) within
the physical airways in real time. Fluoroscopy and CT fluo-
roscopy can help determine the bronchoscope location [65, 66].
These modalities come with added cost and increased radiation
dose to the patient. Another approach is done with a real-time
electromagnetic position sensor fixed at the tip of a flexible
bronchoscope [67, 68]. Through an externally generated mag-
netic field, the location and orientation of the bronchoscope can
be determined. A third approach, with no additional external
device, determines the bronchoscope’s location and orientation
by attempting to automatically match the “real” bronchoscope’s
video to the preoperative CT data [62, 69–71]. By match-
ing VE and warped real video images, Merritt et al. reported
single-frame CT-video registration in under 1/15th of a second
in [70].
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FIGURE 48.5 Tagged stool and fluid removal. First row: Original CT images.
Second row: Air- (light blue) and fluid-filled (brown) regions are segmented.
Third row: Leakage (white) is removed and the air-fluid boundary is identified.
Images courtesy of Dr. Marek Franaszek. (See also color insert).

48.6 Stool Tagging and Removal in Virtual
Colonoscopy

Stool, which has CT attenuation similar to polyps, can cause
false negative and false positive polyp detections. There is an
evolving consensus that giving patients positive oral contrast
to tag out remnants of stool and residual fluids is beneficial
in virtual colonoscopy performance. Oral barium and/or iod-
inated contrast has been used in virtual colonoscopy in two
settings: (1) to improve the conspicuity of submerged polyps in
patients who have undergone standard bowel purgation cleans-
ing and (2) to label stool with high attenuation to avert the need
for bowel cleansing [11, 72–74]. The presence of positive oral
contrast in the colon adds an additional challenge for colonic
segmentation and visualization. A simple approach to apply
thresholds to the images of three materials—air, soft tissue, and
tagged stool—will suffer from the partial volume effect. Layers
at the interface between the air (low intensity) and tagged stools
(high intensity) may have intensity values that resemble the soft
tissue (intermediate intensity). Therefore, the practice of stool
tagging demands a new set of segmentation algorithms.

Electronic cleansing or digital subtraction is a new technol-
ogy that has been under development to remove fecal materials
and residual fluids [74–80]. In order to mitigate the partial vol-
ume effect, Lakare et al. [79] introduced a ray-based detection
technique that utilized a predefined profile pattern to detect the
air-fluid and tissue-fluid interfaces. Zalis et al. [74] presented
a technique of using morphological and linear filters to miti-
gate the partial volume effect. Chen et al. [75] explored image

gradient information, while Wang et al. [78] used a statistical
expectation-maximization algorithm. Serlie et al. [76, 77] used
a three-material transition model to classify the partial volume
transitions between air, tissue, and tagged materials.

Figure 48.5 illustrates a sample procedure proposed by
Franaszek et al. [80]. They first used a modified region grow-
ing algorithm that is able to jump between air- and fluid-filled
regions (Figure 48.5, first and second rows). The segmented
air- and fluid-regions are then organized and connected into a
graph structure. Using a tree pruning mechanism, they identi-
fied and removed common segmentation leakages such as the
small bowel and bones. Remaining air-, fluid-regions, and air-
fluid interfaces are merged (Figure 48.5, third row). Lastly, the
colonic surface is smoothed by level set methods [81].

48.7 Computer-Aided Detection

Important tasks of clinical diagnosis are to detect lesions and
determine their significance. Although a number of studies
have shown that lesions can be detected using VE, a number
of roadblocks to more widespread acceptance of VE have been
identified. Interpretation of a VE can be inefficient, tedious,
and time consuming, which can lead to fatigue, misdiagnoses,
and decreased throughput; lesion identification can be difficult
in some circumstances (for example, on virtual colonoscopy,
polyps can be missed if they lie behind haustral folds; retained
feces can simulate masses); and the utility of VE appears to be
limited to focal abnormalities such as stenoses and tumors.
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There are a number of approaches to improving efficiency
of interpretation. Automated lesion detection software could
direct physicians to sites likely to harbor lesions, thereby facil-
itating interpretation [82–88]. Such software may reduce the
number of false negatives by identifying lesions that could be
missed on an automated fly-through, such as polyps hidden
behind folds. The problem of identifying more diffuse abnor-
malities (e.g., atherosclerosis and inflammation can present as
focal or diffuse disease) can be addressed by the development
of new algorithms to analyze the VE.

In this section, we review morphometric approaches (such
as curvature and roughness analyses) and machine learning
methods for lesion classification used in VE computer-aided
detection (CAD) systems.

48.7.1 Shape-Based Detection of Endoluminal
Lesions Using Curvature Analysis

Detection of endoluminal lesions that distort the wall of a hol-
low anatomic structure or protrude into its lumen (such as
polypoid masses of the airway and colon) is one important
task of diagnostic imaging [89]. The routine use of thin CT
and MR sections allows for detection of small lesions with VE.
Curvature-based shape analysis has been found to be a sen-
sitive method for endobronchial lesion detection [85, 90–93].
This analysis uses the principal curvatures of the VE surface to
segment it into areas of different shape. Lesions that protrude
into the lumen are identified as areas of the luminal surface
with “elliptical curvature” of the “peak subtype.” There are
two approaches to estimate surface curvatures from volumetric
data. One approach is to fit a surface patch locally to points on
extracted surface models [93]. The other estimates the surface
curvatures directly from the volumetric data by kernel convo-
lution [94]. For reasons of computation efficiency, the second
approach is favored in CAD systems. We will now describe the
second approach that we have used for computing curvatures
of gray-scale image data.

For a gray-scale image I (x , y , z), the local shape at a point
on an isosurface generated by marching cubes [19] is described
by the Gaussian (K ) and mean (H ) curvatures, which can be
computed from
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where Ix indicates the partial derivative of the image data with
respect to x , and Ixz indicates the mixed partial derivative with
respect to x and z , etc., and h = I 2

x + I 2
y + I 2

z [94].
The maximum (κmax) and minimum (κmin) principal curva-

tures of a surface at a point P are given by

κmax = H +
√

H 2 − K (48.3a)

and

κmin = H −
√

H 2 − K . (48.3b)

They can be thought of as the reciprocal of the radii of the
smallest and largest circles, respectively, that can be placed tan-
gent to P ; the greater the curvature, the smaller the osculating
circle; the less the curvature, the flatter the surface and the larger
the circle.

Equations 48.1 and 48.2 require first and second order par-
tial derivatives, which are known to be susceptible to noise.
To ameliorate this problem, we can use filters to smooth the
data and reduce the undesirable effects of noise. Monga and
Benayoun used the 3D Deriche filters to both smooth and
compute derivatives [95]. The functions f0, f1, f2 are used to
smooth and compute first and second order partial derivatives,
respectively:

f0(x) = c0(1+ α|x|)e−α|x|,

f1(x) = c1xα2e−α|x|, (48.4)

f2(x) = c2(1− c3α|x|)e−α|x|.

These functions are applied to the 3D image data as convo-
lution filters. For efficiency, the functions are applied only to
points lying on the desired isosurface within the image. The
required partial derivatives are computed using, for example,

Ix = ( f1(x)f0(y)f0(z)) ∗ I (x , y , z)

Ixx = ( f2(x)f0(y)f0(z)) ∗ I (x , y , z) (48.5)

Ixy = ( f1(x)f1(y)f0(z)) ∗ I (x , y , z).

The parameter α in Equation 48.4 is inversely proportional to
the width of the filter and the amount of smoothing that is
performed. We set α to 0.7 for f0 and f1 and to 0.1 for f2 [96],
since the second order derivatives require greater smoothing to
obtain better noise immunity.

The coefficients c0, c1, c2, c3 are chosen to normalize the
filters in Equation 48.4. For the discrete implementation, the
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(b) (c)(a)

FIGURE 48.6 (a) Optical and (b and c) 3D virtual colonoscopy images of a 0.6-cm polyp in the transverse colon of a 65-year-old
man. The blue coloring in (c) indicates the part of the polyp detected by CAD. A portion of the colon centerline is shown in green in (b)
and (c). Figures reprinted from [83]. (See also color insert).

normalization is done using

+∞∑
−∞

f0(n) = 1,

+∞∑
−∞

nf1(n) = 1, (48.6)

+∞∑
−∞

f2(n) = 0 and
+∞∑
−∞

n2

2
f2(n) = 1

for integer sampling [95]. The coefficients need to be adjusted
for the case of noninteger or anisotropic sampling. We use filters
of finite width (for example, seven or nine voxels), compute
the values of the functions in Equation 48.4, and normalize
the values using Equation 48.6. Since the vertices forming the
surface do not necessarily lie on voxel boundaries, we used linear
interpolation to compute voxel intensities.

The curvature computation is used to identify surface patches
with a common curvature in order to segment the overall sur-
face. Vertices having elliptical curvature of the peak subtype are
considered to be within a potential lesion and are rendered in
different colors to distinguish them from the others and assist
visual inspection. Other curvature types describe normal airway
or colon surfaces. For example, hyperbolic curvature describes
saddle points at bifurcations, cartilaginous rings, and haustral
folds; cylindrical curvature and elliptical curvature of the “pit
subtype” describe normal airway and colon (ulcerations fit into
the latter category but are ignored due to overlap with normal
shape). The next step is to cluster these vertices using region
growing to achieve a minimum lesion size. Size criteria offer
some immunity to noise and excessive false positive detections,
for example, by ignoring isolated vertices and “lesions” smaller
than some threshold. The minimum size criterion is preferably

expressed in millimeters rather than number of vertices, since
vertex density can vary depending on the voxel size.

In Figure 48.6, a 0.6-cm polyp on the transverse colon is
automatically detected. A software application that permits
rapid inspection of the potential lesion sites has been shown
to improve efficiency of interpretation as much as 77% [97].
Similar techniques have been applied for detecting pulmonary
emboli on CT [98].

48.7.2 Other Lesion Detection Methods

Paik et al. [82] used a different algorithm known as the surface
normal overlap method to find candidate colonic polyps and
lung nodules. Kiss et al. [99] reported that use of robust fitting
for generating initial polyp candidates and spherical harmonics
for further analysis was preferred for low-dose data. Yoshida
and Näppi [85, 86] used hysteresis thresholding, volumetric
curvature with shape index and curvedness, and a quadratic
discriminant to find polyps. Colorectal masses are considered
well visualized by a radiologist because of their size. However,
masses may be irregularly shaped and hard to detect by mor-
phometric algorithms alone. Näppi et al. used fuzzy merging
to identify intraluminal masses that protrude into the colonic
lumen and a wall-thickening analysis to detect nonintralumi-
nal types that appear as an abnormal thickening of the colonic
wall [100].

48.7.3 Lesion Classification

While many CAD systems have high sensitivity, high false pos-
itive detection rates have limited their use in the clinical setting
[101]. For virtual endoscopy CAD to detect polyps, machine
learning techniques have been adapted as a postprocessing
step to eliminate false positive structures [101–105]. For exam-
ple, support vector machines (SVMs), quadratic discriminants,
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and massive-training artificial neural networks have been suc-
cessfully applied for classification of true- and false-positive
polyp detections [85, 86, 103, 105]. To improve feature selec-
tion for SVMs in virtual colonoscopy CAD, genetic algorithms
and efficient selection methods have been proposed [106, 107].
Pareto fronts have been proposed to evaluate and improve
curvature-based polyp detection algorithms [108].

48.7.4 Surface Roughness Analysis

Another type of endoluminal surface abnormality potentially
detectible with VE is surface roughness. Based on our clini-
cal experience, abnormal endoluminal surface texture (i.e., too
smooth or rough) may occur under a variety of circumstances
including inflammation, atherosclerosis, or invasion of the wall
by tumor [109]. There are a number of ways to measure surface
roughness and develop a numeric index of roughness. These
include fractal analysis, Fourier descriptors, variation of the
surface normal, and the difference between either a fitted spline
patch or a smoothed version of the surface and the original
[110–112]. Fractal analysis has been used to quantitate rough-
ness of the airway wall on virtual bronchoscopy reconstructions
[113]. Roughness measures are exquisitely sensitive to the noise
level and resolution of the data.

48.8 Conclusions

We have shown how computer processing methods can be
applied to enhance VE displays, quantitate surface morpho-
logical characteristics, and improve detection of abnormalities.
Newer and faster scanners are becoming available which will
improve the quality (by reducing motion artifacts) and resolu-
tion of the imaging data. As the technology and clinical appli-
cations of VE progress, methods such as those described here
to improve efficiency and accuracy and facilitate interpretation
will likely become more important.
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This section presents the fundamentals and standards that form the basis of medical image archiving and telemedicine systems.
Nine chapters are included. The first chapter (49) introduces the basic concepts and standards of image compression and com-
munication, including JPEG and MPEG, as well as the potential contributions of wavelets and fractals. The chapter also describes
the essentials of technologies, procedures, and protocols of modern telecommunications systems used in medicine. In the second
edition, this chapter has been updated with additional introductory material and recent information on standards.

Chapter 50 discusses medical image archiving, retrieval, and communication. The structure and function of Picture Archiving
and Communication Systems (PACS) are described. The de facto DICOM (digital image communications in medicine) format,
communication standards for images, as well as the HL-7 (Health Level 7) format for medical text data, are introduced. The DICOM
image query and retrieve service class operations are also addressed. This chapter has been expanded with four new sections on
structure reporting, compliance with the Health Insurance Portability and Accountability Act, electronic health record, and PACS
in telemedicine.

Chapter 51 presents a suggested standard imposed by users according to their needs in clinical practice. Since the type of users
can be diverse, the format and content of the data vary and may include diagnostic images, medical reports, comments, and
administrative reports. This chapter focuses on the adjustment of the image content in preparation for medical diagnosis, and
provides recommendations for adoption of such image standardization in PACS. A new section on background trend reduction
has been added in this edition.

Chapter 52, a new chapter in this edition, addresses imaging and communication tools in medical and public health settings,
and presents emerging trends, current issues and industry standards as they relate to the informatics professionals. Diverse aspects
of design trends are discussed, including usability, accessibility, visualization, scalability, extensibility, interoperability, and security
features.

Chapter 53, also a new chapter, presents a mobile agent system for retrieval of images from Digital Medical Image Libraries.
Databases containing large volumes of mammograms are becoming available on the Internet and may be valuable for teaching
and research purposes if images relevant to an active case can be identified and retrieved efficiently enough. This chapter describes
mobile agents, self-contained programs that can move within a network performing tasks on behalf of a user, discusses retrieval
strategies, and presents a simulation that examines the performance of the different strategies.
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The last four chapters in this section focus on medical image compression with lossy techniques. Chapters 54, 55, and 56 discuss
quality evaluation for lossy compressed images, addressing fundamentals, diagnostic accuracy, and statistical issues. Topics that
include average distortion, signal-to-noise ratio, subjective ratings, diagnostic accuracy measurements, and the preparation of a
gold standard are covered in Chapter 54. Chapter 55 provides examples to illustrate quantitative methods of evaluation of diagnostic
accuracy of compressed images. These include lung nodules and mediastinal adenopathy in CT images, aortic aneurysms in MR
images, and mammograms with microcalcifications and masses. Chapter 56 addresses the statistical basis of quality evaluation.
Topics including differences among radiologists, effectiveness of the experimental design, relationship of diagnostic accuracy to
other measures, statistical size and power, effects of learning on the outcomes, relationship between computed measures and
perceptual measures, and confidence intervals are discussed.

Chapter 57 reviews the methodology used in 3D wavelet transforms. The basic principles of 3D wavelet transform are first
discussed and the performance of various filter functions are compared using 3D CT and MRI data sets of various parts of the
anatomy.
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49.1 Introduction

The principal objectives of this chapter are to introduce basic
concepts and standards for image compression and commu-
nications in telemedicine systems, and to encourage further
reading and study of those topics. According to the Institute
of Medicine, telemedicine is the use of electronic information
and communications technology to provide and support health
care when distance separates the participants [1]. Viewing a sys-
tem as a collection of hardware, software, people, facilities, data,
and procedures organized to accomplish a common objective
offers a glimpse of the wide range of technical and human fac-
tors affecting the design, development, deployment, and use of
telemedicine systems. Data, once captured, processed, and used
for the health care of patients, should be expected to come in
many forms, such as text, voice, graphics, still and moving pic-
tures, and colors. Use of processed data for patient care demands
standards that assure the reliability and integrity of data while
sending, receiving, storing, retrieving, and viewing as well as
manipulating it or using it in computational processes.

Telemedicine systems depend on communications systems to
move data within and among health care organizations in a reli-
able and timely manner. As depicted in Figure 49.1, telemedicine
systems incorporate a variety of component technologies that
perform several basic processes or functions, ranging from
first acquiring data through digitization, compression, storage,
manipulation and computation, display, and communication.
Software, the principal technology that enables or accomplishes

many of those functions, is not readily apparent in the figure.
At this point, a simple example describing a concept of opera-
tions of a telemedicine system may be helpful for relating how
different technologies transform source data into forms and
formats compatible with compression and decompression algo-
rithms and communications systems, and usable ultimately by
health care providers.

Referring to Figure 49.1, let’s assume that two parties intend
to communicate and confer via e-mail accompanied by image
attachments that usually include suffixes such as .pdf or .jpg to
the picture file name. Also, let’s assume that the pictures do not
exist. To capture pictures and prepare them as attachments, one
has two major options. Those options are to use a film camera
or to use a digital camera. The two options have similar charac-
teristics. Both use a lens to focus the image, a shutter to let light
enter the camera,and an aperture to control the amount of light.
Once light enters the camera, differences between the options
become profound. Each uses different technologies to record
the light (and, thus, capture the picture), and each requires dif-
ferent technologies and follow-on actions en route to displaying
the picture. Choice of a film camera inherently means several
activities will obviously follow the picture-taking session: the
film must be processed to produce a negative, the negative must
be processed and then printed onto photographic paper, and
the paper must be scanned to convert the picture into a form
compatible with the computer and suitable as an attachment to
the e-mail. Selection of a digital camera inherently means that
the activities need to convert the picture into a form compatible

Copyright © 2008 by Elsevier, Inc.
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with the computer and suitable as an attachment are performed
almost entirely within the camera and, thus, are not as obvious.
Light is converted by sensors into electrical charges or signals,
which are delivered to an analog-to-digital (A/D) converter that
produces binary numbers. A computer inside the camera pro-
cesses the set of binary numbers or, in other words, a digital ver-
sion of the picture, and then saves the result on a memory card.

The results are stored in structured sequences or files to facil-
itate storage and exchange. Although files may be structured
or formatted in different ways, each generally begins with an
introductory section or “header” followed by the “content” or
digital version of the picture. The digital version is compressed
or encoded with the expectation that it can be stored and trans-
mitted using fewer bits than needed for the initial digital version.
An additional expectation is that the picture can be reproduced
without sacrificing or losing critical details. The baseline version
of JPEG (named after the Joint Photographic Experts Group
who devised it) is a popular process for compressing images, but
it loses some details. Hence, baseline JPEG is included as part of
a standard known as JPEG 2000 [13] lossy compression process.
A lossless version of JPEG is also under JPEG stores its com-
pressed images in a file format compatible with the Still Picture
Interchange File Format (SPIFF) standard [2]. Two compatible
formats are the JPEG File Interchange Format (JFIF), which has
the file extension or suffix recognizable as .jpg, and the Portable
Document Format, which has the extension .pdf.

Clinical images are frequently reproductions of an area
or condition of interest of a patient initially obtained using
various modalities such as conventional projection X-rays,
computed radiography (CR), computed tomography (CT),
nuclear medicine (NM), magnetic resonance imaging (MRI),
or ultrasound (US).

A digital image processing system, for the purposes of this dis-
cussion, will consist of a set of hardware and software modules
that perform basic capabilities such as acquisition, digitization,

formatting, display, and communication. A picture archive and
communications system (PACS), discussed in Chapters 50 and
51, provides storage, retrieval, manipulation, and communi-
cation of digital images and related data. A PACS manages
image records that come from a wide variety of imaging sources.
A PACS is designed to provide archiving as well as rapid access
to images, and to integrate images of different modalities. The
large volume of information produced by these modalities
requires the use of appropriate storage systems or media for
both recent images and archives for older images. Furthermore,
reduction in the time and cost of transmission of images and
related data requires effective and efficient compression and
communications standards.

Digital images often require large amounts of storage that
depends on the resolution of the imaging, digitization, or scan-
ning processes. As the resolution or size requirement of the
image increases, the amount of data increases. For example,
an image that covers an area of 1 square inch with a density
or resolution of 400 dots per inch (dpi) consists of 160,000
pixels. Therefore, an 8–by-10 inch image of the same resolu-
tion requires 12,800,000 pixels. As the volume of pixel data
storage grows, the time required to access, retrieve, and dis-
play the data increases. The location (i.e., online or offline),
type, and efficiency of storage media affect access and retrieval
times.

An important question in the maturation of digital imag-
ing systems concerns the quality and utility of the clinical
images needed for interpretation. For example, dermatologists
are trained to provide an accurate diagnosis and/or differential
diagnosis using photographs and photographic slides during
residency training, intramural exams, in-service exams, board
certification preparation, and continuing medical education.
Although dermatologists are accustomed to evaluating skin
conditions using 2–by-2 inch photographic slides, there is reluc-
tance to accept digital images because they inherently provide
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TABLE 49.1 Common resolutions of digital images [3]

Image acquisition modality Image size (number of pixels) Pixel value (number of bits)

Scanned conventional radiography 2048× 2048 12
Computerized tomography 512× 512 16
Magnetic resonance imaging 256× 256 12
Ultrasound 512× 512 8
Nuclear medicine 128× 128 8

less visual information (resolution) than conventional clinical
photography. In addition, color is an important factor in diag-
nosis of dermatological images. At present the rendition of
colors in a digital image is often determined by adjusting the
red-green-blue mix while displaying the image, a rendition that
may deviate from colors captured originally.

Table 49.1 sets the stage for discussions about data compres-
sion techniques by specifying the typical size of digital images
that are generated by modalities just cited.

49.2 Compression and Decompression

Compression and decompression are essential aspects of data
management, display, and communication in digital imag-
ing systems. The International Consultative Committee for
Telegraph and Telephone (CCITT) defines the standards for
image compression and decompression. Initially defined for
facsimile transmissions, the standards now contain recommen-
dations that accommodate higher-resolution images. The main
objective of compression is removal of redundancies that occur
in three different types: coding redundancy, interpixel redun-
dancy, and psychovisual redundancy. A pixel is a single point
in an image. Typically, grayscale images require 8, 10, or 12 bits
per pixel and full-color images require 24 bits per pixel.

Coding refers to the numerical representation of the intensity
or color of each pixel, and several techniques exist to optimize
the choice of code, primarily using the histogram of image
intensity or color [4]. Interpixel redundancy is related to the
correlation among consecutive pixels in the image. If a black
pixel is followed by 17 white pixels, the latter can be represented
and stored in a more efficient manner than storing 17 pixels
with the same values, for example, with a mechanism that indi-
cates the start and length of the white-pixel run such as in run
length coding [4]. Psychovisual redundancy results from the
fact that human perception of image information does not rely
on specific analysis of individual pixels. Typically, local edges
and texture structures are evaluated and compared to known
information to interpret the image visually. The level and loca-
tion of psychovisual redundancy can be determined only with
feedback from a human operator and tends to be relatively sub-
jective. While removal of coding and interpixel redundancies
does not eliminate information from the image, the removal

of psychovisual redundancies decreases the information in a
theoretic sense. The effect of this reduction depends on the
image, observer, and application. Compression techniques that
remove only coding and interpixel redundancies are lossless;
compression techniques that also remove psychovisual redun-
dancies are lossy. The evaluation of the quality of images com-
pressed with lossy techniques is addressed in Chapters 54, 55,
and 56.

Compression techniques generally attempt to achieve a
compromise between two undesirable outcomes: potentially
deleting critical information and insufficient reduction of the
image file size. Furthermore, compression and decompression
should not introduce errors or artifacts. Performance and cost
are important factors in choosing between lossy and lossless
compression. Higher performance (i.e., closer to lossless) com-
pression and decompression typically require more storage. In
other words, an identical copy of the original image costs more
than a “reasonable facsimile.” In general, lossy compression is
acceptable for images if further analysis or use of the images
will tolerate missing data.

The following are common lossy compression techniques [6]:

• Joint Photographic Experts Group (JPEG) (baseline standard
version)

• Moving Picture Experts Group (MPEG)
• Wavelets
• Fractals

The following are representative lossless compression tech-
niques [6]:

• CCITT Group 3 1D
• CCITT Group 3 2D
• CCITT Group 4
• Lempel-Ziv and Welch (LZW) algorithm

Binary images such as black-and-white text and graphics
are good candidates for lossless compression. Some color and
grayscale images that contain series of successive identical pixels
may also be compressed significantly with lossless compres-
sion. Pixels of color images commonly vary in chromatics,
since adjacent pixels may have different color values. Frequent
change in color requires storing the bits for a large number
of pixels because there is little repetition. The same applies to
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FIGURE 49.2 Block diagram of transform-based image compression.

grayscale images where a large number of shades are present. In
these cases, lossless compression techniques may not produce a
reduction in size sufficient to be practical. Generally, when loss-
less compression techniques do not produce acceptable results,
lossy approaches are used in a way that minimizes the effects
of the loss. The payoff of compression becomes generally ques-
tionable with animated images and full-motion color video.

All current image compression techniques utilize one or more
of the blocks shown in Figure 49.2.

If the image data is in red-green-blue (RGB) color model, it
may be changed to another representation known as the YUV
color space to simplify computations needed for compression.
This process is applied to change the relationship between pixels
and produce an image that is suitable for human perception and
efficient for transmission. MPEG uses this approach, thereby
achieving some image compression by this type of processing.

JPEG and MPEG use the discrete cosine transform (DCT),
which is given for an N × N image f (x , y) by

F(u,v) = α(u)α(v)
N−1∑
x=0

N−1∑
y=0

f (x , y) cos

[
(2x + 1)uπ

2N

]

cos

[
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2N

]
,

u, v = 0, 1, 2, . . . , N − 1,

where
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⎩
√

1/N
√

2/N

for u = 0

for u = 1, 2, . . . , N − 1,

and the inverse transform is
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v=0

α(u)α(v)F(u, v) cos
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(2x + 1)uπ

2N

]

cos
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]
,

x , y = 0, 1, 2, . . . , N − 1.

The DCT is a reversible transform and retains all the informa-
tion in the image. Compression in JPEG and MPEG is obtained
by discarding some of the DCT components. The principle

is that a small section of the image can be represented by the
average color intensity and only major differences from the aver-
age. Minor differences that are ignored provide the compression
and introduce the loss. The wavelet transform described in a
subsequent chapter is based on one of many available basis func-
tions, and it is typically used for lossy compression by discarding
some of the transform components.

The subsequent step, threshold and quantization, reduces the
number of levels that represent grayscale or color, producing a
reasonable but not accurate representation of the output of
the transform step. The quality of reproduction depends on
the number of levels used in quantizing color or gray level.
Quantization and thresholding are the steps where most of the
image loss usually occurs and the quality of the compressed
image is determined. Entropy encoding is the final stage where
lossless compression is applied to the quantized data. Several
techniques can be used, such as run-length and Huffman coding
[5] (CCITT Group 3), and two-dimensional encoding (CCITT
Group 4).

49.2.1 Joint Photographic Experts Group (JPEG)
Compression

JPEG, formed as a joint committee of the International
Standards Organization (ISO) and CCITT, focuses on standards
for still image compression. The JPEG compression standard is
designed for still color and grayscale images, otherwise known
as continuous tone images, or images that are not restricted to
dual-tone (black and white) only. Technologies such as color
fax, scanners, and printers need a compression standard that
can be implemented at acceptable price-to-performance ratios.
The JPEG standard is published in two parts:

1. The part that specifies the modes of operation, the inter-
change formats, and the encoder/decoder specified for
these modes along with implementation guidelines;

2. The part that describes compliance tests that determine
whether the implementation of an encoder or decoder
conforms to Part 1 to ensure interoperability of systems.

The JPEG compression standard has three levels of definition:

• Baseline system
• Extended system
• Special lossless function
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FIGURE 49.3 Effect of 60 to 1 compression on 8-bit grayscale images.

A coding function performed by a device that converts analog
signals to digital codes and digital codes to analog signals is
called a codec. Every codec implements a baseline system, also
known as the baseline sequential encoding. The codec performs
analog sampling, encoding/decoding, and digital compres-
sion/decompression. The baseline system must satisfactorily
decompress color images and handle resolutions ranging from
4 to 16 bits per pixel. At this level, the JPEG compression stan-
dard ensures that software, custom very large-scale integration
(VLSI), and digital signal processing (DSP) implementations
of JPEG produce compatible data. The extended system covers
encoding aspects such as variable length encoding, progressive
encoding, and the hierarchical mode of encoding. All of these
encoding methods are extensions of the baseline sequential
encoding. The special lossless function, also known as predictive
loss coding, is used when loss in compressing the digital image
is not acceptable.

There are four modes in JPEG:

• Sequential encoding
• Progressive encoding
• Hierarchical encoding
• Lossless encoding

JPEG sequential encoding requirements dictate encoding in
a left-to-right sequence and top-to-bottom sequence to ensure
that each pixel is encoded only once. Progressive encoding is
usually achieved by multiple scans. The image is decompressed
so that a coarser image is displayed first and is filled in as more

components of the image are decompressed. With hierarchical
encoding, the image is compressed to multiple resolution levels
so that lower resolution levels may be accessed for lower reso-
lution target systems without having to decompress the entire
image. With lossless encoding, the image is expected to provide
full detail when decompressed.

JPEG and wavelet compression are compared in Figure 49.3,
on 8–bit grayscale images, both at a compression ratio of 60 to
1. The top row shows chest X-ray images, and the bottom row
presents typical magnified retina images. The image detail is
retained better in the wavelet compressed image.

49.2.2 Moving Picture Experts Group (MPEG)
Compression

Standardization of compression algorithms for video was first
initiated by CCITT for teleconferencing and video telephony.
The digital storage media for the purpose of this standard
include digital audio tape (DAT), CD-ROM, writeable optical
disks, magnetic tapes, and magnetic disks, as well as commu-
nications channels for local and wide area networks, LANs
and WANs, respectively. Unlike still image compression, full-
motion image compression has time and sequence constraints.
The compression level is described in terms of a compression
rate for a specific resolution.

The MPEG standards consist of a number of different stan-
dards. The original MPEG standard did not take into account
the requirements of high-definition television (HDTV). The
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TABLE 49.2 MPEG-2 resolutions, rates, and metrics [4]

Level Pixel-to-line ratio Compression and decompression rate Lines per frame Frames per second Pixels per second

High 1920 Up to 60 Mbits per second 1152 60 62.7 million
High 1440 Up to 60 Mbits per second 1152 60 47 million
Main 720 Up to 15 Mbits per second 576 30 10.4 million
Low 352 Up to 4 Mbits per second 288 30 2.53 million

MPEG-2 standards, released at the end of 1993, include HDTV
requirements in addition to other enhancements. The MPEG-2
suite of standards consists of guidelines for audio, video, and
digital cable and over-the-air systems. It is also defined at dif-
ferent levels to accommodate different rates and resolutions, as
described in Table 49.2.

Moving pictures consist of sequences of video pictures or
frames that are played back at a fixed number of frames per sec-
ond. Motion compensation is the basis for most compression
algorithms for video. In general, motion compensation assumes
that the current picture (or frame) is a revision of a previous pic-
ture (or frame). Subsequent frames may differ slightly as a result
of moving objects or a moving camera, or both. Motion com-
pensation attempts to account for this movement. To make the
process of comparison more efficient, a frame is not encoded
as a whole. Rather, it is split into blocks, and the blocks are
encoded and then compared. Motion compensation is a cen-
tral part of MPEG-2 (as well as MPEG-4) standards. It is the
most demanding of the computational algorithms of a video
encoder. MPEG-4 offers standards for video that are more effi-
cient than those of MPEG-2, enabling new implementations of
multimedia applications such as Internet video streaming and
mobile video conferencing [14].

The established standards for image and video compression
developed by JPEG and MPEG have been in existence, in one
form or another, for over a decade. When first introduced,
both processes were implemented via codec engines that were
entirely in software and very slow in execution on the computers
of that era. Dedicated hardware engines have been developed,
and real-time video compression of standard television trans-
mission is now an everyday process. JPEG compression of fixed
or still images can be accomplished with current generation
PCs. Both JPEG and MPEG standards are in general usage
within the multimedia image compression world. However, it
seems that compression algorithms using DCT have reached
the end of their performance potential since much higher com-
pression capability is needed by most of the users in multimedia
applications. JPEG 2000 is the accepted standard for wavelet
compression techniques with the expectation that it will even-
tually replace the older DCT-based JPEG standard. As of 2008,
however, it is not yet widely supported in web browsers.

49.2.3 Wavelet Compression

Table 49.3 presents quantitative information related to the digi-
tization and manipulation of a representative set of film images.

As shown, the average medical image from any of several sources
translates into large digital image files. The significant payoff
achieved with wavelet compression is the capability to send
the image or set of images over low-cost telephone lines in a
few seconds rather than tens of minutes to an hour or more
if compression is not used. With wavelet compression, online
medical collaboration can be accomplished almost instanta-
neously via dial-up telephone circuits. The average compression
ratios shown in Table 49.3 are typically achieved with no loss
of diagnostic quality using the wavelet compression process. In
many cases, even higher ratios are achievable with retention of
diagnostic quality. The effect of compression on storage capa-
bility is equally remarkable. For example, a set of six 35–mm
slide images scanned at 1200 dpi producing nearly 34 Mbytes
of data would compress to less than 175 Kbytes. A single
CD-ROM would hold the equivalent of nearly 24,000 slide
images.

The wavelet transform provides 3 to 5 times higher compres-
sion ratios for still images than the DCT with an identical image
quality. Figure 49.3 compares JPEG compression with wavelet
compression on a chest X-ray and a retina image. The original
images shown on the left are compressed with the wavelet trans-
form (middle) and JPEG (right ), both with a 60:1 compression
ratio. The original chest X-ray is compressed from 1.34 Mbytes
to 22 Kbytes, while the original retina image is compressed from
300 Kbytes to 5 Kbytes. The ratio for video compression could
be as much as 10 times the compression ratio of MPEG-1 or
MPEG-2 for identical visual quality video and television appli-
cations. The transmission bandwidth reduction available with
wavelets and the capability to store more wavelet-compressed
files on a CD-ROM, DVD-ROM, or any medium capable of
storing digital files are compelling drivers for transition to this
technology.

49.2.4 Fractal Compression

Fractal compression is an approach that applies a mathemati-
cal transformation iteratively to a reference image to reproduce
the essential elements of the original image. The quality of the
decompressed image is a function of the number of iterations
that are performed on the reference image and the process-
ing power of the computer. This discussion will focus on the
compression of black-and-white images and grayscale images.
For purposes of analysis, black-and-white images are mod-
eled mathematically as point sets (black and white points)
in a two-dimensional Euclidean space, and grayscale images
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TABLE 49.3 Examples of medical image sizes and transmission times

Format Image size Pixel count Data per
frame

(Mbytes)

Time to send
uncompressed,

56 kbaud modem
(minutes)

Average
compression

ratio

Time to send
wavelet

compressed,
56 kbaud modem

(seconds)

35 mm color slide
Kodachrome∼ 1500 DPI (24 bit)

1.378× 0.944
(inches)

2,926,872 8.75 22 200 6.6

35 mm color slide 1200 DPI
(24 bit)

1.378× 0.944
(inches)

1,873,198 5.62 14.14 200 4.25

Digital color camera AGFA
E 1680 (24 bit)

1600× 1200
(CCD
resolution)

1,920,000 5.760 14.5 200 4.35

14× 17 X-ray film scanned at 14× 17 (inches) 9,520,000 14.28 35.92 50 43

200 DPI (12-bit grayscale)

4K× 4K imaging sensor

(12-bit grayscale) Various 16,000,000 24.0 60.4 50 72.5

(24-bit color) Various 16,000,000 48.0 120.8 200 36/23

MRI image (12-bit grayscale)
Each 480× 640

All on 14× 17
film (inches)

307,200 each 0.4608 each – – –

Set of 24 11.060 27.82 50 33.4

are modeled as point sets in a three-dimensional Euclidean
space.

Fractal image compression employs a set of functions that
are mappings from a two-dimensional Euclidean space onto
itself for black-and-white images, or mappings from a three-
dimensional Euclidean space onto itself for grayscale images.
The set of mappings is employed recursively beginning with an
initial (two- or three-dimensional) point set called the “initial
image” to produce the final, “target image” (the original image
to be compressed); i.e., application of the mappings to the ini-
tial image produces a secondary image, to which the mappings
are applied to produce a tertiary image, and so on. The result-
ing sequence of images will converge to an approximation of
the original image. The mappings employed are special to the
extent that they are chosen to be affine linear contraction (ALC)
mappings generally composed of a simple linear transforma-
tion combined with a translation. The fact that these mappings
are contractions means that the point sets resulting from the
application of these mappings to a portion of an image are
diminished in size relative to that original portion of the image.

Once a set of ALC mappings has been determined such that
its repeated application produces an acceptable approximation
to the target image, the target image is said to have been “com-
pressed.” The target image is then compressed because, rather
than having to store the entire data of the target images, one
needs only to store the values of the parameters that define the
ALC mappings. Usually, the amount of data required to charac-
terize the ALC mappings is significantly less than that required
to store the target image point set. The process of iterative

application of the ALC mappings described earlier produces
the “decompressed” approximation of the target image.

An essential feature of the decompression process is that it
leads to a unique “limit image,” so that a given collection of ALC
mappings will always yield a sequence of images that converge to
the same limiting image [5]. This limit image is a point set that is
approached by the sequence of images as the number of appli-
cations of the ALC mappings increases without limit. Hence,
in practical applications, one must select an image that results
from a finite number of applications of the ALC mappings as the
approximation to the target image. Another important feature
of the decompression process is that the limit image produced is
independent of the initial image with which the process begins,
although the rate at which the sequence of target image approx-
imations approaches the limit image is influenced by the choice
of initial image.

A fractal is a geometric structure obtained as the limit image
(or attractor) of a specific set of ALC mappings applied to point
sets in Euclidean space [7]. That is why compression based on
the ALC iterations is called fractal compression. Consequently,
target images that are fractals can always be compressed with a
set of ALC mappings and can be decompressed with arbitrary
accuracy by simply increasing the number of applications of
the ALC mappings. A characteristic feature of fractals is “self-
similarity,” which means that certain subsets of a fractal are
compressed versions of the entire fractal; in other words, cer-
tain subsets are versions of the entire fractal image under some
ALC mapping [7]. Self-similarity of fractals follows as a direct
consequence of the repeated application of ALC mappings that
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generate the fractals. It is important to note that when decom-
pressing an arbitrary image, one does not produce the fractal
(limit image), but only an intermediate approximation to the
fractal, and self-similarity at all scales is not manifested in frac-
tal compressed images. Once the mappings are specified, it is
relatively easy to determine the number of iterations necessary
to produce an approximate target image that is within a speci-
fied distance of the limit image, according to an appropriately
defined metric.

The process of decompression of a fractal compressed image
is well defined and easily implemented on a computer; one sim-
ply implements the iterated application of the ALC mappings.
However, the most significant problem one faces when attempt-
ing to apply fractal image compression to target images of
practical interest is the target image compression process. Even
though many naturally occurring physical objects and their
photographic images exhibit a certain degree of self-similarity
(over several scales), no real-world objects are fractals [8]. Thus,
the process of specifying the set of ALC mappings capable of
reproducing an arbitrary target image with acceptable fidelity
is a difficult one and constitutes the subject of many research
activities at this time. Existing methods are not fully automated,
requiring involvement of a human operator using a computer-
based decision aid [9]. Hence, the time required to compress
an arbitrary target image is a matter of concern. Most methods
start by partitioning the target image into subsets and search for
ALC mappings that can modify one subset to look like the mod-
ified version of another subset. Successful application of this
procedure requires the target image to exhibit at least “local”
self-similarity so that reasonable fidelity can be achieved when
decompressing the image. An arbitrary target image may or may
not possess such local self-similarity, although experience has
shown that many ordinary images do exhibit enough to allow
effective fractal compression.

Because a fractal compressed image is decompressed through
the repeated application of the ALC mappings and magni-
fication of that image is easily achieved by increasing the
value of multiplicative constants in the ALC mappings, frac-
tal compressed images will display detailed structure at all
levels of magnification, unlike standard images in which details
are obscured with increased magnification as individual pix-
els become visible. Since the unlimited detail produced by
the fractal image decompression process will eventually have
no relation to the target image, care must be exercised when
interpreting highly magnified, fractal compressed images.

49.3 Telecommunications

Telecommunications involve the use of wire, radio, optical, or
other electromagnetic channels to transmit or receive signals
for voice, data, and video communications. This section briefly
describes features of technologies, standards, and procedures or
protocols that contribute to the speed and reliability of modern

telecommunications systems. The seven-part (a.k.a. level or
layer) classification scheme for computer communications
known as the Open Systems Interconnection (OSI) model of
the International Standards Organization (ISO) provides a use-
ful foundation for the discussion that follows. The model can
be applied to the scenario illustrated in Figure 49.1 where two
users of telemedicine systems are connected via communi-
cations services. The seven levels and their objectives are as
follows [10]:

1. Physical: Specifies the physical, electrical, and procedural
standards for a network, including voltage levels and cir-
cuit impedances. The EIA RS-232 serial interface standard
is an example of a Level 1 area of responsibility.

2. Data Link: Describes means to activate, maintain, and
close the telecommunications link.

3. Network: Specifies standards for dial-up, leased, or packet
networks. It also provides rules for building data packets
and routing through a network.

4. Transport: Describes rules for message routing, segment-
ing, and error recovery.

5. Session: Starts and stops (i.e., log on and log off) network
sessions. It determines the type of dialogue that will be
used (i.e., simplex, half-duplex, or full-duplex).

6. Presentation: Converts data to the appropriate syntax for
the display devices (character sets and graphics); com-
presses and decompresses and encrypts and decrypts
data.

7. Application: Provides a log-in procedure, checks pass-
words, allows file upload or download, and tabulates
system resources usage.

The Transport layer is the highest level concerned with tech-
nological aspects of the telecommunications network. It acts as
the interface between the telecommunications network and the
telemedicine application. The upper three layers manage the
content of the telemedicine application. Furthermore, various
equipment, software, communications services, and data acqui-
sition and display components of a telemedicine system can be
updated and maintained by replacing or modifying hardware
or software at each level instead of replacing the whole system.

49.3.1 Signal Hierarchy and Transfer Rates

To achieve reliable and effective communications, signals must
be accurately generated and propagated. Signals associated
with telecommunications systems are usually stated in rather
self-descriptive terms, for example, digital signal (DS), optical
carrier (OC), or synchronous transport signal (STS). Signals,
which contain information, are typically described as frequen-
cies. The bandwidth needed to convey the information is
the difference between the highest and lowest frequencies of
the signals containing the information. The bandwidth of a
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communications channel is the difference between the high-
est and lowest frequencies that the channel can accommodate.
The bandwidth of the communications channel must be equal
to or greater than the bandwidth of the information-carrying
signals. Thus, a communications channel that carries the range
of voice frequencies (300 to 3000 Hz) must have a bandwidth of
at least 3000 Hz. In contrast, approximately 200 KHz of band-
width is required for FM transmission of high-fidelity music,
and 6 MHz for full-motion, full-color television signals.

A digital communications system uses digital pulses rather
than analog signals to encode information. The North
American high-speed digital telephone service is referred to
as the T carrier system. The T carrier system uses pulse code
modulation (PCM) techniques to sample and encode informa-
tion contained in voice-grade channels, and then time division
multiplexing (TDM) techniques to form a DS from a group
of 24 voice-grade channels. The information carrying signal of
each channel is sampled 8000 times per second. The sample is
represented or encoded using 8 bits, thus forming frames of
information at a rate of 64 bps. Details about the T carrier sys-
tem are summarized in Table 49.4. Metrics are bit transfer rates,
the number of voice frequency analog signals that are multi-
plexed to form a DS, and the number of 6 MHz TV channels
that can be transmitted via a T carrier.

A single DS-1 signal is usually transmitted over one pair of
twisted wires of either a 19–gauge or 22–gauge, known as a T1
line span. Two lines, one for transmit and one for receive, are
used in a line span. Repeaters are required about every mile to
compensate for power loss. The assemblage of equipment and
circuits is known as the T1 carrier system. The lengths of T1
carrier systems range from about 5 miles to 50 miles. The T2
carrier system uses a single 6.312 Mbps DS for transmission up
to 500 miles over a low capacitance cable. A T3 carrier moves
672 PCM-encoded voice channels over a single metallic cable.

With the development of fiber-optic telecommunications
systems, signaling standards that were adequate for wire pairs
and coaxial cable warranted revision. Fiber-based telecommu-
nications systems are virtually error-free and are capable of
reliably moving signals more rapidly than wire systems. The
American National Standards Institute (ANSI) published a new
standard called Synchronous Optical Network (SONET) in
1988 [10]. It was known as ANSI T1.105 and evolved into an

TABLE 49.4 T carrier baseband system [10]

T carrier
designator

Data rate
(Mbits/sec)

Digital
signal
type

Voice
grade

channels

TV
channels

Medium

T1 1.544 DS-1 24 — Wire pair
T2 6.312 DS-2 96 — Wire pair
T3 44.736 DS-3 672 1 Coax, fiber
T4 274.176 DS-4 4032 6 Coax, fiber
T5 560.160 DS-5 8064 12 Coax

TABLE 49.5 SONET signal hierarchy [10]

OC
level

Data
rate

(Mbits/sec)

Synchronous
transport

signal

Number
of DS-1s

OC-1 51.84 STS-1 28
OC-3 155.52 STS-3 84
OC-9 466.56 STS-9 252
OC-12 622.08 STS-12 336
OC-18 933.12 STS-18 504
OC-24 1244.16 STS-24 672
OC-36 1866.24 STS-36 1008
OC-48 2488.32 STS-48 1344

international standard that was adopted by CCITT in 1989.
The OC-1 signal is an optical signal that is turned on and off
(modulated) by an electrical binary signal that has a signal-
ing rate of 51.84 Mbits/sec, the fundamental line rate from
which all other SONET rates are derived. The electrical signal
is known as the STS-1 signal (Synchronous Transport Signal—
level 1). OC-N signals have data rates of exactly N times the
OC-1 rate. Table 49.5 lists standard transmission bit rates used
with SONET and their equivalent STSs.

Wireless broadband designates technology that enables high-
speed wireless Internet and data network access. The earliest
versions used a T-carrier such as a T1 or a DS-3 connection to
broadcast to a small dish antenna. Contemporary instantiations
merely require a card to connect a computer to the Internet via a
network of cell phone towers. JPEG 2000 wireless is an interna-
tional standard targeted toward achieving reliable transmission
of imagery over wireless communications systems which tend
to be susceptible to errors [15].

49.3.2 Network Interoperability

The telephone industry is moving toward an all-digital network
that integrates voice and data over a single telephone line from
each user to the telephone company equipment. Integrated ser-
vices digital networks (ISDNs) are being implemented with the
intent of providing worldwide communications for data, voice,
video, and facsimile services within the same network. The basic
principles and evolution of ISDN are outlined in CCITT recom-
mendation 1.120 (1984). One of the principles is that a layered
protocol structure should be used to specify the access pro-
cedures to an ISDN, and that the structure can be mapped
into the OSI model. However, in essence, ISDN ignores levels
4 to 7 of the OSI model. Standards already developed for OSI-
applications can be used for ISDN, such as X.25 level 3 for access
to packet switching networks. In addition, whenever practical,
ISDN services should be compatible with 64–kbps switched dig-
ital connections. The 64–kbps frame is the basic building block
of ISDNs that expect to use the plant and equipment of existing
telecommunications systems.
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Interactive television and telemedicine applications require
transfer rates that exceed the original ISDN specifications.
Broadband ISDN (BISDN) addresses this need [11]. With the
advent of BISDN, the original concept of ISDN is referred to as
narrowband ISDN. The new BISDN standards are based on the
concept of an asynchronous transfer mode (ATM), which will
include optical fiber cable as a transmission medium for data
transmission. BISDN standards set a maximum length of 1 km
per cable, with expected data rates of 11, 155, or 600 Mbps.

ATM is a member of a set of packet technologies that relay
traffic through nodes in an ISDN via an address contained
within the packet. Unlike packet technology such as X.25 or
frame relay, ATM uses short fixed-length packets called cells
[11]. This type of service is also known as cell relay. An ATM
cell is 53 bytes long, with the first 5 bytes called a header, and
the next 48 bytes called an information field. The header con-
tains the address and is sometimes referred to as a label. In
contrast, frame relay uses a 2–byte header and a variable-length
information field.

The X.25 protocol was developed for use over relatively noisy
analog transmission facilities and addresses only the physical,
data link, and network layers in the OSI model [11]. It is a proto-
col that was developed to ensure reasonably reliable transport
over copper transmission facilities. To accomplish this, every
node in an X.25 network goes through a rigorous procedure
to check the validity of the structure of the message and its
contents and find and recover from detected errors. It can then
proceed with or abort communications, acknowledge receipt,
or request retransmission, before passing the message along to
the next node where the process is repeated. In total, it can
be a relatively slow and time-consuming process, constraining
throughput.

The extensive checking of the X.25 may be replaced by one or
two simple checks: address validity and frame integrity. If the
frame fails either check, it is discarded, leaving the processors
at the ends of the connection to recover from the lost message.
Frame relay’s strength (i.e., robust error checking and recovery)
is ultimately its weakness. It is suited for data communications,
but not flexible enough to cope with the variety of multimedia
traffic expected to be running on an ISDN. In the future, traffic
on an ISDN will be a mixture of transactions devoted exclu-
sively to data, voice, or video and transactions embedded with
combinations of data, voice, video, and static images.

The following paragraphs compare performance of cell
and frame relay schemes in network scenarios. If the inter-
val between voice samples varies too much, problems (called
jitter) arise with reconstructing the signal. If the intervals
become very large, echo becomes a problem. ATM’s cell length
is chosen to minimize these problems. It is necessary to ensure
that data messages do not impose overly long delays to voice
traffic (or similar services that count on periodic transmis-
sion of information). Frame relay is just as likely to insert a
several-thousand-byte data frame between voice samples as it

is a 64–byte frame, playing havoc with the equipment trying to
reconstruct the voice traffic. The short, fixed cell size ensures
that the cells carrying voice samples arrive regularly, not sand-
wiched between data frames of varying, irregular length. The
short cell length also minimizes latency in the network, or
end-to-end delay. The ATM cell size is a compromise between
the long frames generated by data communications applica-
tions and the needs of voice. It is also suitable for other
isochronous services such as video. Isochronous signals carry
embedded timing information or are dependent on uniform
timing information. Voice and video are intimately tied to
timing.

Frame relay also suffers from a limited address space. Initial
implementations provide about 1000 addresses per switch port.
This is adequate for most corporate networks today, but as
needs expand beyond corporate networking to encompass part-
ner corporations and home offices, more flexibility will be
needed. Speed and extensibility (expandability) are also issues
with frame relay as a solution to network interoperability.
As network transmission capabilities grow, so will transmis-
sion speeds, which, in turn, will lead to faster switching speed
requirements. As the network expands, the work and functions
of the switches will grow. The increased requirements dictate
very fast, extensible switches. Network switches, however, do not
cope well with the variable-length messages of the frame relay.
They require identical fixed-length messages, preferably short
ones.

The ATM standard does not include parameters for rates or
physical medium. Thus, different communications networks
can transport the same ATM cell. With ATM, a cell generated
from a 100 Mbits/sec LAN can be carried over a 45 Mbits/sec
T3 carrier system to a central office and switched into a
2.4 Gbits/sec SONET system.

49.3.3 Telemedicine Applications Compatibility

A telemedicine application can be a complex collection of a
variety of objects. In general, it can be an integrated session
containing text, rich text, binary files, images, bitmaps, voice
and sound, and full-motion video. The utility of these applica-
tions will in part depend on their ability to accommodate these
different types of data. The development and use of standards
which allow interoperability between systems and applications
developed by different manufacturers is a critical part of this
process.

49.3.3.1 Health Level Seven (HL7)

Health Level Seven (HL7), which dates back to 1987, is a stan-
dard for exchanging clinical, administrative, and financial infor-
mation among hospitals, government agencies, laboratories,
and other parties. The HL7 standard covers the interchange of
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computer data about patient admissions, discharges, transfers,
laboratory orders and reports, charges, and other activities.
Its purpose is to facilitate communication in health care set-
tings. The main goal is to provide a standard for exchange
of data among health care computer applications and reduce
the amount of customized software development. The HL7
standard focuses primarily on the issues that occur within the
seventh level of the OSI.

The standard is organized to address the following issues:

• Patient admission, discharge, transfer, and registration

• Order entry

• Patient accounting (billing) systems

• Clinical observation data such as laboratory results

• Synchronization of common reference files

• Medical information management

• Patient and resource scheduling

• Patient referral messages for referring a patient between
two institutions

The HL7 Working Group continually works to improve or
develop standards in the following special interest areas:

• Decision support

• Ancillary departments

• Information needs of health care delivery systems outside
acute care settings [16]

49.3.3.2 Digital Imaging and Communications in
Medicine (DICOM)

The American College of Radiology (ACR) and the National
Electrical Manufacturers Association (NEMA) developed
DICOM to meet the needs of manufacturers and users of
medical imaging equipment for interconnection of devices on
standard networks [12]. DICOM, which is described in detail
in Chapter 50 has multiple parts that facilitate expansion and
updating and allow simplified development of medical imag-
ing systems. DICOM also provides a means by which users of
imaging equipment are able to exchange information. In addi-
tion to specifications for hardware connections, the standard
includes a dictionary of the data elements needed for proper
image identification, display, and interpretation. Additions to
the DICOM standard include support for creation of files on
removable media (e.g., optical disks or high-capacity magnetic
tape), new data structures for X-ray angiography, and extended
print management.

Although the HL7 standard enables disparate text-based sys-
tems to communicate and share data and the DICOM standard
does the same for image-based systems, efforts to link compliant
systems have met with limited success. The goal of an initia-
tive known as Integrating the Healthcare Enterprise (IHE) is to

foster the use of HL7 and DICOM and ensure that they are used
in a coordinated manner. The initiative is a joint undertaking of
the Healthcare Information and Management Systems (HIMS)
and the Radiological Society of North America (RSNA). The
major impact of DICOM is expected to be on PACS because
it can serve in many interfacing applications. For example,
DICOM may be used as the interface standard among CT and
MR imaging units and printer systems.

49.4 Conclusion

During the early 1900s, the evolution of the radio, which
exploited electromagnetic waves, initiated a series of technol-
ogy developments that formed the concepts and foundations
for telemedicine systems. Facsimile first attracted attention in
1924 when a picture was sent from Cleveland to the New York
Times. Nevertheless, it came into widespread use in medical
applications only during the past 40 years. Several clinical appli-
cations have experimented with telemedicine systems that use
evolving technologies such as high-resolution monitors, inter-
active video and audio, wireless telephones, the public switched
telephone network, and the Internet.

Clinical applications that have experimented with tele-
medicine include radiology, pathology, cardiology, orthope-
dics, dermatology, pediatrics, ophthalmology, and surgery. As
telecommunication technologies improve and become avail-
able, reliable, easy to use, and affordable, interest in telemedicine
systems in clinical applications will increase. Today, few health
care organizations routinely use the entire range of capabilities
resident in computer-based telemedicine systems to integrate,
correlate, or otherwise manage the variety of multimedia data
available for patient care. Use of the wide range of capabil-
ities inherently available in modern telemedicine technology
is probably more commonplace in biomedical education and
research applications than in clinical applications focusing on
patient care.

Patient care places emphasis on reliability of data and
accuracy and timeliness of diagnosis, decision making, and
treatment. The technical and clinical issues in telemedicine
systems include quality of images, videos, and other data;
the percentage of the patient examination that can be
accomplished using existing telemedicine technologies; and
the integration of telemedicine service with current clinical
practices.

Basic technological components that affect the transmission,
storage, and display of multimedia data presented in this chap-
ter indicate the complexity of telemedicine systems. Efforts to
identify additional medical diagnostic and information-sharing
requirements, including security and privacy of data, as well as
efforts to continually improve performance of compression and
decompression algorithms and other component technologies
will ultimately lead to better outcomes for the patient [17].
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50.1 Introduction

Archiving medical images for future retrieval allows access to
patients’ historical images from their previous examinations.
These images can be used in clinical review and diagnosis to
compare with patients’ current examinations, or as a resource
in medical imaging-related research. This chapter describes
the storage and management of medical images using current
digital archiving technology, and the hardware and software
requirements for the implementation of a medical image
archive system to facilitate timely access to medical images in
an integrated hospital environment.

Medical images are produced by a wide variety of imag-
ing equipment, such as computed tomography (CT), mag-
netic resonance imaging (MRI), ultrasound (US), computed
radiography (CR), nuclear medicine (NM), digital subtraction
angiography (DSA), CT angiography (CTA), X-ray angiography
(XA), digital fluoroscopy (DF), radio fluoroscopy (RF), mam-
mography (MG), and projectional radiography. These images
generally are archived digitally or in analog format on different
types of storage media such as magnetic disks or tapes, compact
discs (CDs), magneto-optical disks (MODs), videotapes, films,
digital versatile discs (DVDs), or digital linear tapes (DLTs).
Retrieving these images from their archived media requires

Copyright © 2008 by Elsevier, Inc.
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certain manually operated procedures, which tend to be tedious
and inefficient. Computer-based medical image archiving was
initially introduced in the early implementation of the picture
archiving and communication systems (PACS) [2, 3]. In these
implementations, an image archive subsystem was built into a
PACS, providing a reliable and efficient means to store and man-
age the high-capacity medical images in support of the entire
PACS operations.

Implementation of an image archive system to support the
operation of a PACS requires connectivity and interoperability
between the archive system and the individual medical imaging
equipment (e.g., CT scanners, MR imagers, CR systems) and
PACS components (acquisition computers, archive system, dis-
play workstations, etc.). This always has been difficult because
of the multiple platforms and vendor-specific communication
protocols and file formats [6]. With the introduction of the
Digital Imaging and Communications in Medicine (DICOM)
standard, data communication among the imaging equipment
and PACS components becomes feasible [5,8]. An image archive
system based on DICOM [1, 4] allows itself to serve as an
image manager that controls the acquisition, archive, retrieval,
and distribution of medical images within the entire PACS
environment.

50.2 Medical Image Information Model

A medical imaging examination performed on a patient can
produce multiple images. These images, depending on the spe-
cific imaging procedure undertaken, are generally organized
into studies and series. A study is a collection of one or multiple
series of images that are correlated for the purpose of diagnos-
ing a patient. A series, on the other hand, is a set of images that
are produced with a single imaging procedure (i.e., a CT scan).

Medical images generated by digital imaging equipment of
various modalities are stored as information objects composed
of pixels. A pixel is a data element that contains the gray level of
a grayscale image, or the RGB (red, green, and blue) value of a
color image. The gray level can range from 0 to 255 (8-bit), 0 to
1023 (10-bit), or 0 to 4095 (12-bit), depending on the procedure
taken by the imaging equipment. The RGB value is composed
of the red, green, and blue elements, each being represented by
an 8–bit value ranging from 0 to 255.

Most sectional images (CT, MRI, US, etc.) are two-
dimensional. The size of such an image can be measured in
terms of number of lines (rows) per image, number of pix-
els (columns) per line, and number of bits (bit depth) per
pixel. Thus, an image specified at 2495× 2048× 8 bits indi-
cates the image is composed of 2495 lines, each line consisting
of 2048 pixels and each pixel containing a maximum value of
255. If expressed in bytes, the aforementioned image has a size of
2495× 2048× 1 = 5, 109, 760 bytes, or 4.87 Mbytes, approx-
imately. However, for those images that consist of 10–bit or
12–bit pixel data, each pixel will require 16 bits, or 2 bytes, of
computer storage, as all computers store information in units
of 8 bits, or bytes. For this reason, the size of a 512× 512× 12–
bit CT image is equivalent to 512× 512× 2 = 524,288 bytes, or
0.5 Mbyte. Table 50.1 shows the size of medical images produced
by some common modalities.

50.3 Medical Image Archive System

The three major subsystems constituting a PACS are acquisi-
tion, archive, and display. The acquisition system comprises
multiple computers to acquire medical images that are gen-
erated by the individual image modalities in the clinic. The
archive system consists of a host computer equipped with mass
storage for archiving the high-volume medical images in sup-
port of future retrieval. The display system comprises multiple
display workstations, each composed of a control computer and
image display device (e.g., high-resolution monitor) that allow
a clinician to display and manipulate images [7].

The acquisition, archive, and display systems are connected to
a communication network [9]. Medical images acquired by the
acquisition computers from the image modalities are transmit-
ted to the host computer (archive server) of the archive system,
where they are archived to the storage devices and distributed
to the appropriate display workstations.

An archive system for PACS consists of four major com-
ponents: an archive server, a database management system, a
storage subsystem, and a communication network. Figure 50.1
shows the configuration of a centralized archive system widely
adopted by most PACS systems. However, a distributed archive
system based on a many-to-many service model is more suit-
able for use in a health care enterprise integrated PACS. The

TABLE 50.1 Size of medical images produced by some common modalities

Modality Image dimension Average number of
images per examination

Mbytes per examination

Magnetic resonance imaging (MRI) 256× 256× 12 80 10
Computed tomography (CT) 512× 512× 12 60 30
Computed radiography (CR) 2577× 2048× 12 2 20
Ultrasound (US) 512× 512× 8 36 9
Digital subtraction angiography (DSA) 1024× 1024× 12 20 40
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FIGURE 50.1 Configuration of an image archive system. The sys-
tem consists of an archive server, a mirrored archive database, and
a storage subsystem composed of cache storage (e.g., magnetic disks
or high-speed RAID) and long-term storage (e.g., DLT tape library
or optical disk library). The archive server is connected to a com-
munication network, over which images are transmitted from the
acquisition computers to the archive server and display workstations.
A PACS gateway interfacing the Hospital Information System (HIS)
and the Radiology Information System (RIS) allows the archive server
to receive information from HIS and RIS.

implementation of a distributed archive system is more com-
plicated than that of a centralized archive system, in terms of
system configuration and software control. The technical details
comparing a centralized and a distributed archive system are
outside the scope of this chapter.

Sections 50.3.1 to 50.3.4 describe the four major compo-
nents (archive server, database management system, storage
subsystem, and communication network) of an archive system.

50.3.1 Archive Server

The archive server is a multitasking computer system that
supports multiple processes (computer programs) to run simul-
taneously in its operation system environment. The archive
server is configured with high-capacity random access mem-
ory (RAM), dual or multiple central processing unit (CPU),
and high-speed network interface for better performance.

An integrated archive server runs sophisticated image man-
agement software that controls the archival, retrieval, and
distribution of medical images for the archive system. Major
functions performed by an archive server include (a) accept-
ing images from the acquisition computers; (b) archiving
images to the storage subsystem; (c) routing images to the dis-
play workstations; (d) updating archive database tables; and
(e) handling query and retrieve requests from the display
workstations.

50.3.2 Database Management Subsystem

The archive database is a relational database comprising pre-
defined data tables that store information necessary for the
archive server to perform the individual tasks supporting the
image archive system.

To ensure data integrity, the archive database is configured to
include a mirroring feature that allows data to be automatically
duplicated on a separate system disk in the archive server. The
archive database does not store any medical images. Instead, it
stores the file index leading to access the corresponding images
that are physically stored in the storage subsystem.

50.3.3 Storage Subsystem

The storage subsystem provides high-capacity storage for
medical images and supports two levels of image storage: (1)
short-term storage for data caching; and (2) long-term storage
for permanent archiving.

Short-term storage uses fast data access storage devices such
as magnetic disks or high-speed redundant array of inexpensive
disks (RAID) that provide immediate access for images. Long-
term storage, on the other hand, uses low-cost, high-capacity,
removable storage media such as magnetic tapes, MODs, or
DLTs that provide nearline access to images at a slower speed.
These removable storage media also allow PACS to store a
second copy of its archived images offsite for backup purposes.

50.3.4 Communication Network

The communication network is a digital interface that connects
the archive server of the image archive system to other PACS
components such as the acquisition computers and display
workstations,allowing communications for medical images and
relevant information.

The low-cost, 100–mbps Ethernet can be used as the net-
work interface to provide communications between the PACS
components. However, high-bandwidth networks such as the
1000–mbps Gigabit Ethernet, 155–mbps OC-3 asynchronous
transfer mode (ATM), or 622–mbps OC-12 ATM are more suit-
able for the communication because of the high-volume data
transmission taking place in the PACS applications.

50.4 DICOM Image Communication
Standard

Communication of images between medical imaging systems
and among their applications has always been difficult because
of the multiple platforms and vendor-specific communication
protocols and data formats. The DICOM standard, developed
in 1992 by a joint committee formed by the American College
of Radiology (ACR) and the National Electrical Manufacturers
Association (NEMA), is intended to provide connectivity and
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interoperability for multivendor imaging equipment, allowing
communication of images and exchange of information among
these individual systems [8, 10]. This section describes two basic
DICOM components (information objects and service classes)
that are used for the communication of images.

50.4.1 Information Objects

Medical images are defined in DICOM as information objects
or datasets. An information object represents an instance of a
real-world information object (i.e., an image) and is composed
of multiple data elements that contain the encoded values of
attributes of that object. Each data element is made of three
fields: the data element tag, the value length, and the value
field. The data element tag is a unique identifier consisting of a
group number and an element number in hexadecimal notation
and is used to identify the specific attribute of the element.
For example, the pixel data of an image is stored in the data
element with a tag [7FE0, 0010], where 7FE0 represents the
group number and 0010 represents the element number. The
value length specifies the number of bytes that make up the
value field of the element. The value field contains the value(s)
of the data element. Figure 50.2 illustrates the composition of
a DICOM image information object.

Image communication between medical imaging systems
and among their applications takes place when a system or an
application initiates a transfer of images to a designated sys-
tem or application. The initiator (image sender) then transmits
image data in terms of information objects to the designator
(image receiver). In an image acquisition process, for example,
medical images are transmitted as information objects from an
image modality (e.g., a CT scanner) to a PACS acquisition com-
puter. From the acquisition computer, these information objects
are routed to their designated workstations for instantaneous
display and to the archive server for archiving.

Data
element

Group
number

Element
number

Tag Value
length

Value
field

Information object
(Image data set)

Data
element

Data
element

Data
element

FIGURE 50.2 DICOM information object. A DICOM image is an
information object consisting of multiple data elements. Each data
element is uniquely identified by its corresponding tag composed of
a group number and an element number. Pixel data of the image is
stored in element 0010 within group 7FE0.

50.4.2 Service Classes

PACS applications are referred by DICOM as application enti-
ties (AEs). An AE that involves the communication of images
is built on top of a set of DICOM services. These services, per-
formed by the DICOM message service elements (DIMSEs), are
categorized into two service classes: the DIMSE-C services and
the DIMSE-N services.

DIMSE-C services refer to those services that are applicable
to composite information objects (i.e., objects that represent
several entities in a DICOM information model) and provide
only operation services. DIMSE-N services, on the other hand,
are the services that are applicable to normalized information
objects (i.e., objects that represent a single entity in a DICOM
information model) and provide both operation and notifica-
tion services. The DIMSE-C and DIMSE-N services and their
operations are given in Tables 50.2 and 50.3, respectively.

TABLE 50.2 Composite DICOM message service elements (DIMSE-C)

DIMSE-C service Operation

C-ECHO Verification of communication between two peer application entities (AEs)
C-STORE Transmission of information objects from one AE to another
C-FIND Querying information about the information objects
C-GET Retrieval of stored information objects from another AE using the C-STORE operation
C-MOVE Instructing another AE to transfer stored information objects to a third-party AE using the C-STORE operation

TABLE 50.3 Normalized DICOM message service elements (DIMSE-N)

DIMSE-N service Operation

N-EVENT-REPORT Reporting an event to a peer AE
N-GET Retrieval of attribute values from another AE
N-SET Requesting another AE to modify attribute values
N-ACTION Requesting another AE to perform an action on its managed DIMSE service
N-CREATE Requesting another AE to create a new managed DIMSE service
N-DELETE Requesting another AE to delete a managed DIMSE service
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FIGURE 50.3 DICOM storage service class applied to a PACS image acquisition
process. An acquisition computer acts as a storage SCU to transmit images to the
archive server (storage SCP).

A typical DIMSE service involves two AEs: a service class
user (SCU) and a service class provider (SCP). An SCU is an AE
that requests a specific DIMSE service from another AE (SCP).
An SCP is an AE that performs an appropriate operation to
provide a specific service. Operations carried out by the DIMSE
services are based on client/service applications with the SCU
being a client and the SCP being a server. Section 50.4.3 is an
example of the storage service class that uses the C-STORE
DIMSE service for transmitting medical images from a storage
SCU to a storage SCP.

50.4.3 Example of C-STORE DIMSE Service

The following procedures describe the operation of a C-STORE
DIMSE service that transmits images from a PACS acquisition
computer to an archive server (Figure 50.3):

(a) The acquisition computer (Storage SCU) issues an
ASSOCIATION request to the archive server (Storage
SCP).

(b) The archive server grants the association.
(c) The acquisition computer invokes the C-STORE service

and requests the storage of an image in the archive
system.

(d) The archive server accepts the request.
(e) The acquisition computer transmits the image to the

archive server.
(f) The archive server stores the image in its storage device

and acknowledges successful operation.
(g) The acquisition computer issues a request to drop the

association.
(h) The archive server drops the association.

50.5 Archive Software Components

The software implemented in an archive server controls the
archival, retrieval, and distribution of medical images for the

archive system. In the archive server, processes of diverse func-
tions run independently and communicate simultaneously with
other processes by using client/server programming, queu-
ing mechanisms, and job prioritizing mechanisms. Figure 50.4
illustrates the interprocess communication among the major
processes running on the archive server, and Table 50.4 describes
the functions of these individual processes.

The major tasks performed by the archive server include
image receiving, image routing, image stacking, image archiv-
ing,database updating, image retrieving,and image prefetching.
This section and Section 50.6.2, Prefetch Mechanism, describe
these individual tasks.

50.5.1 Image Receiving

Images acquired by the acquisition computers from various
medical imaging devices are transmitted over the communica-
tion network to the archive server using standard DICOM stor-
age service class via Transmission Control Protocol/ Internet
Protocol (TCP/IP) network protocols. The storage service class
is based on client/server applications, of which an acquisition
computer (client) serves as a DICOM service class user (SCU)
transmitting images to a service class provider (SCP) or the
archive server. Like most client/server applications, the archive
server supports concurrent connections to receive images from
multiple acquisition computers.

50.5.2 Image Routing

Images arriving in the archive server from various acquisition
computers are immediately routed to their destination display
workstations for instantaneous display. The routing process is
a DICOM storage service class, of which the archive server
takes on the role of SCU to transmit images to the display
workstations (SCP).
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FIGURE 50.4 Diagram illustrating interprocess communication among the major processes
running on the archive server. The symbols are defined in Table 50.4.

TABLE 50.4 Processes in the archive server

Process Description

arch Copy images from cache storage to long-term storage; update archive database; notify cach_emgr and arch_ack processes for successful archiving
arch_ack Acknowledge acquisition computers for successful archiving; acq_del process at acquisition computers deletes images from local storage
image_mgr Process image information; update archive database; notify dcm_send and arch processes
pre_fetch Select historical images from archive database; notify retrv process
dcm_recv Receive images from acquisition computers; notify image_mgr process (dcm_recv : DICOM Storage SCP)
adt_gw Receive ADT messages from HIS or RIS; notify pre_fetch process
retrv Retrieve images from cache or long-term storage; notify dcm_send process
dcm_send Send images to destination display workstations (dcm_send : DICOM storage SCU)
cache_mgr Manage cache storage of the archive server
qr_server Handle query and retrieve requests from the display process at the display workstations (qr_server. DICOM query/retrieve SCP)

The routing algorithm is driven by predefined parameters
such as examination type, patient type, location of display
workstation, section radiologist, and referring physician. These
parameters are stored in a routing table managed by the archive
database. The routing process performs table lookup for each

individual image based on the Health Level Seven (HL7) mes-
sage received via the Hospital Information System/Radiology
Information System (HIS/RIS) interface (Section 50.6). Results
from the table lookup will determine what destination(s) an
image should be sent to.
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50.5.3 Image Stacking

Image stacking is a data caching mechanism that stores images
temporarily in high-speed storage devices such as magnetic
disks and RAIDs for fast retrieval. Images received in the archive
server from various acquisition computers are stacked in the
archive server’s cache storage (magnetic disks or RAID) to allow
immediate access. After being successfully archived to the long-
term storage, these images will remain in the cache storage and
are managed by the archive server on a per-patient-per-hospital
stay basis. In this way, all recent images that are not already in
a display workstation’s local disks can be retrieved from the
archive server’s cache storage instead of the low-speed long-
term storage device such as an optical disk library or a DLT
tape library. This timely access to images is particularly con-
venient for physicians or radiologists to retrieve images at a
display workstation located in a different radiology section or
department.

50.5.4 Image Archiving

Images received in the archive server from various acquisition
computers are copied from the archive server’s cache storage
to the long-term storage device, such as an optical disk library
or a DLT tape library, for permanent archiving. These images
are stored as standard DICOM image files (see Section 50.7.1),
which can be accessed by display workstations on the PACS
communication network.

50.5.5 Database Updating

Information extracted from the data elements of the images
received by the archive server is inserted into the archive
database. These data are categorized and stored in different pre-
defined tables,with each table describing only one kind of entity.
For example, the patient description table consists of master
patient records, which store patient demographics, examina-
tion worklist, and correlated studies; the archive index table
consists of archive records for individual images; and the study
description table consists of study records describing individual
medical imaging procedures. These tables provide information
necessary for the archive server to perform individual tasks such
as file indexing, query and retrieve key search, image routing,
and image prefetching.

50.5.6 Image Retrieving

Image retrieval takes place at the display workstations that are
connected to the archive system through the communication
network. Retrieval requests are issued to the archive server by
the display workstation using DICOM query/retrieve (Q/R)
service class via TCP/IP network protocols on a client/server
basis. In the retrieval operation, the archive server serves as a

Q/R SCP processing query and retrieval requests it received
from the display workstations (Q/R SCU). Requested images
are retrieved from the storage subsystem by the archive server
and distributed to the destination display workstation with use
of DICOM storage service class.

50.6 HIS/RIS Interfacing and Image
Prefetching

A PACS for use in clinical practice cannot operate successfully
without an interface to HIS and RIS. This section describes the
HIS/RIS interface, and the prefetch mechanism performed by
an archive system in PACS with the use of this interface.

50.6.1 Health Level Seven (HL7) Communication
Standard

Health Level Seven (HL7) is an industry standard data inter-
face widely used in many health care information systems (e.g.,
HIS, RIS, PACS) for exchange of textual information [11].
Information exchange among these heterogeneous computer
systems takes place over a communication network with the
use of TCP/IP protocols on a client/server basis.

By utilizing the HL7 interface, a PACS can acquire mes-
sages, or events, such as patient demographics,ADT (admission,
discharge, and transfer), examination scheduling, examina-
tion description, and diagnostic reports from HIS or RIS via
a hospital-integrated communication network. Information
extracted from these messages can be used by the PACS archive
subsystem to perform specific tasks such as the routing (Section
50.5.2) and stacking (Section 50.5.3) mechanisms, and the
image prefetch mechanism (Section 50.6.2).

50.6.2 Prefetch Mechanism

PACS operated in a clinical environment require fast access to
patients’ previous and current images in support of online diag-
nosis. Therefore, the time delay in the retrieval of historical
images from a low-speed long-term archive during a clini-
cal review session will discourage the use of the PACS by the
physicians. The implementation of a prefetch mechanism can
eliminate online image retrieval, which thereby will increase the
acceptance of a PACS for clinical use.

The prefetch mechanism is triggered when a PACS archive
server detects the arrival of a patient via the ADT message from
HIS or RIS. Selected historical images and relevant diagnostic
reports are retrieved from the long-term storage and the archive
database. These data are then distributed to the destination
display workstation(s) prior to the completion of the patient’s
current examination. The algorithm of the prefetch mechanism
is based on a table lookup process driven by some predefined
parameters such as examination type, disease category, location
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of display workstation, section radiologist, referring physician,
and the number and age of the patient’s archived images. These
parameters are stored in a prefetch table managed by the archive
database and will determine which historical images should be
retrieved.

There are several factors affecting the operation of a prefetch
mechanism:

(a) Storage space of a display workstation capable of stack-
ing the prefetched historical images;

(b) Capability of the storage devices in the archive system to
handle multiple concurrent retrieval operations;

(c) Network capacity to support concurrent transmission of
the high-volume images;

(d) Capability of a display workstation to receive real-time
prefetched historical images with minimal interference
to the end users during a clinical review session.

All these factors should be taken into consideration when a
prefetch mechanism is implemented.

50.7 DICOM Image Archive Standard

This section describes the archive and retrieval of medical
images performed by an archive system using the Q/R service
class specified by the DICOM standard.

50.7.1 Image File Format

Medical images are archived to the storage media as DICOM-
formatted files. A DICOM file consists of a file meta-
information header and an image information object. The
file meta-information header is composed of a 128–byte file
preamble, a 4–byte DICOM prefix (“DICM”), and the file meta
elements (DICOM group 0002). This file meta-information
header contains information that identifies the encapsulated
DICOM image dataset (Figure 50.5).

An archive server receives DICOM images as information
objects from the acquisition computers. These images are
first encapsulated with the corresponding meta-information
headers forming the DICOM files and then archived.

When these archived image files are retrieved from the
storage device, only the encapsulated image information object
will be extracted from the files, which will then be transmitted
to the destinations as information objects.

50.7.2 Query/Retrieve Service Class Operation

A server process running on an archive server controls query
and retrieval of the medical images stored in the archive system.
This server process takes on the SCP role of the Q/R service
class to communicate with the display workstations (Q/R SCU),

DICOM File

DICOM prefix File meta elements

File meta information
header

File preamble

Information object

FIGURE 50.5 DICOM file format. A DICOM file consists of a file
meta-information header and an information object (image data set).
The file meta-information header is made of a file preamble, a DICOM
prefix, and multiple file meta-elements.

allowing the latter to query and retrieve images from the archive
database and the storage subsystem, respectively.

The Q/R service class is based on the following DIMSE ser-
vices: C-FIND, C-GET, C-MOVE, and C-STORE. These DIMSE
services are described next:

• The C-FIND service is invoked by a Q/R SCU to match a
series of attribute values, or the search keys (i.e., patient
name, examination date, modality type) that the Q/R SCU
supplies. The Q/R SCP returns for each match a list of
requested attributes and their values.

• The C-GET service is invoked by a Q/R SCU to retrieve
an information object (i.e., a DICOM image) from a Q/R
SCP and transmit the object to the invoking Q/R SCU,
based on the attributes supplied by the latter.

• The C-MOVE service is invoked by a Q/R SCU to retrieve
an information object (i.e., a DICOM image) from a
Q/R SCP and transmit the object to a third-party DIMSE
application (i.e., a storage SCP), based on the attributes
supplied by the invoking Q/R SCU.

• The C-STORE service is invoked by a storage SCU to
request the storage of an information object (i.e., a
DICOM image) in the storage SCP computer system.
The storage SCP receives the information object from
the invoking SCU and stores the object in its storage
subsystem.

The following is an example describing how DICOM uses
the aforementioned DIMSE services to carry out a Q/R Service
Class operation:

Suppose a radiologist at a display workstation queries the
image archive system to retrieve a historical MRI examination
to compare with a current study that is available in the display
workstation. For the radiologist to perform this Q/R operation,
three DIMSE services, C-FIND, C-MOVE, and C-STORE, are
involved. The archive server serves as a Q/R SCP and a Storage
SCU, whereas the display workstation serves as a Q/R SCU and
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a Storage SCP. The following procedures take place in order to
complete the operation (Figure 50.6):

(a) The Q/R client process (Q/R SCU) at the display work-
station requests the Q/R server process (Q/R SCP) at the
archive server to establish an association.

(b) The Q/R server process grants the association.
(c) The Q/R client process issues a C-FIND request to query

historical examinations belonging to a given patient.
(d) The Q/R server process returns a list of examinations

that match the attribute values supplied by the Q/R client
process.

(e) A radiologist at the display workstation selects inter-
esting images from the examination list and issues a
C-MOVE service request.

(f) The Q/R server process retrieves requested images from
the storage devices and requests the archive server’s
C-STORE client process (storage SCU) to transmit the
images to the display workstation’s C-STORE server
process (storage SCP).

(g) The C-STORE client process requests the C-STORE
server process to establish an association, waits for the
association to be granted, and transmits the images to
the C-STORE server process.
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FIGURE 50.6 DICOM query/retrieve operation. The archive server acts as Q/R SCP and storage SCU, whereas the display workstation serves
as Q/R SCU and storage ACP. The C-STORE DIMSE service is a suboperation of the C-MOVE DIMSE service in a DICOM query/retrieve
operation.
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(h) Upon successful transmission of the images, the C-
STORE client process terminates the storage service class
association.

(i) The C-MOVE client process terminates the Q/R service
class association.

50.7.3 Q/R Service Class Support Levels

The Q/R server process at the archive server takes on the SCP
role of the Q/R service class by processing the query and retrieval
requests based on the information about the attributes defined
in a Q/R information model that the image archive system sup-
ports. This Q/R information model may be a standard Q/R
information model defined in DICOM or a private Q/R infor-
mation model defined in the conformance statement of the
implemented archive system.

There are three hierarchical Q/R information models defined
by DICOM. These are the patient root, study root, and patient/
study only models (Table 50.5). The following subsections
describe these models.

50.7.3.1 Patient Root Q/R Information Model

The patient root Q/R information model is based on a four-
level hierarchy: Patient, Study, Series, and Image. The Patient
level is the top level and contains attributes associated with the
patient information entity (IE) of the corresponding image’s
information object definitions (IODs). Below the Patient level
is the Study level, which contains attributes associated with the
study IE of the corresponding image’s IODs. Below the Study
level is the Series level, which contains attributes associated with
the series IE of the corresponding image’s IODs. The lowest
level is the Image level and contains attributes associated with
the image IODs.

In each level of the patient root Q/R information model, one
attribute of the IE is defined as a unique key attribute that pro-
vides access to the associated IE. A Q/R SCU (i.e., Q/R client
process at a display workstation), therefore, can perform a hier-
archical query and retrieve operation to obtain a desired image
or set of images within any level of the information model.

A list of key attributes, or search keys, that are commonly
used in a hierarchical searching algorithm supporting the Q/R
service class operations is given in Table 50.6.

TABLE 50.5 Q/R service class information models and their support
levels

Q/R information model

Patient root Study root Patient/study only

Patient Patient
Hierarchy of Study Study Study
Q/R levels Series Series

Images Images

TABLE 50.6 Key attributes commonly used in Q/R service class
operationsa

Patient level
Patient name
Patient ID

Study level
Study instance UID
Study ID
Study Date
Study Time
Accession number

Series level
Series instance UID
Series ID
Modality

Image level
SOP instance UID
Image number

a UID, unique identifier; SOP, service–object pair.

50.7.3.2 Study Root Q/R Information Model

The study root Q/R information model is similar to the patient
root Q/R information model, except the top level of the
hierarchy is the Study level (see Table 50.5).

50.7.3.3 Patient/Study Only Q/R Information Model

The patient/study only Q/R information model is similar to the
patient root Q/R information model, except that it does not
support the Series and Image levels (see Table 50.5).

50.8 Structured Reporting

Structured Reporting (SR) is a later development of the DICOM
standard [12]. The standard specifies the rules for encoding,
transmission, and storage of structured reports. Structured
reports are comprehensive medical documents that contain
text, selected images and waveforms, links to entire series of
images and waveforms, and the spatial coordinates of sig-
nificant findings that users can use to see what is being
described in the conventional free-text radiology reports. This
section introduces information objects and document series of
DICOM SR storage Service-Object Pair (SOP) classes and the
implementation strategy of SR in PACS.

50.8.1 SR Information Objects and Document
Series

Like individual medical images, a structured report is a standard
DICOM information object (SOP instance) that is related to a
single series within a single study. A series of structured reports
may contain any number of reports, residing separately from the
corresponding series of images. Therefore, a study may contain
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TABLE 50.7 DICOM attributes

Attribute name Attribute description

Modality Enumerated Value: SR (SR Document)
SOP class UID Uniquely identifies the SOP class
SOP instance UID Uniquely identifies the SOP instance
Series instance UID Uniquely identifies the series
Series number A number that identifies the series within a study
Study instance UID Uniquely identifies the study

multiple series of medical images along with multiple series of
structured reports.

DICOM defines certain attributes with encoding rules that
can be used to identify SR information objects and document
series of a study. Table 50.7 shows some examples of these
attributes.

50.8.2 SR Implementation in PACS

Structured reports are usually encoded in extensible markup
language (XML) with links to medical images, waveforms, and
other DICOM information objects. These reports are stored in
PACS as DICOM-formatted files that contain SR information
objects encapsulated with the corresponding meta-information
headers. Structured reports can be queried and retrieved via
standard DICOM Q/R service and are displayed as multimedia
XML documents at PACS display workstations

SR is an important implementation in PACS and is essen-
tial for the electronic health records (EHR) deployment in an
integrated health care enterprise (see Section 50.10).

50.9 HIPAA Compliance

The Privacy Rule of the Health Insurance Portability and
Accountability Act of 1996 (HIPAA) is the first comprehen-
sive federal law designed to protect the privacy of personal
health information. Final rule of HIPAA was published by the
Department of Health and Human Services (HHS) in 2002
[14], and the HHS Office for Civil Rights (OCR) was named to
enforce the HIPAA privacy standards.

Implementation of HIPAA compliance in a health care facil-
ity is a complicated process in terms of administration and
enforcement of the privacy policy. This section discusses the
influence of HIPAA on the archive and communication of med-
ical images, and how a PACS system complies with the HIPAA
privacy standards.

50.9.1 Protected Health Information

HIPAA defines certain attributes related to patient personal
data as protected health information (PHI). PHI refers to
information that can be used to identify a patient, and is cre-
ated during the process of providing medical service to the

TABLE 50.8 Some PHI attributes that can be used to identify a patient

Name
Social security number
Driver’s license number
Hospital ID or medical record number
Health plan beneficiary number
Postal and residential address information
Telephone and fax numbers
E-mail address
Bank and credit card account numbers
Clinical report numbers
Dates indicative of age, examination, admission, discharge, death

patient. For example, if a CT examination is performed on a
patient in a radiology department, the CT scanner generates
the patient’s demographic information, examination descrip-
tion, and medical images. These data are then transmitted to
PACS for archiving and distribution. Certain personal data such
as the patient’s name, Social Security number, medical record
number, address, and telephone number generated from the CT
examination can be used to identify the patient.

Table 50.8 shows some PHI attributes whose values must be
protected.

50.9.2 DICOM De-identification/
Re-identification Mechanism

In 2002, DICOM added a de-identification/re-identification
mechanism that can be used to selectively protect individual
attributes within arbitrary DICOM SOP instances [13]. In par-
ticular, information objects (medical images) of the protected
SOP instances can still be communicated and processed (e.g.,
displayed) with existing DICOM implementations, regardless
of the de-identification/re-identification mechanism.

The de-identification/re-identification mechanism can be
applied in PACS archive subsystems to achieve protection
of HIPAA’s PHI data elements. The mechanism shall be a
reversible anonymization or pseudonymization of DICOM
SOP instances, which allows authorized personnel to view the
original data, while unauthorized personnel would see only
the anonymized data. De-identification and re-identification
of SOP instances can be implemented by modest software
changes at the application level only, while continuing to use
unmodified lower level DICOM SOP Class services for network
communication, image storage, and Q/R processing.

To add more security to the de-identification/re-
identification mechanism, DICOM also proposed to embed
an encryption/decryption subprocedure in the mechanism
that replaces values of all protected DICOM attributes with
pseudonyms (e.g., dummy values). The original attribute val-
ues are encrypted and stored as DICOM-encrypted attributes
sequence in the corresponding information objects. Decryption
of the encrypted data on the recipient side must apply public
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key cryptography to access a specific private recipient key and
decrypt the data.

50.10 Electronic Health Record

Electronic health record (EHR) is a longitudinal health infor-
mation system that stores patients’ comprehensive medical
records to allow global access and for data interchange. These
medical records are generated by one or more health care
providers and provide the complete past health history of
individual patients.

Successful implementation of EHR will move the health care
industry to a new era with expected better patient care delivery.
This section introduces two major EHR projects in the United
States and the integration of PACS into EHR to serve as an
image component for the EHR system.

50.10.1 EHR Projects in the United States

Two large-scale national EHR projects are being imple-
mented in the United States. These projects are (a) the Bush
Administration’s initiatives, which are led by HHS; and (b) the
Armed Forces Health Longitudinal Technology Application
(AHLTA), which is initiated and led by the U.S. Department
of Defense (DoD) [15].

50.10.1.1 The Bush Administration’s Initiatives

In 2004, U.S. President George W. Bush launched the EHR
initiative to create personal electronic health records for all res-
idents by 2014. The implementation will allow multiple health
care providers to create and share patient medical records across
the country. This nationwide project, according to the initiative,
could potentially lower health care costs, improve health care
quality and safety, and facilitate communication between health
care providers and patients.

50.10.1.2 AHLTA

AHLTA is an adaptation of EHR to the U.S. military’s existing
Military Health System (MHS). The implementation of AHLTA
intends to provide secured, global-accessible EHR for all uni-
formed service members, retirees, and their families by 2011.
Upon completion of the implementation, AHLTA will have the
capability to move and update EHR data across the entire MHS
in the United States and worldwide.

50.10.2 Integrating PACS into EHR

In the past two decades, medical images have been a missing
link in all computer-based health information systems. With

the introduction of PACS in the early 1980s, medical images
could be transmitted, stored, retrieved, and reviewed in digital
formats. However, review of these images must be performed at
dedicated PACS workstations or applications that are operated
or run independently from other health information systems
within the same health care facility.

With its well-implemented standard client/server communi-
cation software such as the DICOM and HL7 applications,PACS
has the capability to serve as a gateway that puts the missing
image component into an EHR system. Moreover, structured
reporting implemented in PACS using XML coding (Section
50.8.2) can be considered as a unified presentation format for
medical images as well as medical records that are generated
by other health information systems, allowing global access to
EHR’s central depository of multimedia data.

50.11 PACS in Telemedicine

Teleradiology and teleconsultation are subsets of telemedicine
service that allow clinicians to access patients’ medical examina-
tion data and perform clinical review, diagnosis, or consultation
at remote sites. However, teleradiology and teleconsultation
may involve access to medical images that are generated from
patients’ imaging examinations. With its electronic commu-
nication standard and digital data format, PACS can provide
a platform for access to medical images and utilization of its
image manipulation tools to facilitate review and diagnosis of
medical imaging examinations.

PACS is a functional unit of the image information system
within a health care facility. Generally speaking, it is an intra-
hospital system, but its accessibility and functionality can be
extended so that practitioners of a health care enterprise are
able to provide their services to remote areas. Note that these
remote locations can be anywhere in the world, provided that
appropriate network connection, software, and configuration
are set.

Data security and timely access to data (in particular medical
images) are two major issues that must be taken into consid-
eration when implementing teleradiology or teleconsultation
service in a health care facility. To assure data security, facili-
ties can adopt technologies in virtual private network (VPN)
and data encryption into the teleradiology or teleconsultation
applications. For clinicians to achieve timely access to the high-
volume medical image data, key-image indexing and image
compression are two potential solutions.

50.12 PACS Research Applications

Image processing applied to medical research has made many
clinical diagnosis protocols and treatment plans more efficient
and accurate. For example, a sophisticated nodule detection
algorithm applied to digital mammogram images can aid in
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the early detection of breast cancer. However, image process-
ing applications usually require significant implementation and
evaluation effort before they can be accepted for clinical use.
The common necessities during the implementation and eval-
uation of these applications are image data and the workstations
that allow the display and manipulation of the images. For
this purpose, PACS can serve as a powerful tool that provides
(a) numerous sample images of statistical significance for test-
ing and debugging the image processing algorithm, (b) display
workstations with built-in image manipulation functions in
support of clinical evaluation, (c) a PACS database to serve
as data warehouse for disease-specific diagnostic analysis and
data mining, and (d) modality-based image sets in support of
teaching and training purposes.

50.13 Summary

PACS provide a means to acquire, store, and manage med-
ical images that are produced by a wide variety of imaging
equipment. These images can be used for clinical review, diag-
nosis, and medical imaging–related research. The introduction
of DICOM provides an industry standard for interconnecting
multivendor medical imaging equipment and PACS compo-
nents, allowing communication of images and exchange of
information among these individual computer systems.

Digital image archiving provides online access to patients’
historical images, which facilitates the clinical practice of radi-
ologists and physicians. The archived images can be used as
a resource to provide enormous image data in support of
medical imaging–related research. When an image archive sys-
tem is placed in a clinical environment supporting a PACS,
reliability and timely access to images become dominant fac-
tors in determining whether the archive system is operated
satisfactorily. The sophisticated image management software
implemented in the archive system therefore plays an important
role in providing reliable yet efficient operations that sup-
port the archive, retrieval, and distribution of images for the
entire PACS.

Several aspects must be considered when implementing a
medical image archive system to support a PACS for clinical
use:

(a) Data integrity, which promises no loss of medical images
and their relevant data;

(b) System efficiency, which provides timely access to both
current and historical images;

(c) Scalability for future expansion of the archive system;
(d) System availability, which provides nearly 100% system

uptime for the archive, retrieval, and distribution of
images within the entire PACS.
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51.1 Introduction

A Hospital Integrated Picture Archiving and Communication
System (HI-PACS) has become a multivendor and multiuser
medical product. Generally, there are two levels of standardiza-
tion to be considered (Figure 51.1). One level is required by the
multivendor equipment implemented in PACS (i.e., acquisi-
tion stations, workstation, archive library). As an integration
result, PACS also receives data from other information sys-
tems working in the hospital (i.e., Radiological Information
System—RIS,Hospital Information System—HIS,DigitalVoice
System—DVS). Information systems deliver data to be viewed
and analyzed at multivendor workstations. The second level is
required by human subjects who address the system according
to their professional duties. Among them, there are radiologists,
clinicians, technologists, admission services, managers, etc. The
format and content of the data vary and may include diagnostic
images, medical reports, comments, administrative reports, etc.
Thus, both levels of standardization have to be considered to
make the entire system applicable in the clinical environment.

The first level of standardization is required in order to
integrate all pieces of equipment and create a system able to
serve the clinical community. This level of standardization pro-
vides an industrial data and image standard able to handle the
information access and intersystem communication problems.

The second level of standardization permits medical require-
ments to be fulfilled. In this approach we concentrate on the
image content adjustment to make images more readable and
of better quality in preparation for medical diagnosis. This
step also makes the advanced image processing phase easier
and permits some preprocessing steps not to be considered
at the level of development of the methodology that results
in computer-aided diagnosis (CAD). Although this group of
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FIGURE 51.1 PACS integration into a hospital-wide multivendor
and multiuser medical system.
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standardization procedures is related to image information
itself without referring to image format or intersystem commu-
nication, standardization functions are integrated with clinical
PACS and installed at various sites within the system.

The first two sections of the chapter discuss the improve-
ment of the image quality by the removal of image background
caused by blocking of the collimator and removal of the patient’s
background image structures. Then, selected histogram
modification techniques are shown for adjustment of anatomi-
cal structures under consideration. Section 51.4 discusses the
image orientation problem and its correction. Since acqui-
sition stations linked to PACS also deliver images mapped
on image intensifier systems, Section 51.5 discusses the most
important sources of distortions in quantitative measurements.
Section 51.6 briefly discusses the industrial standard (yet the
reader is asked to refer to other sources for details) and then
gives some outlines of how to implement image standardization
functions in clinical PACS.

51.2 Background Removal

Various definitions of background have already been intro-
duced. Usually, it is described as an area of no importance
attached to a region that is to be enhanced. Furthermore, very
often it affects the visual image quality. In image standardiza-
tion three types of areas may be referred to as background.
First, consideration is given to the area outside the radiation
field, caused by blocking of the collimator and resulting in
white borders surrounding the radiation field. The other two
types of background areas are located within the radiation field.
Depending on whether image analysis steps were followed and
the expected result was achieved, the area referred to as back-
ground may change from one phase of analysis to another. The
first phase of the image analysis (often a part of the prepro-
cessing stage) usually concentrates on detection of the patient
region and its orientation correction. At this point the area out-
side the patient region is referred to as background and set to 0.
Later phases of the image analysis, including segmentation and
region of interest (ROI) extraction, may consider areas inside
the patient region as background. For example, bone analysis
in orthopedics or phalangeal and epiphyseal analysis in bone
age assessment leads to considering soft tissue as background
with respect to bony structures. Chest analysis may also require
arms, the mediastinum, and the subdiaphragm to be considered
background. In this setting, the main goal of image processing
functions is to suppress the background and/or enhance the
foreground (i.e., diagnostically important regions) in order to
increase the signal-to-noise ratio and/or extract features of high
discrimination power.

This section deals only with background to be removed
by image standardization (preprocessing) functions. Thus,
removal of collimator-caused background and areas outside
the patient region is discussed. The third type of background

related to anatomical regions to be segmented out is part of
advanced image processing functions and, being an application-
dependent problem, is not considered in this chapter.

In the following sections two different regions are defined
and later referred to as background. In Section 51.2.1 a region
outside the radiation field caused by blocking the collimator is
called background, whereas in Section 51.2.2 an area outside
the patient region (yet within the radiation field) is referred to
as background.

51.2.1 Collimator-Caused Background

51.2.1.1 Glare in Image Diagnosis

Optimization of the amount of light exposing the viewer
during the image reading procedure affects significantly the
diagnostic performance, which is a result of information pro-
cessing based on features perceived by human eyes. Several
sources of extraneous light may be pointed out. The first
factor is an increase in light reflection from the surround-
ings, which in turn increases the reflection of light from the
radiograph itself. This phenomenon influences the percep-
tion of details in the radiograph. Then, an increase of the
background level changes the adaptation level of the photore-
ceptors in the retina, shifting the visual sensitivity threshold.
This process decreases the photoreceptors’ response to a given
stimulus increment and causes reduced contrast discriminabil-
ity. Involuntary eye movements have also been implicated
as a source of decreased visual sensitivity. Finally, transpar-
ent areas within the field of view, resulting in excessive light
hitting the viewer eyes, increase glare, which causes two prin-
cipal effects. First, the glare results in significant eyestrain
and discomfort. Second, it decreases visual contrast sensitivity,
which is proportional to the Weber ratio, WR, of background
brightness, BB, divided by the difference between the region
of interest brightness, RB, and the background brightness,
given by

WR = BB

RB − BB
. (51.1)

Glare also causes problems in digital projection radiography.
Two conditions create glare in the soft-copy display: first, the
surrounding light reflected from the display screen; and second,
the light emitted by the screen, which results from parts of the
image as well as from its periphery.

Extraneous surrounding light is limited by providing low
ambient light in reading rooms. This reduces the reflection light
to a level that does not shift the visual adaptation levels or
alter perception to any appreciable degree. The second source,
transparent background in the periphery, can be reduced by
implementing software functions (as described later) to black
out the borders. In return, this increases the visual quality of
the image.
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51.2.1.2 Removal of the Collimator-Caused
Background

Whenever a collimator appears in the radiation field, transpar-
ent borders are generated within the field of view (Figure 51.2).
Their removal reduces the amount of unwanted light in the
images during the soft-copy display, as well as almost transpar-
ent borders on the film. Moreover, the removed background,
without delivering any pertinent information, adversely affects
observer performance.

Two major advantages are gained by implementing back-
ground removal in clinical PACS. First, it provides immediately
lossless data compression—an important cost-effective param-
eter in image archive and communication. On display stations,
a more representative lookup table pertinent to only the
range of grayscales in the diagnostically important part of
the image can be assigned. It also shortens the response time
and permits a full-range image display on smaller monitors.
Second, background removal reduces the effort in designing
further image standardization steps as well as computer-aided
image diagnosis for certain types of images. It will improve
the subsequent automatic image analysis, which will concen-
trate on the diagnostically important information with no
background, rather than the combination of both types of
information.

FIGURE 51.2 CR image with an unexposed background (white frame
surrounding the image). (Courtesy of J. Zhang)

Background removal becomes a complicated procedure to
be incorporated in clinical PACS and performed automatically
on all acquired images before sending them to the archive sta-
tion. In case of failure the software procedure may irreversibly
destroy diagnostically important parts of the image (e.g., turn
part of the lung area black). Only a repetition of the radiological
procedure is able to undo this failure. All developed proce-
dures rather lower the accuracy of full background removal in
order to ensure that no diagnostically valid part of the image
is destroyed. The accuracy of developed methods ranges from
42% to 91% of full background removal and 86% to 99% for
full and partial background removal.

One of the approaches with high accuracy of background
removal was developed by J. Zhang. Images may include pure
background that does not overlap with any external objects or
dense anatomical parts (Figure 51.2), prostheses (Figure 51.3a)
or markers projected onto the background due to insufficient
thickness of the collimator, high sensitivity of the image plate
resulting in anatomical structures visible on the background
(Figure 51.4a), and odd-shaped abdominal collimators.

The first step of the algorithm analyzes the intensity dis-
tribution of the CR image background and determines the
probability that a pixel belongs to the image background. The
estimation is based on a background characteristic found in
1000 sectors marked on 50 randomly selected clinical radio-
graphs. Within each sector a relationship between the average
intensity of consecutive pixels yields a parameter called a back-
ground score. Assignment of each sector to background or
diagnostic field permits the relation between background score
and background probability to be defined.

Recognition of image background is defined by Zhang as
the location of background edges. A gradient method is used
in which the differentiation of image I yields a vector V (x , y)
defined as

V(x , y) = ρ(x , y)e−iθ(x ,y) (51.2)

with

ρ(x , y) = {(∂I/∂x)2 + (∂I/∂y)2}1/2

θ(x , y) = tan−1{(∂I/∂y)/(∂I/∂x)} . (51.3)

A set of all V(x , y) forms a gradient image. A pixel is selected
when its ρ(x , y) exceeds an empirically determined threshold
and the pixel itself is located close to the image border. The
selection of pixels to be considered in further analysis is based
on the background probability described previously. Then, each
pixel is subjected to the following background edge condition.
If the difference between the average intensity of a pixel and
its neighbor toward the image center is larger than that of the
pixel and its neighbor toward the image edge, then this pixel is
assumed to be on the edge.

In order to eliminate the failure of background removal, in
which the diagnostically important part of the image would be
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(a)

(b)

FIGURE 51.3 CR image with an unexposed background. (a) Original
image with a prosthetic device in the left arm. (b) Background-
removed image. (Courtesy of J. Zhang)

erased, one imposes two additional conditions. First, pixels of
low scores are excluded. The second condition is based on an
assumption that collimator edges are straight lines. Thus, the
angle distribution curve of background pixels has four maxima.
Location of these peaks corresponds to four edges. Pixels whose
gradient values fall within half width of the peak location are
used to fit lines to be considered as background edges. The

(a)

(b)

FIGURE 51.4 CR image with an unexposed background. (a) Ori-
ginal image with anatomical structures visible in the background.
(b) Background-removed image with enhancement of diagnostic field.
(Courtesy of J. Zhang)

contribution of every pixel to fit the line is different with various
weights defined as

w = A ∗ e−k∗�θ , (51.4)

where A and k are positive constants, and �θ is the difference
between the current pixel gradient angle and the maximum
angle in the curve distribution angle.
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Finally, a very important step in background removal is
the estimation of reliability. The goodness-of-fit of already
selected points is performed by applying the chi-square fit-
ting technique. The second step is based on a comparison of
two histograms. One is obtained from the original image; the
second, from the image with no background. If, in the diag-
nostically important part of the image, the histogram remains
unchanged, the background removal is accepted. Otherwise, the
removal is ignored. The performance of this function is shown
in Figures 51.3 and 51.4.

Removal of collimator-caused background is a modality-
dependent and anatomy-dependent procedure. It is performed
only for computed radiography (CR) images and digitized
images. However, not all anatomies require its implementa-
tion. It is performed in pediatric radiology (for all anatomies),
and limb, hand, and head imaging (for adults). Collimator-
caused background should not appear in adults’ chest and pelvis
radiograms. Since only background (none of the anatomical
structure) is subjected to the analysis, one procedure can handle
all anatomies.

51.2.2 Patient Background Removal

In this section the term “background” refers to the image area
outside the patient region, yet within the radiation field. In this
area, landmarks or labels with patient demographic data (name,
birthday, ID number, etc.) may also be found. It seems to be the
most intuitively accepted and most often used definition of
background in image processing systems. Selected approaches
to the problem of background analysis, separation from the
anatomical structures, and removal are discussed.

In most cases the procedure is anatomy-dependent and has to
be developed separately for each anatomical structure. Mostly,
it is applied to anatomical structures that are clearly separated
from the background. As examples, CR hand and limb images or
mammograms and sectional images may be subjected to such
functions. The background removal serves not only as a pre-
processing phase in an image analysis methodology, but is often
used as a quasi lossless compression method, which removes
the area of no diagnostic value (i.e., background), preserving at
the same time the anatomical structures.

Various methods have already been presented, yet none of
them yield results satisfying all anatomical structures. Two
approaches are suggested in this section. One is based on a
thresholding technique and results in background removal. The
other suppresses the background trend, causing a more uniform
background level.

51.2.2.1 Global Thresholding

One obvious method to separate the patient region from the
image background is to select a threshold value T . Any point
(x , y) for which the image f (x , y) > T is called the patient

region; otherwise, the point is referred to as a background point.
The threshold value is determined from a histogram analysis.

The image histogram is a grayscale value distribution show-
ing the frequency of occurrence of each gray-level value. For an
image size of 1024× 1024× 8 bits, the abscissa ranges from
0 to 255, whereas the entire number of pixels is equal to
1024× 1024. Modification of original histograms is very often
used in image enhancement procedures.

The histogram analysis is based on an assumption that the
grayscale values of foreground (anatomical structures) and
background (outside the patient region) are distinguishable
(Figure 51.5a). This results in two peaks appearing on a his-
togram (Figure 51.5b). Those peaks usually overlap, yet a
minimum in between can be detected in order to separate both
objects. After smoothing the histogram, one can apply detec-
tion of local minimum and maximum or statistical methods
in order to find the threshold value. Such methods separate
the foreground (white region in Figure 51.5c) and background
(black region in Figure 51.5).

This approach fails in cases of a nonuniformity of the back-
ground. This very rough assessment of the threshold very often
cuts parts of the anatomical structures, particularly the border
areas between background and foreground. Parts of soft tissue
may be blacked out (Figure 51.5c).

51.2.2.2 Dynamic Thresholding

In the dynamic thresholding approach, the threshold is adjusted
dynamically and depends on the current background value. In
the first stage, a window of fixed size is scanned in the vertical
direction, and statistical parameters such as mean, variance,
maximum gradient, and maximum value are computed. The
four windows with lowest variance located in the image corners
become candidates for a background area.

Then, the window with the highest mean value placed in
the central part of the image is referred to as an area within
the anatomical structure. Due to various landmarks and labels,
placed in the image periphery, location of the highest mean
value window is limited to the central part of the image. The
ratio of the highest and lowest mean values indicates the image
quality and will be referred to as a quality control parameter. It
may restrict the performance of this function.

Mean values of background windows increased by their vari-
ances define local threshold values. Then, a linear interpolation
in the vertical direction yields the threshold value for each row.
The interpolation is also performed in the horizontal direction
yielding the threshold value for each column.

The thresholding procedure, performed separately in both
directions, blacks out pixels below the threshold without chang-
ing those larger than the local threshold. If necessary, landmarks
and labels are detected by searching the densest area of the
histogram for a grayscale value with the least frequency of
occurrence. Morphological filtering is used to remove all small,
noisy elements in the background. An erosion function with
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FIGURE 51.5 Removal of background outside the anatomical structures. (a) Original image; (b) histogram (arrow marks the threshold value);
(c) thresholded image: anatomical structures remaining in the image are marked in white.

a 3× 3 pixel structuring element turns to 0 all elements equal
to or smaller than the structuring element.

Both approaches to the patient’s background removal imple-
mented in clinical images destroy parts of the diagnostic field.
The area close to the patient region is partially removed. This
prevents the methods from being used in an unsupervised
implementation for clinical PACS. They can be applied at work-
stations in order to suppress the background and improve the
visual perception (as described in Section 51.3) or as a pre-
processing function in computer-aided diagnosis. In both cases
they are used interactively and do not irreversibly destroy the
diagnostically important image regions.

51.2.2.3 Background Trend Reduction

An approach with high accuracy of background trend reduc-
tion was developed by A. Gertych. The background extraction
is based on histogram analysis. An overall histogram of an
input image indicates two areas (Figure 51.6). The low gray
value peak corresponds to the background, whereas the high
grayscale value peak reflects the soft and bony tissue. Bright
markers and dark artifacts may appear as small additional peaks
in peripheral high or low gray-level areas, respectively. Due to
the background nonuniformity, in most hand images, the back-
ground yields a rather slow varying slope, making it difficult or
even impossible to correctly separate the hand area using a sin-
gle threshold value. Thus, in order to estimate the background
plane, the image is divided into four quarters and a histogram

of each area (called later a subhistogram) is searched for a peak
locating the background (Figure 51.7). Since the ratio of the
background peak to hand region peak amplitudes depends on
the hand location within the image, the interval to be searched
is delimited by the shape and location of the background peak
in the main histogram.

The locations of background peaks hmax 1, hmax 2, hmax 3, hmax 4

(Figure 51.8a) correspond to the average intensity level of back-
ground pixels k1, k2, k3, k4 in every quarter of the image. These
four values are the basis for the estimation of background in
each image corner bcg 1, bcg 2, bcg 3, bcg 4. Bilinear interpolation

is used [8]. The interpolated image f̂ (x , y) is calculated by a lin-
ear combination of the four nearest pixels bcg 1, bcg 2, bcg 3, bcg 4
of given two-dimensional data (Figure 51.8b). The interpo-

lated image f̂ (x , y) for n1T1 ≤ x ≤ (n1 − 1)T1 and n2T2 ≤ y ≤
(n2 − 1)T1 is given by

f̂ (x , y) = (1− Dx)(1− Dy)f (n1T1, n2T2)

+ (1− Dx)Dyf (n1T1, (n2 + 1)T2)

+ Dx(1− Dy)f ((n1 + 1)T1, n2)

+ DxDyf ((n1 + 1)T1, (n2 + 1)T2), (51.5)

where

Dy = (y − n2T2)/T2, Dx = (x − n1T1)/T1.

The estimated background (Figure 51.9a) is subtracted from
the hand image, and the results are shown in Figure 51.9b.
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FIGURE 51.6 The histogram of an input image.
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FIGURE 51.7 Subhistograms of the input image.

After the background trend has been subtracted from the
hand image, a histogram is found again. Since the background
is now more uniform, its peak is narrow and has a larger value
than the background. In order to separate this peak, the triangle

algorithm is applied. A line connecting the maximum value at
the gray-level km and the value at the level kmax is constructed
(Figure 51.10a). The distance d(k) between the line, l , and his-
togram points h(k) is computed for all gray levels from km
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FIGURE 51.8 Background analysis. (a) Location of background peaks; (b) estimation of the background plane.
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FIGURE 51.9 Background removal. (a) Estimated image background;
(b) hand image after background subtraction.

to kmax. The gray-level value kt at the maximum distance

d(kt ) = max
i
|h(ki)− l(ki)| (51.6)

yields the threshold value (Figure 51.10b).
After a thresholding function is implemented, a binary image

is obtained, where low pixel values correspond to the back-
ground and high pixel values mark the hand area and other
objects, if any. Morphological operators remove isolated pixels,
which increases the number of binary objects. Then a labeling
procedure is performed. Its goal is to find the greatest object
(i.e., hand area) in the binary image (Figure 51.11). The binary
image is scanned from bottom to top with a 3-pixel window. If
the pixel under consideration is equal to 1, it is compared with
its two neighbors. If any of them belongs to the object, the same
label is granted; otherwise, a new label of a consecutive integer is
assigned. The area of each object is found and the largest value
indicates the hand region.
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FIGURE 51.10 Selection of the threshold value after background
removal. (a) Line connecting the maximum value at the gray level
km and the value at the level kmax; (b) thresholding value d(kt ).
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FIGURE 51.11 Histogram equalization. (a) Original image; (b) histogram of the original image; (c) enhanced image;
(d) modified histogram.

51.3 Improvement of Visual Perception

Visual perception is a very important factor in medical diagno-
sis performed on the basis of soft-copy displays. None of the
monitors permit a diagnostically accepted standard of display
quality, if no brightness and contrast adjustment will be per-
formed. This becomes of particular importance while digitized
images are read. Enhancement of anatomical structures may be
required for various modalities and anatomical structures.

The procedure may be preceded by a background removal
function (see Section 51.2). Two approaches are discussed.
First, a manual window/level adjustment (Section 51.3.1) is
performed at a workstation, and the user is responsible for
the quality and enhancement of the displayed image. Second,
image enhancement parameters are determined automati-
cally, usually by means of a histogram modification technique
(Section 51.3.2), and stored in the image header. At a work-
station, a user can easily switch from one set of parameters
to another. Each set provides enhancement for a different
anatomical region (e.g., bony structure, soft tissue, lungs, etc.).

51.3.1 Window/Level Correction

In the window/level concept, two parameters are defined. The
term“window”refers to the range of grayscale values distributed
over the entire dynamic range of the display monitor. A decrease
of the window value increases the contrast in the display image,
yet grayscale values outside the window range are turned to
black or white. The center of the interval is called the level value.

The window/level adjustment can be performed manually
at the workstation or automatically. A manual shifting of the

upper and/or lower edge of the grayscale level changes the win-
dow value. A more user-friendly adjustment uses the mouse
or trackball. A vertical movement typically changes the win-
dow level, whereas a horizontal shift controls the level value.
The grayscale value adjustment can be performed in real time
by using a map called a lookup table (LUT). The mapping is
accomplished by defining a curve in which output gray levels
are plotted against input gray levels.

A computerized window/level adjustment procedure first
finds the minimum and maximum of a global image histogram.
In order to suppress the extraneous gray-level values, 5% of val-
ues are cut off from both sides of the histogram. This means,
that the minimum grayscale value is pointed by the 5% grayscale
level of the cumulative histogram, whereas the maximum value
is found at the 95% level. Minimum and maximum values
define the window range, and their average value yields the
level. Window and level values are used to generate the default
LUT for the image display.

The computerized approach to the window/level correction
can be applied for single images (e.g., CR or digitized images) as
well as for computed tomography (CT) or magnetic resonance
(MR). If a single image is analyzed, a histogram of one image
is found. For CT/MR images, the entire set of images is used to
calculate the histogram.

51.3.2 Histogram Modification

The histogram equalization technique described in Chapter 1
can be used to improve the appearance of the image.
Figure 51.11 shows the result of histogram equalization per-
formed on a CR chest image.
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Another histogram method has been introduced to enhance
specific anatomical structures. The goal of this preprocessing
function is to create several piecewise-linear lookup tables to
adjust the brightness and contrast of different tissue density.
The procedure has been developed for CR chest images but also
could be adapted for other anatomical structures. The first step
is to analyze the image histogram to find key breakpoints that
divide the image into three regions: background (outside the
patient boundary, yet within the radiation field), radiograph-
ically soft tissue (skin, muscle, fat, overexposed lungs), and
radiographically dense tissue (mediastinum, subdiaphragm,
underpenetrated lung). When different gains are applied, the
contrast can be increased or reduced.

Based on this approach, several lookup tables are created.
Some of them enhance (at different levels) the radiographically
dense tissue; others, the radiographically soft tissue. One lookup
table is created with no enhancement.

In clinical PACS the analysis is performed at the acquisition
gateway and parameters are stored in the image header. At the
time of display, the user manually selects the enhancement level
to improve the brightness and contrast of a certain gray-level
region.

51.4 Image Orientation

Image orientation becomes a very important issue in radiolog-
ical systems in which a soft copy display is used in daily clinical
procedures. As a standard orientation, the position viewed by
radiologists is considered. Typically, two acquisition modalities

may yield rotated images. First, a film digitization procedure
may result in a nonstandardized image orientation when a film
is placed in a wrong position. Yet, clinical investigation has
shown that scanned images are mostly at a correct position, and
the orientation problem does not appear to be a critical issue.

Computed radiography (CR) is another modality that yields
misoriented images. A survey in pediatric radiology has found
that between 35% and 40% of procedures are not performed
with a conventional orientation. It is caused by the patient con-
dition as well as clinical environment. The CR cassette can be
placed at various orientations to accommodate the examination
condition.

Due to the position of the image plate, eight various orienta-
tions are considered (Figure 51.12). They are divided into two
major groups. The first group includes a correct (Figure 51.12a)
orientation, upside-down (Figure 51.12c), rotated 90◦ clock-
wise (Figure 51.12b), and counterclockwise (Figure 51.12d).
Flipping around the y-axis of the anteroposterior projection
(Figure 51.12e) gives three additional possible orientations:
upside-down and flipped (Figure 51.12g), rotated 90◦ clockwise
and flipped (Figure 51.12f), and rotated 90◦ counterclockwise
and flipped (Figure 51.12h).

A turn to soft-copy display diagnosis makes the orientation
correction a major problem. Since the correction orientation
algorithm refers to the anatomical structure within the image,
different functions have to be applied for each anatomy (chest,
pelvis, hand/wrist, etc.).

For chest radiographs, the orientation correction function
handles various types of CR chest images: adult posteroanterior

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIGURE 51.12 Eight possible orientations of a chest radiograph.
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(PA) or anteroposterior (AP) and lateral projections, pediatric
PA (or AP), and lateral projections. Although all these are chest
images, different problems have to be addressed in each of these
types. Adult chest images are much closer to a standard image
than pediatric images in the sense that the mediastinum is usu-
ally centered within the image and the image itself contains only
the thorax. The problem becomes much more difficult for pedi-
atric images because the range of variation is much wider. The
image may or may not include the head or its parts, the location
of arms is random, and the area of exposed subdiaphragm dif-
fers from one image to another. Very often even the abdominal
region is included, changing the location of lungs within the
image. The image is usually not centered and at a random angle
to the vertical axis of the image.

51.4.1 Detection of the Rotation Angle

The orientation procedure is anatomy-dependent. The proce-
dure uses some anatomical features in order to determine the
current orientation and necessary rotation angle. Three pro-
cedures are described for three anatomical structures: chest,
pelvis, and hand/wrist.

In chest images the analysis is performed in three steps. First,
the mediastinum is located and its orientation is found. This
step excludes 90◦ rotations clockwise and counterclockwise in
both groups of images (nonflipped and flipped). Then, a search
for the subdiaphragm is performed. It eliminates upside-down

images in both groups. Finally, images are tested against the
y-axis flip.

Detection of anatomical structures (i.e., mediastinum, sub-
diaphragm, lungs) is based on average density measured within
predefined windows scanned horizontally and vertically. The
window size is determined by the width of the subdiaphragm
assessed on the basis of clinical images in pediatric radiology.
The average density measures yield average profiles, reflect-
ing the changes of the average grayscale values in horizontal
(Figure 51.13a) and vertical (Figure 51.13b) directions.

In the horizontal direction, the mediastinum is marked
by a high-value plateau placed between two low-value levels
reflecting the lungs. The high-value plateau corresponds to a
high-value average profile marked vertically in between two
lower-value average profiles. One side of these average profiles
increases, reflecting the subdiaphragm, which horizontally cor-
responds to a high-value plateau. Once the mediastinum and
subdiaphragm are located, the images can be rotated to the
upright position.

The final step detects the y-axis flip, recognized either by a
detection of the local landmarks pointing to the left or right
image side, or by an analysis of the cardiac area. Landmarks
(usually L for left or R for right image side) are placed within
the radiation field, sometimes even within the patient region.
They can also be found (entirely or partially) in the area blocked
by the collimator if only a sensitive image plate makes them
visible. Their orientation (angle with respect to the image edge)

(a) (b)

FIGURE 51.13 Profile analysis in the detection of a current image orientation. (a) Horizontal profiles; (b) vertical
profiles scanned over a CR chest image. Image can be at any orientation shown in Figure 51.12.
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is also random, and size may differ from one image to another.
All this makes their detection and recognition more difficult.
Standardization of the location and orientation of landmarks
would make the task much easier.

Another way to detect the y-axis flip is an analysis of the
cardiac shadow. Many approaches to the problem of lung seg-
mentation and assessment of heart shadow size have already
been published and will not be discussed in detail in this chap-
ter. They can be implemented at this stage of the analysis. Also,
a simple average profile analysis performed on the lower part
of the lung yields two values, which are referred to as a right
cardiac index (RCI ) and left cardiac index (LCI ) and defined as

RCI = b/(a + b) and LCI = c/(c + d), (51.9)

where a, b, c , and d are shown in Figure 51.14. They reflect the
size of the heart shadow in comparison to the overall lung size
on both sides of the mediastinum. The LCI should be larger
than the RCI. If this is not the case, the image is y-axis flipped.

Each anatomical structure requires its own function. For
abdominal images, again horizontal and vertical average pro-
files are scanned. As for chest images, the first stage locates the
spine by searching for a high-value plateau. Then, perpendic-
ular to the spine the average density and uniformity of upper
and lower average profiles are tested. A denser area indicates the
subdiaphragm. Location of spine and abdomen determines the
rotation angle. No y-axis flip is considered.

For hand images, the analysis is performed on thresholded
images (as discussed in Section 51.2.2). In order to find the cor-
rection angle, one scans a pair of average profiles and shifts them

FIGURE 51.14 Heart shadow analysis in detection of the y-axis flip.

FIGURE 51.15 Pair of average profiles scanned over a CR hand/wrist
image.

toward the image center until one average profile intersects the
forearm; and the other, at least three phalanges (Figure 51.15).
The forearm is detected if a high-value plateau located in the
central part of the image and two neighbor low-value lev-
els cover the entire image width (or height). Three phalanges
are detected if three high-value plateaus are located within
the average profile. The ranges of width of those plateaus are
defined on the basis of anatomical width of forearms and fingers
found in clinical pediatric hand images. The search is com-
pleted when a pair of average profiles (scanned vertically or
horizontally) meets the previously mentioned criteria.

51.4.2 Image Rotation

Once the correction angle has been found, a rotation procedure
is implemented. Four possible rotation angles are considered.
A 0◦ angle means no rotation. Three other rotation angles
(90◦ clockwise or counterclockwise and 180◦) may be with or
without flip.

For the rotation procedure, let’s first consider a coordinate
system with the x1 and y1 axes to be rotated without changing
the origin. This yields new coordinates, yet the same origin as
in the original system (Figure 51.16). For a rotation angle ϕ, the
old and new coordinates are related by[

x2

y2

]
=

[
cos ϕ sin ϕ
− sin ϕ cos ϕ

] [
x1

y1

]
. (51.10)



886 Handbook of Medical Image Processing and Analysis

y2

x2

x1

y1

ϕ

FIGURE 51.16 Rotation of coordinate system.

In our approach, rotation functions without flip are defined as{
x2 = y1

y2 = −x1

}
for ϕ = π/2

{
x2 = −x1

y2 = −y1

}
for ϕ = π

{
x2 = −y1

y2 = x1

}
for ϕ = 3π/2.

(51.11)

If the y-axis flip is required, rotation functions become{
x2 = −x1

y2 = y1

}
for ϕ = 0

{
x2 = −y1

y2 = −x1

}
for ϕ = π/2

{
x2 = x1

y2 = −y1

}
for ϕ = π

{
x2 = y1

y2 = x1

}
for ϕ = 3π/2.

(51.12)

The orientation correction function is applied to CR images
only. Other modalities do not require this type of standard-
ization. The acquisition stations themselves secure the correct
image orientation.

51.5 Accuracy of Quantitative
Measurements in Image Intensifier
Systems

The image intensifier (II) tube is an electrooptical device
that is used to detect, intensify, and shutter optical images.

It is a vacuum tube that contains four basic elements: input
phosphor screen and photocathode, electrostatic focusing
lens, accelerating anode, and output phosphor. In diagnostic
radiology, image intensifiers are applied in fluoroscopy and
angiography where the viewing of images in real time is
desired. This means that the X-radiation pattern emerging
from the patient has to be transformed immediately into an
image directly viewable by a radiologist.

In the angiographic quantitative analysis, measurement of
blood vessel diameters plays an important role and often serves
as a basis from which other values or indexes can be derived.
This requires a technique that minimizes the distortion due to
the structure of the II tube and permits a corrected image to be
archived.

Image intensifier tubes, built with electron focusing lenses,
may have five aberrations: distortion of image caused by the
input phosphor screen, astigmatism, curvature of image field,
spherical aberration, and coma. Aberration caused by the
curvature of an input phosphor surface changes the shape of
images more than any other type of distortion. The discrep-
ancy in size may reach even 20% in the periphery. Thus, the
accuracy of measurement of abnormalities depends on its loca-
tion within the image. Pathology viewed in the image periphery
appears wider than that viewed in the central part of the image.

Since the accuracy of quantitative measurements is affected
mostly by the aberration caused by the spherical surface of the
input phosphor screen, this section addresses the geometrical
description of this aberration and its elimination. This aberra-
tion causes a nonlinear relationship between points in the object
plane and the corresponding points in the image. The error,
generally referred to as the pincushion distortion, depends on
the distance from the center of the input phosphor screen (the
point in which the plane is perpendicular to the central X-ray),
the radius of input phosphor screen curvature, and the view
angle between the central X-ray and the axis perpendicular to
the object plane.

There is one more type of distortion (discussed in
Section 51.5.2) that originates from the same source and results
in brightness nonuniformity. The image periphery is denser
than its center. This illumination decrease is caused by the
spread of the X-ray beam over a larger surface. Since the light
intensity is related to the size of the exposed area, the pixel
value depends on the distance from the image center. The
increase of the surface area deteriorates the sharpness in the
periphery. Edges viewed off the image center become blurred.
Enhancement is obtained after shrinking the image using the
correction function.

51.5.1 Geometrical Description of Pincushion
Distortion

Two models are considered, depending on the value of the view
angle, i.e., the angle between the central X-ray beam and the



51 Image Standardization in PACS 887

object plane. The first assumes that the central X-ray beam
is perpendicular to the object plane. The second applies to
arbitrary view angles.

51.5.1.1 Object at 0◦ View Angle

Let’s first consider a case in which the X-ray falls perpendic-
ular to the object plane (i.e., the central X-ray beam is at the
zenith position with respect to the patient). A point P(x , y)
(Figure 51.17) is projected onto the input phosphor surface at
Pa(x , y). The original distance d0 is magnified to dx and then
lengthened to da (arc between S and Pa) by the input phosphor
spherical surface. Since in this approach no other distortion is
considered, a linear magnification is assumed.

Magnification along the central beam is

dx

d0
= s2

s1
, (51.13)

where d0 is the distance from the object to the central point in
the input phosphor, dx is the magnified distance of d0, and s1

and s2 are distances from the focal spot FS to the object plane
and input phosphor screen, respectively.

Considering the geometry of Figure 51.17, we get

dc

sin a
= s

sin(π/2− α− β/2)
= s2

cos(α+ β/2)
(51.14)

and

s2

dx
= ctgα. (51.15)

From Equation 51.14 and through the use of Equation 51.15,
the magnified distance dx is derived as

dx = s2dc cos(β/2)

s2 + dc sin(β/2)
. (51.16)

With substitution of relationship between the chord dc , arc
β, and radius R of the sphere

dc = 2R sin(β/2)

β = da

/
R. (51.17)

In Equation 51.16 we obtain

dx = 2Rs2tg(da/2R)

s2 + (s2 + 2R)tg2(da/2R)
. (51.18)

Substituting Equation 51.18 in Equation 51.13, the relation-
ship between the original distance d0 and its projection onto
the input phosphor surface da is given by

d0 = 2Rs1tg(da/2R)

s2 + (s2 + 2R)tg2(da/2R)
, (51.19)

where R is the radius of the input phosphor screen curvature,
and da is the d0 distance projected onto the input screen at a 0◦
angle.

Note that, due to the manufacturing process, there is no one
single radius of curvature for II tubes, yet for simplicity we
consider only a single radius.

51.5.1.2 Object at Arbitrary View Angle

The X-ray beam may also fall at an arbitrary angle to an
object. This leads to a generalization of the equations derived
previously. From the geometry of Figure 51.18, we have

dc

sin a
= s

sin(π/2− α− β/2)
= s2

cos(α+ β/2)
(51.20)

dD

da

d0

S2

S1

dc
dx

Dda

Pa(xa, ya)pm

P(x,y)

FS

R

S

�� �a

Central X-ray
beam 

Object plane 

Input phosphor
screen 

FIGURE 51.17 Geometrical distortions due to projection of a flat object plate onto a curved input phosphor surface.
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FIGURE 51.18 Geometrical distortions caused by a projection under an arbitrary view angle.

and

dx

sin a
= s

sin(π/2− α+ υ) =
s2

cos(α− υ) , (51.21)

where υ is the view angle and α is defined in Figure 51.18.
When trigonometric relationships are used, Equations 51.20

and 51.21 become

ctgα = s2 + dc sin(β/2)

dc cos(β/2)
(51.22)

and

ctgα = s2 + dx sin υ

dx cos υ
. (51.23)

When Equations 51.22 and 51.23 are combined, the magni-
fication in the plane parallel to the object plane becomes

dx = s2dc cos(β/2)

s2 cos υ + dc(sin(β/2) cos υ + sin υ cos(β/2))
. (51.24)

Substituting Equation 51.19 in Equation 51.24 and combin-
ing it with Equation 51.13, we obtain the correct distance from
the central point to a current pixel

d0 = 2Rs1tg(da/2R)

(s2 + (s2 + 2R)tg2(da/2R)) cos υ + 2R sin υtg(da/2R)
,

(51.25)

where s1 is the distance from the focal spot FS to the object, s2

is the distance from the focal spot FS to the input phosphor, R
is the radius of the input phosphor curvature, and da is the d0

distance projected onto the input phosphor that can be mea-
sured from the input (uncorrected) image. For a 0◦ view angle,
Equations 51.25 and 51.19 are equivalent.

51.5.1.3 Pixel Coordinate Correction

Once the pixel distance from the central point of the input image
has been determined, the correction of the pixel coordinate may
be performed. It is again performed with respect to the image
center, which is unchanged. All other points are shifted along
the radius toward the image center.

Figure 51.19 shows the correction function performed on
a grid image. The nonlinear magnification effect originates
from the projection of a flat plane onto a spherical surface.
The size difference is proportional to the ratio of the zone sur-
face area to the base surface area. The uncorrected grid image
(Figure 51.19a) indicates that the range of correction depends
on the distance between a current pixel and the image center.
The larger the distance, the larger the correction coefficient has
to be. As a result, the final (corrected) image (Figure 51.19b) is
shrunk radially toward the image center. This changes the entire
image size.

51.5.2 Surface Area Correction

Since the light intensity is related to the size of the exposed
area, the pixel intensity in the image depends on the distance
of the pixel from the image center. In the analysis we assume
an X-ray beam to be responsible for the intensity of a unary
circular area in the object plane. The analysis is again based
on Figures 51.17 and 51.18 in which the unary circular area
is marked between the upper solid and dashed lines. The two
models, i.e., object at 0◦ view angle and at arbitrary view angle,
are analyzed separately.

51.5.2.1 Object at 0◦ View Angle

In order to describe the nonlinear magnification of the area
obtained by mapping a flat unary circle onto a spherical surface,
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(a) (b)

FIGURE 51.19 Image of a grid phantom. (a) Uncorrected image: The lines are bound and the periphery appears denser than the image center.
(b) Corrected image: Straightening of lines and decrease of brightness nonuniformity are obtained.

we rewrite Equation 51.19 as a function of β = d0/R, as

d0(β) = 2Rs1tg(β/2)

s2 + (s2 + 2R)tg2(β/2)
. (51.26)

From the geometry of Figure 51.17, the diameter of the unary
area (d�) is given by

d� = d0(β)− d0(β − β′). (51.27)

When we substitute Equation 51.26 into Equation 51.27, we
obtain a quadratic equation with respect to �β = β − β′

A = Bx

s2 + Cx2
, (51.28)

where

A = 2Rs1tg(β/2)− s2 − (s2 + 2R)tg2(β/2)

s2 + (s2 + 2R)tg2(β/2)
B = 2Rs1

C = s2 + 2R

x = tg(�β/2).

The value�β is obtained by solving Equation 51.28, and the
diameter�da of the enlarged area is given by

�da = R ×�β, (51.29)

where R is the input phosphor screen curvature.

51.5.2.2 Object at Arbitrary View Angle

The description of an arbitrary view angle is derived by gener-
alizing Equation 51.19. Considering d0 in Equation 51.25 as a
function of β and substituting it in

d� = d0(β)− d0(β − β′), (51.30)

which is derived from the geometry of Figure 51.18, we obtain
the quadratic equation

A = Bx

s2 + Cx2 + Dx
, (51.31)

where

A = 2R(s1 − sin υ)tg(β/2)− (s2 + (s2 + 2R)tg2(β/2)) cos υ

(s2 + (s2 + 2R)tg2(β/2)) cos υ + 2R sin υtg(β/2)
B = 2Rs1

C = (s2 + 2R) cos υ

D = 2R sin υ

x = tg(�β/2).

Solving Equation 51.31 yields �β = β − β′ on the basis of
which the diameter

�da = R ×�β (51.32)

is obtained.

51.5.2.3 Pixel Value Correction

Due to the quadratic dependency between the brightness and
the surface of the exposed area, we obtain the pixel value
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correction by multiplying the image pixel value by the square
of the area enlargement rate. Its value is close to 1 in the
image center. Therefore, the brightness of the central part
remains unchanged. The increase of the area enlargement rate
toward the periphery yields the brightening of this area. This
improves the uniformity of intensity throughout the entire
image (Figure 51.19).

51.5.3 Clinical Implementation

Parameters used in the correction procedure and describing
the input phosphor screen curvature, view angle, and dis-
tances from the focal spot to the object plane and to the input
phosphor screen are fixed at the time of exposure. These param-
eters make the correction procedure system independent. The
correction formula is applicable to X-ray systems with differ-
ent image intensifiers and for different view angle projection.
System calibration is not required, nor must any constant values
be determined by empirical methods.

Since the view angle is a constant for a series of images,
only one trigonometric function per pixel has to be com-
puted. In order to shorten the run time, we may apply lookup
tables. The lookup table contains the tangent function values
for Equations 51.19 and 51.25, and the inverse trigonometric
function arctangent required to obtain �β in Equations 51.29
and 51.32.

The result of subjecting an angiogram to the correction pro-
cedure is shown in Figure 51.20. Since the procedure shrank
the image radially toward the center, the size of the entire image

has changed. However, the size of objects located in the image
center remains unchanged, yet in the periphery the decrease is
noticeable (see blood vessels indicated by arrows).

51.6 Implementation of Image
Standardization Functions in
HI-PACS

51.6.1 Industrial Standard for Image Format and
Communication

Although since 1992 Digital Imaging and Communications in
Medicine (DICOM) 3.0 has become accepted worldwide, in
clinical procedures, equipment as well as databases still comply
with the ACR-NEMA 2.0 standard. Thus, in most cases an ACR-
NEMA 2.0 to DICOM 3.0 conversion is required. The DICOM
3.0 standard provides several major enhancements to the earlier
ACR-NEMA version.

Two fundamental components of DICOM, described in
detail in Chapter 50, are information object class and ser-
vice class. The information objects define the contents
of a set of images and their relationship (e.g., patients,
modalities, studies). They consist of normalized objects
including attributes inherent in the real-world entity and
composite objects that combine normalized object classes.
On the other hand, ACR-NEMA describes images obtained
from different modalities based on a composite information
concept.

(a) (b)

FIGURE 51.20 Angiograms. (a) Original image; (b) processed image shrunk toward its center to perform the blood vessel size correction and
to sharpen the edges (examples are indicated by arrows).
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The service class describes the action performed on the
objects (e.g., image storage, query, retrieval, print, etc.). These
commands are backward compatible with the earlier ACR-
NEMA version. The composite commands are generalized,
whereas the normalized commands are more specific.

For image transmission DICOM uses the existing network
communication standard based on the International Standards
Organization Open Systems Interconnection. If an imaging
device transmits an image object with a DICOM 3.0 com-
mand, the receiver has to use a DICOM 3.0 command to receive
the information. However, if a DICOM object is transmitted
with a TCP/IP communication protocol (without invoking the
DICOM communication), any device connected to the network
can receive the data with the TCP/IP protocol.

An ACR-NEMA to DICOM conversion also becomes a pre-
processing function. Usually, vendors provide the users with a
DICOM interface that generates a new file format and per-
mits the acquisition station (or workstation) to work in a
DICOM environment. Yet, if users prefer to deal with the
conversion problem by themselves, the preprocessing function
should be installed at the acquisition station or the acquisition
gateway.

51.6.2 Image Content Standardization Functions

In clinical PACS the correction procedure can be implemented
at two sites (Figure 51.21). If image standardization is per-
formed before archiving, the procedures are installed at the
acquisition gateway and performed once. A corrected image is
then archived, and with no preprocessing functions to be per-
formed, it can be sent to the user. However, if rough images
are to be archived and standardization is to be performed at

the time of an image request, the standardization procedures
are installed at the archive gateway or directly at the worksta-
tion. Preprocessing functions are then performed at any time
access to the image is requested. This may slow down the system
response time. Yet, a very important advantage of this option
is that it prevents irreversible damage to images in case there
is a failure of preprocessing functions. With standardization
performed on the acquisition gateway, if undesirable modi-
fication of the image occurs, the radiological procedure has
to be repeated. A comparison of both installations is made in
Table 51.1.

The standardization function to be implemented depends
on the modality as well as anatomy shown in the image. Not
all images have to be subjected to all preprocessing functions
discussed in this chapter, including correction of image format,
background, and orientation; search for window/level values;
optimization of brightness/contrast; and correction of image
size in order to improve the accuracy of quantitative measure-
ments. Thus, a set of functions performed on a certain image
is precisely defined for each type of image. Depending on the
application, preprocessing functions can be divided into two
categories: only modality-dependent and both modality- and
anatomy-dependent.

Clinical experience has shown that each modality presents
unique problems that need to be resolved before soft-copy
images are suitable for diagnosis. In this chapter four modalities
are considered: angiography, CR, CT, and MR.

Quantitative analysis and measurement of recorded blood
vessel diameters play an important role in angiography. This
analysis serves as a basis for other values or indexes to be derived.
This requires implementation of a technique that reduces dis-
tortions caused by mapping a flat surface onto a spherical
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FIGURE 51.21 Implementation of standardization functions in clinical PACS.
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TABLE 51.1 Comparison of standardization performed on acquisition and archive gateways

Standardization at acquisition gateway Standardization at archive gateway

Standardized images are archived
Standardization is performed once
Does not effect the response time
Irreversible image damage in case of failure

Rough images are archived
Standardization is performed many times
Slows down the system response time
In case of failure rough image is at the archive station

image-intensifier surface. Functions suppressing those distor-
tions are discussed in Section 51.5. Since no danger of image
destruction has been noticed, this function can be implemented
at the acquisition gateway.

CR images require preprocessing functions that remove
the unexposed background (Section 51.2.1), standardize the
orientation (Section 51.4), and improve the visual percep-
tion by adjusting selected anatomical regions (Section 51.3).
Background removal may not be applied in adult chest or
abdomen, yet it should be performed in hand, limb, and head
images. On the other hand, about 70% of pediatric images
show a wide unexposed background, which needs removal.
Therefore, all pediatric images are subjected to a correction
procedure. Since the methodology does not depend on the
anatomical structure within the image (only background is
subjected to the analysis), one function handles all anatomies.

While the background removal function is installed at the
acquisition gateway, a possible image damage issue needs to be
considered carefully. The procedure discussed in Section 51.2.1
has been clinically tested, and no removal of the diagnostic field
of view has been reported. Yet, the function reaches a certain
level of accuracy in a particular clinical environment and techni-
cal setup including radiological equipment, type of collimators,
sensitivity of image plates, etc. Thus, before it is installed in
another environment in an unsupervised mode, the function
should be tested carefully on a large set of clinical data.

Since about 35% to 40% of images acquired in radiol-
ogy are not in an upright position, standardization of image
orientation becomes an important issue. Requiring manual
image rotation with a selection of the rotation angle would
interrupt the medical diagnosis based on a soft-copy display,
as well as image presentation during seminars, conferences,
and teaching. Methods for orientation correction discussed in
Section 51.4 of this chapter do not destroy the image content.
They may place the image in the wrong orientation, but this fail-
ure is reversible. Thus, the function should instead be installed
at the acquisition gateway. Moreover, if rotation is required,
the entire procedure becomes time consuming. Its implemen-
tation at the archive gateway or workstation would significantly
lengthen the overall system response time. The delay depends
on the image size.

For CR as well as CT/MR images, certain LUTs are required to
enhance one anatomical region and suppress the others. Fixed
LUTs are of particular importance at viewing stations for a
preview of images during conferences and teleconferences and

while teaching. They are also used during a primary diagnosis to
enhance various grayscale regions (i.e., lungs and mediastinum
in chest images at different levels). Thus, the best place for the
implementation of those preprocessing functions is the acqui-
sition gateway. At this time, enhancement parameters are stored
in the image header. Since no penetration into the image content
is performed, no damage can be done to the image information.

51.7 Summary

In this chapter an attempt has been made to provide an overview
of main image standardization functions, their implementa-
tion in clinical PACS, applications to clinical diagnosis, as well
as image processing procedures. Integration of standardization
functions as an application package in clinical PACS adds a new
quality to the image diagnosis and image preview during sem-
inars, conferences, and teaching. It improves the visual image
perception, leading to a more accurate diagnosis, and it pro-
vides a shorter system response time. During the development
of computer-aided diagnosis systems, the use of preprocess-
ing and standardization of the image content permits efforts
to be focused on new image processing procedures that lead to
extraction of features, evaluation of their discrimination power,
and eventually pattern recognition and image classification.
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52.1 Introduction

Medical and public health informatics can be broadly defined
as the use of computer technology to support clinical or
public health practice, administration, education, and research
[1–3]. The products developed in this field, “information
resources,” involve the hardware and software that facilitates
the storage, retrieval, and optimal use of medical (or public
health) information for problem solving and decision making
[4, 5]. While the intended target audience for this book is the
imaging community, end-user informaticists engaged in the
interdisciplinary development and integration of developed
tools in this field include physicians, nurses, and health
care/public health administrators. Professional competencies
of these individuals include [6–9]:

• Serving as a liaison to physicians, administrators, and
other health care professionals in the use of current and
emerging computer technologies;

• Using and evaluating commercial software products to
manage medical or public health information;

• Creating and analyzing new and existing clinical data
resources;

• Developing and deploying new software tools to meet
the needs of a clinical or public health practice or
administration.

This chapter examines current issues and emerging trends
in the development and deployment of imaging and commu-
nication tools in medical and public health settings, from the
perspective of the informatics professionals described here. In
this context, we examine a subset of tools and summarize the
issues affecting best practices and industry standards in these
domains. Design trends in the area of usability/accessibility and
visualization, as well as scalability/extensibility, interoperability,
and security features are addressed. While usability/accessibility
generally encompasses overall ease of use of a tool for the
end user, scalability involves the ease and cost-effectiveness
of adding larger data sources or users. Visualization in this
context encompasses the system’s support for overlays from
multiple modalities and/or support for multidimensional data.
This feature depends on the system’s levels of extensibility

Copyright © 2008 by Elsevier, Inc.
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and interoperability, in terms of the seamlessness with which
customized capabilities can be added to the system to enhance
visualization or to support additional data formats that may be
exchanged during input and output. Finally, built-in security
mechanisms are relevant features to both fields, given recent
federal legislation such as the Health Insurance Portability
and Accountability Act [10], and the increasing use of these
tools in cases involving public health preparedness, emergency
management, and homeland security [11, 12].

The primary objectives of this chapter are to

1. Examine the relevance and significance of communica-
tion and imaging applications used by the informatics
communities in medicine and public health;

2. Explain the features of a subset of public domain and
commercial tools that contribute to improved patient
safety, communication, or quality of care;

3. Provide recommendations for researchers considering
porting academic research endeavors in these areas to the
marketplace.

The remainder of this chapter is organized as follows.
Sections 52.2 and 52.3 discuss current issues and emerging
trends in imaging and communication tools for the medical
and public health domains, respectively. While it is impossi-
ble to individually discuss every application currently on the
market, we have tried to sample a subset of recent open source
and proprietary tools in each domain, along with unique or
unusual examples of emerging tools addressing particular niche
problems (e.g., enterprise-wide integrations, planning for pub-
lic health preparedness, etc.). Finally, Sections 52.4 and 52.5
provide a discussion and concluding recommendations for the
imaging community.

52.2 Imaging and Communication
in Medical Informatics

Historically, the evolution of marketplace medical informatics
systems in the United States has been driven in part by
government-based initiatives and calls to action. The Institute
of Medicine (IOM) in its revised 1997 report, The Computer-
Based Patient Record: An Essential Technology for Health Care,
advocated built-in and flexible communication protocols in
emerging electronic record systems, to include protocols to
support physician to patient, physician to non-text-based
content (e.g., imaging data), and physician to physician inter-
action [13]. Predicting the emerging overlap with public health
applications that would require tracking of subgroups, the
report similarly urged built-in population management tools.
The envisioned tool suite thus included disease management
guidelines and care plans, query-based system databases, and
clinical research support [14].

Noting the tens of thousands of Americans that die each
year due to errors in their care, the IOM’s 2000 and 2001
reports, To Err Is Human: Building a Safer Health System and
Crossing the Quality Chasm: A New Health System for the 21st
Century, emphasized the need to translate knowledge into
practice [15, 16]. The emphasis in these reports was for the
health care industry to directly and significantly use informa-
tion technology to improve quality of care and administrative
and clinical processes. Health care organizations recognize that
poor decisions affecting patient safety are often the result of
missing or incomplete information, and as such, many hos-
pitals have independently explored ways to link computerized
decision-support programs to computer-based patient records
to study and address factors that impact quality of care [17, 18].
The built-in communication mechanisms within these special-
ized tools and the increasing need to support multimodal data
in the form of varied imaging sources within a patient’s histor-
ical record have led to an explosion of products with features
that change as rapidly as hardware vendors can supply new
technologies. For a good review of traditional medical image
processing and analysis software that has attempted to address
the need to support multidimensional and multimodal data,
see [19]. In this chapter, we explore a subset of applications in
the area of electronic health records and additionally examine
them in the context of enterprise-wide integrations.

An “electronic medical record” (EMR) is simply informa-
tion regarding a patient’s health status and health care, stored
electronically. Alternately, the term “electronic health record”
(EHR) is used to refer to an EMR with connections to lab
systems, radiology, picture archive communication systems
(PACS), and possibly regional health information organiza-
tions (RHIOs). Inexpensive electronic health record options
for small physician practices can be purchased for under $3000,
with additional charges for support, maintenance, and add-
on capabilities. The options available in this price range target
the workflow of small clinical practices and deemphasize fea-
tures such as expandability (e.g., scalability for a greater number
of users), granularity (e.g., security for different user roles),
and customization or cross-specialty functionality (e.g., exten-
sibility or built-in support for varied input/output formats
from different user roles). These options also target basic and
enhanced communication features (e.g., e-prescribing func-
tionality that allows physicians to directly communicate to
a patient’s pharmacy of choice) and visualization capabilities
that support multiple imaging modalities. The latter includes
support for digital X-rays, optical character recognition for
notes and lab reports, etc. [20]. Imaging capabilities in inex-
pensive systems may involve single-page JPEG files but are
increasingly allowing multiple pages. In addition, communi-
cation support includes basic reminders in inexpensive systems
to enhanced features that allow tracking physicians’ orders from
initial record to final result or features that allow pieces of
the record (including images) to be attached for different user
communications.
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In the following sections we examine the features of several
commercial and public domain EHR systems in the context
of understanding the current industry capabilities in the area
of system integration of communication protocols and imag-
ing formats. Of note is that the overall integration across the
health care industry is still in its infancy, but several hos-
pitals are making significant contributions in their bid for
“most-wired” status. The speed of progress across the field
has been fueled in part by the establishment of industry-wide
communication protocols, such as the Digital Imaging and
Communications in Medicine (DICOM) standard initiated in
the mid-1980s for communication in medical imaging (includ-
ing storing, transmitting, and printing) and the Health Level
Seven (HL7) standard for exchanging and creating interoper-
able electronic health records. While specific hospitals, some-
times with custom-designed in-house systems,have made excel-
lent strides in integration, the industry as a whole is approaching
newer levels of integration due to the proliferation of vendors
developing products to address these evolving standards.

52.2.1 Open Source Product: VistA

Released in October 2005, the open source and free VistA out-
patient electronic health record and health information system
was developed by the U.S. Department of Veterans Affairs [21].
It is currently used at institutions in the United States, Mexico,
Nigeria, Finland, Germany, and Egypt, with an expanding usage
base. WorldVistA, a nonprofit corporation in the United States,
serves as the worldwide advocate for the collaborative improve-
ment of the VistA system. Notable features of the system cited
in the VistA Monograph 2005–2006 include the following [22]:

• Communication features include built-in comprehensive
clinical reminders.

• Sophisticated imaging features include multimodal image
display options from specialties including cardiology, pul-
monary and gastrointestinal medicine, pathology, radiol-
ogy, hematology, and nuclear medicine (allowing simul-
taneous viewing of electrocardiogram, endoscopy, chest
X-ray, and MRI images).

• It processes textual reports from the hospital informa-
tion system, including scanned documents and images
acquired from digital cameras.

• Imaging quality using diagnostic display software (called
VISTARad) allows filmless interpretation of radiology
studies, with a full range of image display and mani-
pulation features for radiology (and nuclear medicine
images).

• Electronic patient records support complete studies from
DICOM-compliant modalities (CT, MRI, digital X-ray,
ultrasound, etc).

• Specialized display tools are provided for CT, MRI, and
angiography exams, including cine viewing, series linking,
and series synchronization.

• Multiple exams can be displayed concurrently, allowing
for comparisons with prior studies.

• Additional DICOM-compliant support for ophthalmol-
ogy, dental, endoscopy, pathology, cardiology, and other
specialties is under development.

52.2.2 Commercial Products

As stated previously, the adoption and widespread use of
DICOM and HL7 standards have fueled the development of
a myriad of electronic health record systems for small- and
large-scale practices. A complete review of these systems is
beyond the scope of this chapter, but various vendors pro-
vide ratings at their sites, derived from electronically published
surveys by various health informatics-related organizations. As

a sampling, SOAPware® is an inexpensive electronic health
record designed for small practices [23]. This system is imple-
mented in Microsoft Access and SQL, with a remote hosting
option available. Interoperability features in the communica-
tion domain include integration with voice recognition systems
and automatic charting of vital sign data. Add-on imaging func-
tionality includes optical character recognition for document
management, customized graphing, and additional document
management for patient data in the form of text, video, audio,
and PDF.

Alternately, vendors such as Allscripts™ are building elec-
tronic health record systems for both small- to mid-sized
practices with fewer than 25 physicians to large medical groups
[24]. In addition, this vendor is a leader in physician com-
munication tool development with its Allscripts™ eRx NOW
product, a separate electronic prescribing program that is web-
based and accessible by computers, handheld devices, and cell
phones. The program includes automatic population of Drug
Enforcement Agency prescription history for the provider, real-
time notification of insurance formulary status, and real-time
connectivity with pharmacies for orders and refills. Finally,
more imaging-based capabilities are expected to evolve from
vendors such as General Electric Medical Systems, with its

Centricity® Physician Office EMR in its efforts to build a more
full-featured (and therefore expensive) electronic health record
system [25]. This vendor (and others in this category) bene-
fit from multiyear histories of developing DICOM-compliant
imaging-based solutions and PACS for various specialties
including digital mammography, cardiology, and molecular
imaging.

52.2.3 Enterprise-wide Integrations

The integration of the DICOM standards by both PACS
and EHR vendors is continuing to break down the propri-
etary barriers that previously hindered the deployment of
image-enabled EHR systems [26]. In addition, web-based dis-
tribution of PACS-based data is creating new opportunities for
such enhanced systems. For example, Johns Hopkins Hospital,
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Baltimore, was successful in 2004 in deploying an image-
enabled EHR prior to full PACS implementation [27]. The
hospital’s EHR system is entirely home-grown and supports
images derived from ultrasound, general radiology, MRI and
CT, as well as nuclear medicine. In addition, its system deploys
all full-resolution images at the request of clinicians concerned
over lossy compression. Indiana Heart Hospital, opened in
2002, is another notable player in this arena as the world’s
first all-digital hospital, completing all charting, order entry,
monitoring, and documentation electronically since opening
day [28].

52.3 Imaging and Communication
in Public Health Informatics

As one can see in Figure 52.1, while medical practitioners help
to diagnose and treat diseases, public health officials are tasked
with mapping out and assessing the distribution of diseases, as
well as biological or environmental risk factors. In the domain
of public health informatics, increasing attention has been paid
to integration issues as syndromic surveillance has become a
permanent part of homeland security planning. While surveil-
lance has traditionally been associated with detecting changes
or trends in population health by analyzing nontraditional data,
syndromic surveillance refers to the collection and analysis of
any data (not necessarily just syndrome-related data) that may
indicate a potential event of public health concern has occurred
[29, 30]. Events include early warning signs of any biologic
terrorism, as well as possible resurgence of virulent forms of
infectious diseases [30, 31].

For a summary of vendors developing applications utiliz-
ing surveillance of electronic health record data with other
disease-related data sources to support public health plan-
ning and intervention in this area, see [32]. One of the early
players in this area was the Electronic Surveillance System
for the Early Notification of Community Based Epidemics
(ESSENCE) system, launched in 1999 by the Walter Reed Army
Institute of Research, with support from the Department of
Defense’s Global Emerging Infections [33]. ESSENCE works
by capturing data on military ambulatory visits and prescrip-
tion medications and merging them with civilian emergency
department data, along with additional data sources such as
school-absenteeism, prescription and nonprescription medica-
tion sales, health department requests for influenza testing, etc.
Comparing generated graphs to calibrated historical data deter-
mines the relevance of alerts issued to health care professionals
for further investigation. Applications of this system include the
Montgomery County (Maryland) Department of Health and
Human Services for its use in county hospital accreditation.
This use encompassed characteristics such as using ESSENCE
to respond to mass casualties resulting from terrorism, iden-
tifying foodborne outbreaks, providing general knowledge of
the county’s health status, and other uses such as managing an
influenza-vaccination program [30].

Software solutions that contain features to support synd-
romic surveillance as a utility for detecting outbreaks associ-
ated with bioterrorism (e.g., abilities to capture, store, analyze,
and archive health-indicator data to identify abnormal health
conditions) are consequently in high demand across the nation.
Additionally, the U.S. government remains an active player in
seeking additional and standardized solutions. For example, the
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Year 3

PUBLIC HEALTH

FIGURE 52.1 While images in electronic health records are used in medicine to diagnose
and treat diseases, GIS-based images are used by public health officials tasked with map-
ping out and assessing the distribution of diseases as well as biological or environmental
risk factors.
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U.S. Centers for Disease Control and Prevention (CDC) inves-
tigated communication and data standardization issues in its
1988 report, “Guidelines for Evaluating Surveillance Systems”
[34]. In its “Updated Guidelines for Evaluating Public Health
Surveillance Systems” in 2001 [35], top priorities included eval-
uation criteria in the areas of interoperability and scalability.
This report emphasized the need for the establishment of data
standards to ensure integration of surveillance and health infor-
mation systems, ease of electronic exchange of health data, and
increased ability to incorporate emerging public health threats
(e.g., new diseases).

In 2003, the CDC commissioned a 3-year evaluation study
on best practices and industry standards in web-based data
dissemination systems [36]. It is not surprising to note that
themes of interoperability, scalability, usability, and accessibil-
ity are emphasized as primary considerations. In the public
health domain, interoperability issues include ability to inte-
grate with other public domain or commercially available
graphical information systems and statistical packages. In addi-
tion, this domain is rich with existing (and varied) datasets from
other government (e.g., Medicaid) and non-government-based
sources (e.g., hospitalization data), so interoperability priorities
also encompass support for similarly rich capabilities for dataset
importing [7]. Scalability concerns address the ability of the sys-
tems to handle new program-specific or disease-registry driven
sources. As is the case in medical informatics-based applica-
tions, queries based on International Classification of Diseases
(ICD) codes are also emphasized in public health toolsets.

Like the field of medical informatics, tool design and develop-
ment in public health informatics advances at the rate governed
by the adoption and widespread use of data standards, including
the Open Database Connectivity (ODBC) standard, an appli-
cation programming interface (API) standard for accessing
databases, and Open Geospatial Consortium’s (OGC) stan-
dards for developing interoperable geospatial technologies and
tools. In the following sections we examine visualization and
communication applications employed in public health, with
an emphasis on those employing basic to advanced imag-
ing capabilities and supporting ODBC and OGC compliancy.
We additionally examine several case studies providing a win-
dow into current application venues of both national and
international concern.

52.3.1 GIS in Public Health Syndromic
Surveillance and Applied Spatial
Epidemiology

Visualization in the public health arena has evolved under
the domain of “geographic information systems” (GIS). As
defined by the World Health Organization, a geographic infor-
mation system is “a computer-aided database management and
mapping technology that organizes and stores large amounts
of multi-purpose information” [37]. We can trace GIS-based

problem solving to the days of John Snow in his mapping of
the cholera cases in London in the mid-1800s [38]. Snow used
the map of the Soho neighborhood of London to plot all the
cases of cholera relative to the household’s source of water,
as shown in Figure 52.2. Current uses of automated public
health surveillance systems for the early detection of naturally or
bioterrorism-related outbreaks aim to reduce the time between
when an outbreak starts and when it is detected, to allow addi-
tional time for investigation and intervention for disease control
[39]. While the uses of GIS in public health and medicine are
endless, they fall within these general areas [7, 37, 38]:

• Determining the geographic distribution of diseases;
• Analyzing data for spatial and temporal trends;
• Mapping populations at risk;
• Stratifying risk factors;
• Assessing resource allocation;
• Planning and targeting interventions;
• Monitoring diseases and interventions over time.

As noted by Maguire et al. [40], the multitude of software
types on the market for GIS, spatial analysis, and model-
ing is driven by the served interest groups of these toolsets
(in their case, advanced researchers, professional analysts, and
end users). In the following sections we examine the three
most commonly used toolsets in public health and evaluate
the effectiveness of communication and imaging capabilities
in the context of features that support usability/accessibility,
enhanced visualization, scalability, extensibility, interopera-
bility, and security.

52.3.1.1 Public Domain Software: Epi Info™

Vendor Information Visit http://www.cdc.gov/epiinfo for
additional information on pricing, versions, and add-on pack-
ages [41].

Minimum Requirements Epi Info™ has the following hard-
ware and software system requirements:

• Hardware: 200 MHz processor for non-XP machines; 300
MHz processor for Windows XP; 32 MBytes RAM for
Windows 98 or ME; 64 MBytes RAM for Windows NT
4.0, 2000, or XP; 260 MBytes disk space for install; 130
MBytes disk space for post-install.

• Software: Windows 98, ME, NT 4.0, 2000, or XP.

Overview and Notable Feature(s) Epi Info™ is a public
domain software package developed by the CDC for public
health practitioners and researchers and is available for free
download [41]. In 2000, the program was enhanced with a map-
ping program called Epi Map. The software supports database
construction and analysis with epidemiologic statistics, maps,
and graphs. This toolset addresses usability/accessibility issues
with simplified commands for programming options. The
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JOHN SNOW'S MAP OF CHOLERA IN SOHO

FIGURE 52.2 Map based on CDC’s Epi Info data. Source: Mbizo, based on the CDC’s Epi Map 2000 program settings.

manuals and programs have been translated into 13 languages,
and according to the website listed at the beginning of this
section, in 2003, there were one million downloads of this
software from over 180 countries. Visualization capabilities
include the Epi Map feature that allows the creation of GIS
maps, and the software additionally supports overlaying survey
data on GIS maps.

In terms of scalability and extensibility, Epi Info™ supports
Microsoft Access and other SQL and ODBC databases, as well
as Visual Basic. It allows customized forms for questionnaires
or data entry and also allows customized modules to be con-
nected. Interoperability includes the Epi Report feature that
combines analysis data with data in Microsoft Access or SQL, as

well as other file types. In addition, Epi Map is also ArcView®-
compatible (i.e., with software described in Section 52.3.1.3).
Security features include Epi Lock, which implements password
protection, encrypting, and compression of Epi-Info™ data.
Specifically, notable features of Version 3.3.2 of Epi-Info™ that
relate to imaging and communication in public health include:

• Support maximum compatibility with industry stan-
dards, including Microsoft Access and other SQL and

ODBC databases;Visual Basic,Version 6; World Wide Web
browsers and HTML.

• Support extensibility, allowing organizations outside
CDC to produce and integrate additional modules.

• Designed with Epi Map as an ArcView®-compatible
GIS.

• Interoperable with NutStat, a nutrition anthropometry
program that calculates percentiles and z-scores using
either the 2000 CDC or the 1978 CDC/WHO growth
reference.

• Support logistic regression and Kaplan-Meier survival
analysis. Additionally, Data Compare feature does double
data entry comparison.

• Support password protection, encryption, and compres-
sion of Epi-Info, Version 3.3.2 data.

52.3.1.2 Commercial Product: Maptitude®

Vendor Information Visit http://www.caliper.com for addi-
tional information on pricing and current version status [42].
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Minimum Requirements Maptitude® has the following hard-
ware and software system requirements:

• Hardware: DVD-ROM, 32 MBytes RAM, 161 MBytes disk
space for program files; 2.0 GBytes disk space for basic
geographic data; 3.0 GBytes to install all geographic data
(instead of accessing data from the DVD).

• Software: Windows 2000 or XP.

Overview and Notable Feature(s) Maptitude® is a geographic
information system created for the Windows environment that
is also useful for mapping solutions for public health. In health

services research, Maptitude® is especially suited to addressing
visualization techniques to promote understanding of distribu-
tions of resources, such as health professional shortage areas

or medically underserved populations or areas. Maptitude®,
like many GIS software packages, has the capability to overlay
maps with multiple layers to assist in the visual understanding
of barriers communities face in accessing needed health care
resources. For example, data layers showing such barriers as
highways, railroads, and travel time from residences to the point
of care can be enabled. Additional notable features of Version
4.8 of Maptitude®that relate to imaging and communication in
public health include:

• Support map data from dBASE files and text files directly
or data from any ODBC-compliant data source (e.g.,
Access, Btrieve, DB2, INFORMIX, INGRES, Interbase,
NetWare, SQLBase, SQL Server, Sybase, etc.).

• Support import of geographic data from other desk-
top mapping, GIS, and CAD packages (e.g., ARC/INFO,
Defense Mapping VPF & ITD, Intergraph DGN, ArcView,
Digital Line Graph, MapInfo MIF/MID, Atlas GIS, ETAK
MapBase, Ordnance Survey NTF, AutoCAD DXF, Excel,
and TIGER/Line).

• Integrate a built-in interface to global positioning sys-
tem (GPS) devices, allowing tracking and recording of
location information.

• Bands/areas of influence features: Allows creation of
bands or areas of influence around map features for func-
tions such as determining accessibility to facilities and
estimating areas that are under- or overserved.

• Surface analysis feature: Allows analysis and display of
surfaces in 2D or 3D. Creation of contour maps of eleva-
tions provides viewshed information that can be used for
evacuation-specific planning, such as developing alternate
protocols for weak service areas around a transmission
tower. This feature also allows creation of surfaces that
represent measures of air pollution or other chemical
agents.

• Density grids feature: Allows visualization of point data
by transforming the points into a regular grid that can
be weighted. For example, this feature could be used for

analysis of the pattern of victims around a hazardous site
by weighting victim data with a measure for severity of
symptoms.

• Adjacency Tools feature: Allows identification of the
neighbors of an area of interest and creation of bands of
adjacent neighbors. This feature can be used for planning
evacuations or tracking disease outbreaks.

52.3.1.3 Commercial Product: ArcView® GIS

Vendor Information Visit http://www.esri.com for additional
information on pricing and version options [43].

Minimum Requirements Minimum hardware and software

system requirements for ArcView® GIS are based on the product
version and platform configuration the user has installed on his
or her system, as follows:

• Hardware: 1 GHz processor; PC-Intel (ArcView®)/Intel
Pentium or Intel Xeon Processors (ArcEditor)/Intel Pen-
tium or Intel Xeon Processors (ArcInfo); 512 MBytes
RAM (1 GByte recommended for ArcEditor and
ArcInfo);

• Software: Windows 2000, XP, and NT 4; Microsoft
Internet Explorer Version 6.0 or higher (for ArcEditor and
ArcInfo)

Overview and Notable Feature(s) ArcView® GIS is a com-
mercially available software application package for desktop
mapping and GIS-based data integration and analysis devel-
oped by the Economic and Social Research Institute (ESRI).
Visualization is implemented with web-integration features that
allow information to be overlaid. Scalability and extensibility-
based features allow importing of personal geodatabases stored
in Microsoft Access, as well as live web-server-based data
sources. These visualization techniques provide display of live
map feeds, which can then be used to enable other features,
(e.g., map routing).

Interoperability issues have been addressed extensively by

this software. ArcView® GIS supports integration with various
enterprise databases, including SQL Server, Informix, Oracle,
Oracle Spatial, and DB2. The system allows interfacing with

servers supporting OpenGIS® specifications, such as web
map service (WMS), web feature service (WFS), and geogra-
phy markup language (GML) standards. Additionally, ArcWeb
Services allows interfacing to subscription-based services that
can be accessed on demand (e.g., overlaying current meteoro-
logical data). Security-based functionality includes coding of
restrictions and logging for users with assigned privileges and
roles. Specific notable features of the software products that

comprise ArcView® GIS to create, edit, import, map, query,
analyze, and publish geographic information include [43]:



902 Handbook of Medical Image Processing and Analysis

• ArcInfo: Provides tools for data integration and man-
agement, visualization, spatial modeling and analysis,
and high-end cartography. Supports single-user and
multiuser editing and automates complex workflows.
Supports spatial analysis for geographic relationships and
tools for publication-quality maps.

• ArcEditor: Provides advanced editing, data validation, and
workflow management tools to maintain data integrity.
Supports sophisticated spatial analysis and simultaneous
multiuser data access.

• Arcview: Allows users to visualize, explore, and analyze
geographic data, revealing underlying patterns, relation-
ships, and trends with tools to create maps, manage data,
and perform spatial analysis.

• ArcReader: Integrated as a free viewer for maps authored
using the other ArcGIS Desktop products with support
to explore, query, view, and print all maps and data types
created using ESRI software.

• ArcGIS Desktop Extensions: Allows users to perform tasks
such as raster geoprocessing, three-dimensional visualiza-
tion, and geostatistical analysis.

52.3.2 Current Challenges in Public Health
Informatics: Case Studies

In the areas of infectious or communicable diseases, GIS is
critical in several ways, such as mapping out the scope of the
disease, identifying clusters of diseases, and ecological analysis.
However, even with the software packages discussed previously,
there remains a need for better interoperability and visualiza-
tion solutions for effective communication between existing
tools. Targeted prevention programs would also benefit from
the application of traditional pattern recognition techniques to
public health data on vectors and the environment to provide
additional means for discerning patterns linking risks to human
populations. In the next sections we examine several case stud-
ies to consider the limitations of current approaches and the
need for new directions. This will help to set the stage for how
computer scientists,health care organizations,and public health
officials can work together to address problems with regional
and global public health impacts.

52.3.2.1 Extensively Drug Resistant Tuberculosis
(XDR-TB) and AIDS/HIV

Tuberculosis continues to plague communities throughout the
world. During the 1990s, multidrug-resistant (MDR) tubercu-
losis (TB), defined as resistant to at least isoniazid and rifampin
(first-line antituberculous medications), emerged as a threat to
TB control, both in the United States and worldwide [44]. In
the spring of 2005, a study conducted at a rural hospital in
KwaZulu-Natal, a province of South Africa, revealed the pres-
ence not only of multidrug-resistant (MDR) tuberculosis, but

also what came to be called extensively drug-resistant (XDR)
tuberculosis [45, 46]. Cases of extensively drug-resistant tuber-
culosis have since been reported in the United States, given the
increased population migration from developing nations to the
United States, coupled with efficient air travel.

Prevention of tuberculosis is insufficient and impossible once
drug-resistant tuberculosis strains have spread [45]. As a result,
vigilant surveillance systems such as ESSENCE and the World
Health Organization’s Global Outbreak Alert and Response
Network (GOARN) are part of the solution. The Global
Outbreak Alert and Response Network is one global network
of more than 130 partners working together to address public
health problems by integrating data from multiple jurisdictions
and responding in a coordinated manner [47]. GOARN has also
pushed for standards to international epidemic response and
operational protocols to standardize epidemiological, labora-
tory, clinical management, research, logistics support, security,
evacuation, and communications systems. However, more work
is needed to spatially link all confirmed cases of XDR-TB
within a global monitoring system so public health officials can
monitor the movement of cases and create surveillance buffers.

When public health planning for XDR-TB in the United
States is considered, ESSENCE integrated with geographic
information system applications such as those described pre-
viously can provide the information needed to track cases and
their contacts while monitoring secondary cases and imple-
menting control measures. However, to be effective, the surveil-
lance has to be linked to rapidly changing drug-susceptibility
data to ensure a quick diagnosis, adequate treatment, and dis-
ruption of the transmission of the disease [45]. Further, because
drug-resistant TB has higher rates of treatment failure and
longer periods of infectiousness in part due to the time lapse
between TB diagnosis and obtaining drug-sensitivity test results
[48], surveillance and visualization tools to monitor the quaran-
tine status of cases are also needed. In a pilot study, Dwolatzky
et al. [49] investigated the feasibility of using a global posi-
tioning system (GPS) receiver linked to handheld computing
technology (such as personal digital assistants or PDAs) to
enhance the tracing of patients within a TB control program.
Global positioning technology has also been investigated with
cell phones used to facilitate the tracking of HIV/AIDS patients
in underserved populations for emergency alerts, as a means
to send text message reminders regarding medications and to
track drug stock levels [50].

52.3.2.2 Malaria and Lyme Disease

Malaria is a mosquito-borne disease of global concern with 1.5
to 2.7 million people dying each year and many more suffering
from it [51]. According to the World Health Organization [52],
of those who contract malaria, over 80% of the deaths annually
will occur in Africa. Malaria has become the leading cause
of death in Africa and will remain so for sometime. In the
United States, malaria is a reportable disease to local and state
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health departments and the Centers for Disease Control and
Prevention through the National Malaria Surveillance System
(NMSS).

Lyme disease, caused by the tick-borne spirochete Borrelia
burgdorferi, is the most common vectorborne disease in the
United States [53–55]. According to the CDC, in 2002, the num-
ber of reported cases of Lyme disease increased 40% to 23,763
cases, yielding a national incidence of 8.2 cases per 100,000 [56].
Surveillance for Lyme disease started in the early 1980s, and by
1991 it was designated as a nationally reportable disease by the
Council of State and Territorial epidemiologists [54].

The key to addressing these and other vectorborne diseases is
real-time visualization techniques using both GIS and remote
sensing technologies [53, 57]. For example, in a number of
studies in Africa, GIS has been used to generate models of
malaria occurrence [58] and to map out vector habitats [59, 60].
Effective surveillance of Lyme disease has similarly involved an
understanding of the need to include spatial analysis and visu-
alization of suitable habitats [53, 55]. With this disease, GIS
provides an effective tool for mapping out habitats and other
climatic conditions such as humidity and temperatures where
the vector reproduces. For example, Kitron and Mannelli [61]
used a geographic information system to map distributions of
human Lyme disease cases, ticks, and degree of vegetation cover
in Wisconsin to help focus public health prevention efforts on
those identified areas that provide a suitable environment and
conditions for the vector. Guerra et al. [62] used a geographic
information system to study the distribution of I. scapularis
in the upper Midwest based on data from Wisconsin, northern
Illinois, and the Upper Peninsula of Michigan. This analysis was
then used to explain the environmental factors that facilitate or
inhibit the establishment of I. scapularis.

These two case studies in particular demonstrate the vast
capabilities of geographic information applications, spatial
analysis tools, and remote sensing technologies in the study,
prevention, and control of vectorborne diseases. The ability to
create buffer zones and map out areas where the vector prop-
agates allows public health professionals to destroy the habitat
for the vector, thereby breaking the life cycle of the vector and
reducing the risk of contact with humans.

52.3.2.3 Cancer

Finally, cancer is one disease that is also well suited for spatial
analysis, well-designed visualization tools, and new innovations
in image-based analysis. Cancer is the second leading cause of
death in the United States, affecting over half a million peo-
ple annually, second only to heart diseases. Cancer rates also
vary by state and region of the country. For example, for several
decades, compared to other parts of the country, higher breast
cancer rates were observed in the northeastern United States
[55]. Increasingly, place has become an important factor in can-
cer studies because of geographic differences in environmental

exposures, cultural attitudes towards risky behaviors and pre-
ventive health care, local public health policies, availability of
services by socioeconomic level, and means by which residents
obtain health information [63].

The National Institutes of Health recognized the impact
imaging and GIS will play in this field in the establishment
of its core group of scientists working on GIS [64]. The specific
aims of this group’s mandate are to deploy GIS technologies in
order to:

• Identify and display the geographic patterns of cancer
incidence and mortality rates in the United States and
their change over time;

• Create complex databases for the study of cancer screen-
ing, diagnosis, and survival at the community level;

• Conduct environmental exposure assessment through
satellite imagery;

• Generate spatial statistical models for estimating cancer
incidence, prevalence, and survival for every U.S. state;

• Communicate local cancer information to the public and
public health professionals through interactive web-based
tools;

• Identify health disparities at the local level through the
comparison of cancer outcomes across demographic
subgroups; and

• Develop new methods of displaying geospatial data for
clear communication to the public and for examination
of complex multivariate data by researchers.

Using new interoperable GIS systems and image-based tools
to integrate data from multiple sources, researchers and prac-
titioners will be able to map areas with the highest prevalence
of risk factors for the disease and then tailor prevention, early
screening efforts, and even specialized drug or treatment clinical
trials to the identified areas.

52.3.3 Enterprise-wide Integrations

In an effort to deliver geospatial information and functional-
ity throughout an enterprise, organizations are also choosing
to extend their traditional desktop GIS implementations with
innovative server-based GIS solutions that provide content and
capabilities via web services. There are a number of advantages
to these approaches, including [55]:

• Lower cost of software ownership and increased return
on investments through single, focused GIS applications
(such as web applications) that scale to support many
users;

• Integration of GIS functionality with other enterprise
systems in an effort to better manage resources and assets;

• Enhanced workflows with geospatial capabilities to offer
greater insights into information, increased efficiency, and
improved accuracy;



904 Handbook of Medical Image Processing and Analysis

• Creation and deployment of centrally managed GIS appli-
cations and services to support cross-departmental and
enterprise requirements.

The ability to provide data over the Internet, however, poses
some challenges. The challenges posed by GIS technology range
from data availability and completeness (i.e., data quality), to
the availability of a trained workforce [55]. When data com-
pleteness cannot be guaranteed, it raises questions about the
validity and reliability of the results of GIS analysis, further
stressing the need for the national data standards mentioned
previously.

52.4 Discussion

The Office of the National Coordinator for Health Infor-
mation Technology’s 2004 vision for consumer-centric and
information-rich care is becoming a reality [65]. This is demon-
strated by the different types of informatics-based systems in
use in medical and public health domains currently, and by
the suite of web-based, patient-accessible portals to electronic
medical information currently on the market, or proposed
to have a marketplace presence this decade. As indicated in
the IOM report from 1997, interdisciplinary teams in both
medicine and public health must continue to recognize that
patient electronic records will continue to evolve in resources
outside direct patient care, in areas such as studying “the effec-
tiveness and efficiency of clinical processes, procedures, and
technologies” [13]. While quality-based assessments and con-
cerns for patient safety are part of the driving forces behind
these changes, the implied long-term implications for savings
in administrative, labor, and pharmacy costs are simply too
great for health care organizations or government agencies to
ignore [66].

Data standards are continuing to evolve and will continue
to drive the evolution of products. The demand for EHRs, like
GIS systems, to increasingly communicate in real time to live
(and varied) information resource sites will continue to rise,
including interoperability with voice-input, voice-recognition
systems, text-processing and image-processing systems. In the
public health domain, visualization encompassing dynamic
modeling of multidimensional data will continue to improve
[40] and may lead to innovation in mainstream EHR systems to
incorporate visualization capabilities for more complex patient
historical data (e.g., visualization of time sequences of stored
data, such as digital mammograms).

52.5 Conclusion and Future Trends

The broader impacts of this chapter include a call to action
for the imaging community to consider additional avenues
for technology transfer to the fields of medicine and public
health. We should expect to see additional real-time linking

capabilities in both EHR- and GIS-based systems, and our
academic data should be readily available at our host sites,
using accepted data standards (e.g., standards described by
HL7, DICOM, OBDC, OGC, etc.), when such data can be used
to significantly impact patient safety, patient communication,
or overall quality of care of individuals or populations. The
Internet-availability of data from our research is indispensable
to other scientists and administrators charged with developing
patient-centric solutions and cost-effective management strate-
gies. Even when organizations are slow to adopt these systems,
patients will increasingly seek out data portals for their own
personal recordkeeping.

In 2004, the Public Health Data Standards Consortium sim-
ilarly issued a call to action for the public health community to
become more broadly involved in “(1) …the national effort to
standardize clinical and public health data and systems and
(2) to describe public health perspectives on the EHR.” As
the health care industry becomes more patient-centric, EHR
systems will continue to integrate more point-of-care-based
services to improve patient communication and realize greater
time (and therefore cost) savings [17].

In addition, as GIS-based decision making expands into
additional applications in medicine and public health related
to homeland security, visualization of data uncertainty will
become an expected component of these systems [40]. The
imaging community should respond accordingly and similarly
set high standards for accurately providing data in standard
formats, with related details regarding any measurement uncer-
tainty. Researchers in academia need also to consider a richer
vision of data accessibility, with considerations for how data
might be incorporated into portals utilized by patients who are
handicapped or seriously ill [68, 69].

Just as importantly, we need to consider the development
and integration of academic research into mobile and wire-
less solutions in the domains of medicine and public health,
as studies have shown that mobile computing technologies can
increase use of clinical practice guidelines and decision support
tools [70]. GIS technology has long been valued for enhanc-
ing communication and collaboration in decision making. The
case studies examined in public health in this chapter thus
underscore the practical applications and opportunity for spa-
tial analysis, visualization, and mobile solutions to be part of
systems designed for integration of data from different sources
[71]. Databases are often effective for understanding biological
risk factors, but visualization tools and imaging are invaluable
for deriving insight into the role of environmental factors in
disease causation. Since John Snow generated his map of the
cholera cases in the London outbreak of the mid-1800s, spa-
tial display or analysis of disease distribution has been a key
feature of public health research and will continue to evolve in
this manner. This is particularly relevant now, given continued
emerging threats such as multiple drug resistant tuberculosis,
and ongoing diseases of great public health concern such as
AIDS/HIV, malaria, Lyme disease, and cancer.
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Finally, remote web-based access to a host picture archive
communication system (PACS) has been implemented in many
specialties, most notably radiology [72]. With the implemen-
tation of successful security protocols, the convenience of data
warehousing associated with EHR systems (especially those that
are available with application service provider hosting) will
also allow clinical researchers to increasingly use web portals to
conduct collaborative clinical research from diffuse geographic
locations [73]. This should additionally drive new innovations
in all fields that benefit from medical imaging.
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53.1 Introduction

Digital Medical Image Libraries (DMIL) [11, 14], containing
large volumes of biopsy-proven mammograms, have been built
at most teaching hospitals and are becoming available on the
Internet. The main purpose of these data is to present both
cancerous and benign cases, of typical mammogram data, for
teaching and research purposes. While these data are currently
not a significant resource to the clinical practitioner, they are, in
principle, able to impact clinical practice if they can be rapidly
reorganized in an order that is relevant to an active or current
case. When these data are made available on the Internet, clini-
cians’ access to these medical images is simplified. However, the
reorganization of the data around an active case still poses a
significant challenge. In addition, the most relevant cases may
not be stored at the local teaching hospital but may, in fact, be
in any DMIL across the country or the globe. The utility of such
a system is directly related to its ability in finding relevant cases,
and thus, the retrieval strategy plays a key role in the success as
well as the complexity of specifying such a system.

What is needed is a technology that can sort through these
distributed data quickly and efficiently to identify cases that
may be relevant to an active case and present this significantly
smaller dataset to the attending physician. A new paradigm in

distributed computing that may be useful in the deployment of
an effective digital mammogram retrieval system is known as
mobile agent technology.

Mobile agents [4, 5, 7, 12, 13] are self-contained software
programs that can move within a computer network perform-
ing tasks on behalf of the user. Their major strength is that
they permit program execution near or at a distributed data
source by moving to each site in order to perform an analysis.
In addition, mobile agent systems typically have (1) reduced
network traffic, (2) load balancing, (3) fault tolerance, and (4)
asynchronous interaction. Agents can function independently
of each other as well as cooperate to solve problems.

The use of mobile agents for the development of the image
retrieval system brings specific benefits and difficulties. For
example, mobile agents can move to sites with better data
and faster computers. They can replicate themselves and use
the inherent power of parallelism to improve productivity.
Possibly their most significant attribute may be their flexibil-
ity to adapt to their environment and conditions. The mobile
agent paradigm also introduces a high level of decentraliza-
tion, autonomy, reliability, and cooperation to network-based
application. On the other hand, specific difficulties with the
mobile agent paradigm include issues of security, complexity,
and control.

Copyright © 2008 by Elsevier, Inc.
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The remainder of this chapter is organized as follows:
Section 53.2 describes the related works. In Section 53.3, a
distributed mobile agent mammogram image retrieval system
is proposed. The retrieval strategies adopted in the proposed
image retrieval system are then described in Section 53.4.
Section 53.5 presents the simulation experiments in detail.
Section 53.6 gives the discussion, and the conclusions are drawn
in Section 53.7.

53.2 Related Works

Although most search engines use text as the fundamental
searching unit, some content-based image retrieval systems
have been built. For example, the search system called Chariot
[10] follows the approach of World Wide Web–based search
engines by maintaining only the metadata in a central database.
Various specialized components, including feature extraction,
indices, and image servers, are coordinated by a middleware
component that employs transactional process management
to enforce consistency between the metadata and all compo-
nents. Chariot uses server plug-ins to maintain the autonomy
of data providers. Moreover, Chariot incorporates mechanisms
to provide predictable response times for image delivery over
the Internet by employing network-aware image servers. These
servers trade off the quality of the images to be delivered with
the bandwidth required for transmitting the images. Chariot,
thus, integrates the distributed data sources, extensibility, and
provider autonomy. However, the Chariot architecture is based
on the traditional client/server model and relies on a central
meta-database of pre-extracted features.

The content-based image retrieval architecture [1] uses
mobile agents to essentially encapsulate pattern recognition
algorithms and access data sources through a Repository
Manager that is responsible for providing a uniform interface.
However, the division of responsibility between components
reflects a tight connection between mobile agents and services.
The Repository Managers are presented with only a ranked
list of mobile agents that are capable of satisfying a particu-
lar query and independently selecting other mobile agents to
execute based on their local concern. If coordination among
mobile agents on different sites were needed, this would require
all mobile agents with a particular image processing capability
to be able to interoperate. Also, mobile agents are not explic-
itly environment-sensing and, instead, rely on the Repository
Managers to schedule them according to their local concern. In
short, although the mobile agents provide the mobility nec-
essary to move processing to the data sources, they appear
essentially passive.

The TACOMA Image Server [3] provides another example
of mobile agent architecture for content-based image retrieval.
Again, mobile agents are used to encapsulate queries on the
dataset, but, as with the previous architecture [1], the mobile
agents are essentially passive and do not dynamically adjust

their query strategies. However, research with the TACOMA
Image Server showed that a mobile agent-based approach was
superior to a client/server approach for large data sizes. This
encourages us to conduct further research of distributed image
retrieval using mobile agent technology.

53.3 Methods

Structures and features of clinical significance in mammogram
images may be represented by several established parameters
[6, 8]. When these established parameters are used, an agent-
based image retrieval system for DMILs available on the Internet
can be developed. We generalized the image retrieval process as
follows: any case in the DMIL will occupy a unique position
in the parametric representation space. In this space, similar
cases will be located closer to each other than unrelated cases.
By retrieving cases from the DMIL, we want to return results
that exemplify the character of masses in mammogram images
with parametric values similar to and different from the active
case. This provides the attending clinician with a spectrum of
cases to consider as context when evaluating the current case.

The focus of this study is not to find the parameters to
classify masses; these have been or are being established by
researchers involved in computer-aided analysis and diagno-
sis of mammograms [6, 8]. Instead, our focus is on the efficient
implementation of a dynamic processing and search system
for DMILs in which any parametric image representation algo-
rithm may be applied. Figure 53.1 shows a diagrammatic
representation of the test system. In the figure, “MA” is the
abbreviation of “Mobile Agent.” The architecture, as the work-
ing sequence, can be described in four stages. The first stage
occurs at the local host, such as at a physician’s office, and
includes local image analysis, assembly,and the agent launching.
The second stage happens at the MA server, which functions as
a coordination center to locate the resources through the repre-
sented image characters and metadata. The third stage happens
at different DMILs with processing servers and may include
preprocessing and detailed-processing of the images to get the
content features and evaluation. The final stage is to deliver,
present, and review the results.

An application scenario of such an agent-based image
retrieval system for an active mammogram case may proceed
in a series of stages. First, a physician obtains an active patient’s
mammogram. The physician uses an image-processing algo-
rithm, downloaded from a search coordination center such as
the MA Server, as shown in Figure 53.1, and locally analyzes the
active mammogram. The image-processing algorithm extracts
relevant features from the image that describe and characterize
masses in the mammogram. Measures of the object features in
the image are recorded. The physician then sends out a mobile
agent, which takes this active patient information and the image
processing code and moves to the coordination center. At the
coordination center, a search strategy is defined. The agent then
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FIGURE 53.1 A distributed mobile agent mammogram image retrieval system.

moves to various digital libraries through the Internet. The
agent finds matches to the active case, and the URL or other
locator information is sent back to the physician. The physi-
cian then reviews these best matches in an effort to help better
understand similar cases, which may affect the active patient’s
diagnosis.

This type of retrieval system may find application in many
other usages as the volume and kinds of data available over the
Internet are increasing rapidly. A primary distinguishing feature
of this new search and retrieval system is that the classification
methods used may change from search to search or from client
to client, as different users may have different requirements and
needs. Thus, in the search-retrieval system, the image-analysis
algorithm should not be preinstalled and precomputed on the
database. On the contrary, the implementation of the paramet-
ric representation algorithm should be mobile and dynamically
changeable for each search. This is one of the key reasons the
search and retrieval system to be developed should use mobile
agent technology.

53.4 Retrieval Strategy

As mentioned in Section 53.1, the retrieval strategy plays a key
role in an image retrieval system. Therefore, in this section,
the emphasis is placed on the retrieval strategies adopted in the
proposed distributed image retrieval system using mobile agent
technology.

In analyzing the images in the Distributed DMIL (DDMIL),
the desired goal is to return images that best match the required
characteristics from the DDMIL. However, this result can be
guaranteed only after all images in the DDMIL have been pro-
cessed and evaluated. This does not meet the needs of the user,
as results may be required at any time. The system must be able
to return results at any point in the search with the current best

result always available if required by the user. In addition, since it
is assumed that no preprocessed data are available at the begin-
ning of the search, the first image is analyzed and is set to be the
best match. Subsequently, additional cases will be considered,
and this initial best match will be modified as appropriate. The
relative precision of the search result is one of the key factors to
consider. Every processing result will consume many hours of
processing time. It is interesting to note that most of the pro-
cessing results will not modify the current best result and will
eventually be eliminated after processing.

The retrieval strategy must be developed so that an opti-
mal result can be returned at any time during the search. As
the final returned result cannot be known in advance, only the
mechanism that the retrieval strategy uses can be set in order
to achieve this goal. There are two elements from which the
retrieval strategy can benefit: knowledge of the database (from
message passing) and prediction of the image (by preprocessing
the image).

The basic idea behind the retrieval strategy is that agents work
in parallel on parallel image databases. When all the files have
been examined, or if the user requests a result, the best available
result is returned after a comparison among the best results of
each independent parallel agent. This concept can be enhanced
by addition of some intelligence to the processing. If the agents
can do some inspection of the local images to preselect images
before actual image processing work, significant saving in terms
of processing time may be achieved. The inspection or prepro-
cessing of images does not replace the actual image processing,
but preprocessing can guide the search so that images that are
likely to produce relevant results are processed first. There is
clearly a trade-off between preprocessing and final processing.
Preprocessing uses time and may not necessarily provide useful
insight into the best images to process. However, in principle,
significant benefits can result from this initial preprocessing
stage. The effectiveness of the preprocessing inspection can be



53 Dynamic Mammogram Retrieval from Web-based Image Libraries Using Multiagents 911

measured by computation of a correlation factor to the final
processing result.

If agent-to-agent communication is added to the capabilities
of agents, so that agents inform one another of their prepro-
cessed results, then the agent swarm may be able to decide which
local images to process. The swarm intelligence will result in
better global matches than agents working independently in
parallel. Again, there is a trade-off between doing image pro-
cessing work and communication, and this strategy must find
a balance between these two activities.

53.5 Experiments

53.5.1 Experimental Setup

To investigate agent performance, we used a set of simulated
image databases that model actual mammogram DMILs. Each
image database contains 30 independent images which model
parameters of biopsy-proven mammograms that may be in a
DMIL. Real random numbers between 0.0 and 9.0 simulate
the parametric feature representation in the database. In the
simulation, the user requests the mobile agent image retrieval
system to return the five best matches to an active case from the
established databases.

At each experimental image database, there is a mobile agent
execution environment. This agent execution environment is
known as TEEMA [2, 9, 13], which stands for TRLabs Execution
Environment for Mobile Agents. TEEMA was developed jointly
by TRLabs Regina and the University of Regina. TEEMA is
similar to most Java-based agent execution environments, and
it provides basic agent functions such as mobility and mes-
sage passing. TEEMA provides access to computing resources
such as CPU time and local image files. While this work applies
TEEMA because of its availability and familiarity to the authors,
there are no unique features of TEEMA that are required for
the agent operation. Any other similar mobile agent execution
environment can be used for this mobile agent image retrieval
system.

This work is not dependent on any specific image-processing
algorithm. We have examined algorithms from multiple sources
[6, 8] in order to determine if it is possible that they can be
implemented in a preprocessing, detailed processing paradigm
and embedded into the mobile agent system. As this seems,
in general, possible, we leave an open processing time period
for any image-processing algorithm within the experimental
setup.

53.5.2 Experimental Results

53.5.2.1 Simple Agents

This experiment demonstrates the agent performance in the
following work sequence without intelligent preprocessing or
agent-to-agent communication. In this experiment, only a sin-
gle agent and a single trajectory through the data are used to

simplify the demonstration. If there are multiple simple agents,
they can be sent to different or the same database(s) and work
in parallel and independently in the same way.

A mobile agent is launched from a coordination center (i.e.,
the MA Server), as shown in Figure 53.1. This agent carries a
target file to the image database and compares the target file
to each file in the database, which includes 30 independent
image files, as mentioned earlier. Once the agent arrives at the
database, it starts to work on data files, sequentially opening
a file, retrieving the data in that file, and then calculating the
absolute difference of that data to the data in the target file. The
difference will be treated as the distance function between the
database image and the target image. The smaller the distance
function, the closer the database image is to the target image.
The analysis of the image is set to take 10 seconds to process
for each file. The target file contains the number in the patient’s
file, which is 1.0. The agent will search for the five best matches
from the database.

At the beginning of the experiment, the agent initializes its
five best matching results to 0.0. When the processing starts,
the first five files will be temporarily treated as the best match
files, and will be recorded and ranked by their similarity dis-
tances. From the sixth file onward, if a new file is closer to
the target file than any one of the existing files, it will be sub-
stituted and inserted into the ranking table. If the new file is
no closer than all five of the present files, no substitution will
occur and the agent retains the current results. After all the
files have been processed on one site, or after a preset time
is up, the agent will migrate to the next destination with its
results if there is more than one database to go through by the
agent. When all the planned sites have been visited, the agent
will go back to the coordination center with the final results. If
the agent gets the “call back” message, it will go directly with its
results to the coordinate center without completing the planned
migration.

The performance of the agent is shown in Figure 53.2. In the
figure, the horizontal axis represents time in units of seconds,
and the vertical axis shows a sum of the five similarity dis-
tances, computed as y =∑

di(i = 1, . . . 5), where “d” is the
similarity distance stored in a ranking table. These conven-
tions will also apply in the subsequent figures. We can see
from Figure 53.2 that the performance line starts from the
first case near 5, which is the sum of distance functions of
the five original values (0.0) and the target value (1.0). After
the fifth case has been evaluated, the sum reaches its highest
point. This means that the sum of distance functions, at that
moment, is greatest. The five starting cases are the most dis-
similar cases that will be chosen. From the sixth case on, the
performance line will either remain flat or start to drop down.
A flat line means the new case is no better than the old results.
If the line drops down, a better case has been substituted for
an old one.

This experiment takes 300 seconds for the agent to finish
30 cases; however, after about 150 seconds, the performance
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FIGURE 53.2 The performance of a simple agent.

line flattens out. This means that new cases brought in for
analysis bring no better results after about 50% of the images
are processed.

53.5.2.2 Intelligent Preprocessing Agents

In this experiment, the intelligent image preprocessing com-
ponent is introduced for an agent. This component yields an
estimate of the final result. It is assumed to execute faster than
the detailed-processing algorithm, but it will have lower preci-
sion. We set a time slice for preprocessing and one for detailed
processing. The preprocessing time slice is considered to be 1
second, and the detailed-processing time slice is 10 seconds.
The preprocessing target value is chosen to be 0.0, and the
detailed-processing target value is 1.0.

Similar to the previous experiment, only a single agent and a
single trajectory through the data are used in order to simplify
the demonstration. If there are multiple intelligent preprocess-
ing agents, they can be sent to different or the same database(s)
and work in parallel and independently in the same way.

The difference between this experiment and the previous
one is apparent after the agent arrives at the database. The
simulated processing is divided into two stages. The first stage
represents the rapid preprocessing, and the second stage, which
consumes much more time, represents the detailed processing.
Furthermore, there are two tables of processing results main-
tained by the agent. Table One is used for keeping the prepro-
cessing results, and Table Two contains the detailed-processing
results. All these results, which are similarity distances, have a
file name, a location, and a file handle attached to them.

Figure 53.3 is somewhat more complex than Figure 53.2.
The dotted line represents the preprocessing results, while
the starred line continues to represent the detailed-processing
results. The first five cases must be processed using prepro-
cessing and detailed processing in order for the search to get
started, and each case is represented by an independent file.
Both preprocessing and detailed-processing curves reach a max-
imum after 5 cases. From the sixth case onward, the agent will
perform preprocessing until it has finished the 10 files that
make up a group. Then, by checking the preprocessing results,
the agent will pick up for detailed processing only the candi-
date cases from Table One that somewhat show promise. In
this experiment, we find that from the first file group, only
three files needed detailed processing; in the second file group,
only two files needed detailed processing; and in the third file
group, again only two files needed detailed processing. Thus,
we observe a very significant reduction in the number of cases
that require detailed processing, and, therefore, the time it takes
for the system curve to settle down to a small distance from the
test cases is shortened to only about 95 seconds.

53.5.2.3 Intelligent Preprocessing Agents with
Communication

In the strategies that have been defined up to this point, each
agent operates independently. If agent-to-agent communica-
tion is added to the capabilities of the agents, a global optimum
may be achieved more quickly and efficiently. This strategy
requires that agents inform one another of their preprocessed
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FIGURE 53.3 The performance of an intelligent preprocessing agent.

results. Then, the agents swarm to determine the local images
on which detailed processing will be performed.

In this experiment, two agents, Agent A and Agent B, are
loaded from some coordination center. Agent A goes through
databases No. 1 to No. 3, sequentially, and Agent B goes through
databases No. 4 to No. 6. As with the previous experiment, the
simulated processing is still divided into two stages: the pre-
and detailed processing. There are, again, two built-in tables,
Table One and Table Two, maintaining the search results by
each agent. The difference is that Table One contains the global
preprocessing results instead of the local preprocessing results.
Table Two still contains the local detailed-processing results.

After the first five cases are processed at the database using
both pre- and detailed processing, the two tables can be built.
Table One is then sent and received by all the agents in the sys-
tem. Each mobile agent manages Table One, which is updated
with information from other mobile agents in the system and
with local information. Table One is maintained so that it
contains the best results from a global viewpoint after prepro-
cessing. However, the frequency of remote updates is controlled
by setting the communication level (frequency of updates).
Therefore, Table One may not be completely synchronized
across the system at all times.

Each mobile agent in the system will check Table One period-
ically to determine which cases should be selected for detailed
processing. The mobile agent will then check the status of the
local images in Table Two to determine if any of these images
require detailed processing. If detailed processing is necessary,
the mobile agent will perform this work and update Table
Two. If no detailed processing is required, new images will be
processed using preprocessing. These preprocessing results will

be used to update Table One as appropriate. After some period
of time (additional control variable), the mobile agent will again
check for detailed processing as indicated by the continuously
updated Table One.

The results of pre- and detailed processing are correlated.
In this simulation, the level of correlation can be adjusted
to examine the effect of the accuracy of preprocessing versus
detailed processing. Furthermore, when the communication
level is adjusted, the effect of communication can be analyzed
and evaluated. A global model of this system with the level
of correlation between pre- and detailed processing versus the
communication level can then be developed.

Figures 53.4 and 53.5 show that when Agent A and Agent
B communicate, they both benefit. From the figures it can be
seen that after the two agents preprocessed the first 15 files,
they communicated the preprocessing results with each other.
Comparing Figure 53.4 to Figure 53.3 in the previous exper-
iment, we notice that Agent A has only one file that requires
detailed processing. In the same way, Agent A has eliminated
the need for Agent B to perform detailed processing on some
of its cases. This way, using global information, we find that a
maximum of five cases need detailed processing by all agents
combined. If each agent works on its own, some agents will
waste their effort. We find that in the second file group for
Agent A, only one file requires detailed processing (Figure 53.4).
Also, in the third file group, only one case requires detailed pro-
cessing. Figure 53.5 demonstrates that Agent B receives similar
benefits.

The performance curves, as characterized in Figures 53.4
and 53.5, are expected to be smoother as agents operate on
a large number of DMILs and larger quantities of data.
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FIGURE 53.4 The performance of Agent A with communication.
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FIGURE 53.5 The performance of Agent B with communication.

53.6 Discussion

The new framework for an agent-based image retrieval system
presented in this chapter is developed by initially starting with
a structure that simply uses the basic mobile agent strength
of parallel processing. Inclusion of preprocessing provides
an enhancement step. Preprocessing allows agents to rapidly

analyze a large number of images so that detailed processing can
be applied on only those images that are likely to show positive
results. The preprocessing phase allows for greater efficiency
in the search, assuming that the preprocessing will give some
indication of the final result. Preprocessing leads naturally to the
next enhancement in which the preprocessing results are shared
between a swarm of agents. The swarm can then decide globally
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which images should be analyzed using detailed processing. The
results of detailed processing are then returned to the user who
has initiated the original query.

53.6.1 Retrieval Strategy 1: Simple Agents

The approach of retrieval strategy 1 avoids the fruitless, time-
consuming file transfer of large digital mammogram images.
It saves the user’s computer resources and the user’s time.
Mammography image processing is time consuming, even
for large mainframe computers or cluster computers. The
physician’s computer in this scenario is usually a personal
computer, and it is not suited to large volume image processing
such as processing of mammograms. In addition, the computer
may be required for other duties, such as daily office work.
Thus, it is important to reduce as much as possible the need for
resources required to conduct a relevant, accurate, and timely
search under these constraints. Using the proposed mobile
agent application, the mobile agent can use the remote server
computer facility, which is, in principle, more powerful and
more suitable for image analysis work than a local computer.
All that the user needs to do is to send out an agent and
wait for the results or even request the results as the search
progresses.

Multiagents and multiservers offer greater fault tolerance,
if appropriately designed. An advantage of using distributed
computing is that when a site goes down, other sites are
not affected. Multiagents can administer distributed parallel
processing. For example, if a specific computation requires
significant processor power that can be distributed among
multiple processors, an infrastructure of mobile agent hosts
is a possible way to allocate the parallel process.

It is also possible for multiagents to work on the same server.
The agents can divide the work, work on different files, and work
with different parameters. This can happen at different stages
of the processing, or the agents can work on different parts of
a file, if the image processing algorithm can be appropriately
divided. This approach is simple and more robust. Agents will
not disturb other agents’ work. The final results will provide the
most similarity to results obtained until that time.

However, there are some limitations to this approach. From
the user’s point of view, the goal of this retrieval is to collect
reference files pertaining to a particular case by searching many
cases on the World Wide Web. Nonetheless, the results are not
necessarily guaranteed to be relevant to the active case. The
relevance of the result is relative and not defined. The focus is on
getting the results faster. Moreover, if the simple agents strategy
is adopted, most of the processed cases will be discarded at the
end of the search. This may be viewed as waste of precious time
and resources. The promising remedy for this is to narrow down
the results to avoid processing by introducing the intelligent
preprocessing component.

53.6.2 Retrieval Strategy 2: Intelligent
Preprocessing Agents

Assuming that the time consumed by preprocessing is much
shorter than the time consumed by detailed processing, intel-
ligent agents return results more quickly than simple agents.
Intelligent agents avoid detailed processing as much as possible
in order to save time in the image retrieval process.

Another reason for this approach is that, in some circum-
stances, it is much easier to tell that a case is definitely not a
match. Preprocessing determines the files that do not require
detailed processing; rather, detailed processing is performed
only on files that have greater probability to produce useful
results after preprocessing. When no precalculated features can
be used, because the algorithm is user-based, preprocessing is
the only way to sense the image characteristics before detailed
processing. With the preprocessing method and multithread
technology, intelligent agents have a choice of distributing effort
on sensing and working, in series or in parallel.

Although this approach overcomes significantly the limi-
tations of the simple agents approach, the limitation is that
it depends heavily on the correlation between preprocessing
and detailed processing. Preprocessing results must be highly
correlated to the results of detailed processing; otherwise, pre-
processing will not accurately guide the retrieval process. In
addition, time and resources expended on preprocessing are
not available for detailed processing; thus, there is a trade-off
between conducting pre- and detailed processing. If preprocess-
ing is not completed properly and efficiently, then it becomes a
disadvantage.

53.6.3 Retrieval Strategy 3: Intelligent
Preprocessing Agents with
Communication

By combining the preprocessing and multiagent strategy, we can
achieve a global swarm effect. In this approach, agents can share
the global information by merging the preprocessing results,
and every agent can obtain a copy of a common global table of
the preprocessing results. With this approach, the agent system
never has more than the five best match results at any time. An
intelligent-communicating agent requires the shortest time of
all three approaches to obtain similar results.

A key strength of intelligent-communicating agents is that
both signal and control messages can be transferred. This
approach creates even greater opportunity for global intelli-
gence in the system. In addition, communication makes it
possible for the coordination center to control the agent sys-
tem behavior. Intelligent-communicating multiagent systems
have more choices; agents can work on preprocessing, detailed
processing, and information transfer.

On the other hand, this approach has an even greater diver-
sity of tasks, including image processing, communication, and
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updating and maintenance of tables. Therefore, this strategy
must find a balance among these activities.

It is clear from the experimental results that there is a decrease
in the number of images requiring detailed processing as the
complexity of the agent strategy increases. The decrease in
the number of images requiring detailed processing results in
the decrease of the image retrieval time, especially for a DMIL
with a large volume of data.

53.7 Conclusion

Mobile agents are a new and emerging technology. While
research continues on the agent paradigm, there have not as
yet been many well-defined and practical applications for this
technology. This chapter examines three levels of sophistica-
tion in the mobile agent-based image retrieval system: (1) the
power of parallel search; (2) preprocessing images to provide
a means of predicting results of detailed processing; and (3)
sharing information across a swarm of agents so that a global
optimum can be achieved.

The approach in simulations was tested by linking the vari-
ous stages of the search to actual image processing and image
retrieval. The performance of this approach on an actual mam-
mogram image retrieval system remains to be determined.
While there are still many open questions that need to be
answered, this model provides an avenue that is worthy of fur-
ther investigation, in an effort to develop an agent-based data
retrieval system that works more efficiently and flexibly than
existing systems.
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54.1 Introduction

As radiology becomes increasingly digital and picture archive
and communication systems (PACS) move from research to
development and practice, the quantity of digital information
generated threatens to overwhelm available communication
and storage media. Although these media will improve with
technology, the need for efficiency will remain for inherently
narrowband links such as satellites, wireless, and existing media
such as twisted pair that will remain useful for many years. The
expected growth in digital data as X-rays become digital will
balance much of the expected gain in transmission bandwidth
and local storage. Typical high-resolution digital mammograms
require tens of megabytes for each image. The transfer of a col-
lection of studies for research or education across the Internet
can take hours.

Image compression can provide increases in transmission
speed and in the quantity of images stored on a given disk.
Lossless compression, in which an original image is perfectly
recoverable from the compressed format, can be used without

∗ Portions reprinted, with permission, from IEEE Trans. Medical Imaging, 12(4):

727–739, Dec. 1993 and Proceedings IEEE, 82(6): 919–932, June, 1994.

controversy. However, its gains are limited, ranging from a typ-
ical 2:1 compression (i.e., producing computer files of half the
original size) to an optimistic 4:1. Serious compression of 10:1
or more must be lossy in that the original image cannot be
recovered from the compressed format; one can only recover
an approximation.

How does one evaluate the approximation? Clearly the use-
fulness of image compression depends critically on the quality
of the processed images. Quality is an attribute with many pos-
sible definitions and interpretations, depending on the use to
which the images will be put. Sometimes it is felt that for a
compressed image to be considered “high quality,” it should be
visually indistinguishable from the original. This is sometimes
referred to as “transparent quality” or “perceptually lossless”
since the use of compression on the image is transparent to
the viewer. Upon first consideration, this concept of visually
indistinguishable would seem to be a simple definition of a
perceptually important quality threshold that everyone could
agree upon. This is not the case. Two images that are visually
indistinguishable when seen by a certain person may be dis-
tinguishable when seen by someone else. For example, a pair
of medical images viewed by lay people may appear identical,
but a radiologist trained in viewing those images might detect

Copyright © 2000 Academic Press.
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differences. Similarly, a pair of images seen by the same per-
son under certain viewing conditions may appear identical, but
when seen under different conditions of ambient lighting, view-
ing distance, or display characteristics might be easily seen to
differ. A third issue is that a compressed image might differ
from the original without necessarily being worse. To hold up
transparent quality as the ultimate quality goal is to ignore the
possibility that certain types of computer processing, including
compression, can in some cases make images more pleasing per-
ceptually than the originals. A fourth issue is that images have
different applications, and the term “high quality” may be used
to denote usefulness for a specific application rather than to
indicate that an image is perceptually pleasing or visually iden-
tical to an original. For all of these reasons, the measurement
of image quality is a difficult task, and only a few researchers
consider quality as a binary quantity that either meets the trans-
parent quality standard or does not. No single approach to
quality measurement has gained universal acceptance. The var-
ious approaches can be categorized into the following three
groups:

• Computable objective distortion measures such as squ-
ared error or signal-to-noise ratio.

• Subjective quality as measured by psychophysical tests or
questionnaires with numerical ratings.

• Simulation and statistical analysis of a specific applica-
tion of the images, e.g., diagnostic accuracy in medical
images measured by clinical simulation and statistical
analysis.

Within this latter category of evaluation methods, the
methodology of receiver operating characteristic (ROC) curves
has dominated historically, but a variety of other approaches
have been used in which radiologists may be called upon to per-
form various interpretive tasks. Radiologists detect and localize
the disease, make measurements of various structures, and
make recommendations for patient management. The utility
of a medical image can be evaluated in terms of how well it
contributes to these functions.

In this chapter, we begin with a brief introduction to image
compression, and to the three different sets of medical images
that form the basis of our studies. We discuss signal-to-noise
ratios and subjective quality ratings in the context of these
data sets, as well as ROC methodology. In the Chapter 56,
we present the clinical studies including detection, measure-
ment, and management tasks, and in Chapter 57, we discuss

a number of statistical issues that arise in this sort of clinical
experiment.

54.2 Image Compression

Image compression seeks to reduce the number of bits involved
in representing an image. Most compression algorithms in
practice are digital, beginning with an information source that
is discrete in time and amplitude. If an image is initially ana-
log in space and amplitude, one must first render it discrete in
both space and amplitude before compression. Discretization
in space is generally called sampling—this consists of examin-
ing the intensity of the analog image on a regular grid of points
called picture elements or pixels. Discretization in amplitude is
simply scalar quantization: a mapping from a continuous range
of possible values into a finite set of approximating values. The
term analog-to-digital (A/D) conversion is often used to mean
both sampling and quantization—that is, the conversion of a
signal that is analog in both space and amplitude to a signal that
is discrete in both space and amplitude. Such a conversion is by
itself an example of lossy compression.

A general system for digital image compression is depicted
in Figure 54.1. It consists of one or more of the following
operations, which may be combined with each other or with
additional signal processing:

• Signal decomposition: The image is decomposed into sev-
eral images for separate processing. The most popular
signal decompositions for image processing are linear
transformations of the Fourier family, especially the
discrete cosine transform (DCT), and filtering with a sub-
band or wavelet filter bank. Both methods can be viewed
as transforms of the original images into coefficients with
respect to some set of basis functions. There are many
motivations behind such decompositions. Transforms
tend to “mash up” the data so that the effects of quantiza-
tion error are spread out and ultimately invisible. Good
transforms concentrate the data in the lower order trans-
form coefficients so that the higher order coefficients can
be coded with few or no bits. Good transforms tend to
decorrelate the data with the intention of rendering sim-
ple scalar quantization more efficient. The eye and ear are
generally considered to operate in the transform domain,
so that it is natural to focus on coding in that domain
where psychophysical effects such as masking can be easily

Original
image

Signal
decomposition Quantization

Lossless
coding

Compressed
bit stream

FIGURE 54.1 Image compression system.
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incorporated into frequency-dependent measures of dis-
tortion. Lastly, the transformed data may provide a useful
data structure, as do the multiresolution representations
of wavelet analysis.

• Quantization: High-rate digital pixel intensities are con-
verted into relatively small numbers of bits. This oper-
ation is nonlinear and noninvertible; it is “lossy.” The
conversion can operate on individual pixels (scalar
quantization) or groups of pixels (vector quantization).
Quantization can include discarding some of the compo-
nents of the signal decomposition step. Our emphasis is
on quantizer design.

• Lossless compression: Further compression is achieved by
an invertible (lossless, entropy) code such as run-length,
Huffman, Lempel–Ziv, or arithmetic code.

Many approaches to systems for image compression have
been proposed in the literature and incorporated into standards
and products, both software and hardware. We note that the
methods discussed in this chapter for evaluating the quality
and utility of lossy compressed medical images do not depend
on the compression algorithm at all. The reader is referred to
the literature on the subject for more information on image
compression [23, 50].

54.3 The Three Data Sets

In this chapter and chapters 56 and 57, results are presented for
three data sets: computerized tomography (CT), magnetic res-
onance (MR), and mammographic images. As will be seen later,
these three studies provide examples of the detection, localiza-
tion, measurement, and management aspects of a radiologist’s
interpretative functions.

54.3.1 CT Study

The CT study involved two different sets of chest images. In one,
the diagnostic task was the detection of abnormally enlarged
lymph nodes, and in the other, the task was to detect lung nod-
ules. Thirty patient studies were used for each task. The CT
images were compressed using pruned predictive vector quan-
tization [23] applied to 2× 2 pixel blocks [15]. This method
involves no transform of the data. Vector quantizers are often
designed for a training set of representative images that can
provide information about the statistics such as the spatial
correlations that are typically found in those images. In such
a situation, the compression algorithm will perform best for
images that are similar to those used in the training set. For
this study twenty CT images of the mediastinum were used
in the training set for detecting enlarged lymph nodes, and
20 CT lung images were used in the training set for detect-
ing lung nodules. All 512× 512 pixel images were obtained

using a GE 9800 scanner (120 kV, 140 mA, scan time 2 seconds
per slice, bore size 38 cm, field-of-view 32–34 cm). Although
no formal research was undertaken to determine accurately
what constitutes “representative” CT images, two radiologists
were consulted concerning the typical range of appearance of
adenopathy and nodules that occurs in daily clinical practice.
The training and test images were chosen to be approximately
representative of this range, and included images of both nor-
mal and abnormal chests. The lung nodules ranged in size from
0.4 to 3.0 cm, with almost all nodules between 0.4 and 1.5 cm,
and the abnormal lymph nodes were between 0.6 and 3.5 cm.
The study also had a lower percentage of normal chest images
than would be encountered in daily practice.

For each study (lymph nodes, lung nodules), the original 30
test images were encoded at six compression levels: 0.57, 1.18,
1.33, 1.79, 2.19, and 2.63 bits per pixel (bpp). The original test
images are considered to be 11-bit data. Figure 54.2 shows an
original 11-bpp CT lung image to which the “windows and lev-
els”contrast adjustment has been applied. Although the scanner
was capable of producing 12-bit data, it was found for this data
set that the 12th bit was never used. Patient studies represented
in the training set were not used as test images, and the results
reported on SNR, subjective quality, and diagnostic accuracy
are based only on test images.

54.3.2 MR Study

In the MR study, the diagnostic task was to measure the size
of blood vessels in MR chest scans, as would be done in eval-
uating aortic aneurysms. The study had as its goal to quantify
the effects of lossy compression on the accuracy of these mea-
surements [46, 47]. As in the CT study, the image compression

FIGURE 54.2 Original 11.0 bpp CT chest scan.
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scheme was predictive pruned tree-structured vector quanti-
zation, although in this case it was applied to blocks of 2× 4
pixels.

The training data of 20 MR chest scans were chosen to include
a wide range of both aneurysms and normal vessel structures.
An additional 30 scans were chosen as test images. All images
were obtained using a 1.5-T whole body imager (Signa, GE
Medical Systems, Milwaukee, WI), a body coil, and an axial
cardiac-gated T1-weighted spin echo pulse sequence with the
following parameters: cardiac gating with repetition time (TR)

of 1 R-R interval, echo time (TE) of 15–20 msec, respiratory
compensation, number of repetition (NEX) of 2, 256× 192
matrix, slice thickness of 7 mm with a 3-mm interslice gap.

The compression rates for this study were 0.36, 0.55, 0.82,
1.14, and 1.70 bpp on the 30 test images. These bit rates are
represented by compression levels 1–5. The original scans at 9.0
bpp are represented by level 6.

Figure 54.3a shows an original 9.0 bpp MR chest scan.
Figure 54.3b shows the same image compressed to 1.14 bpp,
and Figure 54.3c shows the image compressed to 0.36 bpp.

(a) (b)

(c)

FIGURE 54.3 (a) Original 9.0 bpp MR chest scan, (b) MR chest scan compressed to 1.14 bpp, and (c) MR chest scan
compressed to 0.36 bpp.
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54.3.3 Mammogram Study

The mammography study involved a variety of tasks: detec-
tion, localization, measurement, and management decisions.
This work has been reported upon in [2, 24, 45] as well as in the
Stanford Ph.D. thesis of Bradley J. Betts [8], which also includes
detailed analyses of a much larger trial. The image database was
generated in the Department of Radiology of the University of
Virginia School of Medicine and is summarized in Table 54.1.
The 57 studies included a variety of normal images and
images containing benign and malignant objects. Corroborative
biopsy information was available on at least 31 of the test
subjects.

The images were compressed using Set Partitioning in
Hierarchical Trees (SPIHT) [54], an algorithm in the sub-
band/wavelet/pyramid coding class. These codes typically
decompose the image using an octave subband, critically sam-
pled pyramid, or complete wavelet transformation, and then
code the resulting transform coefficients in an efficient way.
The decomposition is typically produced by an analysis filter
bank followed by downsampling.

The most efficient wavelet coding techniques exploit both
the spatial and frequency localization of wavelets. The idea is to
group coefficients of comparable significance across scales by
spatial location in bands oriented in the same direction. The
early approach of Lewis and Knowles [31] was extended by
Shapiro in his landmark paper on embedded zerotree wavelet
coding [57], and the best performing schemes are descen-
dants or variations on this theme. The approach provides codes
with excellent rate-distortion trade-offs, modest complexity to
implement, and an embedded bit stream, which makes the
codes useful for applications where scalability or progressive
coding are important. Scalability implies there is a “succes-
sive approximation” property to the bit stream. This feature
is particularly attractive for a number of applications, espe-
cially those where one wishes to view an image as soon as bits

TABLE 54.1 Data test set: 57 studies, 4 views per study

6 benign mass

6 benign calcifications

5 malignant mass

6 malignant calcifications

3 malignant combination of mass and calcifications

3 benign combination of mass and calcifications

4 breast edema

4 malignant architectural distortion

2 malignant focal asymmetry

3 benign asymmetric density

15 normals

Reprinted with permission from S.M. Perlmutter, P.C. Cosman, R.M. Gray, R.A. Olshen,
D. Ikeda, C.N. Adams, B.J. Betts, M. Williams, K.O. Perlmutter, J. Li, A. Aiyer, L. Fajardo,
R. Birdwell, and B.L. Daniel, Image Quality in Lossy Compressed Digital Mammograms,
Signal Processing, 59:189–210, 1997. Copyright © Elsevier.

begin to arrive, and where the image improves as further bits
accumulate. With scalable coding, a single encoder can provide
a variety of rates to customers with different capabilities. Images
can be reconstructed to increasing quality as additional bits
arrive.

After experimenting with a variety of algorithms, we chose
Said and Pearlman’s variation [54] of Shapiro’s EZW algorithm
because of its good performance and the availability of work-
ing software for 12-bpp originals. We used the default filters
(9–7 biorthogonal filter) in the software compression package
of Said and Pearlman [54]. The system incorporates the adap-
tive arithmetic coding algorithm considered in Witten, Neal,
and Cleary [66].

For our experiment, additional compression was achieved by
a simple segmentation of the image using a thresholding rule.
This segmented the image into a rectangular portion containing
the breast—the region of interest or ROI—and a background
portion containing the dark area and any alphanumeric data.
The background/label portion of the image was coded using
the same algorithm, but at only 0.07 bpp, resulting in higher
distortion there. We report here SNRs and bit rates both for the
full image and for the ROI.

The image test set was compressed in this manner to three bit
rates: 1.75, 0.4, and 0.15 bpp, where the bit rates refer to rates in
ROI. The average bit rates for the full image thus depended on
the size of the ROI. An example of the Said–Pearlman algorithm
with a 12-bpp original and 0.15 bpp reproduction is given in
Figure 54.4.

54.4 Average Distortion and SNR

By far the most common computable objective measures of
image quality are mean squared error (MSE) and signal-to-
noise ratio (SNR). Suppose that one has a system in which an
input pixel block or vector X = (X0, X1, . . . , Xk−1) is repro-
duced as X̂ = (X̂0, X̂1, . . . , X̂k−1) and that one has a measure
d(X , X̂) of distortion or cost resulting when X is reproduced
as X̂ . A natural measure of the quality or fidelity (actually the
lack of quality or fidelity) of the system is the average of the
distortions for all the vectors input to that system, denoted
by D = E

[
d
(
X , X̂

)]
. The average might be with respect to a

probability model for the images or, more commonly, a sam-
ple or time-average distortion. It is common to normalize the
distortion in some fashion to produce a dimensionless quan-
tity D/D0, to form the inverse D0/D as a measure of quality
rather than distortion, and to describe the result in decibels.
A common normalization is the minimum average distortion
achievable if no bits are sent, D0 = minY E [D (X , Y )]. When
the ubiquitous squared-error distortion given by d (X , Y ) =
||X − Y ||2 =∑k−1

i=0 (Xi − Yi)
2 is used, then D0 is simply the

variance of the process, D0 = E
[||X − E(X) ||2] = σ2

X .
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FIGURE 54.4 Original image and compressed image at 0.15 bpp in the ROI.

Using this as a normalization factor produces the signal-to-
noise ratio

SNR = 10 log10

D0

D
= 10 log10

σ2
X

E
[
||X − X̂ ||2

] . (54.1)

A common alternative normalization when the input is itself
an r-bit discrete variable is to replace the variance or energy
by the maximum input symbol energy (2r − 1)2, yielding the
so-called peak signal-to-noise ratio (PSNR).

A key attribute of useful distortion measures is ease of com-
putation, but other properties are also important. Ideally a
distortion measure should reflect perceptual quality or useful-
ness in a particular application. No easily computable distor-
tion measure such as squared error is generally agreed to have
this property. Common faults of squared error are that a slight
spatial shift of an image causes a large numerical distortion
but no visual distortion and, conversely, a small average distor-
tion can result in a damaging visual artifact if all the error is
concentrated in a small important region. It is because of such
shortcomings that many other quality measures have been stud-
ied. The pioneering work of Budrikus [10], Stockham [60], and
Mannos and Sakrison [36] was aimed at developing computable
measures of distortion that emphasize perceptually important
attributes of an image by incorporating knowledge of human
vision. Theirs and subsequent work has provided a bewildering
variety of candidate measures of image quality or distortion
[3–5, 7, 16, 17, 19, 20, 25, 27, 29, 32–34, 37, 40–44, 53, 55,
58, 63, 67]. Similar studies have been carried out for speech

compression and other digital speech processing [49]. Examples
are general lp norms such as the absolute error (l1), the cube root
of the sum of the cubed errors (l3), and maximum error (l∞),
as well as variations on such error measures that incorporate
linear weighting. A popular form is weighted quadratic dis-
tortion that attempts to incorporate properties of the human
visual system such as sensitivity to edges, insensitivity to tex-
tures, and other masking effects. The image and the original
can be transformed prior to computing distortion, providing a
wide family of spectral distortions, which can also incorporate
weighting in the transform domain to reflect perceptual impor-
tance. Alternatively, one can capture the perceptual aspects by
linearly filtering the original and reproduction images prior to
forming a distortion, which is equivalent to weighting the dis-
tortion in the transform domain. A simple variation of SNR that
has proved popular in the speech and audio field is the segmen-
tal SNR, which is an average of local SNRs in a log scale [28, 49],
effectively replacing the arithmetic average of distortion by a
geometric average.

In addition to easing computation and reflecting percep-
tual quality, a third desirable property of a distortion measure
is tractability in analysis. The popularity of squared error is
partly owed to the wealth of theory and numerical meth-
ods available for the analysis and synthesis of systems that
are optimal in the sense of minimizing mean squared error.
One might design a system to minimize mean squared error
because it is a straightforward optimization, but then use a dif-
ferent, more complicated measure to evaluate quality because it
does better at predicting subjective quality. Ideally, one would
like to have a subjectively meaningful distortion measure that



54 Quality Evaluation for Compressed Medical Images: Fundamentals 923

could be incorporated into the system design. There are tech-
niques for incorporating subjective criteria into compression
system design, but these tend to be somewhat indirect. For
example, one can transform the image and assign bits to trans-
form coefficients according to their perceptual importance
or use postfiltering to emphasize important subbands before
compression [51, 52, 60].

The traditional manner for comparing the performance of
different lossy compression systems is to plot distortion rate or
SNR vs bit rate curves. Figure 54.5a shows a scatter plot of the
rate-SNR pairs for 24 images in the lung CT study. Only the
compressed images can be shown on this plot, as the original
images have by definition no noise and therefore infinite SNR.
The plot includes a quadratic spline fit with a single knot at
1.5 bpp. Regression splines [48] are simple and flexible mod-
els for tracking data that can be fit by least squares. The fitting
tends to be “local” in that the fitted average value at a particu-
lar bit rate is influenced primarily by observed data at nearby
bit rates. The curve has four unknown parameters and can be
expressed as

γ = a0 + a1x + a2x2 + b2(max(0, x − 1.5))2. (54.2)

It is quadratic “by region” and is continuous with a continuous
first derivative across the knot, where the functional form of
the quadratic changes. Quadratic spline fits provide good indi-
cations of the overall distortion-rate performance of the code
family on the test data. In this case, the location of the knot
was chosen arbitrarily to be near the center of the data set. It
would have been possible to allow the data themselves to guide
the choice of knot location. The SNR results for the CT medi-
astinal images were very similar to those for the lung task. For

the MR study, Figure 54.5b shows SNR versus bit rate for the
30 test images compressed to the five bit rates. The knot is at
1.0 bpp.

For the mammography study, the SNRs are summarized in
Tables 54.2 and 54.3. The overall averages are reported as well
as the averages broken out by image type or view (left and right
breast, CC and MLO view). This demonstrates the variability
among various image types as well as the overall performance.
Two sets of SNRs and bit rates are reported: ROI only and full
image. For the ROI SNR the rates are identical and correspond
to the nominal rate of the code used in the ROI. For the full
images the rates vary since the ROI code is used in one portion
of the image and a much lower rate code is used in the remaining
background and the average depends on the size of the ROI,
which varies among the images. A scatter plot of the ROI SNRs
is presented in Figure 54.6.

TABLE 54.2 Average SNR: ROI, wavelet coding

SNR

View 0.15 bpp ROI 0.4 bpp ROI 1.75 bpp ROI

Left CC 45.93 dB 47.55 dB 55.30 dB
Right CC 45.93 dB 47.47 dB 55.40 dB
Left MLO 46.65 dB 48.49 dB 56.53 dB
Right MLO 46.61 dB 48.35 dB 56.46 dB
Left side (MLO and CC) 46.29 dB 48.02 dB 55.92 dB
Right side (MLO and CC) 46.27 dB 47.91 dB 55.93 dB
Overall 46.28 dB 47.97 dB 55.92 dB

Reprinted with permission from S.M. Perlmutter, P.C. Cosman, R.M. Gray, R.A. Olshen,
D. Ikeda, C.N. Adams, B.J. Betts, M. Williams, K.O. Perlmutter, J. Li, A. Aiyer, L. Fajardo,
R. Birdwell, and B.L. Daniel, Image Quality in Lossy Compressed Digital Mammograms.
Signal Processing. 59:189–210, 1997. Copyright © Elsevier.
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FIGURE 54.5 SNR as a function of bit rate for (a) CT lung images and (b) MR images. The x’s indicate data points for all images, judges and
compression levels.
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TABLE 54.3 Average SNR: Full image, wavelet coding

SNR, bit rate

View 0.15 bpp ROI 0.4 bpp ROI 1.75 bpp ROI

Left CC 44.30 dB, 0.11 bpp 45.03 dB, 0.24 bpp 46.44 dB, 0.91 bpp
Right CC 44.53 dB, 0.11 bpp 45.21 dB, 0.22 bpp 46.88 dB, 0.85 bpp
Left MLO 44.91 dB, 0.11 bpp 45.73 dB, 0.25 bpp 47.28 dB, 1.00 bpp
Right MLO 45.22 dB, 0.11 bpp 46.06 dB, 0.25 bpp 47.96 db, 0.96 bpp
Left side (MLO and CC) 44.60 dB, 0.11 bpp 45.38 dB, 0.24 bpp 46.89 dB, 0.96 bpp
Right side (MLO and CC) 44.88 dB, 0.11 bpp 45.63 dB, 0.24 bpp 47.41 dB, 0.92 bpp
Overall 44.74 dB, 0.11 bpp 45.51 dB, 0.24 bpp 47.14 dB, 0.93 bpp

Reprinted with permission from S.M. Perlmutter, P.C. Cosman, R.M. Gray, R.A. Olshen, D. Ikeda, C.N. Adams, B.J. Betts, M. Williams,
K.O. Perlmutler, J. Li, A. Aiyer, L. Fajardo, R. Birdwell, and B.L. Daniel, Image Quality in Lossy Compressed Digital Mammograms.
Signal Processing. 59:189–210, 1997. Copyright © Elsevier.
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FIGURE 54.6 Scatter plot of ROI SNR: Wavelet coding. Reprinted
with permission from S.M. Perlmutter, P.C. Cosman, R.M. Gray, R.A.
Olshen, D. Ikeda, C.N. Adams, B.J. Betts, M. Williams, K.O. Perlmutler,
J. Li, A. Aiyer, L. Fajardo, R. Birdwell, and B.L. Daniel, Image Quality
in Lossy Compressed Digital Mammograms. Signal Processing. 59:
189–210, 1997. Copyright ©Elsevier.

It should be emphasized that this is the SNR comparing the
digital original with the lossy compressed versions.

54.5 Subjective Ratings

Subjective quality of a reconstructed image can be judged in
many ways. A suitably randomized set of images can be pre-
sented to experts or typical users who rate them, often on a
scale of 1 to 5. Subsequent statistical analysis can then high-
light averages, variability, and other trends in the data. Such
formalized subjective testing is common in speech and audio
compression systems as in the Mean Opinion Score (MOS)

and the descriptive rating called the diagnostic acceptability
measure (DAM) [1, 49, 62]. There has been no standardization
for rating still images.

A useful attribute of an objective quality measure such as SNR
would be the ability to predict subjective quality. For medical
images, it may be more important that a computable objective
measure be able to predict diagnostic accuracy rather than sub-
jective quality. A potential pitfall in relating objective distortion
measures to subjective quality is the choice of image distor-
tions used in the tests. Some of the literature on the subject
has considered signal-independent distortions such as additive
noise and blurring, yet it has been implied that the results were
relevant for strongly signal dependent distortions such as quan-
tization error. Experiments should imitate closely the actual
distortions to be encountered.

The assessment of subjective quality attempted to relate sub-
jective image quality to diagnostic utility. For the MR study,
each radiologist was asked at the time of measuring the vessels
to “assign a score of 1 (least) to 5 (most) to each image based on
its usefulness for the measurement task.” The term “usefulness”
was defined as “your opinion of whether the edges used for
measurements were blurry or distorted, and your confidence
concerning the measurement you took.” The question was
phrased in this way because our concern is whether measure-
ment accuracy is in fact maintained even when the radiologist
perceives the image quality as degraded and may have lost some
confidence in the utility of the image for the task at hand. It is
not clear to us whether radiologists are inculcated during their
training to assess quality visually based on the entire image, or
whether they rapidly focus on the medically relevant areas of
the image. Indeed,one might reasonably expect that radiologists
would differ on this point, and a question that addressed overall
subjective quality would therefore produce a variety of interpre-
tations from the judges. By focusing the question on the specific
measurement and the radiologists’ confidence in it regardless
of what portion of the image contributed to that confidence
level, and then by examining the relationship between actual
measurement error and these subjective opinions, we hoped to
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obtain data relevant to the question of whether radiologists can
be asked to trust their diagnoses made on processed images in
which they may lack full confidence. No attempt was made to
link the five possible scores to specific descriptive phrases, as
is done with the mean opinion score rating system for speech.
However, the radiologists were asked to try to use the whole
scale. The CT subjective assessment was performed separately
from the diagnostic task by three different radiologists. The
phrasing of the question was very similar.

Images compressed to lower bit rates received worse quality
scores as was expected. Figure 54.7 shows subjective score vs
bit rate for the CT mediastinum study. The data are fit with
a quadratic spline with a single knot. Figure 54.8 shows the
general trend of mean subjective score vs mean bit rate for the
MR study. A spline-like function that is quadratic from 0 to
2.0 bpp and linear from 2.0 to 9.0 bpp was fit to the data. The
splines have knots at 0.6, 1.2, and 2.0 bpp. Figure 54.9 shows
a spline fit of subjective score plotted against actual bit rate
for the compressed levels only for the MR study. The general
conclusion from the plots is that the subjective scores at the
higher levels were quite close to the subjective scores on the
originals, but at lower levels there was a steep drop-off of scores
with decreasing bit rate.

These scores can also be analyzed by the Wilcoxon signed
rank test. The paired t -test may be slightly less applicable since
the subjective scores, which are integers over a very limited
range, clearly fail to fit a Gaussian model. We note that scores
are assigned to the entire image rather than to any subsection of
an image, such as each of the blood vessels in that image. More
detailed information would be needed for a more thorough
analysis since subjective score in the MR experiment is meant
to reflect the quality of the image for vessel measurement, and
this may differ for the different blood vessels. The Wilcoxon
signed rank test showed that the subjective scores for the MR
study at all of the six compression levels differ significantly from
the subjective scores of the originals at p < 0.05 for a two-tailed
test. The subjective scores at all the compression levels also differ
significantly from each other. As discussed later, it appears that
a radiologist’s subjective perception of quality changes more
rapidly and drastically with decreasing bit rate than does the
actual measurement error.

54.5.1 Mammography Subjective Ratings

For the mammography study, Table 54.4 provides the means
and standard deviations for the subjective scores for each
radiologist separately and for the radiologists pooled. The dis-
tribution of these subjective scores is displayed in Figures 54.10–
54.12. Level 1 refers to the original analog images, level 2 to the
uncompressed digital, level 3 to those images where the breast
section was compressed to 0.15 bpp and the label to 0.07 bpp,
level 4 to those images where the breast section was compressed
to 0.4 bpp and the label to 0.07 bpp, and level 5 to those images
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FIGURE 54.7 Subjective ratings vs bit rate for the CT mediastinum
study.
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FIGURE 54.8 Mean subjective score vs mean bit rate for the MR
study. The dotted, dashed, and dash–dot curves are splines fit to the
data points for judges 1, 2, and 3, respectively. The solid curve is a spline
fit to the data points for all judges pooled. Reprinted with permission,
from Proceedings First International Conference on Image Processing.
ICIP ’94, 2:861–865, Austin, Texas, Nov. 1994.

where the breast section was compressed to 1.75 bpp and the
label to 0.07 bpp.

Figure 54.10 displays the frequency for each of the subjective
scores obtained with the analog gold standard. Figure 54.11 dis-
plays the frequency for each of the subjective scores obtained
with the uncompressed digital images (judges pooled), and
Figure 54.12 displays the frequency for each of the subjective
scores obtained with the digital images at level 3.

Using the Wilcoxon signed rank test, the results were as
follows.
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FIGURE 54.9 Subjective score vs bit rate for the MR study. The
x’s indicate data points for all images, pooled across judges and
compression levels.

TABLE 54.4

Level Judge Mean St.dev.

1 Gold standard 3.6441 0.5539

1 A 3.90 0.97
1 B 4.52 0.75
1 C 4.59 0.79
2 A 3.91 0.41
2 B 3.85 0.53
2 C 3.67 0.65
3 A 3.82 0.39
3 B 4.27 0.93
3 C 3.49 0.64
4 A 3.91 0.39
4 B 3.93 0.55
4 C 3.82 0.50
5 A 3.92 0.42
5 B 3.66 0.57
5 C 3.82 0.55

Judges pooled
1 Pooled 4.33 0.89
2 Pooled 3.81 0.55
3 Pooled 3.86 0.76
4 Pooled 3.88 0.49
5 Pooled 3.80 0.57

Reprinted with permission from S.M. Perlmutter, P.C. Cosman, R.M. Gray, R.A. Olshen,
D. Ikeda, C.N. Adams, B.J. Betts, M. Williams, K.O. Perlmutler, J. Li, A. Aiyer, L. Fajardo,
R. Birdwell, and B.L. Daniel, Image Quality in Lossy Compressed Digital Mammograms.
Signal Processing. 59:189–210, 1997. Copyright © Elsevier.

Judge A: All levels were significantly different from each other
except the digital to 0.4 bpp, digital to 1.75 bpp, and 0.4 to
1.75 bpp.

Judge B: The only differences that were significant were
0.15 bpp to 0.4 bpp and 0.15 bpp to digital.

Judge C: All differences were significant.
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FIGURE 54.10 Subjective scores: Analog gold standard. Reprinted
with permission from S.M. Perlmutter, P.C. Cosman, R.M. Gray, R.A.
Olshen, D. Ikeda, C.N. Adams, B.J. Betts, M. Williams, K.O. Perlmutter,
J. Li, A. Aiyer, L. Fajardo, R. Birdwell, and B.L. Daniel, Image Quality
in Lossy Compressed Digital Mammogram. Signal Processing. 59:
189–210, 1997. Copyright © Elsevier.
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FIGURE 54.11 Subjective scores: Original digital. Reprinted with per-
mission from S.M. Perlmutter, P.C. Cosman, R.M. Gray, R.A. Okhen,
D. Ikeda, C.N. Adams, B.J. Betts, M. Williams, K.O. Perlmutler, J. Li, A.
Aiyer, L. Fajardo, R. Birdwell, and B.L. Daniel, Image Quality in Lossy
Compressed Digital Mammogram. Signal Processing. 59:189–210,
1997. Copyright © Elsevier.

All judges pooled: All differences were significant except dig-
ital to 0.15 bpp, digital to 1.75 bpp, 0.15 to 0.4 bpp, and 0.15
to 1.75 bpp.

Comparing differences from the independent gold standard,
for Judge A all were significant except digital uncompressed; for
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FIGURE 54.12 Subjective scores: Lossy compressed digital at
0.15 bpp. Reprinted with permission from S.M. Perlmutter,
P.C. Cosman, R.M. Gray, R.A. Olshen, D. Ikeda, C.N. Adams, B.J.
Betts, M. Williams, K.O. Perlmutter, J. Li, A. Aiyer, L. Fajardo, R.
Birdwell, and B.L. Daniel, Image Quality in Lossy Compressed Digital
Mammograms. Signal Processing. 59:189–210, 1997. Copyright ©
Elsevier.

Judge B all were significant; and for Judge C all were significant
except 1.75 bpp. When the judges were pooled, all differences
were significant.

There were many statistically significant differences in sub-
jective ratings between the analog and the various digital
modalities, but some of these may have been a result of the dif-
ferent printing processes used to create the original analog films
and the films printed from digital files. The films were clearly
different in size and in background intensity. The judges in
particular expressed dissatisfaction with the fact that the back-
ground in the digitally produced films was not as dark as that
of the photographic films, even though this ideally had nothing
to do with their diagnostic and management decisions.

54.6 Diagnostic Accuracy and ROC
Methodology

Diagnostic “accuracy” is often used to mean the fraction of
cases on which a physician is “correct,” where correctness is
determined by comparing the diagnostic decision to some def-
inition of “truth.” There are many different ways that “truth”
can be determined, and this issue is discussed in Section 54.7.
Apart from this issue, this simple definition of accuracy is flawed
in two ways. First, it is strongly affected by disease prevalence.
For a disease that appears in less than 1% of the population,
a screening test could trivially be more than 99% accurate
simply by ignoring all evidence and declaring the disease to be
absent. Second, the notion of “correctness” does not distinguish

between the two major types of errors, calling positive a case
that is actually negative, and calling negative a case that is actu-
ally positive. The relative costs of these two types of errors are
generally not equal. These can be differentiated by measuring
diagnostic performance using a pair of statistics reflecting the
relative frequencies of the two error types.

Toward this end suppose for the moment that there exists a
“gold standard” defining the “truth” of existence and locations
of all lesions in a set of images. With each lesion identified in the
gold standard, a radiologist either gets it correct (true positive or
TP) or misses it (false negative or FN). For each lesion identified
by the radiologist, either it agrees with the gold standard (TP as
above) or it does not (false positive or FP).

The sensitivity or true positive rate (or true positive fraction
(TPF)) is the probability pTP that a lesion is said to be there given
that it is there. This can be estimated by relative frequency

Sensitivity = # TP

# TP+ # FN
. (54.3)

The complement of sensitivity is the false negative rate (or frac-
tion) pFN = 1− pTP, the probability that a lesion is said to not
be there given that it is there.

In an apparently similar vein, the false positive rate pFP (or
false positive fraction (FPF)) is the probability that a lesion is
said to be there given that it is not there and the true negative
rate pTN or specificity is its complement. Here, however, it is not
possible to define a meaningful relative frequency estimate of
these probablities except when the detection problem is binary,
that is, each image can have only one lesion of a single type or
no lesions at all. In this case, exactly one lesion is not there if and
only if 0 lesions are present, and one can define a true negative
TN as an image that is not a true positive. Hence if there are N
images, the relative frequency becomes

Specificity = # TN

N − # TP
. (54.4)

As discussed later, in the nonbinary case, however, specificity
cannot be defined in a meaningful fashion on an image-by-
image basis.

In the binary case, specificity shares importance with sensitiv-
ity because perfect sensitivity alone does not preclude numerous
false alarms, while specificity near 1 ensures that missing no
tumors does not come at the expense of calling false ones.

An alternative statistic that is well defined in the nonbinary
case and also penalizes false alarms is the predictive value positive
(PVP), also known as positive predicted value (PPV) [64]. This
is the probability that a lesion is there given that it is said to be
there:

PVP = # of abnormalities correctly marked

Total # of abnormalities marked
. (54.5)
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PVP is easily estimated by relative frequencies as

PVP = # TP

# TP+ # FP
. (54.6)

Sensitivity, PVP, and, when it makes sense, specificity can
be estimated from clinical trial data and provide indication of
quality of detection. The next issues are these:

1. How does one design and conduct clinical experiments to
estimate these statistics?

2. How are these statistics used in order to make judgments
about diagnostic accuracy?

Together, the responses to these questions form a protocol
for evaluating diagnostic accuracy and drawing conclusions on
the relative merits of competing image processing techniques.
Before describing the dominant methodology used, it is useful
to formulate several attributes that a protocol might reasonably
be expected to have:

• The protocol should simulate ordinary clinical practice as
closely as possible. Participating radiologists should per-
form in a manner that mimics their ordinary practice.
The trials should require little or no special training of
their clinical participants.

• The clinical trials should include examples of images
containing the full range of possible anomalies, all but
extremely rare conditions.

• The findings should be reportable using the American
College of Radiology (ACR) Standardized Lexicon.

• Statistical analyses of the trial outcomes should be
based on assumptions as to the outcomes and sources
of error that are faithful to the clinical scenario and
tasks.

• The number of patients should be sufficient to ensure
satisfactory size and power for the principal statistical tests
of interest.

• “Gold standards” for evaluation of equivalence or superi-
ority of algorithms must be clearly defined and consistent
with experimental hypotheses.

• Careful experimental design should eliminate or min-
imize any sources of bias in the data that are due to
differences between the experimental situation and ordi-
nary clinical practice, e.g., learning effects that might
accrue if a similar image is seen using separate imaging
modalities.

Receiver operating characteristic (ROC) analysis is the dom-
inant technique for evaluating the suitability of radiologic
techniques for real applications [26, 38, 39, 61]. ROC analy-
sis has its origins in signal detection theory. A filtered version
of a signal plus Gaussian noise is sampled and compared to

a threshold. If the sample is greater than the threshold, the
signal is declared to be there; otherwise, it is declared absent.
As the threshold is varied in one direction, the probability of
erroneously declaring a signal absent when it is there (a false dis-
missal) goes down, but the probability of erroneously declaring
a signal there when it is not (a false alarm) goes up. Suppose one
has a large database of waveforms, some of which actually con-
tain a signal, and some of which do not. Suppose further that
for each waveform, the “truth” is known of whether a signal is
present or not. One can set a value of the threshold and exam-
ine whether the test declares a signal present or not for each
waveform. Each value of the threshold will give rise to a pair
(TPF, FPF), and these points can be plotted for many different
values of the threshold. The ROC curve is a smooth curve fitted
through these points. The ROC curve always passes through
the point (1, 1) because if the threshold is taken to be lower
than the lowest value of any waveform, then all samples will
be above the threshold, and the signal will be declared present
for all waveforms. In that case, the true positive fraction is 1.
The false positive fraction is also equal to 1, since there are no
true negative decisions. Similar reasoning shows that the ROC
curve must also always pass through the point (0, 0), because
the threshold can be set very large, and all cases will be declared
negative. A variety of summary statistics such as the area under
the ROC curve can be computed and interpreted to compare
the quality of different detection techniques. In general, larger
area under the ROC curve is better.

ROC analysis has a natural application to some problems
in medical diagnosis. For example, in a blood serum assay of
carbohydrate antigens (e.g., CA 125 or CA 19-9) to detect the
presence of certain types of cancer, a single number results from
the diagnostic test. The distributions of result values in actu-
ally positive and actually negative patients overlap. So no single
threshold or decision criterion can be found that separates the
populations cleanly. If the distributions did not overlap, then
such a threshold would exist, and the test would be perfect. In
the usual case of overlapping distributions, a threshold must
be chosen, and each possible choice of threshold will yield dif-
ferent frequencies of the two types of errors. By varying the
threshold and calculating the false alarm rate and false dis-
missal rate for each value of the threshold, an ROC curve is
obtained.

Transferring this type of analysis to radiological applications
requires the creation of some form of threshold whose vari-
ation allows a similar trade-off. For studies of the diagnostic
accuracy of processed images, this is accomplished by asking
radiologists to provide a subjective confidence rating of their
diagnoses (typically on a scale of 1–5) [39, 61]. An example of
such ratings is shown in Table 54.5.

First, only those responses in the category of highest certainty
of a positive case are considered positive. This yields a pair (TPF,
FPF) that can be plotted in ROC space and corresponds to a
stringent threshold for detection. Next, those cases in either of
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TABLE 54.5 Subjective confidence ratings used in ROC analysis

1 Definitely or almost definitely negative
2 Probably negative
3 Possibly negative
4 Probably positive
5 Definitely or almost definitely positive

the highest two categories of certainty of a positive decision are
counted positive. Another (TPF, FPF) point is obtained, and so
forth. The last nontrivial point is obtained by scoring any case
as positive if it corresponds to any of the highest four categories
of certainty for being positive. This corresponds to a very lax
threshold for detection of disease. There are also two trivial
(TPF, FPF) points that can be obtained, as discussed previously:
All cases can be declared negative (TPF = 0, FPF = 0) or all
cases can be declared positive (TPF = 1, FPF = 1).

This type of analysis has been used extensively to examine
the effects of computer processing on the diagnostic utility
of medical images. Types of processing that have been eval-
uated include compression [6, 9, 14, 21, 22, 30, 35, 56, 65], and
enhancement (unsharp masking, histogram equalization, and
noise reduction).

Although by far the dominant technique for quantifying
diagnostic accuracy in radiology, ROC analysis possesses several
shortcomings for this application. In particular, it violates sev-
eral of the stated goals for a clinical protocol. By and large,
the necessity for the radiologists to choose 1 of 5 specific
values to indicate confidence departs from ordinary clinical
practice. Although radiologists are generally cognizant of dif-
fering levels of confidence in their findings, this uncertainty
is often represented in a variety of qualitative ways, rather
than with a numerical ranking. Further, as image data are
non-Gaussian, methods that rely on Gaussian assumptions are
suspect. Modern computer-intensive statistical sample reuse
techniques can help get around the failures of Gaussian assump-
tions. Classical ROC analysis is not location specific. The case in
which an observer misses the lesion that is present in an image
but mistakenly identifies some noise feature as a lesion in that
image would be scored as a true-positive event. Most impor-
tantly, many clinical detection tasks are nonbinary, in which
case sensitivity can be suitably redefined, but specificity cannot.
That is, sensitivity as defined in Equation (54.3) yields a frac-
tional number for the whole data set. But for any one image,
sensitivity takes on only the values 0 and 1. The sensitivity for the
whole data set is then the average value of these binary-valued
sensitivities defined for individual images. When the detection
task for each image becomes nonbinary, it is possible to redefine
sensitivity for an individual image:

Sensitivity = # of true positive decisions within 1 image

# of actually positive items in that 1 image
.

(54.7)

Or, changing the language slightly,

Sensitivity = # of abnormalities correctly found

# of abnormalities actually there
. (54.8)

In this case, the sensitivity for each individual image becomes a
fractional number between 0 and 1, and the sensitivity for the
entire data set is still the average of these sensitivities defined for
individual images. A similar attempt to redefine the specificity
leads to

Sensitivity = # of abnormalities correctly said not to be there

# of abnormalities actually not there
.

(54.9)

This does not make sense because it has no natural or sensible
denominator, as it is not possible to say how many abnormalities
are absent. This definition is fine for a truly binary diagnostic
task such as detection of a pneumothorax, for if the image is
normal, then exactly one abnormality is absent. Early studies
were able to use ROC analysis by focusing on detection tasks
that were either truly binary or that could be rendered binary.
For example, a nonbinary detection task such as “locating any
and all abnormalities that are present” can be rendered binary
simply by rephrasing the task as one of “declaring whether or
not disease is present.” Otherwise, such a nonbinary task is not
amenable to traditional ROC analysis techniques. Extensions
to ROC to permit consideration of multiple abnormalities have
been developed [11–13, 18, 59]. For example, the free-response
receiver operating characteristic (FROC) observer performance
experiment allows an arbitrary number of abnormalities per
image, and the observer indicates their perceived locations and a
confidence rating for each one. While FROC resolves the binary
task limitations and location insensitivity of traditional ROC,
FROC does retain the constrained 5-point integer rating system
for observer confidence, and makes certain normality assump-
tions about the resultant data. Finally, ROC analysis has no
natural extension to the evaluation of measurement accuracy
in compressed medical images. By means of specific examples
we describe an approach that closely simulates ordinary clini-
cal practice, applies to nonbinary and non-Gaussian data, and
extends naturally to measurement data.

The Stanford Ph.D. thesis by Bradley J. Betts, mentioned ear-
lier, includes new technologies for analyses of ROC curves.
His focus is on regions of interest of the curve, that is, on
the intersection of the area under the curve with rectangles
determined by explicit lower bounds on sensitivity and speci-
ficity. He has developed sample reuse techniques for making
inferences concerning the areas enclosed and also for con-
structing rectangular confidence regions for points on the
curve.
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54.7 Determination of a Gold Standard

The typical scenario for evaluating diagnostic accuracy of com-
puter processed medical images involves taking some database
of original unprocessed images, applying some processing to
them, and having the entire set of images judged in some spec-
ified fashion by radiologists. Whether the subsequent analyses
will be done by ROC or some other means, it is necessary to
determine a “gold standard” that can represent the diagnos-
tic truth of each original image and can serve as a basis of
comparison for the diagnoses on all the processed versions
of that image. There are many possible choices for the gold
standard:

• A consensus gold standard is determined by the consensus
of the judging radiologists on the original.

• A personal gold standard uses each judge’s readings on
an original (uncompressed) image as the gold standard
for the readings of that same judge on the compressed
versions of that same image.

• An independent gold standard is formed by the agreement
of the members of an independent panel of particularly
expert radiologists.

• A separate gold standard is produced by the results of
autopsy, surgical biopsy, reading of images from a differ-
ent imaging modality, or subsequent clinical or imaging
studies.

The consensus method has the advantage of simplicity, but
the judging radiologists may not agree on the exact diagnosis,
even on the original image. Of course, this may happen among
the members of the independent panel as well, but in that case
an image can be removed from the trial or additional experts
called upon to assist. Either case may entail the introduction of
concerns as to generalizability of subsequent results.

In the CT study, in an effort to achieve consensus for those
cases where the initial CT readings disagreed in the number
or location of abnormalities, the judges were asked separately
to review their readings of that original. If this did not pro-
duce agreement, the judges discussed the image together. Six
images in each CT study could not be assigned a consensus
gold standard because of irreconcilable disagreement. This was
a fundamental drawback of the consensus gold standard, and
our subsequent studies did not use this method. Although those
images eliminated were clearly more controversial and diffi-
cult to diagnose than the others, it cannot be said whether the
removal of diagnostically controversial images from the study
biases the results in favor of compression or against it. Their fail-
ure to have a consensus gold standard defined was based only
on the uncompressed versions, and it cannot be said a priori
that the compression algorithm would have a harder time com-
pressing such images. The consensus, when achieved, could be
attained either by initial concordance among the readings of the
three radiologists, or by subsequent discussion of the readings,

during which one or more judges might change their decisions.
The consensus was clearly more likely to be attained for those
original images where the judges were in perfect agreement ini-
tially and thus where the original images would have perfect
diagnostic accuracy relative to that gold standard. Therefore,
this gold standard has a slight bias favoring the originals, which
is thought to help make the study safely conservative, and not
unduly promotional of specific compression techniques.

The personal gold standard is even more strongly biased
against compression. It defines a judge’s reading on an orig-
inal image to be perfect, and uses that reading as the basis
of comparison for the compressed versions of that image. If
there is any component of random error in the measurement
process, since the personal gold standard defines the diagnoses
on the originals to be correct (for that image and that judge),
the compressed images cannot possibly perform as well as the
originals according to this standard. That there is a substantial
component of random error in these studies is suggested by
the fact that there were several images during our CT tests on
which judges changed their diagnoses back and forth, mark-
ing, for example, one lesion on the original image as well as
on compressed levels E and B, and marking two lesions on
the inbetween compressed levels F, D, and A. With a consen-
sus gold standard, such changes tend to balance out. With a
personal gold standard, the original is always right, and the
changes count against compression. Because the compressed
levels have this severe disadvantage, the personal gold stan-
dard is useful primarily for comparing the compressed levels
among themselves. Comparisons of the original images with
the compressed ones are conservative. The personal gold stan-
dard has, however, the advantage that all images can be used in
the study. We no longer have to be concerned with the possible
bias from the images eliminated due to failure to achieve con-
sensus. One argument for the personal standard is that in some
clinical settings a fundamental question is how the reports of
a radiologist whose information is gathered from compressed
images compare to what they would have been on the originals,
the assumption being that systematic biases of a radiologist
are well recognized and corrected for by the referring physi-
cians who regularly send cases to that radiologist. The personal
gold standard thus concentrates on consistency of individual
judges.

The independent gold standard is what many studies use,
and would seem to be a good choice. However, it is not with-
out drawbacks. First of all, there is the danger of a systematic
bias appearing in the diagnoses of a judge in comparison
to the gold standard. For example, a judge who consistently
chooses to diagnose tiny equivocal dots as abnormalities when
the members of the independent panel choose to ignore such
occurrences would have a high false positive rate relative to that
independent gold standard. The computer processing may have
some actual effect on this judge’s diagnoses, but this effect might
be swamped in comparison to this baseline high false positive
rate. This is an argument for using the personal gold standard
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as well as the independent gold standard. The other drawback
of an independent gold standard is somewhat more subtle and
is discussed later. In the MR study, the independent panel was
composed of two senior radiologists who first measured the
blood vessels separately and then discussed and remeasured in
those cases where there was initial disagreement.

A separate standard would seem to be the best choice, but
it is generally not available. With phantom studies, there is
of course a “diagnostic truth” that is established and known
entirely separately from the diagnostic process. But with actual
clinical images, there is often no autopsy or biopsy, as the patient
may be alive and not operated upon. There are unlikely to be
any images from other imaging modalities that can add to the
information available from the modality under test, since there
is typically one best way for imaging a given pathology in a
given part of the body. And the image data set for the clinical
study may be very difficult to gather if one wishes to restrict
the image set to those patients for whom there are follow-up
procedures or imaging studies that can be used to establish a
gold standard. In any case, limiting the images to those patients
who have subsequent studies done would introduce obvious
bias into the study.

In summary, the consensus method of achieving a gold stan-
dard has a major drawback together with the minor advantage
of ease of availability. The other three methods for achieving a
gold standard all have both significant advantages and disad-
vantages, and perhaps the best solution is to analyze the data
against more than one definition of diagnostic truth.

54.8 Concluding Remarks

We have surveyed several key components required for evalu-
ating the quality of compressed images: the compression itself;
three data sets to be considered in depth in chapters 56 and
57; quantitative measures of quality involving measures of pixel
intensity distortion, observer-judged subjective distortion, and
diagnostic accuracy; and, lastly, several notions of “gold stan-
dard”with respect to which quality can be compared. In the next
chapter these ideas provide a context and a collection of tools
for a detailed analysis of three specific medical image modalities
and tasks.
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55.1 Introduction

In compressing a radiological image, the fundamental question
is: Will the compressed image still be as diagnostically useful
as the original? In the previous chapter, we presented several
clinical studies, experimental protocols, and statistical analy-
sis techniques. Taken together, these provide a methodology
for answering this type of question, and they also provide the
answer to the question in the context of particular images sets,
compression algorithms, and diagnostic tasks. There remain,
however, a number of questions that must be addressed in any
study of this type. For example, was the experiment designed
well enough? Is the answer different for different radiologists?
How does diagnostic utility relate to other measures of image
quality? In this chapter we present various statistical approaches
to these broad questions. We first discuss statistical size and
power, and learning effects, both of which speak to the question
of whether the clinical experiment was well designed. Next, we
present a comparison of judges, and we discuss how diagnostic
utility can be related to other measures of image quality.

55.2 Statistical Size and Power

The size of a test is the probability of incorrectly rejecting the
null hypothesis if it is true. The power of a test is the probability
of correctly rejecting the null hypothesis if it is false. For a given

hypothesis and test statistic, one constrains the size of the test
to be small and attempts to make the power of the test as large
as possible.

Given a specified size, test statistic, null hypothesis, and
alternative, statistical power can be estimated using the com-
mon (but sometimes inappropriate) assumption that the data
are Gaussian. As data are gathered, however, improved esti-
mates can be obtained by modern computer-intensive statistical
methods. For example, the power and size can be computed for
each test statistic described earlier to test the hypothesis that
digital mammography of a specified bit rate is equal or supe-
rior to film screen mammography with the given statistic and
alternative hypothesis to be suggested by the data. In the absence
of data, we can only guess the behavior of the collected data to
approximate the power and size. We consider a one-sided test
with the “null hypothesis” that, whatever the criterion [man-
agement or detection sensitivity, specificity, or predictive value
positive (PVP)], the digitally acquired mammograms or lossy
compressed mammograms of a particular rate are worse than
analog. The “alternative” is that they are better. In accordance
with standard practice, we take our tests to have size 0.05. We
here focus on sensitivity and specificity of management deci-
sions, but the general approach can be extended to other tests
and tasks.

Approximate computations of power devolve from the 2 by
2 agreement tables of the form of Table 55.1. In this table, the
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TABLE 55.1 Agreement 2× 2 table

II\I R W

R N (1, 1) N (1, 2)

W N (2, 1) N (2, 2)

TABLE 55.2 Management outcome probabilities

II\I Right Wrong

Right 2ψ + h − 1+ γ 1− ψ − h − γ ψ

Wrong 1− ψ − γ γ 1− ψ
ψ + h 1− ψ − h 1

rows correspond to one technology (for example analog) and
columns to the other (digital, say). “R” and “W” correspond to
“right” (agreement with gold standard) and “wrong” (disagree-
ment with gold standard). So, for example, the count N (1, 1) is
the number of cases where a radiologist was right when reading
both the analog and digital images. The key idea is twofold. In
the absence of data, a guess as to power can be computed using
standard approximations. Once preliminary data are obtained,
however, more accurate estimates can be obtained by simula-
tion techniques taking advantage of the estimates inherent in
the data. Table 55.2 shows the possibilities and their correspond-
ing probabilities. The right-hand column and bottom row are
sums of what lies, respectively, to the left and above them.
Thus, ψ is the value for one technology and ψ + h is the value
for the other; h = 0 denotes no difference. It is the null hypoth-
esis. The four entries in the middle of the table are parameters
that define probabilities for a single study. They are meant to
be average values across radiologists, as are the sums that were
cited. Our simulations allow for what we know to be the case:
radiologists are very different in how they manage and in how
they detect.

Two fundamental parameters are γ and R. The first is the
chance (on average) that a radiologist is “wrong” for both tech-
nologies; R is the number of radiologists. These key parameters
can be estimated from the counts of the 2 by 2 agreement
table resulting from the pilot experiment, and then improved
as additional data are acquired.

In our small pilot study of management, we found sensitivity
of about 0.60 and specificity about 0.55. The respective esti-
mated values of h varied from more than 0.02 to about 0.07;
γ was about 0.05. These numbers are all corrupted by substan-
tial noise. Indeed, the variability associated with our estimation
of them is swamped by the evident variability among radiolo-
gists. For a test of size 0.05, by varying parameters in amounts
like what we saw, the power might be as low as 0.17 with 18
radiologists, or as high as 1.00 with only 9 radiologists. The
power is very sensitive to the three parameters. No matter how
many studies or how many radiologists we would have, one

could always vary the parameters so that we would need more
of either or both.

If we think of sensitivity for detection being 0.85, say, then at
least for that quantity 400 studies and 9 radiologists seem ample.
At this time one good recommendation would be to start with
400 studies, 12 radiologists, three at each of four centers, and
find an attained significance level for a test of the null hypothesis
that there is no difference between technologies. And, perhaps
at least as important, estimate the parameters of Table 55.2.
At that point possible numbers of required further radiologists
or studies, if any, could be estimated for particular values of size
and power that reviewers might require. The design could be
varied so that the pool of studies would include more than 400,
but no single radiologist would read more than 400. In this way
we could assess fairly easily the impact of variable prevalence of
adverse findings in the gold standard, though we could get at
that issue even in the situation we study here.

Computations of power apply equally well in our formula-
tion to sensitivity and specificity. They are based on a sample
of 400 studies for which prudent medical practice would dic-
tate return to screening for 200, and something else (6-month
followup, additional assessment needed, or biopsy) for the other
200. Thus, there are 200 studies that figure in computation of
sensitivity and the same number for specificity. All compari-
sons are in the context of “clinical management,” which can
be “right” or “wrong.” It is a given that there is an agreed-upon
gold standard, independent or separate. For a given radiolo-
gist who has judged two technologies—here called I and II and
meant to be digital and analog or analog and lossy compressed
digital in application—a particular study leads to an entry in a
2 by 2 agreement table of the form of Table 55.1.

If the null hypothesis of “no difference in technologies” is
true, then whatever be ψ and γ , h = 0. An alternative hypo-
thesis would specify h �= 0, and without loss (since we are free
to call whichever technology we want I or II) we may take h > 0
under the alternative hypothesis that there is a true difference
in technologies. Under the null, given b + c , b has a binomial
distribution with parameters b + c and 1/2. Under the alter-
native, given b + c , b is binomial with parameters b + c and
(1− ψ − h − γ)/(2− 2ψ − 2γ − h). The usual McNemar
conditional test of the null hypothesis is based on (b − c)2/(b +
c) having approximately a chi-square distribution with one
degree of freedom.

In actual practice we intend to use R radiologists for R =
9, 12, 15, or 18, to assume that their findings are indepen-
dent, and to combine their data by adding the respective
values of their McNemar statistics. We always intend that the
size = probability of Type I error is 0.05. Since the sum of
independent chi-square random variables is distributed as chi-
square with degrees of freedom the sum of the respective
degrees of freedom, it is appropriate to take as the critical value
for our test the number C , where Pr

(
χ2

R > C
) = 0.05. The

four respective values of C are therefore 16.92, 21.03, 25.00,
and 28.87.
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Computation of power is tricky because it is unconditional,
since before the experiment, b + c for each radiologist is
random. Thus, the power is the probability that a noncentral
chi-square random variable with R degrees of freedom and non-

centrality parameter
[ (

p1 − 0.5
)2
/p1q1

]∑R
i=1 (bi + ci) exceeds

C/4p1q1, where bi + ci has a binomial distribution with
parameters N and 2− 2ψ − 2γ − h; the R random integers
are independent; and p1 = (1− ψ − h − γ)/(2− 2ψ − 2γ −
h) = 1− q1. This entails that the noncentrality parameters of
the chi-square random variable that figures in the computation
of power is itself random. Note that a noncentral chi-square
random variable with R degrees of freedom and noncentrality

parameter Q is the distribution of
(
G1 + Q1/2

)2 + G2
2 + · · · +

G2
R , where G1, . . . , GR are independent, identically distributed

standard Gaussians. On the basis of previous work and this
pilot study, we have chosen to compute the power of our size
0.05 tests for N always 200, ψ from 0.55 to 0.85 in increments
of 0.05, γ = 0.03, 0.05, 0.10, and, as was stated, R = 9, 12, 15,
and 18. The simulated values of power can be found in [2] and
code for carrying out these computations is in Appendix C of
Betts [1]. These form the basis of our earlier estimates for the
necessary number of patients and will be updated as data is
acquired.

55.3 Analysis of Learning Effects

In experiments of this type, the radiologists see an image
at many compression levels during the course of the study.
One needs to ascertain whether learning effects are significant.
Learning and fatigue are both processes that might change the
score of an image depending on when it was seen. For the CT
study, the McNemar test [8] was used to examine this possibility.

Suppose one has N observations of paired data. The mem-
bers of the pair are called sample 1 and sample 2. Each member
of the pair can be described as being “A” or “not A.” There are
clearly four types of pairs: those with both members of type
“A,” those with neither member of type “A,” those where the
first member of the pair is of type “A” but the second is not, and
those where the second member is of type “A” but the first is
not. The last two types are referred to as disparate or “untied”
pairs. We denote the number of occurrences of each type of
these four pairs by k, m, r , and s, as shown in a 2× 2 table, in
Table 55.3.

TABLE 55.3 2× 2 table of pairs in the McNemar analysis

Sample 2

A not A
Sample 1 A k r k + r

not A s m s +m

k + s r +m N

The proportions of individuals of type “A” in the two samples
are

k + r

N
and

k + s

N
,

and the difference between the two proportions is

r − s

N
.

The null hypothesis that there is no difference between the
proportions of type “A” individuals in the two populations is

E

(
r − s

N

)
= 0 ⇒ E(r) = E(s) .

Denote r + s by n. If the null hypothesis holds, given n disparate
or “untied” pairs, the number of pairs of type 2 (or of type 3)
would follow a binomial distribution with parameter equal to
1/2. Typically, a large sample test is obtained by regarding the
quantity

u = r − n
2

1
2

√
n

as a standardized normal deviate. However, in this study we
make no assumption of normality. This McNemar analysis is
applied to study intrasession learning effects in the CT study
as follows: In each session, each image was seen at exactly two
levels, and the ordering of the pages ensured that they never
appeared with fewer than three pages separating them. For each
judge J and each session S and each image I , we pair the judge’s
reading for a given compression level L1 with the same judge’s
reading for compression level L2 for the same image and same
session, where L1 was seen before L2. For each member of the
pair, the reading is either perfect (sensitivity= 1 and PVP = 1,
type “A”) or not perfect (type “not A”). For example, judge 1 in
evaluating lung nodules over the course of three sessions saw
71 pairs of images, in which an image seen at one compression
level in a given session is paired with the same image seen at
a different level in the same session. Of the 71 pairs, 53 times
both images in the pair were judged perfectly, and 5 times both
images were judged incorrectly.

We concern ourselves with the other 13 pairs: 9 times the
image seen first was incorrect while the second one was cor-
rect, and 4 times the image seen second was incorrect when
the first one was correct. If it did not matter whether an image
was seen first or second, then conditional on the numbers of
the other two types, these would have a binomial distribu-
tion with parameters 13 and 1/2. This example is shown in
Table 55.4. The probability that a fair coin flipped 13 times
will produce a heads/tails split at least as great as 9 to 4 is
0.267; thus, this result is not significant. These calculations
were carried out for 2× 4× 2 = 16 different subsets of the



55 Quality Evaluation for Compressed Medical Images: Statistical Issues 937

TABLE 55.4 Judge 1, pairing for CT lung nodules

Second occurrence

Perfect Not perfect
First Perfect 53 4 57
occurrence Not perfect 9 5 14

62 9 71

data (lungs vs mediastinum (2), judges 1, 2, 3 considered sep-
arately or pooled together (4), and consensus or personal gold
standards (2)), and in no case was a significant difference found
at the 5% significance level (p-values ranged from 0.06 to 1.0).
An analysis of variance using the actual sensitivity and PVP
observations (without combining them into “perfect” and “not
perfect”) similarly indicated that page order and session order
had no significant effect on the diagnostic result.

55.3.1 Learning Effects for the Mammography
Experiment

In the mammography experiment, the radiologists saw each
study at least five times during the complete course. These five
versions were the analog originals, the digitized versions,and the
three wavelet compressed versions. Some images would be seen
more than five times, as there were JPEG compressed images,
and there were also some repeated images, included in order to
be able to directly measure intraobserver variability.

In this work, we looked for whether learning effects were
present in the management outcomes using what is known
in statistics as a “runs” test. We illustrate the method with an
example. Suppose a study was seen exactly five times. The man-
agement outcomes take on four possible values (RTS, F/U, C/B,
BX). Suppose that for a particular study and radiologist, the
observed outcomes were BX three times and C/B two times. If
there were no learning, then all possible “words” of length five
with three BXs and two C/Bs should be equally likely. There
are 10 possible words that have three BXs and two C/Bs. These
words have the outcomes ordered by increasing session num-
ber; that is, in the chronological order in which they were pro-
duced. For these 10 words, we can count the number of times
that a management outcome made on one version of a study dif-
fers from that made on the immediately previous version of the
study. The number ranges from one (e.g., BX BX BX C/B C/B)
to four (BX C/B BX C/B BX). The expected number of changes
in management decision is 2.4, and the variance is 0.84. If the
radiologists had learned from previous films, one would expect
that there would be fewer changes of management prescription
than would be seen by chance. This is a conditional runs test,
which is to say that we are studying the conditional permutation
distribution of the runs.

We assume that these “sequence data” are independent across
studies for the fixed radiologist, since examining films for

one patient probably does not help in evaluating a different
patient. So we can pool the studies by summing over stud-
ies the observed values of the number of changes, subtracting
the summed (conditional) expected value, and dividing this by
the square root of the sum of the (conditional) variances. The
attained significance level (p-value) of the resultant Z value is
the probability that a standard Gaussian is ≤ Z .

Those studies for which the management advice never
changes have an observed number of changes 0. Such studies
are not informative with regard to learning, since it is impossi-
ble to say whether unwavering management advice is the result
of perfect learning that occurs with the very first version seen,
or whether it is the result of the obvious alternative, that the
study in question was clearly and independently the same each
time, and the radiologist simply interpreted it the same way
each time. Such studies, then, do not contribute in any way
to the computation of the statistic. The JPEG versions and the
repeated images, which are ignored in this analysis, are believed
to make this analysis and p-values actually conservative. If
there were no learning going on, then the additional versions
make no difference. However, if there were learning, then the
additional versions (and additional learning) should mean that
there would be even fewer management changes among the five
versions that figure in this analysis.

The runs test for learning did not find any learning effect
at the 5% significance level for the management outcomes in
the mammography experiment. For each of the three judges,
approximately half of the studies were not included in the
computation of the statistic, since the management decision
was unchanging. For the three judges, the numbers of studies
retained in the computation were 28, 28, and 27. The Z values
obtained were −0.12, −0.86, and −0.22, with corresponding
p-values of 0.452, 0.195, and 0.413.

55.4 Comparison of Judges

In the CT study, comparisons of judges to each other were
carried out using the permutation distribution of Hotelling’s
paired T 2 statistic applied to the consensus gold standard
results. T 2 as we used it is a generalization of (the square of) a
univariate paired t statistic. We illustrate its use by an example.
Suppose that judges 1 and 2 are compared for their sensitivi-
ties on compressed lung images. The vector for comparison is
six-dimensional, one coordinate for each level of compression.
Each image (i) and bit rate (b) evaluated by both judges gives
rise to a difference d(i, b) of the sensitivities, judge 1− judge 2,
and to a sample mean d̄ (b) and sample variance s2(b). Each
image i for which both judges evaluated at bit rates b and b′
contributes a term

(d(i, b)− d̄(i, b))(d(i, b′)− d̄(i, b′))
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to the sample covariance s(b, b′). Write D̄ for the column vector
with bth coordinate d̄ (b) , and Ŝ for the 6× 6 matrix with b, b′
coordinate s (b, b′). The version of T 2 we use is

T 2 = D̄′Ŝ−1D̄.

It differs from the usual version [7] by a norming constant
that implies an F distribution for T 2 when {d(i, b)} are jointly
Gaussian and the numbers of (b, b′) pairs are equal. As our
data are decidedly non-Gaussian, computations of attained
significance are again based on the permutation distribution
of T 2 [7], though only on 999 permutations plus the unper-
muted value and not on the full distribution, which is neither
computationally feasible nor necessary.

The permutation distribution is motivated by the fact that,
were there no difference between the judges, then in computing
the difference d(i, b), it should not matter whether we com-
pute judge 1 – judge 2 or vice versa, or whether we randomize
the choice with a fair coin toss. The latter is exactly what we
do, but we constrain the randomization so that for fixed i,
the signs of {d(i, b)} are all the same. The constraint tends
to preserve the covariance structure of the set of differences,
at least when the null hypothesis of no difference is approxi-
mately true. (Unconstrained randomization would render the
signs of d(i, b) and d(i, b′) independent, and this is clearly not
consistent with the data.) After randomizing the signs of all dif-
ferences, we compute T 2 again; the process is repeated a total
of 999 times. There results a list of 1000 T 2 values, the “real”
(unpermuted) one and 999 others. Were there no difference
between the judges, the 1000 values would be (conditional on
the data) independent and identically distributed. Otherwise,
we expect the “real” value to be larger than at least most of
the others. The attained significance level for the test of the
null hypothesis that there is no difference between the judges
is (k + 1)/1000, where k is the number of randomly permuted
T 2 values that exceed the “real” one.

Some comparisons we hoped to make with T 2 were not possi-
ble to compute because not only are the d(i, b)not independent,
but also Ŝ was singular. We could have extended the domain of
applicability of the Hotelling T 2 approach to the case when
the covariance matrix is not invertible by making an arbitrary
choice of a pseudoinverse. This is not a customary approach to
T 2 in the usual Gaussian case, and also the inferences we draw
are quite clear without resorting to that technique.

The actual p-value for the comparison of judges 1 and 2 for
their sensitivity in finding lung nodules is not significant, and
the same is true for comparisons of judges 1 and 3 and that of
judges 2 and 3. Two of the three comparisons of predictive value
positive for the lung are not significant; for the other (1 vs 2)
it is not possible to compute because Ŝ is singular. The analo-
gous comparisons for the mediastinum give rather different
results. Judge 2 seems to differ from both other judges in sen-
sitivity (both p-values about 0.04). Judge 2 also seems to differ

from judge 3 in predictive value positive at the same p-value.
Similar results were obtained from a seven-dimensional com-
parison, in which the additional coordinate comes from data
on the original images. The basic message is that judges seem
to differ from one another in judging the mediastinum but not
the lung.

55.5 Relationships Between Quality
Measures

As image quality can be quantified by diagnostic accuracy,
subjective ratings, or computable measures such as signal-to-
noise ratio (SNR), one key question concerns the degree to
which these different measures agree. Verifications of medical
image quality by perceptual measures require the detailed, time-
consuming, and expensive efforts of human observers, typically
highly trained radiologists. Therefore, it is desirable to find
computable measures that strongly correlate with or predict
the perceptual measures.

In previous sections we have studied how certain parameters
such as percent measurement error and subjective scores appear
to change with bit rate. It is assumed that bit rate has a direct
effect on the likely measurement error or subjective score and
therefore the variables are correlated. In this sense, bit rate can
also be viewed as a “predictor.” For instance, a low bit rate of
0.36 bits per pixel (bpp) may “predict” a high percent measure-
ment error or a low subjective score. If the goal is to produce
images that lead to low measurement error, parameters that are
good predictors of measurement error are useful for evaluating
images as well as for evaluating the effect of image processing
techniques. A “good” predictor is a combination of an algo-
rithm and predictor variable that estimates the measurement
error within a narrow confidence interval.

Percent measurement error can be predicted from other
variables besides bit rate. The following graphs give an indi-
cation of whether subjective scores, SNR, or image distortion
are good predictors of measurement error. For instance, does
a high subjective score or high SNR generally lead to low per-
cent measurement error? We plot percent measurement error
against each predictor variable of interest in Figures 55.1, 55.2,
and 55.3. Subjective scores and SNR are as defined in previ-
ous chapters and MSE distortion is taken to be the average
nonnormalized squared distortion between the original and
compressed image.

How does one quantify whether or not some variable is a
good predictor? In the remainder of this section, we exam-
ine the usefulness of SNR as a predictor of subjective quality
for the MR data set. Our work suggests that cross-validated
fits to the data using generalized linear models can be used to
examine the usefulness of computable measures as predictors
for human-derived quality measures. In the example studied
later, the computable measure is SNR, and the human-derived
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FIGURE 55.1 Percent measurement error vs. subjective score for the
MR study.
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FIGURE 55.2 Percent measurement error vs. SNR for the MR study.

measure is the subjective rating, but the method presented is
applicable to other types of prediction problems.

In the classical linear regression model, the “predictor” x is
related to the outcome y by

y = βt x + ε, (55.1)

where β is a vector of unknown coefficients, and the error ε
at least has mean zero and constant variance, or may even
be normally distributed. In the regression problem of using
SNR to predict subjective quality scores, the response variable y
takes on integer values between 1 and 5, and so the assumption
of constant variance is inappropriate because the variance of
y depends on its mean. Furthermore, y takes on values only
in a limited range, and the linear model does not follow that
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FIGURE 55.3 Percent measurement error vs. MSE for the MR study.

constraint without additional untenable assumptions. We turn
to a generalized linear model that is designed for modeling
binary and, more generally, multinomial data [6].

A generalized linear model requires two functions: a link
function that specifies how the mean depends on the linear pre-
dictors, and a variance function that describes how the variance
of the response variable depends on its mean. If X1, X2, . . . , Xn

are independent Poisson variables, then conditional upon their
sum, their joint distribution is multinomial. Thus, the regres-
sion can be carried out with the Poisson link and variance
functions:

βt x = lnμ and var(y) = μ, (55.2)

in which case the mean of the response variable is

μ = eβ
t x . (55.3)

The results of this approach are shown in Figure 55.4. The
predictors are a quadratic spline in SNR:

x = (
1, snr , snr2, [max (snr − snr0, 0)]2

)
, (55.4)

where the spline knot snr0 was chosen to be 22.0 (the aver-
age SNR value of the data set). In Figure 55.4, the x symbols
denote the raw data pairs (subjective score, SNR) for the judges
pooled, and the curve is the regression fit. The o symbols denote
the 95% confidence intervals obtained from the bootstrapped
BCa method [4, 5]. This method is outlined next. The null
deviance (a measure of goodness of fit) of the data set is 229
on 449 degrees of freedom, and the residual deviance of the fit
is 118 on 446 degrees of freedom, indicating a useful fit. The
model parameters were estimated using the statistical software
S, which uses iteratively reweighted least-squares to generate
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a maximum-likelihood estimate. The data for all three judges
were pooled because an analysis of variance (ANOVA) deter-
mined that the effect of judges was not significant at the 5%
level. In the ANOVA, judges, images, and bit rates were taken to
be fixed effects.

Instead of doing a fit directly to the expectation of the
response, a second way to approach this problem looks for
the probability pi of obtaining the response i for each of the
five possible responses (i = 1, . . . , 5). The expectation can then
be calculated from the probabilities. We can transform the
responses y into binary outcomes:

yi =
{

1 if y = i
0 otherwise.

The binary response variables yi can then each be fitted using
the logit link:

βt x = ln
μ

1− μ , (55.5)

in which case the mean of the response variable is

μ = eβ
t x

1+ eβt x
, (55.6)

which guarantees that μ is in the interval [0,1]. The logit link
together with the binomial variance function μ(1− μ) defines
the logistic regression model. For each yi the predictor x was a
quadratic spline in SNR, with the knots located in each case at
the mean value of the SNRs that produced that response (18.2,
20.12, 22.57, 24.61, 25.56). The probabilities pi are shown in
Figure 55.5 with vertical offsets so they are not superimposed.

As the five probabilities have been determined from separate
regressions, they need to be scaled so that they add to one before

calculating E(y) from them. The logistic gives a value for the
log (odds), that is, for a given value of SNR= s we obtain

t = log
pi

p(not i)
.

Exponentiating both sides and rearranging terms yields

p1 − et (p2 + p3 + p4 + p5) = 0 when i = 1.

For that value of SNR, similar equations can be found for p2, p3,
p4, and p5. Additionally, we know that

∑
i pi = 1. This system

can be solved and the expectation calculated from these scaled
probabilities:

E(y) =
∑

i

ipi .

For some of the pi there are slight edge effects from the spline
fit. For example, p1 dips very slightly below zero at SNR =
24.9, and then becomes slightly positive again for SNRs>127.2,
although there are no further reponses of 1 at those SNRs. Until
we have made a further study of these edge effects, they are dealt
with simply by setting pi identically equal to zero beyond the
point where it first crosses zero. The expectation is then cal-
culated from these windowed probabilities. The expectation is
almost indistinguishable from the curve of Figure 55.4, thereby
validating the Poisson model.

Having established the appropriateness of the Poisson model,
we use it to compare SNR against segmental SNR in their ability
to predict subjective quality ratings. Segmental SNR, often used
in speech quality evaluation, compensates for the underempha-
sis of weak-signal performance in conventional SNR. An image
is divided into blocks, the SNR is calculated for each block on a
log scale, thresholded below at 0 and above at 45, and the values
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FIGURE 55.5 Response probabilities (y-axis) vs SNR (x-axis)
(Permission for reprint, courtesy Society for Information Display).
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are averaged. By converting component SNR values to decibel
values prior to averaging, very high SNR values corresponding
to well-coded large-signal segments do not camouflage coder
performance with the weak segments, as in conventional SNR.
We examined block sizes of all powers of 2 between 2× 2 and
256× 256. Since the images are of size 256× 256, the seg-
mental SNR for that block size equals the conventional SNR.
The usefulness of the computable metric in predicting subjec-
tive quality was examined as follows: For n = 20 times, the 30
MR images were put in a different random order. Each time, a
10-fold cross-validation was performed in which three images
at a time were left out, and the other 27 images were used to
fit the model. All judges and levels corresponding to those 27
images were used. The three images not involved in determin-
ing the parameters of the fit comprise 45 data points (3 images
× 3 judges × 5 compression levels). For these data we com-
pute the mean outcome and the sum of squared deviation from
this overall mean. This value is called S1. Then we calculate the
fitted values for these data, and take the sum of squared devia-
tions of observed and fitted, called S2. If the model is good and
the test set of three images is not unlike the set of 27 images
used to fit the model, we expect S2 to be smaller than S1. The
percent reduction in mean squared error that owes to fitting
the model (beyond fitting an overall constant) is a statistic that
summarizes the model’s predictive power:

M = 100(1− (S2/S1))%.

This statistic is a cross-validated analogue of the multiple
correlation. The results are presented in Table 55.5.

It appears that segmental SNR at several different block sizes
outperforms conventional SNR. The best of these (on 8× 8
blocks) produced a 48% reduction compared to the 43% reduc-
tion for SNR. One could examine the statistical significance
of these differences by sampling from the permutation distri-
bution, and it would be of interest to compare SNR against
perceptually based computable quality measures.

In studies like ours, one frequently wants a measure of the
predictive power of the model, as well as measures of its
goodness of fit. One diagnostic as to the appropriateness of

TABLE 55.5 Comparison of computable
quality measures

Block size M

256× 256 42.96
128× 128 42.29
64× 64 34.49
32× 32 46.48
16× 16 47.72
8× 8 48.10
4× 4 46.62
2× 2 47.21
l1 38.60
l3 35.08

the Poisson regression model (how median-biased it is) is
z0 (described in Section 55.5.1); zero is a “good” value. For
us, values for z0 for our five confidence intervals ranged
from −0.043 to 0.059, with a median of −0.012. The
correlation between observed and fitted values is a statis-
tic that summarizes the model’s predictive power. But the
number computed from the data that gave rise to the
model (0.70) can be overly optimistic. There are many
approaches to getting around that optimism, a simple one being
10-fold cross-validation, as in [3]. To implement 10-fold cross-
validation one divides the data set at random into 10 distinct
parts. Nine of them would be used to fit the generalized linear
model, and the correlation coefficient between actual and fitted
values would be calculated for the 10th part, that is, the part that
did not figure in the fitting. This would be repeated 10 times in
succession, and the resulting 10 values of the correlation aver-
aged. Other sample reuse methods can be used to accomplish
the same task.

55.5.1 BCa Confidence Intervals

The BCa confidence intervals for fixed values of SNR were
obtained by a bootstrapping method in which images are the
sampling units. Suppose that there are B bootstrap samples. We
took B = 2000. Each bootstrap sample was generated by sam-
pling randomly (with replacement) 450 times from our set of
450 (subjective score, SNR) pairs. Huge computational savings
can be realized in that, for the same set of images being sampled,
one bootstrap sample can be used simultaneously for differ-
ent SNRs. For a fixed SNR, Ê is the fitted expected subjective
score based on the model as computed for the original data, and
Ê∗(b) is the value computed for the bth bootstrap sample. The
100(1− 2α)% BCa confidence interval will be of the form [4](

Ê∗(α1), Ê∗(α2)
)

,

where Ê∗(α) is the 100αth percentile of the bootstrap distribu-
tion of Ê ; α1 and α2 are defined by

α1 = �
(

z0 + z0 + z (α)

1− a(z0 + z (α))

)

α2 = �
(

z0 + z0 + z (1−α)

1− a(z0 + z (1−α))

)
.

� is the standard normal cumulative distribution function, and
z (β) is the 100βth percentile (so, for example, z (0.95) = 1.645).
The “bias correction” z0 and “acceleration constant” a remain to
be defined. Ê∗(b) is the value of Ê for the bth bootstrap sample,
and Ê is the value computed for the original data. Then

z0 = �−1

(
#{Ê∗(b)<Ê}

B

)
,
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where �−1 is the Gaussian quantile function (so, for example,
�−1(0.95) = 1.645). Suppose that there are n images in all, and
let Ê(i) be the computed value of Ê when the ith image is deleted
(so the computation is done on n − 1 images). Let

Ê(.) = 1

n

n∑
i

Ê(i).

Then

a =
∑n

i=1

[
Ê(.) − Ê(i)

]3

6
{∑n

i=1

[
Ê(.) − Ê(i)

]2}3/2 .

There are two main differences between the BCa confidence
intervals described here and the Scheffé confidence intervals
described in the previous chapter. The Scheffé method produces
a simultaneous confidence interval, that is, one that provides
upper and lower limits for the entire curve at once. The BCa

method supplies pointwise intervals, valid for specific points
along the x-axis. It is not currently known how to extend the
BCa method to simultaneous intervals. The second difference is
that the Scheffé intervals are always symmetric about the curve,
regardless of whether there are any constraints on the range
of the variables. Sensitivity and PVP, for example, have a maxi-
mum value of 1. The expected value of sensitivity at a particular
bit rate may be very close to that upper limit, and when obtain-
ing a Scheffé confidence interval for that curve, the confidence
interval may exceed 1, since it is necessarily symmetric about
the curve. In that case, the upper confidence curve must be
thresholded at 1. The BCa method has the advantage of provid-
ing intervals that are not necessarily symmetric, but respect the
fact that the values of the response variable lie within a small
constrained range.

55.6 Philosophical Issues

There are many different perspectives from which these dif-
ferent measures of image quality can be viewed. They vary
in the extent to which they explicitly consider the application
for which the images are used. At one extreme are the com-
putable measures such as SNR, which in no way take account
of the medical nature of the images. Subjective ratings in which
a radiologist is asked to rate the medical usefulness of an
image begin to address the issue. ROC analysis, which includes
both a (generally) binary diagnostic decision and a subjective
confidence ranking associated with that diagnosis, are serious
attempts to capture the medical interest of the images through
their diagnostic value. Studies such as the CT detection task
and MR measurement task attempt to reproduce very closely
some actual clinical diagnostic tasks of radiologists, and to ask
the fundamental question of whether a diagnosis made on a
compressed image is as good as one made on an original. By

this measure, an image has high quality if the number and loca-
tions of lesions one finds there precisely match the number and
locations one finds on the original (or what the independent
panel finds on the original). But is that really the fundamental
question? A diagnosis is made on a patient’s scan in order to
make a decision about medical care for that patient, so perhaps
image quality could be defined in terms of medical care. That
is, an image has high quality if the decision on medical care is
unchanged from that determined upon the original. So if the
original image has six nodules and the compressed one has nine,
that may still be an extremely high quality image according to
this particular measure, because the decision regarding medical
care may be unaltered in the case of many tumors with a few
more or less. One can step back further to look at patient out-
come rather than the decision regarding medical care. Suppose
hypothetically that one designs a classification scheme to high-
light suspected tumors in an image. And perhaps, unbeknownst
to the designers, precancerous cells that have an overlapping
intensity distribution with that of cancerous cells also tend to get
highlighted, causing the surgeon to make a wider resection and
have lower recurrence rates. Then the processed image might
rate as poorer quality than an original based on the previous
measures (because both the diagnosis and medical care decision
would be different from those based on the original image), yet
the processed image would rate as top quality according to the
measure of improved patient outcome. No one would seriously
propose these as measures of image quality. The decision on
medical care and the patient outcome both depend on far too
many factors other than just image quality. And yet, if one con-
siders the true measure of medical image quality to be simply
whether a diagnosis on the processed image is unchanged from
the diagnosis on the original, one denies the possibility that the
processing may in fact enhance the image. This is not a wor-
risome consideration with image compression, although there
is some indication that in fact slightly vector quantized images
are superior to originals because noise is suppressed by a clus-
tering algorithm. However, this may soon be a difficult issue
in evaluating the quality of digitally processed medical images
where the processing is, for example, a highlighting based on
pixel classification, or a pseudocolored superposition of images
obtained from different modalities. There is a need to develop
image evaluation protocols for medical images that explicitly
recognize the possibility that the processed image can be better.

In addition to the advantages that the evaluation protocol
confers on the originals, physician training also provides a
bias for existing techniques. Radiologists are trained in med-
ical school and residency to interpret certain kinds of images,
and when asked to look at another type of image (e.g., com-
pressed or highlighted) they may not do as well just because
they were not trained on those. Highly compressed images
have lower informational content than do originals, and so
even a radiologist carefully trained on those could not do
as well as a physician looking at original images. But with
image enhancement techniques or slightly compressed images,
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perhaps a radiologist trained on those would do better when
reading those than someone trained on originals would do
reading originals.

In this series of three chapters, we have presented several
different ways of evaluating medical image quality. Simple com-
putable measures have a role in the design algorithms and in
the evaluation of quality simply because they are quickly and
cheaply obtainable, and tractable in analysis. The actual diag-
nostic quality is determined by various statistical protocols that
enable the evaluation of diagnostic accuracy in the context of
specific detection and measurement tasks. The analysis of sub-
jective quality is of interest mostly for the fact that it shows a
different trend from actual diagnostic quality, which can reas-
sure physicians that diagnostic utility is retained even when
a compressed image is peceptually distinguishable from the
original. There is considerable future work to be done both in
evaluation studies of image quality for different types of images
and diagnostic tasks, and in searching for computable mea-
sures of image quality that can accurately predict the outcome
of such studies, and perhaps be incorporated into algorithms
for designing codes that yield better quality compression.
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57.1 Background

Image compression can be performed in the original spatial
domain or in a transform domain. In the latter case, the image
is first transformed, and a subsequent compression operation
is applied in the transform domain. An example is the con-
ventional cosine transform method used in the standard JPEG
(Joint Photographic Experts Group) algorithm. The use of the
wavelet transform for image compression has drawn significant
attention since the publication of the works by Daubechies [1]
and Mallat [2]. The primary advantage of the wavelet transform
compared with the cosine transform is that the wavelet trans-
form is localized in both the spatial and frequency domains;
therefore, the transformation of a given signal will contain
both spatial and frequency information of that signal. On the
other hand, the cosine transform basis extends infinitely, with
the result that the spatial information is spread out over the
whole frequency domain. Because of this property, wavelet
image compression has shown promising results on medical
images. Although compression techniques are mainly applied
to two-dimensional (2D) images, the increasing availability of
three-dimensional (3D) CT and MR volume data sets raises
the need for 3D compression techniques [3, 4]. This chapter
presents compression with 3D wavelet transforms and discusses

the selection of wavelet filters. The compression outcomes of
3D data sets with JPEG and 2D wavelet transforms are also
compared to the compression obtained with the 3D wavelet
transform approach.

57.2 Wavelet Theory

57.2.1 Basic Wavelet Theory and Multiresolution
Analysis

Image transformation relies on using a set of basis functions on
which the image is projected to form the transformed image. In
the cosine transform, the basis functions are a series of cosine
functions and the resulting domain is the frequency domain. In
the case of the wavelet transform, the basis functions are derived
from a mother wavelet function by dilation and translation. In
the one-dimensional (1D) wavelet transform the basis functions
are obtained using the mother wavelet function ψ(x) such that

ψa,b(x) = 1√
a
ψ

(
x − b

a

)
, (57.1)

where a and b are the dilation and translation factors, respec-
tively. The continuous wavelet transform of a function f(x) is
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expressed as

Fw(a, b) = 1√
a

∫ ∞

−∞
f (x)ψ∗

(
x − b

a

)
dx , (57.2)

where ∗ is the complex conjugate operator.
The basis functions given in Equation 57.1 are redundant

when a and b are continuous. It is possible, however, to dis-
cretize a and b so as to form an orthonormal basis. One way
of discretizing a and b is to let a = 2p and b = 2pq, so that
Equation 57.1 becomes

ψp,q(x) = 2−p/2ψ∗
(
2−px − q

)
, (57.3)

where p and q are integers. The wavelet transform in Equa-
tion 57.2 then becomes

Fw(p, q) = 2−p/2

∫ ∞

∞
f (x)ψ∗

(
2−px − q

)
dx . (57.4)

Since p and q are integers, Equation 57.4 is called a wavelet
series. This representation indicates that the wavelet transform
contains both spatial and frequency information.

The wavelet transform also relies on the concept of multi-
resolution analysis, which decomposes a signal into a series of
smooth signals and their associated detailed signals at differ-
ent resolution levels. The smooth signal at level “m” can be
reconstructed from the “m + 1” level smooth signal and the
associated “m + 1” detailed signals.

57.2.2 One-, Two-, and Three-Dimensional
Wavelet Transform

We use the 1D case to discuss the concept of multiresolution
analysis. Consider the discrete signal fm at level m, which can
be decomposed into the m + 1 level by convolving it with
the h (low-pass) filter to form a smooth signal fm+1 and g
(high-pass) filter to form a detailed signal f ′m+1, respectively,
as shown in Figure 57.1. This can be represented with the
following equations using the pyramidal algorithm suggested
by Mallat [2]:

fm+1(n) =∑
k

h(2n − k)fm(k)

f ′m+1(n) =
∑

k
g (2n − k)fm(k).

(57.5)

Here, fm+1 is the smooth signal and f ′m+1 is the detailed signal at
the resolution level m + 1. The total number of discrete points
in fm is equal to that of the sum of fm+1 and f ′m+1. For this
reason, both fm+1 and f ′m+1 have to be sampled at every other
data point after the operation described in Equation 57.5. The
same process can be further applied to fm+1, creating the detailed

fm

h

g

2 Sampled at every other data point

2 fm11

f 9m112

FIGURE 57.1 Decomposition of a signal fm into a smooth fm+l and a
detailed signal f ′m+1.
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FIGURE 57.2 A three-level wavelet decomposition of a signal.

and smooth signal at the next resolution level, until the desired
level is reached.

Figure 57.2 depicts the components resulting from three
levels of decompositions of the signal f0. The horizontal axis
indicates the total number of discrete points of the original
signal, and the vertical axis is the level, m, of the decompo-
sition. At the resolution level m = 3, the signal is composed
of the detailed signals of the resolution levels f ′1 , f ′2 , and f ′3
plus one smooth signal f3. Signals at each level can be com-
pressed by quantization and encoding methods to achieve the
required compression ratio. Accumulation of these compressed
signals at all levels can be used to reconstruct the original
signal f0.

In the case of the 2D transform, the first level will result
in four components, the x-direction and the y-direction (see
Figure 57.4, left and middle). Figure 57.3 shows a two-level
wavelet decomposition of a head MR image.

Three-dimensional wavelet transforms can be computed by
extension of the 1D and 2D pyramidal algorithm, since the
multidimensional wavelet transform can be formulated to be
separable. One level of the decomposition process from fm to
fm+1 is shown in Figure 57.4. First, each line in the x-direction
of the 3D image data set is convolved with filters h and g, fol-
lowed by subsampling every other voxel in the x-direction to
form the smooth and detailed data lines. The resulting voxels
are convolved with h and g in the y-direction, followed with
subsampling in the y-direction. Finally, the same procedure is
applied to the z-direction. The resulting signal has eight com-
ponents. Since h is a low-pass filter, only one component, fm+1,
contains all low frequency information. The rest of the seven
components convolve at least once with the high-pass filter
g, and therefore contain the detailed signals f ′m+1 in different
directions.



57 Three-Dimensional Image Compression with Wavelet Transforms 965

(a) (b) (c)

FIGURE 57.3 Wavelet decomposition of a MR image. (a) Original; (b) one-level decomposition; (c) two-level decomposition. In each level, the
left upper corner shows the smooth image; the other three quadrants are the detailed images.
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FIGURE 57.4 Three-dimensional wavelet decomposition.

The same process can be repeated for the low-frequency sig-
nal fm+1, to form the next level of wavelet transform, and so
forth, until the desired level is reached.

57.3 Three-Dimensional Image
Compression with Wavelet
Transform

57.3.1 Block Diagrams

The wavelet transform is a very effective method for compress-
ing a 3D medical image data set yielding a high compression
ratio image with good quality. Figure 57.5 shows the block
diagrams of 3D wavelet transform compression and decom-
pression. In the compression process, a 3D wavelet transform
is first applied to the 3D image data set, resulting in a 3D
multiresolution representation of the image. Then the wavelet

Forward
3D wavelet
transform

Entropy
decoding

Scalar
dequantization

Inverse
3D wavelet
transform

(a) Compression process

(b) Decompression process

Scalar
quantization

Entropy
coding

FIGURE 57.5 Block diagrams of image compression and decompres-
sion using the 3D wavelet transform.

coefficients are quantized using scalar quantization. Finally,
run-length and Huffman coding are used to impose entropy
coding on the quantized data. These steps are described in
Section 57.4.

The decompression process is the inverse of the compres-
sion process. The compressed data are first entropy decoded,
a dequantization procedure is applied to the decoded data,
and the inverse 3D wavelet transform is used, resulting in the
reconstructed 3D image data.

57.3.2 Mathematical Formulation of the
Three-Dimensional Wavelet Transform

The 3D wavelet transform is based on a scaling function� and
seven wavelet functions�. All eight functions are separable, that
is, they can be expressed by the product of three 1D functions,
one for each dimension. The scaling function has the form

� = φ(x)φ(y)φ(z), (57.6)
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where φ(x),φ(y), and φ(z) contain the low-pass filter h in the
x, y, and z directions, respectively (see Equation 57.5).

The seven wavelet functions have the form

�1(x , y , z) = φ(x)φ(y)ψ(z),
�2(x , y , z) = φ(x)ψ(y)φ(z),
�3(x , y , z) = ψ(x)φ(y)φ(z),
�4(x , y , z) = ϕ(x)ψ(y)ψ(z),
�5(x , y , z) = ψ(x)φ(y)ψ(z),
�6(x , y , z) = ψ(x)ψ(y)φ(z),
�7(x , y , z) = ψ(x)ψ(y)ψ(z), (57.7)

where ψ(x),ψ(y), and ψ(z) contain the high-pass filter g in
the x, y, and z directions, respectively. During each level of the
transform, the scaling function and the seven wavelet functions
are applied, respectively, to the smooth (or the original) image
at that level, forming a total of eight images, one smooth and
seven detailed images. The wavelet coefficients are the voxel
values of the eight images after the transform.

Figure 57.6 shows two levels of a 3D wavelet transform on an
image volume data set. The first level decomposes the data into
eight components: f1 is the low (smooth) resolution portion of
the image data, and the remaining blocks are high (detailed)
resolution components. As Figure 57.6 indicates, f1 can be fur-
ther decomposed into eight smaller volumes labeled f2 and
f ′2 s. The detailed images f ′1 on level 1 contain higher frequency
components than those f ′2 of level 2.

With properly chosen wavelet functions, the low-resolution
component in the m level is 1/(23)m of the original image size
after the transformation, but contains about 90% of the total
energy in the m level. It is clear that the high-resolution compo-
nents are spread into different decomposition levels. For these
reasons, the wavelet transform components provide an efficient
representation of the original image for compression purposes.
Different levels of representation can be encoded differently to
achieve a desired compression ratio.

57.3.3 Wavelet Filter Selection

The selection of wavelet filters is a crucial step that dictates the
performance of image compression. A good filter bank should

be reasonably fast, should provide a transform where most of
the energy is packed in a small number of coefficients, and
should not introduce distortions. The following characteristics
address these points.

(1) Compact support: Compact support wavelets and scaling
functions have values inside a finite range and are zero
outside the range, therefore they can be implemented
with finite impulse response (FIR) filters. Since filtering
with FIR filters is generally much faster than filtering with
infinite impulse response (IIR) filters, compact support
wavelets provide fast processing.

(2) Smoothness: The smoothness of a wavelet is commen-
surate with the highest order at which its moment van-
ishes such that

∫
xmψ(x)dx = 0 for m = 0, 1, . . . , N − 1.

Wavelets with high degree of smoothness minimize dis-
tortions and will likely lead to better representation with
most of the energy packed in a smaller number of
coefficients.

(3) Symmetry: Symmetry is a desirable characteristic of a fil-
ter because it provides a linear phase in the frequency
response of the filter. Filters with linear phase will produce
less distortion.

(4) Filter length: A short filter allows fast computation of the
wavelet transform, but smoothness is obtained with long
filters. Image compression is based on a trade-off between
the filter length and compression performance. In general,
the following types of wavelet filters perform well for 3D
MR and CT images:
(a) Daubechies orthogonal wavelet from D4–D20 [1].
(b) Coiflet filters [5].
(c) Biorthogonal wavelet filters [6–8].

57.3.4 Quantization

The second step of compression is quantization. The purpose
of quantization is to map a large number of input values into
a smaller set of output values by reducing the precision of the
data. This is the step in which information may be lost. Wavelet-
transformed data are floating-point values and consist of two
types: low-resolution image components, which contain most
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FIGURE 57.6 A two-level 3D wavelet transform on an image volume data set.
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of the energy, and high-resolution image components, which
contain the information from sharp edges.

Since the low-resolution components contain most of the
energy, it is important to maintain the integrity of this com-
ponent of the data. To minimize data loss in this portion, each
floating-point value can be mapped to its nearest integer neigh-
bor (NINT). In the high-resolution components of the wavelet
coefficients, there are many coefficients of small magnitude that
correspond to the flat areas in the original image. These coef-
ficients contain very little energy, and we can eliminate them
without creating significant distortions in the reconstructed
image. A threshold number Tm is chosen, such that any coeffi-
cient smaller than Tm will be set to zero. Above the threshold
Tm , a range of floating-point values will be mapped into a
single integer. An example of quantization for high-frequency
coefficients is

aq(i, j, k) = NINT

[
a(i, j , k)− Tm

Qm

]
, a(i, j , k) > Tm

aq(i, j, k) = 0 −Tm ≤ a(i, j, k) ≤ Tm

aq(i, j, k) = NINT

[
a(i, j , k)+ Tm

Qm

]
, a(i, j , k) < −Tm ,

(57.8)

where a(i, j, k) is the wavelet coefficient in three dimensions,
aq(i, j, k) is the quantized wavelet coefficient, m is the number
of the level in the wavelet transform, and Qm = Q2m−1, with
Q being a selected constant. The threshold Tm can be set as
a constant for all levels or it can be a function of m. After
quantization each coefficient will take an integer value within
a finite range.

57.3.5 Entropy Coding

In the third step, the quantized coefficients are subjected to
run-length coding followed by Huffman coding. Run-length
coding examines consecutive quantized coefficients and deter-
mines sequences made of coefficients that have the same value.
Each sequence is represented by the common value and the
number of coefficients in the run, resulting in considerably
more compact information compared to the entire sequence of
coefficients [9]. In the quantization process, thresholding of the
high-frequency components results typically in a large number
of zeroes, and run-length coding can be expected to reduce the
size of data significantly. After run-length coding, the data can
be further compressed if each value of the data stream is repre-
sented with a new code that minimizes the total number of bits
in the data. When values are considered one at a time, Huffman
coding is the optimal technique for this process [9]. It assigns to
each value a new code with a varying number of bits, such that
values that appear frequently in the data are coded with a small
number of bits, whereas those that appear infrequently can be

coded with larger number of bits. Typically, a significant level
of data reduction can be obtained with Huffman coding.

57.4 Wavelet Filter Selection for a 3D
Image Data Set

57.4.1 3D CT and MR Volume Data Sets

The performance of a filter set also depends on image chara-
cteristics. The smoothness, sharpness, and noise of an image
affect the compression performance of a filter set [10]. For
a three-dimensional image set, the image characteristics may
differ within 2D slices and in the interslice direction. A uni-
form 3D wavelet may not provide the best performance because
the correlation of pixels within a slice is different from that
between slices. Typically, the distance of adjacent pixels within
a slice varies from 0.3 to 1.2 mm, whereas the distance between
slices can be much higher. Each slice has a certain thickness
and two adjacent slices are separated by a gap. We define the
slice distance to be the sum of the slice gap and slice thick-
ness. Typically, the slice distance varies from 1 to 10 mm for CT
images and from 1.5 to 8 mm for MR images. Hence, the opti-
mal wavelet filter set within slices (in the x and y directions) may
not be the same as the optimal wavelet filter set in the slice (z)
direction.

Image characteristics such as resolution, noise, and sharpness
are determined by anatomy and image modality. Tables 57.1
and 57.2 show CT and MR image sets, respectively, selected to
test the performance of wavelet filters on images with different
modality, anatomy, technique of acquisition, and pixel size.

The smoothness of an image f (x , y) can be quantified using
the autocorrelation function defined as

c(m, n) =
∑

x

∑
y

f ∗(x , y) · f (x +m, y + n), (57.9)

where ∗ stands for the complex conjugate, and m and n are
integers that define the spacing (lag) between pixels in the x
and y directions, respectively. The correlation coefficients are
defined as

cc(m, n) = c(m, n)

c(0, 0)
. (57.10)

Figure 57.7 shows the correlation coefficients as a function
of m when n = 0, i.e., cc(m, 0), for the sample images stated

TABLE 57.1 Selected CT image sets for evaluating wavelet filters

Anatomy Pixel size (mm) Pixel size (mm)

Abdomen 0.66 0.83
Brain 0.39 0.43
Chest 0.66 0.94
Spine 0.29 0.43
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TABLE 57.2 Selected MR image sets for evaluating wavelet filters

Anatomy Pixel size (mm) T1 weighted Pixel size (mm) T1 weighted Pixel size (mm) T2 weighted

Abdomen 0.84 1.25 ∗∗∗

Brain axial 0.78 1.17 ∗∗∗

Brain coronal 0.78 1.17 ∗∗∗

Knee 0.55 ∗∗∗ 0.55
Shoulder 0.55 ∗∗∗ 0.63
Spine 0.70 1.10 0.78
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FIGURE 57.7 Correlation coefficients of sample images: (a) CT,
(b) MR.

in Tables 57.1 and 57.2. A larger correlation indicates that
adjacent pixels are more likely to have similar values. Images
with higher correlation coefficients generally have lower high-
frequency components, have fewer sharp edges, and appear
smoother.

For CT images (Figure 57.7a) the correlation coefficients of
the spine and abdomen images are much larger than those of the
head and chest images. Therefore, spine and abdomen images
are comparatively smoother and have lower high-frequency
components. In general, an image with a smaller pixel size
has higher correlation coefficients than the one with a larger

pixel size for the same anatomy. For example, the chest image
with 0.66-mm pixel size (chest.66) has higher correlation coef-
ficients than the chest image with 0.94-mm pixel size (chest.94)
in Figure 57.7a.

For most MR images (Figure 57.7b), the correlation coef-
ficients are very close in value when the shift, m, is small. In
general, for the same pixel shift, CT images have larger correla-
tion coefficients than MR images because CT images are often
smoother than MR images.

57.4.2 Wavelet Filters for 2D Slice

Five wavelet filters that provide a good trade-off between
compression quality, compression ratio, and computational
efficiency are given in Table 57.3. The first column in Table 57.3
indicates the type of the filter bank and the number of the coef-
ficients. The first three filter banks are biorthogonal, and the last
two are orthogonal. The second column in Table 57.3 presents
the filter coefficients. For the biorthogonal filter banks, both
low-pass h0 and high-pass g0 filters are listed. For the orthogo-
nal filter banks, only the low-pass coefficients are given since the
high-pass filter can be easily obtained from the low-pass filter
using the orthogonality property as follows:

g ( j) = (−1)j h(1− j)∑
j

h( j) = √2 (57.11)

∑
j

g ( j) = 0.

The performance of the wavelet filters listed in Table 57.3
was evaluated using the sample images described in Tables 57.1
and 57.2. The quality of the compression is often measured
with the root-mean-square error (RMSE) between the original
image f (x , y , z) and the image fc(x , y , z) reconstructed after
compression such that

RMSE =

⎧⎪⎨
⎪⎩

∑
x , y , z

[
f (x , y , z)− fc(x , y , z)

]2

N

⎫⎪⎬
⎪⎭

1/2

, (57.12)

where N is the total number of pixels in the image.
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TABLE 57.3 Five best wavelet filters for CT and MR image compressiona

Filter banks Filter coefficients

9/7 h0 0.026749,−0.016864,−0.078223, 0.266864, 0.602949, 0.266864,−0.078223,−0.016864, 0.026749
g0 0.045636,−0.028772,−0.295636, 0.557543,−0.295636,−0.028772, 0.045636

13/11 h0 − 0.00599119, 0.00265816, 0.03343325,−0.02367046,−0.04870418, 0.27101229, 0.54252426, 0.27101229,
−0.04870418,−0.02367046, 0.03343325, 0.00265816,−0.00599119

g0 0.01002830, 0.00444934,−0.07688893,−0.04890542, 0.31686063, 0.58891216, 0.31686063,−0.04890542,
−0.07688893, 0.00444934, 0.01002830

17/11 h0 0.00134975,−0.00135360,−0.01201420, 0.00843901, 0.03516647,−0.05463331,−0.06650990, 0.29754791,
0.58401575, 0.29754791,−0.06650990,−0.05463331, 0.03516647, 0.00843901,−0.01201420,−0.00135360, 0.00134975

g0 0.01020092, 0.01023007,−0.05566486,−0.02854447, 0.29546394, 0.53662880, 0.29546394,−0.02854447,−0.05566486,
0.01023007, 0.01020092

Daubechies20 0.026670057901, 0.188176800078, 0.527201188932, 0.688459039454, 0.281172343661,−0.249846424327,−0.195946274377,
0.127369340336, 0.093057364604,−0.071394147166,−0.029457536822, 0.033212674059, 0.003606553567,−0.010733175483,
0.001395351747, 0.001992405295,−0.000685856695,−0.000116466855, 0.000093588670,−0.000013264203

Coiflet 6 −0.00169185102,−0.00348787622, 0.01919116068, 0.02167109464,−0.09850721332,−0.05699742448, 0.45678712217, 0.78931940900,
0.38055713085,−0.07043874879,−0.056514193868, 0.03640996261, 0.00876013071,−0.01119475927,−0.001921335414,
0.00204138098, 0.00044583040,−0.00021625728, 0.0004458303975,−0.00021625728

a The first three are biorthogonal and the last two are orthogonal.

TABLE 57.4 MR and CT image sets with various slice thicknesses for evaluation of wavelet filters in the z-direction

Image Modality Anatomy Slice distance (mm) Pixel distance (mm) # of slices

CTBR1 CT Brain 1 0.41 51
CTBR3 CT Brain 3 0.43 31
CTBR5 CT Brain 5 0.41 24
CTKE1 CT Knee 1 0.43 151
CTKE5 CT Knee 5 0.43 31
CTSP3 CT Spine 3 0.39 69
CTCH7 CT Chest 7 0.74 43
MRBR1.5-a MR Brain-axial 1.5 1.02 124
MRBR3-a MR Brain-axial 3 1.17 47
MRBR6-a MR Brain-axial 6 0.78 26
MRBR4-c MR Brain-coronal 4 1.17 45
MRBR6-c MR Brain-coronal 6 0.78 28

The comparative study indicated that compression was sim-
ilar with all five filters, but the three biorthogonal filter banks
slightly outperformed the orthogonal filter banks.

57.4.3 Wavelet Filters for the Interslice Direction

57.4.3.1 Sample Images for Evaluation of Wavelet
Filters

Since the pixel sizes in the x and y directions are very different
from the slice distances, the best filter bank used in the slice
direction may be different from that of the x and y directions.
The best filters for the interslice direction were determined
using 12 different 3D image data sets from various anatomi-
cal and imaging modalities as described in Table 57.4. The first
column in the table is the name for each image set where the
first two letters represent the image modality and the next two
letters represent the anatomy. The last letter, a or c, in the MR

sets stands for axial or coronal, respectively. As indicated in the
fourth column, the slice distance varies from 1 to 7 mm.

57.4.3.2 Evaluation of Wavelet Filter Banks

With a fixed filter bank in the x and y directions, for example,
the 9/7, the performance of different wavelet filters can be eval-
uated by applying them to the z-direction of the 3D image sets
described in Table 57.4. The three best filters for the z-direction
were the 9/7, Daubechies4 (D4) [1], and Haar [11]. Figure 57.8
shows an example of the compression results for two different
CT knee image sets at 1-mm and 5-mm slice distances. The
two image sets were from the same patient, but two different
studies. The compression ratios obtained by applying the 9/7
wavelet to the image set with a 1-mm slice distance were bet-
ter than those of the D4 and Haar (Figure 57.8a). In contrast,
the Haar wavelet seems to perform better for image sets with
5-mm slice distances (Figure 57.8b). This figure also indicates
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FIGURE 57.8 Compression ratio versus RMSE for three different fil-
ter banks in the slice direction. (a) CT knee image set with 1-mm slice
distance. (b) CT knee image set with 5-mm slice distance.

that for the same RMSE, thinner slice distances yield a higher
compression ratio.

57.4.4 Comparison of 2D Wavelets, 3D Wavelets,
and JPEG

This section presents some compression results using two 3D
image data sets. The first is a 3D MR brain data set obtained
with a GE 5x Sigma Scanner with 26 images and a slice distance
of 6 mm. Each image is 256× 256× 12 bits. The second set is a
3D CT spine from a GE CT scanner with 69 images and a slice
distance of 3 mm. Each image is 512× 512× 12 bits. The 3D
wavelet,2D wavelet, and JPEG compression were applied to each
data set. The 2D wavelet compression was implemented with
the 9/7 filter bank in x and y, applied to each slice. Figures 57.9a
and 57.9b compare the performance of 3D wavelet and JPEG
algorithms, and Figures 57.9c and 57.9d compare the 3D and
2D wavelet compression. In these curves, the compression ratio
is given as a function of equivalent peak signal-to-noise ratio
(EPSNR), defined as

EPSNR = 20 log
fwin{∑

[f (x , y , z)−fc (x , y , z)]2

N

}1/2 , (57.13)
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FIGURE 57.9 3D wavelet compression vs JPEG: (a) MR brain image
set with 6-mm slice distance, (b) CT spine image set with 3-mm slice
distance. 3D wavelet compression vs 2D wavelet compression: (c) MR
brain image set, (d) MR spine image set.
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where fwin is the display window width of the image that depends
on its modality and type of image.

Figure 57.10 shows the original and decompressed images of
the CT spine compressed at a 20:1 ratio using the 3D wavelet,
the 2D wavelet, and JPEG methods. Figures 57.11a, 57.11b, and
57.11c show the difference images between the original and the
decompressed images for the 3D wavelet, 2D wavelet, and JPEG,
respectively. In order to emphasize the differences, a window in
the spine region is used (Figure 57.10a). The difference images
shown here have been processed by adding a gray level of 128
and multiplying by 5. The 3D difference image has the small-
est visual discrepancy. The 2D difference image (Figure 57.11b)

shows granular noise similar to that in the 3D difference image,
but with larger granules and higher amplitude. The JPEG differ-
ence image (Figure 57.11c) has larger errors in high frequency
regions (spine regions) than the 3D wavelet difference image.
Also, the JPEG difference image clearly shows block artifacts
that are typical at relatively high compression ratios with JPEG.

In general, the difference image of a wavelet-compressed
image has uniform error in all regions. This is due to the fact
that wavelets operate at multiple resolutions and the filters can
accommodate the representation of small textural elements,
edges as well as homogeneous regions. The 3D wavelet compres-
sion has better performance than the 2D wavelet compression

(b)(a)

(d)(c)

FIGURE 57.10 One slice of a CT image set compressed at ratio of 20:1 using the 3D and 2D wavelet algorithms and JPEG. (a) Original image,
(b) compressed with the 3D wavelet method, (c) compressed with the 2D wavelet method, (d) compressed with JPEG.
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(a) (c)(b)

FIGURE 57.11 The spinal column portion of the difference images obtained after compression using (a) the 3D wavelet method, (b) the 2D
wavelet method, (c) JPEG. The original image is shown in Figure 57.10a within the rectangle.

because the former utilizes information in three orientations
and can take advantage of the data structure and redundancies
in the z direction as well.
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56.1 Introduction

We examined in the previous chapter several common
computable measures of image quality, as well as subjective
quality ratings. Although these quality measures are useful in
many ways, for medical images one wishes a quality measure
to take proper account of the diagnostic purpose of the image.
The ROC methodology discussed in the previous chapter is
one approach to this. In this chapter, we present several studies
that attempt to evaluate diagnostic utility of the images more
directly. The radiologists were not specially trained or calibrated
in any way for these judging tasks, as the goal of these studies
was specifically to evaluate compression performance in the
context of radiologists carrying out tasks that resembled their
everyday work. No constraints were placed on the viewing time,
the viewing distance, or the lighting conditions. The judges
were encouraged to simulate the conditions they would use in
everyday work. The tasks were detection of lung nodules and
mediastinal adenopathy in CT images, measurement of blood
vessels in MR chest scans, and detection and management tasks
in mammography. As we shall see, the results indicate that when
these images are used in situations resembling everyday work,
substantial compression can be applied without affecting the
interpretation of the radiologist.

∗Portions reprinted, with permission, from IEEE Trans. Medical Imaging, 12(4):

727–739, Dec. 1993 and Proceedings IEEE, 82(6): 919–932, June, 1994.

56.2 CT Study: Example of Detection
Accuracy

The detection of abnormal lymphoid tissue is an important
aspect of chest imaging. This is true especially for the medi-
astinum, the central portion of the chest that contains the heart,
major blood vessels, and other structures. Abnormally enlarged
lymph nodes, or lymphadenopathy, in the mediastinum can be
caused by primary malignancy such as lymphoma, metastatic
disease that results from the spread of breast or lung cancer
through the lymphatics, tuberculosis, or non-infectious inflam-
matory diseases such as sarcoidosis. Typically radiologists can
easily locate lymph nodes in a chest scan. The detection task is
therefore to determine which of the located lymph nodes are
enlarged.

The detection of lung nodules is another major objective
in diagnostic imaging of the chest. A common cause of these
nodules is malignancy, primary or metastatic. The latter, which
spreads through the blood stream from a primary cancer almost
anywhere in the body, can cause multiple nodules in one or
both lungs. Other causes include fungal and bacterial infections,
and noninfectious inflammatory conditions. Nodules range in
size from undetectably small to large enough to fill an entire
segment of the lung.

The compressed and original images were viewed by three
radiologists. For each of the 30 images in a study, each

Copyright © 2000 Academic Press.

All rights of reproduction in any form reserved. 944
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radiologist viewed the original and 5 of the 6 compressed lev-
els, and thus 360 images were seen by each judge. The judges
were blinded in that no information concerning patient study or
compression level was indicated on the film. Images were viewed
on hardcopy film on a lightbox, the usual way in which radiol-
ogists view images. The “windows and levels” adjustment to the
dynamic range of the image was applied to each image before
filming. This simple contrast adjustment technique sets maxi-
mum and minimum intensities for the image. All intensities
above the maximum are thresholded to equal that maximum
value. All intensities below the minimum are thresholded to
equal that minimum value. This minimum value will be dis-
played on the output device as black, and the maximum value
will be displayed as white. All intensity values lying in between
the minimum and maximum are linearly rescaled to lie between
black and white. This process allows for more of the dynamic
range of the display device (in this case, the film) to be used
for the features of interest. A radiologist who was not involved
in the judging applied standard settings for windows and levels
for the mediastinal images, and different standard settings for
the lung nodule images. The compressed and original images
were filmed in standard 12-on-1 format on 14′′ × 17′′ film using
the scanner that produced the original images.

The viewings were divided into 3 sessions during which the
judges independently viewed 10 pages, each with 6 lung nodule
images and 6 mediastinal images. The judges marked abnor-
malities directly on the films with a grease pencil, although
mediastinal lymph nodes were not marked unless their smallest
cross-sectional diameter measured 10 mm or greater. All judges
were provided with their own copy of the films for marking.
No constraints were placed on the viewing time, the viewing
distance, or the lighting conditions; the judges were encour-
aged to simulate the conditions they would use in everyday
work. They were, however, constrained to view the 10 pages in
the predetermined order, and could not go back to review ear-
lier pages. At each session, each judge saw each image at 2 of
the 7 levels of compression (7 levels includes the original). The
two levels never appeared on the same film, and the ordering
of the pages ensured that they never appeared with fewer than
3 pages separating them. This was intended to reduce learning
effects. Learning effects will be discussed in the next chapter.
A given image at a given level was never seen more than once by
any one judge, and so intraobserver variability was not expli-
citly measured. Of the 6 images in one study on any one page,
only one image was shown as the original, and exactly 5 of the
6 compressed levels were represented. The original versions of
the images are denoted “g.” The compressed versions are “a”
through “f.” The randomization follows what is known as a
“Latin square” arrangement.

The consensus gold standard for the lung determined that
there were, respectively, 4 images with 0 nodules, 9 with 1, 4
with 2, 5 with 3, and 2 with 4 among those images retained. For
the mediastinum, there were 3 images with 0 abnormal nodes,
17 with 1, 2 with 2, and 2 with 3.

Once a gold standard is established, a value can be assigned
to the sensitivity and the predictive value positive (PVP). The
sensitivity and PVP results are shown graphically using scatter
plots, spline fits, and associated confidence regions. The spline
fits are quadratic splines with a single knot at 1.5 bits per pixel
(bpp), as given in the previous chapter. The underlying prob-
ability model that governs the 450 observed values of y (=
sensitivity or PVP) is taken to be as follows. The random vector
of quadratic spline coefficients (a0, a1, a2, b2) has a single real-
ization for each (judge, image) pair. What is observed as the bit
rate varies is the value for the chosen five compression levels
plus independent mean 0 noise. The expected value of y is

E(y) = E(a0)+ E(a1)x + E(a2)x
2 + E(b2)(max(0, x − 1.5))2,

where the expectation is with respect to the unconditional dis-
tribution of the random vector (a0, a1, a2, b2). Associated with
each spline fit is the residual root mean square (RMS), an esti-
mate of the standard deviation of the individual measurements
from an analysis of variance of the spline fits.

The standard method for computing simultaneous confi-
dence regions for such curves is the “S” (or “Scheffé”) method
[20], which is valid under certain Gaussian assumptions that do
not hold for our data. Therefore we use the statistical technique
called “the bootstrap” [4, 10–12], specifically a variation of the
“correlation model” [13] that is related to the bootstrap-based
prediction regions of Olshen et al. [22]. We denote the estimate
of PVP for the lung study at a bit rate bpp by Ê(y(bpp)).

(1) A quadratic spline equation can be written as

Ê(y (bpp)) = a0 + a1x + a2x2 + b2(max(0, x − x0))
2,

where x0 is the “knot” (in this study, x = bit rate and
x0 = 1.5 bpp). This equation comes from the linear
model

Y = Dβ + e

with one entry of Y (and corresponding row of D) per
observation. D is the “design matrix” of size 450× 4.
It has four columns, the first having the multiple of
a0(always 1), the second the multiple of a1(that is,
the bit rate), and so on. We use Ê(a) to denote the
four-dimensional vector of estimated least squares
coefficients:

Ê
(
a
) = (

â0, â1, â2, b̂2

)t
.

(2) For a given bit rate b, write the row vector dictated by
the spline as dt = dt (b). Thus, Ê(y(bpp)) = dt Ê

(
a
)
.

(3) The confidence region will be of the form

dt Ê(a)− S
√

F
√

dt (Dt D
)−1

d ≤ y ≤ dt Ê(a)

+ S
√

F
√

dt (Dt D
)−1

d,
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where S is the square root of the residual mean square
from an analysis of variance of the data. So, if Y is n × 1
and β is k × 1, then

S =
√

1

n − k
||Y − DÊ(a)||2.

The region will be truncated, if necessary, so that always
0 ≤ y ≤ 1.

(4) The bootstrapping is conducted by first drawing a sam-
ple of size 3 with replacement from our group of three
judges. This bootstrap sample may include one, two, or
all three of the judges. For each chosen judge (including
multiplicities, if any), we draw a sample of size 30 with
replacement from the set of 30 original images. It can
be shown that typically about 63% = (100(1 − e−1))%
of the images will appear at least once in each bootstrap
sample of images. For each chosen judge and original
image, we include in the bootstrap sample all five of the
observed values of y . The motivation for this bootstrap
sampling is simple: The bootstrap sample bears the same
relationship to the original sample that the original
sample bears to “nature.” We do not know the real
relationship between the true data and nature; if we
did, we would use it in judging coverage probabilities in
steps 7 and 8. However, we do know the data themselves,
and so we can imitate the relationship between nature
and the data by examining the observed relationship
between the data and a sample from them [10, 12].

(5) Each bootstrap sample Y ∗ entails a bootstrap design
matrix D∗, as well as corresponding Ê∗(a) and S∗. This
bootstrap process will be carried out nb = 1000 times.

(6) For the jth bootstrap sample compute the four new
bootstrap quantities as in step 5.

(7) Compute for each
√

F

ĜB

(√
F
)
= (nb)

−1

{
#j : dt Ê∗(a)− S∗

√
F
√

dt (D∗t D∗)−1d

≤ dt Ê(a)

≤ dt Ê∗(a)+ S∗
√

F
√

dt (D∗t D∗)−1d ∀d

}
= (nb)

−1
{

#j : (Ê∗(a)− Ê(a))t (D∗t D∗)(Ê∗(a)

− Ê(a)) ≤ F(S∗)2
}

.

Note that the latter expression is what is used in the
computation. This is the standard Scheffé method, as
described in [20].

(8) For a 100% confidence region compute (
√

F)p = min{√
F : ĜB(

√
F) ≥ p

}
and use that value in the equation

in step 4. In our case, we are interested in obtaining a
95% confidence region, so

√
F is chosen so that for 95%

of the bootstrap samples(
Ê∗

(
a
)− Ê

(
a
))t (

D∗t D∗)(Ê∗
(
a
)− Ê

(
a
)) ≤ F

(
S∗

)2
.

In this model, the bit rate is treated as a nonrandom predictor
that we control, and the judges and images are “random effects”
because our three judges and 30 images have been sampled
from arbitrarily large numbers of possibilities.

Figure 56.1 displays all data for lung sensitivity and lung
PVP (calculated relative to the consensus gold standard) for all
24 images, judges, and compressed levels for which there was a
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FIGURE 56.1 Relative to the consensus gold standard: (a) lung sensitivity (RMS = 0.177), (b) lung PVP (RMS = 0.215).
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FIGURE 56.2 Relative to the personal gold standard: (a) Mediastinum Sensitivity (RMS = 0.243), (b) Mediastinum PVP (RMS = 0.245).

consensus gold standard. There are 360 x’s: 360 = 3 judges× 24
images × 5 compressed levels seen for each image. Figure 56.2
is the corresponding figure for the mediastinum relative to the
personal gold standard. The o’s mark the average of the x’s for
each bit rate. The values of the sensitivity and PVP are sim-
ple fractions such as 1/2 and 2/3 because there are at most a
few abnormalities in each image. The curves are least squares
quadratic spline fits to the data with a single knot at l.5 bpp,
together with the two-sided 95% confidence regions. Since the
sensitivity and PVP cannot exceed 1, the upper confidence
curve was thresholded at 1. The residual RMS is the square
root of the residual mean square from an analysis of variance
of the spline fits. Sensitivity for the lung seems to be nearly
as good at low rates of compression as at high rates, but sen-
sitivity for the mediastinum drops off at the lower bit rates,
driven primarily by the results for one judge. PVP for the lung
is roughly constant across the bit rates, and the same for the
mediastinum.

Table 56.1 shows the numbers of original test images (out
of 30 total) that contain the listed number of abnormalities
for each disease type according to each judge. Also, the rows
marked all show the number of original test images (out of 24
total) that contain the listed number of abnormalities according
to the consensus gold standard. We examine this table to deter-
mine whether or not it is valid to pool the sensitivity and PVP
results across judges. Simple chi-square tests for homogeneity
show that for both the lung and the mediastinum, judges do not
differ beyond chance from equality in the numbers of abnor-
malities they found. In particular, if for the lung we categorize
abnormalities found as 0, 1, 2, 3, or at least 4, then the chi-
square statistic is 3.16 (on 8 degrees of freedom). Six cells have
expectations below 5, a traditional concern, but an exact test

TABLE 56.1 Number of test images that contain the listed number
of abnormalities (Mdst=mediastinum)

Number of abnormalities

Type Judge 0 1 2 3 4 5 6 7 8

Lung 1 3 11 7 6 2 1
Lung 2 4 9 10 4 2 1
Lung 3 3 8 8 5 2 2 1 1
Lung All 4 9 4 5 2
Mdst 1 3 14 7 6
Mdst 2 2 22 2 4
Mdst 3 3 22 4 1
Mdst All 3 17 2 2

would not have a different conclusion. Similar comments apply
to the mediastinum, where the chi-square value (on 6 degrees
of freedom) is 8.83. However, Table 56.1 does not fully indicate
the variability among the judges. For example, the table shows
that each judge found six lung nodules in an original test image
only once. However, it was not the same test image for all three
for which this occurred.

56.2.1 Behrens–Fisher–Welch t-statistic

The comparison of sensitivity and PVP at different bit rates was
carried out using a permutation distribution of a two-sample
t -test that is sometimes called the Behrens–Fisher–Welch test
[3, 18]. The statistic takes account of the fact that the within
group variances are different. In the standard paired t -test
where we have n pairs of observations, let μD denote the true,
and unknown, average difference between the members of a
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pair. If we denote the sample mean difference between the
members of the pairs by D̄, and the estimate of standard
deviation of these differences by sD̄ , then the quantity

t = D̄ − μD

sD̄

follows (under certain normality assumptions) Student’s t dis-
tribution with (n − 1) degrees of freedom, and this may be used
to test the null hypothesis that μD = 0, that is, that there is no
difference between the members of a pair [27]. Now, with our
sensitivity and PVP data, there is no single estimate sD̄ of the
standard deviation that can be made. For an image I1 that has
only one abnormality according to the consensus gold standard,
the judges can have sensitivity equal to either 0 or 1, but for an
image I2 with three abnormalities the sensitivity can equal 0,
0.33, 0.67, or 1. So, in comparing bit rates bl and b2, when we
form a pair out of image I1 seen at bit rates b1 and b2, and we
form another pair out of image I2 seen at bit rates b1 and b2,
we see that the variance associated with some pairs is larger than
that associated with other pairs. The Behrens–Fisher–Welch test
takes account of this inequality of variances. The test is exact and
does not rely on Gaussian assumptions that would be patently
false for this data set. The use of this statistic is illustrated by
the following example. Suppose Judge 1 has judged N lung
images at both levels A and B. These images can be divided
into 5 groups, according to whether the consensus gold stan-
dard for the image contained 0, 1, 2, 3, or 4 abnormalities. Let
Ni be the number of images in the ith group. Let �ij represent
the difference in sensitivities (or PVP) for the jth image in the
ith group seen at level A and at level B. Let �̄i be the average
difference:

�̄i = 1

Ni

∑
j

�ij .

We define

S2
i =

1

Ni − 1

∑
j

(
�ij − �̄i

)2
,

and then the Behrens–Fisher–Welch t statistic is given by

tBFW =
∑

i �̄i√∑
i

S2
i

Ni

.

In the consensus gold standard, there were never more than
four abnormalities found. So the�ij are fractions with denomi-
nators not more than 4 and are utterly non-Gaussian. (For
the personal gold standard, the denominator could be as large
as 8). Therefore, computations of attained significance (p-
values) are based on the restricted permutation distribution of

tBFW. For each of the N images, we can permute the results from
the two levels [A → B and B → A] or not. There are 2N points
possible in the full permutation distribution, and we calculate
tBFW for each one. The motivation for the permutation distribu-
tion is that if there were no difference between the bit rates, then
in computing the differences �ij , it should not matter whether
we compute level A – level B or vice versa, and we would not
expect the “real” tBFW to be an extreme value among the 2N

values. If k is the number of permuted tBFW values that exceed
the “real” one, then (k + 1)/2N is the attained one-sided sig-
nificance level for the test of the null hypothesis that the lower
bit rate performs at least as well as the higher one. As discussed
later, the one-sided test of significance is chosen to be conser-
vative and to argue most strongly against compression.

When the judges were evaluated separately, level A (the
lowest bit rate) was found to be significantly different at the
5% level against most of the other levels for two of the judges,
for both lung and mediastinum sensitivity. No differences were
found among levels B through G. There were no significant
differences found between any pair of levels for PVP. When
judges were pooled, more significant differences were found.
Level A was generally inferior to the other levels for both lung
and mediastinal sensitivity. Also, levels B and C differed from
level G for lung sensitivity (p = 0.016 for both) and levels B and
C differed from level G for mediastinal sensitivity (p = 0.008
and 0.016, respectively). For PVP, no differences were found
against level A with the exception of A vs E and F for the lungs
(p = 0.039 and 0.012, respectively), but B was somewhat differ-
ent from C for the lungs (p = 0.031), and C was different from
E, F, and G for the mediastinum (p = 0.016, 0.048, and 0.027,
respectively).

Using the consensus gold standard, the results indicate that
level A (0.56 bpp) is unacceptable for diagnostic use. Since the
blocking and prediction artifacts became quite noticeable at
level A, the judges tended not to attempt to mark any abnor-
mality unless they were quite sure it was there. This explains the
initially surprising result that level A did well for PVP, but very
poorly for sensitivity. Since no differences were found among
levels D (1.8 bpp), E (2.2 bpp), F (2.64 bpp), and G (original
images at 12 bpp), despite the biases against compression con-
tained in our analysis methods, these three compressed levels
are clearly acceptable for diagnostic use in our applications. The
decision concerning levels B (1.18 bpp) and C (1.34 bpp) is less
clear, and would require further tests involving a larger number
of detection tasks, more judges, or use of a different gold stan-
dard that in principle could remove at least one of the biases
against compression that are present in this study.

Since the personal gold standard has the advantage of using
all the images in the study, and the consensus gold standard has
the advantage of having little bias between original and com-
pressed images, we can capitalize on both sets of advantages
with a two-step comparison. Sensitivity and PVP values relative
to the consensus gold standard show there to be no significant
differences between the slightly compressed images (levels D,
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E, and F) and the originals. This is true for both disease cat-
egories, for judges evaluated separately and pooled, and using
both the Behrens–Fisher–Welch test to examine the sensitivity
and PVP separately and using the McNemar test (discussed in
the next chapter) to examine them in combination. With this
assurance, the personal gold standard can then be used to look
for differences between the more compressed levels (A, B, C)
and the less compressed ones (D, E, F). The most compressed
level A (0.56 bpp, 21:1 compression ratio) is unacceptable as
observations made on these images were significantly different
from those on less compressed images for two judges. Level B
(1.18 bpp) is also unacceptable, although barely so, because the
only significant difference was between the sensitivities at levels
B and F for a single disease category and a single judge. No
differences were found between level C and the less compressed
levels, nor were there any significant differences between levels
D, E, and F.

In summary, using the consensus gold standard alone, the
results indicate that levels D, E, and F are clearly acceptable for
diagnostic use, level A is clearly unacceptable, and levels B and C
are marginally unacceptable. Using the personal and consensus
gold standard data jointly, the results indicate that levels C, D, E,
and F are clearly acceptable for diagnostic use, level A is clearly
unacceptable, and level B is marginally unacceptable.

We would like to conclude that there are some compres-
sion schemes whose implementation would not degrade clinical
practice. To make this point, we must either use tests that are
unbiased, or, acting as our own devil’s advocates, use tests that
are biased against compression. This criterion is met by the fact
that the statistical approach described here contains four iden-
tifiable biases, none of which favors compression. The biases
are as follows.

1. As discussed in the previous chapter, the gold standard
confers an advantage upon the original images relative
to the compressed levels. This bias is mild in the case of
the consensus gold standard, but severe in the case of the
personal gold standard.

2. There is a bias introduced by multiple comparisons [20].
Since (for each gold standard) we perform comparisons
for all possible pairs out of the 7 levels, for both sen-
sitivity and PVP, for both lung and mediastinal images,
and both for 3 judges separately and for judges pooled,
we are reporting on 21× 2× 2× 4 = 336 tests for each
gold standard. One would expect that, even if there were
no effect of compression upon diagnosis, 5% of these
comparisons would show significant differences at the
5% significance level.

3. A third element that argues against compression is the
use of a one-sided test instead of a two-sided test. In most
contexts, for example when a new and old treatment are
being compared and subjects on the new treatment do
better than those on the old, we do a two-sided test of
significance. Such two-sided tests implicitly account for

both possibilities: that new interventions may make for
better or worse outcomes than standard ones. For us, a
two-sided test would implicitly recognize the possibility
that compression improves, not degrades, clinical prac-
tice. In fact, we believe this can happen, but to incorporate
such beliefs in our formulation of a test would make us less
our own devil’s advocates than would our use of a one-
sided test. Our task is to find when compression might be
used with clinical impunity, not when it might enhance
images.

4. The fourth bias stems from the fact that the summands
in the numerator of tBFW may well be positively corre-
lated (in the statistical sense), though we have no way to
estimate this positive dependence from our data. If we
did, the denominator of tBFW would typically be smaller,
and such incorporation would make finding “significant”
differences between compression levels more difficult.

For all of these reasons, we believe that the stated conclusions
are conservative.

56.3 MR Study: Example of Measurement
Accuracy

Previous studies of the effects of lossy compression on diagnos-
tic accuracy have focused on the detection of structures [5, 7,
8, 15, 16, 19]. However, measurement tasks also play a crucial
role in diagnostic radiology. Measurements on structures such
as blood vessels, other organs, and tumors take a central role in
the identification of abnormalities and in following therapeu-
tic response. Radiologists routinely measure almost everything
they detect. For example, while diagnosing a fractured bone,
they might measure the displacement between the two pieces of
bone, or when reporting the presence of metastatic lesions in the
liver, they might measure the size of the largest one. Often such
measurements are not of great importance to clinical decision-
making; but in some examples, they are of extreme significance.
In vascular surgery, for example, precise measurements taken on
angiograms of the distance from an area of stenosis to the near-
est bifurcation in the vascular structure are needed to reduce
surgical exposure. In the evaluation of aneurysms, size is an
important prognostic feature in any presurgical assessment.
Precise measurements on images are increasingly important in
those areas where 3D stereotactic localization can lead to less
invasive surgical biopsy methods. For example, in mammo-
graphy, fine needle biopsy techniques require careful distance
measurements in order to place the needle correctly. For our
study of the effects of compression on measurement accuracy,
we chose to look at measurements of aortic aneurysms, one
of the most common areas where size measurements radically
affect clinical decision making.

Abdominal aortic aneurysms are usually evaluated with
ultrasound, and thoracic aortic aneurysms are evaluated by
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CT or MRI. In the latter case, the aortic diameter is usually
measured manually with calipers. If the aorta exceeds 4 cm in
diameter, an aneurysm is diagnosed. A larger aneurysm carries
a greater risk of rupture, with approximately 10% risk of rup-
ture for aneurysms between 5 and 10 cm in diameter, and about
50% for aneurysms greater than 10 cm [17]. Rupture is invari-
ably fatal, and so when the aorta measures more than about 5
or 6 cm in diameter, operative repair is usually recommended
[6, 28]. The clinical decision depends not only on the size of the
aneurysm but also on the clinical status of the patient (issues
of pain and hemodynamic instability). Dilation less than 5 cm
in diameter may be followed conservatively by serial MR imag-
ing studies at 6-month intervals. Observing an increase in the
aortic diameter of 0.5 cm over the course of a 6-month interval
would be indication for surgical repair.

The study described here had as its goal to quantify the
effects of lossy compression on measurement accuracy through
experiments that follow closely the clinical tasks of radiologists
evaluating aortic aneurysms [24, 25]. We wished to examine
whether compression maintains the information required for
accurate measurements, or whether it leads to inaccuracies by
blurring edges or distorting structures. If compression at a
certain bit rate caused a 0.5-cm error in the aortic measure-
ment, that would have an impact on the clinical decision, and
the compression would be unacceptable. Although we focused
on the medical problem of thoracic aortic aneurysms as seen
on MR scans, the methodology developed in this research is
applicable to any medical task requiring the measurement of
structures.

The task studied was the measurement of four primary
blood vessels in the mediastinum: the ascending aorta, descend-
ing aorta, right pulmonary artery (RPA), and superior vena
cava (SVC). A set of 9-bit original MR chest images contain-
ing aneurysms and normal vessels was compressed to five bit
rates between 0.36 and 1.7 bpp. Radiologists measured the four
vessels on each image.

In our statistical analyses, we set two gold standards, “per-
sonal” and “independent.”As discussed in the previous chapter,
these represent two methods of establishing the correct size
of each blood vessel, that is, the underlying diagnostic “truth”
of each image. For each of these gold standards, we quantify
the accuracy of the measurements at each compression level by
taking the percent measurement error for each image, defined
to be the difference between a radiologist’s measurement and
the gold standard, scaled by the gold standard measurement.
This error is examined as a function of bit rate by using the
t -test and a nonparametric competitor, the Wilcoxon signed
rank test.

56.3.1 Study Design and Statistical Analysis

To simulate normal clinical practice, test images were selected
from 30 sequential thoracic MR examinations of diagnostic

quality obtained after February 1, 1991. The patients studied
included 16 females and 14 males, with ages ranging from
1 to 93 years and an average age of 48.0± 24.7 years (mean
± s.d.). Clinical diagnoses included aortic aneurysm (n = 11),
thoracic tumors (n = 11), pre- or post-lung transplant (n = 5),
constrictive pericarditis (n = 1), and subclavian artery rup-
ture (n = 1). From each examination, one image that best
demonstrated all four major vessels of interest was selected. The
training images were selected similarly from different examina-
tions. All analyses were based solely on measurements made on
the test images.

The 30 test scans compressed to 5 bit rates plus the originals
give rise to a total of 180 images. These images were arranged
in a randomized sequence and presented on separate hardcopy
films to three radiologists. The viewing protocol consisted of 3
sessions held at least 2 weeks apart. Each session included 10
films viewed in a predetermined order with 6 scans on each film.
The 3 radiologists began viewing films at a different starting
point in the randomized sequence. To minimize the probability
of remembering measurements from past images, a radiologist
saw only 2 of the 6 levels of each image in each session, with the
second occurrence of each image spaced at least 4 films after the
first occurrence of that image.

Following standard clinical methods for detecting
aneurysms, the radiologists used calipers and a millimeter
scale available on each image to measure the four blood vessels
appearing on each scan. Although the use of digital calipers
might have allowed more accurate measurements, this would
have violated one of our principal goals, namely to follow as
closely as possible actual clinical practice. It is the standard
practice of almost all radiologists to measure with manual
calipers. This is largely because they lack the equipment, or
they would prefer not to take the time to bring up the relevant
image on the terminal and then perform the measurements
with electronic calipers. We asked radiologists to make all
measurements between the outer walls of the vessels along
the axis of maximum diameter. It is this maximum diameter
measurement that is used to make clinical decisions. Both the
measurements and axes were marked on the film with a grease
pencil.

The independent gold standard was set by having two radi-
ologists come to an agreement on vessel sizes on the original
scans. They first independently measured the vessels on each
scan and then remeasured only those vessels on which they
initially differed until an exact agreement on the number of
millimeters was reached. These two radiologists are different
from the three radiologists whose judgments are used to deter-
mine diagnostic accuracy. A personal standard was also derived
for each of the three judging radiologists by taking their own
measurements on the original images.

Once the gold standard measurement for each vessel in each
image was assigned, measurement error can be quantified in
a variety of ways. If z is the radiologist’s measurement and g



56 Quality Evaluation for Compressed Medical Images: Diagnostic Accuracy 951

represents the gold standard measurement, then some potential
summary statistics are

(
z − g

)
, log

(
z

g

)
,

z − g

g
,

∣∣∣∣ z − g

g

∣∣∣∣.
These statistics have invariance properties that bear upon und-
erstanding the data. For example, z − g is invariant to the same
additive constant (that is, to a change in origin), log(z/g )
is invariant to the same multiplicative constant (that is, to a
change in scale), and (z − g )/g is invariant to the same multi-
plicative constant and to the same sign changes. For simplicity
and appropriateness in the statistical tests carried out, the error
parameters chosen for this study are percent measurement error
(pme),

pme = z − g

g
× 100%,

and absolute percent measurement error (apme)

apme = |z − g |
g

× 100%,

both of which scale the error by the gold standard measurement
to give a concept of error relative to the size of the vessel being
measured.

The differences in error achieved at each bit rate can be
quantified as statistically significant by many tests. Each should
respect the pairing of the measurements being compared and
the multiplicity of comparisons being made. In order to ensure
that our conclusions are not governed by the test being used, we
chose to use two of the most common, the t and Wilcoxon tests.
We also employed statistical techniques that account for this
multiplicity of tests. The measurements are considered paired
in a comparison of two bit rates since the same vessel in the
same image is measured by the same radiologist at both bit
rates. For instance, let x1 be the measurement of a vessel at bit
rate 1, x2 be its measurement at bit rate 2, and g be the ves-
sel’s gold standard measurement. Then the pme at bit rates 1
and 2 are

pme1 =
x1 − g

g
× 100% and pme2 =

x2 − g

g
× 100%,

and their difference is

pmeD =
x1 − x2

g
× 100%.

In such a two-level comparison, pme more accurately preserves
the difference between two errors than does apme. A vessel
that is overmeasured by α% (positive) on bit rate 1 and under-
measured by α% (negative) on bit rate 2 will have an error
distance of 2α% if pme is used but a distance of zero if apme

is used. Therefore, both the t -test and the Wilcoxon signed
rank test are carried out using only pme. Apme is used later
to present a more accurate picture of error when we plot an
average of apme across the 30 test images vs bit rate.

The t -statistic quantifies the statistical significance of the
observed difference between two data sets in which the data
can be paired. Unlike the CT study, in which the Behrens–
Fisher–Welch t -test was used because of the obviously different
variances present for different images, here the ordinary t -test
was applicable. The difference in error for two bit rates is cal-
culated for all the vessels measured at both bit rates. If the
radiologists made greater errors at bit rate 1 than at bit rate 2,
the average difference in error over all the data will be posi-
tive. If bit rate 1 is no more or less likely to cause error than
bit rate 2, the average difference in error is zero. The t -test
assumes that the sample average difference in error between
two bit rates varies in a Gaussian manner about the real average
difference [27]. If the data are Gaussian, which they clearly can-
not exactly be in our application, the paired t -test is an exact
test. Quantile–Quantile plots of pme differences for comparing
levels vary from linear to S-shaped; in general, the Q-Q plots
indicate a moderate fit to the Gaussian model. The size of our
data set (4 vessels × 30 images × 6 levels × 3 judges = 2160
data points) makes a formal test for normality nearly irrelevant.
The large number of data points serves to guarantee failure of
even fairly Gaussian data at conventional levels of significance.
(That is, the generating distribution is likely not to be exactly
Gaussian, and with enough data, even a tiny discrepancy from
Gaussian will be apparent.) Even if the data are non-Gaussian,
however, the central limit theorem renders the t -test approx-
imately valid. With the Wilcoxon signed rank test [27] the
significance of the difference between the bit rates is obtained by
comparing a standardized value of the Wilcoxon statistic against
the normal standard deviate at the 95% two-tail confidence
level. The distribution of this standardized Wilcoxon is nearly
exactly Gaussian if the null hypothesis is true for samples as
small as 20.

56.3.1.1 Results Using the Independent Gold
Standard

Plots of trends in measurement error as a function of bit rate are
presented in Figures 56.3–56.6. In all cases, the general trend of
the data is indicated by fitting the data points with a quadratic
spline having one knot at 1.0 bpp. Figure 56.3 gives average
pme against the mean bit rate for all radiologists pooled (i.e.,
the data for all radiologists, images, levels, and structures, with
each radiologist’s measurements compared to the independent
gold standard) and for each of the three radiologists separately.
In Figure 56.4, the pme vs actual achieved bit rate is plotted
for all data points. The relatively flat curve begins to increase
slightly at the lowest bit rates, levels 1 and 2 (0.36, 0.55 bpp).
It is apparent from an initial observation of these plots that
except for measurement at the lowest bit rates, accuracy does
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FIGURE 56.3 Mean pme vs mean bit rate using the independent
gold standard. The dotted, dashed, and dash–dot curves are quadratic
splines fit to the data points for judges 1, 2, and 3, respectively. The
solid curve is a quadratic spline fit to the data points for all judges
pooled. The splines have a single knot at 1.0 bpp.
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FIGURE 56.4 Percent measurement error vs actual bit rate using the
independent gold standard. The x’s indicate data points for all images,
pooled across judges and compression levels. The solid curve is a
quadratic spline fit to the data with a single knot at 1.0 bpp. Reprinted
with permission, from Proceedings First International Conference on
Image Processing, ICIP 194, 1: 861–865, Austin, Texas, Nov. 1994.

not vary greatly with lossy compression. Possibly significant
increases in error appear only at the lowest bit rates, whereas
at the remaining bit rates measurement accuracy is similar to
that obtained with the originals. The average performance on
images compressed to level 5 (1.7 bpp) is actually better than
performance on originals.
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FIGURE 56.5 Mean apme vs mean bit rate using the independent
gold standard. The dotted, dashed, and dash–dot curves are quadratic
splines fit to the data points for judges 1, 2, and 3, respectively. The
solid curve is a quadratic spline fit to the data points for all judges
pooled.
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FIGURE 56.6 Apme vs actual bit rate using the independent gold
standard. The x’s indicate data points for all images, pooled across
judges and compresssion levels. The solid curve is a quadratic spline
fit to the data.

Although the trends in pme vs. bit rate are useful, over-
measurement (positive error) can cancel under-measurement
(negative error) when these errors are being averaged or fitted
with a spline. For this reason, we turn to apme which mea-
sures the error made by a radiologist regardless of whether
it originated from overmeasurement or undermeasurement.
Figure 56.5 plots average apme vs average bit rate for each
radiologist and for all radiologists pooled. Figure 56.6 shows
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actual apme vs actual bit rate achieved. These plots show trends
similar to those observed before. The original level contains
more or less the same apme as compression levels 3, 4, and
5 (0.82, 1.14, 1.7 bpp). Levels 1 and 2 (0.36, 0.55 bpp) show
slightly higher error. These plots provide only approximate
visual trends in data.

The t -test was used to test the null-hypothesis that the “true”
pme between two bit rates is zero. The standardized average
difference is compared with the “null” value of zero by com-
paring with standard normal tables. None of the compressed
images down to the lowest bit rate of 0.36 bpp was found to
have a significantly higher pme when compared to the error
made on the originals. Among the compressed levels however,
level 1 (0.36 bpp) was found to be significantly different from
level 5 (1.7 bpp). As was mentioned, the performance on level
5 was better than that on all levels, including the uncompressed
level.

When using the Wilcoxon signed rank test to compare com-
pressed images against the originals, only level 1 (0.36 bpp)
differed significantly in the distribution of pme. Within the
levels representing the compressed images, levels 1, 3, and 4
(0.36, 0.82, 1.14 bpp) had significantly different pme than those
at level 5 (1.7 bpp). Since measurement accuracy is determined
from the differences with respect to the originals only, a conser-
vative view of the results of the analyses using the independent
gold standard is that accuracy is retained down to 0.55 bpp
(level 2).

56.3.1.2 Results Using the Personal Gold Standard

As was discussed previously, the personal gold standard was
set by taking a radiologist’s recorded vessel size on the uncom-
pressed image to be the correct measurement for judging her
or his performance on the compressed images. Using a per-
sonal gold standard in general accounts for a measurement
bias attributed to an individual radiologist, thereby provi-
ding a more consistent result among the measurements of each
judge at the different compression levels. The personal gold
standard thus eliminates the interobserver variability present
with the independent gold standard. However, it does not
allow us to compare performance at compressed bit rates
to performance at the original bit rates, since the standard
is determined from the original bit rates, thereby giving the
original images zero error. As before, we first consider visual
trends and then quantify differences between levels by statistical
tests.

Figure 56.7 shows average pme vs mean bit rate for the five
compressed levels for each judge separately and for the judges
pooled, whereas Figure 56.8 is a display of the actual pme vs
actual achieved bit rate for all the data points. The data for the
judges pooled are the measurements from all judges, images,
levels, and vessels, with each judge’s measurements compared to
her or his personal gold standard. In each case, quadratic splines
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FIGURE 56.7 Mean pme vs mean bit rate using the personal gold stan-
dard. The dotted, dashed, and dash–dot curves are quadratic splines
fit to the data points for judges 1, 2, and 3, respectively. The solid curve
is a quadratic spline fit to the data points for all judges pooled.
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FIGURE 56.8 Pme vs actual bit rate using the personal gold standard.
The x’s indicate data points for all images, pooled across judges and
compression levels. The solid curve is a quadratic spline fit to the data.

with a single knot at 1.0 bpp were fit to the data. Figures 56.9
and 56.10 are the corresponding figures for the apme. As
expected, with the personal gold standard the pme and the
apme are less than those obtained with the independent gold
standard. The graphs indicate that whereas both judges 2 and
3 overmeasured at all bit rates with respect to the independent
gold standard, only judge 3 overmeasured at the compressed bit
rates with respect to the personal gold standard.

The t -test results indicate that levels 1 (0.36 bpp) and 4 (1.14
bpp) have significantly different pme associated with them than
does the personal gold standard. The results of the Wilcoxon
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FIGURE 56.9 Mean apme vs mean bit rate using the personal gold
standard. The dotted, dashed, and dash–dot curves are quadratic
splines fit to the data points for judges 1, 2, and 3, respectively. The
solid curve is a quadratic spline fit to the data points for all judges
pooled.
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FIGURE 56.10 Apme vs actual bit rate using the personal gold stan-
dard. The x’s indicate data points for all images, pooled across judges
and compresssion levels. The solid curve is a quadratic spline fit to the
data.

signed rank test on percent measurement error using the per-
sonal gold standard are similar to those obtained with the
independent gold standard. In particular,only level 1 at 0.36 bpp
differed significantly from the originals. Furthermore, levels 1,
3, and 4 were significantly different from level 5.

Since the t -test indicates that some results are marginally
significant when the Wilcoxon signed rank test indicates the

results are not significant, a Bonferroni simultaneous test
(union bound) was constructed. This technique uses the sig-
nificance level of two different tests to obtain a significance
level that is simultaneously applicable for both. For example, in
order to obtain a simultaneous significance level of α% with two
tests, we could have the significance of each test be at (α/2)%.
With the simultaneous test, the pme at level 4 (1.14 bpp) is not
significantly different from the uncompressed level. As such,
the simultaneous test indicates that only level 1 (0.36 bpp) has
significantly different pme from the uncompressed level. This
agrees with the corresponding result using the independent gold
standard. Thus, pme at compression levels down to 0.55 bpp
does not seem to differ significantly from the pme at the 9.0
bpp original.

In summary, with both the independent and personal gold
standards, the t -test and the Wilcoxon signed rank test indicate
that pme at compression levels down to 0.55 bpp did not dif-
fer significantly from the pme at the 9.0 bpp original. This was
shown to be true for the independent gold standard by a direct
application of the tests. For the personal gold standard, this was
resolved by using the Bonferroni test for simultaneous validity
of multiple analyses. The status of measurement accuracy at
0.36 bpp remains unclear, with the t -test concluding no differ-
ence and the Wilcoxon indicating significant difference in pme
from the original with the independent gold standard, and both
tests indicating significant difference in pme from the original
with the personal gold standard. Since the model for the t -test is
fitted only fairly to moderately well by the data, we lean towards
the more conservative conclusion that lossy compression by our
vector quantization compression method is not a cause of sig-
nificant measurement error at bit rates ranging from 9.0 bpp
down to 0.55 bpp, but it does introduce error at 0.36 bpp.

A radiologist’s subjective perception of quality changes more
rapidly and drastically with decreasing bit rate than does
the actual measurement error. Radiologists evidently believe
that the usefulness of images for measurement tasks degrades
rapidly with decreasing bit rate. However, their actual measure-
ment performance on the images was shown by both the t -test
and Wilcoxon signed rank test (or the Bonferroni simultaneous
test to resolve differences between the two) to remain consis-
tently high down to 0.55 bpp. Thus, the radiologist’s opinion
of an image’s diagnostic utility seems not to coincide with its
utility for the clinical purpose for which the image was taken.
The radiologist’s subjective opinion of an image’s usefulness
for diagnosis should not be used as the sole predictor of actual
usefulness.

56.3.2 Discussion

There are issues of bias and variability to consider in compar-
ing and contrasting gold standards. One disadvantage of an
independent gold standard is that since it is determined by the
measurements of radiologists who do not judge the compressed
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images, significant differences between a compressed level and
the originals may be due to differences between judges. For
example, a biased judge who tends to overmeasure at all bit
rates may have high pme that will not be entirely reflective of
the effects of compression. In our study, we determined that two
judges consistently overmeasured relative to the independent
gold standard. The personal gold standard, however, overcomes
this difficulty. A personal gold standard also has the advantage
of reducing pme and apme at the compressed levels. This will
result in a clarification of trends in a judge’s performance across
different compression levels. Differences will be based solely
on compression level and not on differences between judges.
Another argument in favor of a personal gold standard is that in
some clinical settings a fundamental question is how the reports
of a radiologist whose information is gathered from compressed
images compare to what they would have been on the originals.
Indeed, systematic biases of a radiologist are sometimes well
recognized and corrected for by the referring physicians.

One disadvantage with the personal gold standard, however,
is that by defining the measurements on the original images to
be“correct,”we are not accounting for the inherent variability of
a judge’s measurement on an uncompressed image. For exam-
ple, if a judge makes an inaccurate measurement on the original
and accurate measurements on the compressed images, these
correct measurements will be interpreted as incorrect. Thus the
method is biased against compression. An independent gold
standard reduces the possibility of this situation occurring since
we need an agreement by two independent radiologists on the
“correct” measurement.

The analysis previously presented was based on judges,
vessels, and images pooled. Other analyses in which the per-
formances of judges on particular vessels and images are
separated demonstrate additional variability. Judges seem to
have performed significantly differently from each other. Judges
2 and 3 consistently overmeasured. As a result, the Wilcoxon
signed rank test using the independent gold standard indicates
significant differences between the gold standard and the mea-
surements of judges 2 and 3 at all compression levels, including
the original. Judge 1, however, does not have any significant
performance differences between the gold standard and any
compression levels. In addition, certain vessels and images had
greater variability in pme than others. To examine the validity
of pooling the results of all judges, vessels, and images, an anal-
ysis of variance (ANOVA) [21] was used to assess whether this
variability is significant. The ANOVA took the judges, vessels,
and images to be random effects and the levels to be fixed effects,
and separated out the variance due to each effect. For technical
reasons it is not feasible here to use direct F-tests on each of the
variances estimated. Thus, we obtained confidence regions for
each component of variance using a jackknife technique [21].
In particular, if zero falls within the 95% confidence interval of
a certain effect, then the effect is not considered significant at
the 5% level. Using the jackknife technique, the ANOVA indi-
cates that the variability in judges, vessels, images, and levels

were not significantly different from zero, thereby validating the
pooling.

56.4 Mammography Study: Example of
Management Accuracy

X-ray-mammography is the most sensitive technique for detect-
ing breast cancer [2], with a reported sensitivity of 85–95% for
detecting small lesions. Most noninvasive ductal carcinomas,
or DCIS, are characterized by tiny nonpalpable calcifications
detected at screening mammography [9, 16, 29]. Traditional
mammography is essentially analog photography using X-rays
in place of light and analog film for display. Mammography
machines based on direct digital acquisition exist, and the
review is in process of FDA approval for market. The study
discussed here, however, employed only digitized analog films.
The studies were digitized using a Lumisys Lumiscan 150 at
12 bpp with a spot size of 50 microns. After compression, the
images were put on hardcopy film. The films were printed using
a Kodak 2180 X-ray film printer, a 79-micron, 12-bit gray-scale
printer that writes with a laser diode of 680-nm bandwidth.

Images were viewed on hardcopy film on an alternator by
judges in a manner that simulates ordinary screening and diag-
nostic practice as closely as possible, although patient histories
and other image modalities were not provided. Two views were
provided of each breast (CC and MLO), so four views were
seen simultaneously for each patient. Each of the judges viewed
all the images in an appropriately randomized order over the
course of nine sessions. Two sessions were held every other
week, with a week off in between. A clear overlay was pro-
vided for the judge to mark on the image without leaving a
visible trace. For each image, the judge either indicated that the
image was normal, or, if something was detected, had an assis-
tant fill out the Observer Form using the American College of
Radiology (ACR) Standardized Lexicon by circling the appro-
priate answers or filling in blanks as directed. The Observer
Form is given in Figures 56.11–56.13 below. The instructions for
assistants and radiologists along with suggestions for promp-
ting and a CGI web data entry form may be found at the project
Web site http://www-isl.stanford.edu/∼gray/army.html. The
judges used a grease pencil to circle the detected item. The
instructions to the judges specified that ellipses drawn around
clusters should include all microcalcifications seen, as if mak-
ing a recommendation for surgery, and outlines drawn around
masses should include the main tumor as if grading for clini-
cal staging, without including the spicules (if any) that extend
outward from the mass. This corresponds to what is done in
clinical practice except for the requirement that the markings
be made on copies. The judges were allowed to use a magnifying
glass to examine the films.

Although the judging form is not standard, the ACR Lexicon
is used to report findings, and hence the judging requires
no special training. The reported findings permit subsequent
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ID number

Reader initials

Subjective rating for diagnostic quality:

Recommend repeat?

Breast Density:

Yes

1Left 2 3 4

No

YesFindings:

Note: If there are NO findings, the assessment is: (1) (N) negative—return to screening

No

(1) sharpness

(5) noise

(1) almost entirely fat

(3) heterogeneously dense

(2) scattered fibroglandular densities

(4) extremely dense

(2) contrast

(6) artifact

(3) position

(7) penetration

(4) breast compression
If any rating is < 4 the problem is:

Mammograms were of (Left     Right     Both) breast(s).

Session number Case number

(bad) 1–5 (good):
Left CC Left MLO Right CC Right MLO

1Right 2 3 4

FIGURE 56.11 Observer form for mammograms: This part is completed for each case.

analysis of the quality of an image in the context of its true use,
finding and describing anomalies and using them to assess and
manage patients.

To confirm that each radiologist identifies and judges a spe-
cific finding, the location of each lesion is confirmed both on
the clear overlay and the judging form. Many of these lesions
were judged as “A” (assessment incomplete), since it is often
the practice of radiologists to obtain additional views in two
distinct scenarios: (1) to confirm or exclude the presence of a
finding, that is, a finding that may or may not represent a true
lesion, or (2) to further characterize a true lesion, that is, to say
a lesion clearly exists but is incompletely evaluated.

The judging form allows for two meanings of the “A” code.
If the judge believes that the finding is a possible lesion, this is
indicated by answering “yes” to the question “are you uncertain
if the finding exists?” Otherwise, if the lesion is definite, the
judges should give their best management decision based on
the standard two-view mammogram.

The initial question requesting a subjective rating of diagnos-
tic utility on a scale of 1–5 is intended for a separate evaluation
of the general subjective opinion of the radiologists of the
images. The degree of suspicion registered in the Management
portion also provides a subjective rating, but this one is geared
towards the strength of the opinion of the reader regarding the
cause of the management decision. It is desirable that obviously
malignant lesions in a gold standard should also be obviously
malignant in the alternative method.

56.4.1 Statistical Analysis

We focus here on patient management, the decisions that are
made based on the radiologists’ readings of the image [1, 14,
23]. Management is a key issue in digital mammography. There
is concern that artifacts could be introduced, leading to an
increase in false positives and hence in unnecessary biopsies.
The management categories we emphasize are the following
four, given in order of increasing seriousness:

RTS: incidental, negative, or benign with return to screening.
F/U: probably benign but requiring 6-month follow-up.
C/B: call back for more information, additional assessment

needed.
BX: immediate biopsy.

These categories are formed by combining categories from the
basic form of Figure 56.13: RTS is any study that had assessment
= 1 or 2, F/U is assessment = 3, C/B is assessment = indeter-
minate/incomplete with best guess either unsure it exists, 2 or
3, and BX is assessment = indeterminate/incomplete with best
guess either 4L, 4M, 4H or 5, or assessment= 4L, 4M, 4H or 5.

We also consider the binarization of these four categories
into two groups: Normal and Not Normal. But there is con-
troversy as to where the F/U category belongs, so we make
its placement optional with either group. The point is to see
if lossy compression makes any difference to the fundamental
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Findings (detection):

Individual finding side:

Finding type: (possible, definite)

Location:

View(s) in which finding is seen:

Associated findings include: (p � possible, d � definite)

Dominant

Left Right Finding # ofBoth/Bilateral

Incidental, focal Incidental, diffuse

  (1) mass
  (3) mass containing calcifications
  (5) spiculated mass
  (7) architectural distortion
  (9) asymmetric breast tissue
(11) breast edema

  (2) clustered calcifications
  (4) mass with surrounding calcs
  (6) ill defined mass
  (8) solitary dilated duct
(10) focal asymmetric density
(12) multiple scattered and occasionally
       clustered benign appearing calcs
(14) multiple benign appearing masses
(16) milk of calcium
(18) oil cysts
(20) fibroadenoma
(22) vascular calcs
(24) post biopsy scar
(26) implants
(28) other

(13) occasional scattered benign appearing calcs
(15) skin lesion
(17) plasma cell mastitis/secretory calcs
(19) lymph node
(21) calcified fibroadenoma
(23) dermal/skin calcs
(25) reduction mammoplasty
(27) benign mass

(1) UOQ
(2) UIQ
(3) LOQ
(4) LIQ

(1) breast edema
(2) skin reaction
(3) nipple retraction
(4) skin thickening
(5) lymphadenopathy
(6) trabecular thickening
(7) scar

(p, d)
(p, d)
(p, d)
(p, d)
(p, d)
(p, d)
(p, d)

(p, d)
(p, d)
(p, d)
(p, d)
(p, d)
(p, d)

(5) 12:00
(6) 3:00
(7) 6:00
(8) 9:00

  (9) outer/lateral
(10) inner/medial
(11) upper/cranial
(12) lower/inferior

  (8) architectural distortion
  (9) calcs associated with mass
(10) multiple similar masses
(11) dilated veins
(12) asymmetric  density
(13) none

(13) whole breast
(14) central
(15) axillary tail
(16) retroareolar

(17) both breasts/bilateral

CC MLO CC and MLO

FIGURE 56.12 Observer form for mammograms: This part is completed for each case.

decision made in screening: Does the patient return to ordinary
screening as normal, or is there suspicion of a problem and
hence the demand for further work?

Truth is determined by agreement with a gold standard. The
raw results are plotted as a collection of 2× 2 tables, one for
each category or group of categories of interest and for each
radiologist. As will be discussed, the differences among radi-
ologists prove to be so large an effect that extreme care must
be taken when doing any pooling or averaging of results across
radiologists. A typical table is shown in Table 56.2.

The columns correspond to image modality or method I and
the rows to II; I could be original analog and II original digitized,
or I could be original digitized and II compressed digitized. “R”
and “W” correspond to “right” (agreement with gold standard)
and “wrong” (disagreement with gold standard). The particular

TABLE 56.2 Agreement 2× 2 table

II\I R W

R N (1, 1) N (1, 2)
W N (2, 1) N (2, 2)

statistics could be, for example, the decision of “normal”, i.e.,
return to ordinary screening. Regardless of statistic, the goal is
to quantify the degree, if any, to which differences exist.

One way to quantify the existence of statistically signifi-
cant differences is by an exact McNemar test, which is based
on the following argument. If there are N (1, 2) entries in
the (1, 2) place and N (2, 1) in the (2, 1) place, and the
technologies are equal, then the conditional distribution of
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Assessment: The finding is

(A) indeterminate/incomplete, additional assessment needed

What is your best guess as to the finding’s 1–5 assessment? ________ or are you uncertain 
if the finding exists? Y 

What? (1) spot mag (2) extra views (3) U/S (4) old films (5) mag

(1) (N) negative–return to screening
(2) (B) benign (also negative but with benign findings)—return to screening
(3) (P) probably benign finding requiring 6-manth dollowup
(4L) (S) suspicion of malignancy (low), biopsy
(4M) (S) suspicion of malignancy (medium), biopsy
(4H) (S) suspicion of malignancy (high), biopsy
(5) radiographic malignancy, biopsy

Comments:

Measurements:

CC View

MLO View

Size: __________ cm long axis by __________ cm short axis

Distance from center of finding to: nipple __________ cm

        left edge __________ cm, top edge __________ cm

Size: __________ cm long axis by __________ cm short axis

Distance from center of finding to: nipple __________ cm

        left edge __________ cm, top edge __________ cm

FIGURE 56.13 Observer form for mammograms: This assesment portion is completed for each finding in a case.

N (1, 2) given N (1, 2)+ N (2, 1) is binomial with parameters
N (1, 2)+ N (2, 1) and 0.5; that is,

P(N (1, 2) = k|N (1, 2)+ N (2, 1) = n)

=
(

n
k

)
2−n ; k = 0, 1, . . . , n.

This is the conditional distribution under the null hypothesis
that the two modalities are equivalent. The extent to which
N (1, 2) differs from (N (1, 2)+ N (2, 1))/2 is the extent to
which the technologies were found to be different in the quality
of performance with their use. Let B(n, 1/2) denote a bino-
mial random variable with these parameters. Then a statistically
significant difference at level 0.05, say, will be detected if the
observed k is so unlikely under the binomial distribution that
a hypothesis test with size 0.05 would reject the null hypothesis
if k were viewed. Thus, if

Pr
(∣∣∣B(n, 1/2)− n

2

∣∣∣ ≥ ∣∣∣N (1, 2)− n

2

∣∣∣) ≤ 0.05,

then we declare that a statistically significant difference has
occurred.

Whether and how to agglomerate the multiple tables is an
issue. Generally speaking, we stratify the data so that any
test statistics we apply can be assumed to have sampling

distributions that we could defend in practice. It is always
interesting to simply pool the data within a radiologist across
all gold standard values, though it is really an analysis of the
off-diagonal entries of such a table that is of primary inter-
est. If we look at such a 4 × 4 table in advance of deciding
upon which entry to focus, then we must contend with prob-
lems of multiple testing, which would lower the power of our
various tests. Pooling the data within gold standard values but
across radiologists is problematical because our radiologists are
patently different in their clinical performances. This is consis-
tent with what we found in the CT and MR studies. Thus, even
if one does agglomerate, there is the issue of how. Minus twice
the sum over tables of the natural logarithms of attained signifi-
cance levels has, apart from considerations of discreteness of the
binomial distribution, a chi-square distribution with degrees of
freedom twice the number of summands if the null hypothesis
of no difference is true for each table and if the outcomes of the
tables are independent. This method was made famous by R. A.
Fisher. Then again, (N (1, 2)− N (2, 1))2/(N (1, 2)+ N (2, 1))
has, under the null hypothesis of no difference, approximately
at least, a chi-square distribution with one degree of freedom,
if the null hypothesis of no difference in technologies is correct
for the table. One can sum across tables and compare with
chi-square tables where the degrees of freedom are the number
of summands, a valid test if tables are independent.
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II\ I R W
R 8 1
W 2 2

II\ I R W
R 0 0
W 0 1

II\ I R W
R 7 3
W 3 5

II\ I R W
R 15 1
W 2

RTS F/U C/B

(A) Analog vs. Digital original

(B) Analog vs. Digital lossy compressed: 1.75 bpp

(D) Analog vs. Digital lossy compressed: 0.15 bpp

(C) Analog vs. Digital lossy compressed: 0.4 bpp

BX

RTS F/U C/B BX

RTS F/U C/B BX

RTS F/U C/B BX

7

II\ I R W
R 4 4
W 0 4

II\ I R W
R 0 0
W 0 1

II\ I R W
R 3 7
W 4 4

II\ I R W
R 11 4
W 4 5

II\ I R W
R 7 2
W 1 3

II\ I R W
R 0 0
W 0 1

II\ I R W
R 6 4
W 2 6

II\ I R W
R 13 2
W 4 5

II\ I R W
R 6 3
W 1 3

II\ I R W
R 0 0
W 0 1

II\ I R W
R 8 2
W 2 6

II\ I R W
R 14 2
W 1 8

FIGURE 56.14 Agreement 2× 2 tables for radiologist A.

56.4.2 Results and Discussion

The clinical experiment took place at Stanford University
Hospital during spring 1996. The gold standard was estab-
lished by E. Sickles, M.D., Professor of Radiology, University of
California at San Francisco, and Chief of Radiology, Mt. Zion
Hospital, and D. Ikeda, Assistant Professor and Chief, Breast
Imaging Section,Department of Radiology,Stanford University,
an independent panel of expert radiologists, who evaluated the
test cases and then collaborated to reach agreement. The major-
ity of the detected items were seen by both radiologists. Any
findings seen by only one radiologist were included. The other
type of discrepancy resolved was the class of the detected lesions.
Since the same abnormality may be classified differently, the two
radiologists were asked to agree on a class.

The focus of the statistical analysis is the screening and man-
agement of patients and how it is affected by analog vs digital
and lossy compressed digital. In all, there were 57 studies that
figure in what we report. According to the gold standard, the
respective numbers of studies of each of the four management
types RTS, F/U, C/B, and BX were 13, 1, 18, and 25, respectively.

For each of the four possible outcomes, the analog original
is compared to each of four technologies: digitized from analog
original, and wavelet compressed to three different levels of
compression (1.75, 0.4, and 0.15 bpp). So the McNemar 2× 2
statistics based on the generic table of Table 56.2 for assessing
differences between technologies were computed 48 times, 16
per radiologist, for each competing image modality (original

digital and the three lossy compressed bit rates). For example,
the 2× 2 tables for a single radiologist (A) comparing analog
to each of the other four modalities are shown in Figure 56.14.

For none of these tables for any radiologist was the exact
binomial attained significance level (p-value) 0.05 or less. For
our study and for this analysis, there is nothing to choose in
terms of being “better” among the analog original, its digitized
version, and three levels of compression, one rather extreme.
We admit freely that this limited study had insufficient power
to permit us to detect small differences in management. The
larger the putative difference, the better our power to have
detected it. Figure 56.15 summarizes the performance of each
radiologist on the analog vs. uncompressed digital and lossy
compressed digital using the independent gold standard. In all
cases, columns are “digital” and rows “analog”. Figure 56.15A
treats analog vs original digital and Figures 56.15B–D treat ana-
log vs lossy compressed digital at bit rates of 1.75 bpp, 0.4 bpp,
and 0.15 bpp, respectively.

Consider as an example the analog vs digital compari-
son of (A). Radiologist A made 23 “mistakes” of 57 studies
from analog, and 20 from digital studies. The most frequent
mistake, seven for both technologies, was classifying a gold stan-
dard “biopsy” as “additional assessment”. Radiologist B made
26 “mistakes” from analog studies, and 28 from digital. In
both cases, the most frequent mistake was to “biopsy” what
should, by the gold standard, have been“additional assessment.”
There were 15 such mistakes with analog and 14 with digi-
tal. Radiologist C made 19 “mistakes” from analog studies and
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RTS
RTS
F/U
C/B
BX

F/U C/B BX
12 0 5 0
0 0 0 0
3 0 12 6
0 0 2 17

RTS
RTS
F/U
C/B
BX

F/U C/B BX
3 0 1 0
0 1 0 0
3 0 3 3
1 0 5 37

RTS
RTS
F/U
C/B
BX

F/U C/B BX
9 0 5 1
0 0 0 0
0 0 11 1
0 0 7 23

RTS
RTS
F/U
C/B
BX

F/U C/B BX
8 0 7 0
0 0 0 0
3 1 9 8
1 0 6 11

RTS
RTS
F/U
C/B
BX

F/U C/B BX
3 1 0 0
0 1 0 0
3 0 3 2
1 1 5 35

RTS
RTS
F/U
C/B
BX

F/U C/B BX
7 0 7 0
0 0 0 0
0 0 9 3
0 0 9 20

RTS
RTS
F/U
C/B
BX

F/U C/B BX
10 0 5 2
0 0 0 0
3 0 9 9
1 0 1 16

RTS
RTS
F/U
C/B
BX

F/U C/B BX
1 0 2 1
0 1 0 0
1 0 4 4
2 1 5 35

RTS
RTS
F/U
C/B
BX

F/U C/B BX
8 0 6 1
0 0 0 0
1 0 9 2
0 0 3 27

RTS
RTS
F/U
C/B
BX

F/U C/B BX
11 0 6 0
0 0 0 0
2 0 15 4
1 0 2

Radiologist A Radiologist B

16

RTS
RTS
F/U
C/B
BX

F/U C/B BX
2 0 1 1
0 1 0 0
2 1 3 3
1 0 3 38

RTS
RTS
F/U
C/B
BX

F/U C/B BX
11 0 4 0
0 0 0 0
1 1 8 2
1 0 4 25

(A) Analog vs Digital

(B) Analog vs Lossy compressed digital: 1.75 bpp

(C) Analog vs Lossy compressed digital: 0.4 bpp

(D) Analog vs Lossy compressed digital: 0.15 bpp

Radiologist C

FIGURE 56.15 Radiologist agreement tables.

19 from digital. With the former, the most frequent mistake
occurred eight times when “biopsy” was judged when “addi-
tional assessment” was correct. With digital, the most frequent
mistakes were for what was judged “additional assessment”, but
that should have been“biopsy”for five and“return to screening”
for five. On this basis, we cannot say that analog and digital are
different beyond chance. However, we note here, as elsewhere,
that radiological practice varies considerably by radiologist.

The primary conclusion from these data and analyses is that
variabilities among judges exceed by a considerable amount,
in their main effects and interactions, the variability in perfor-
mance that owes to imaging modality or compression within
very broad limits. In other words, the differences among ana-
log, digital, and lossy compressed images are in the noise of the
differences among radiologists, and are therefore more difficult
to evaluate. This suggests variations in statistical analysis that
will be explored in other experiments.

56.4.2.1 Management Sensitivity and Specificity

The means and variances of the sensitivity and specificity and
the mean of the PVP of the management decisions with respect
to the independent gold standard are summarized in Table 56.3.
Level 1 refers to the analog images, level 2 to the uncompressed
digital, and levels 3, 4, and 5 refer to those images where the
breast section was compressed to 0.15, 0.4 and 1.75 bpp respec-
tively (and where the label was compressed to 0.07 bpp). In

this table, sensitivity, specificity, and PVP are defined relative
to the independent gold standard. The table does not show any
obvious trends for these parameters as a function of bit rate.
Sensitivity is the ratio of the number of cases a judge calls “pos-
itive” to the number of cases actually “positive” according to
the independent gold standard. Here “positive” is defined as
the union of categories F/U, C/B, and BX. A “negative” study is
RTS. Sensitivity and specificity can be thought of as binomial
issues, and so if the sensitivity is p, then the variance associ-
ated with that sensitivity is p(1− p). The standard deviation
calculation for PVP is somewhat more complicated and is not
included here; because PVP is the ratio of two random quan-
tities (even given the gold standard), an analytical approach
to the computation of variance requires approximate statisti-
cal methods related to what is called “propagation of errors” in
physics.

56.5 Concluding Remarks

The application of the ideas of the previous chapter to three
specific medical image modalities and diagnostic applications
provides a quantitative and graphic appreciation of the effects of
lossy compression on tasks closely simulating clinical practice.
These results alone, however, do not resolve all of the issues
involved nor provide a definitive characterization of condi-
tions under which lossy compression might or might not be
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TABLE 56.3 Sensitivity, specificity and PVP

Sensitivity Specificity
PVP Mean

Level Judge Mean Stdev Mean Stdev

1 A 0.826 0.379 0.692 0.462 0.905
1 B 1.000 0.000 0.308 0.462 0.836
1 C 0.913 0.282 0.846 0.361 0.955
2 A 0.886 0.317 0.769 0.421 0.929
2 B 0.955 0.208 0.385 0.487 0.840
2 C 0.932 0.252 0.462 0.499 0.854
3 A 0.814 0.389 0.333 0.471 0.814
3 B 0.953 0.211 0.417 0.493 0.854
3 C 0.977 0.151 0.500 0.500 0.875
4 A 0.860 0.347 0.615 0.487 0.881
4 B 0.955 0.208 0.154 0.361 0.792
4 C 0.977 0.149 0.615 0.487 0.896
5 A 0.841 0.366 0.538 0.499 0.860
5 B 0.953 0.211 0.231 0.421 0.804
5 C 0.932 0.252 0.769 0.421 0.932

acceptable. In the next chapter we conclude our survey of qual-
ity evaluation by raising and discussing a variety of underlying
statistical issues that arose during these experiments.
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diffusion, 255
histograms, 291
of white matter in brain, 289

ANNs. See Artificial neural networks
Anterior commissure (AC), 630
Anterior commissure–posterior commissure

(AC–PC) line, 121
of human brain, 122f

Anti-aliased splatting, 794
Antiscatter grid, 382
AO. See Alternating optimization
Approximation theory, 474

approximation kernel example, 477, 477f
regularity, 476
reproduction of the polynomials, 476
strang-fix equivalence, 475

Archive server, 863
processes in the archive server, 866t

Archive software components, 865

ArcView® GIS, 901
Area–length method, 423
Artificial neural networks (ANNs), 67, 367
Arterial system, 318
Arterial tree morphometry, 317, 327

data acquisition forvascular morphometry, 319
definitions, 318
discussion and conclusions, 333
functions of arterial trees, 318
image processing methods, 318, 321
in pulmonary hypertension research, 326
properties of arterial trees, 319

Armed forces health longitudinal technology
application (AHLTA), 872

Asymptotic decider, 786
Asynchronous transfer mode (ATM), 858
Atlas-based methods, 204–205
Atlases of cortical patterns, 715
Atlas image, 313f
Automated matching, 651
Automated thresholding for brain extraction, 204
Automatic contour, 203
Automatic exposure control (AEC), 382
Averaging spatial transformations, 567
Axial FLAIR slice, of brain, 135f
Axial sampling, 517
Axis-aligned sheet-buffer method, 794

B

Backus-Gilbert philosophy, 25
Band-pass filter, 16f, 17f
Batch algorithm, 118
Bayesian belief networksm (BBNs), 367, 368, 369f,

374f
Bayesian objective function, 172
Bayesian probability terminology, 238
Bayesian registration models, 648
Bayes’ rule, 118, 120, 172
Bayes’ theorem, 148, 238
BCa confidence intervals, 941
BCC. See Body-centered Cartesian
Behrens–Fisher–Welch test, 947
Behrens–Fisher–Welch t -statistic, 947
Bernoulli principle, 429
Bimodal distribution, 197
Binary mask, 199
Body-centered Cartesian (BCC) lattice, 798
Bone structure and material property analysis, 347

analysis of angular distribution of power
spectrum, 348

quantitative analysis of anisotropy in connective
tissue, 347

Boundary concavities, 182
Boundary distance ambiguous classification, 240
Boundary-distance approach, 227
Boundary distance basis functions, 231–232
Boundary distance dataset parameters, 233
Boundary distance estimation, 223–242

classification, 233–234
classification approach using Voxel histograms,

225–226
derivation of classification parameter estimation,

237–239
derivation of histogram basis functions, 236–237
estimating histogram basis function parameters,

232–233
histogram basis functions for pure materials and

mixtures, 230–232
normalized histograms, 229–230

computing Voxel histograms, 230
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overview, 227–229
problem statement, 227–228

related work, 226–227
results, 234–236
with Voxel histograms, 223–242

Boundary distance Voxel parameters, 234
Boundary pixels, 265
Box and whiskers plots, 290
Brain contour refinement, 204
Box-counting technique, 389
Brain asymmetries, 533
Brain atlas, 708

brain templates, 708
deformable brain atlases, 712

anatomic variability, 712
temporal maps of brain structure, 718
types of atlases, 708

MRI, 708
multimodality atlases, 708

Brain pathology, 195
Brain segmentations, 195, 203

atlas-based methods, 204–205
automated thresholding for brain extraction, 204
automatic, 196f
brain contour refinement, 204
method, 196
statistical methods for brain segmentation, 205
techniques, 203–205

Brain studies and validation, 200
Brainweb classification errors, 217
Brainweb dataset, 215–217
Brownian-motion, 274
Brainweb phantom, 216
Breast cancer, 381

comparison with other risk factors, 384
selected risk factors for breast cancer, 385t

Breast imaging reporting and data system, 402
Brodmann’s area, 529
Broit’s system, 155
Bronchoscopy, 837

CT-video registration for, 837
B-spline curve, 322, 478, 480f
B-spline synthesis function, 479f
Building block equation, 306
Bulk motion, 506
Bulk tumor growth, 309
Butterworth

filtering, 16f, 17f
low-pass and high-pass filters, 15, 16

C

Calculus-based optimization, 607
multivariate optimization, 608
univariate optimization, 607

Capitate-hamate fusion, 352
Canny edge detector, 172
Caput-collum diaphysis angle (CCD), 360
Cardiac and coronary artery disease, 777
Cardiac cycle, 156f, 157f
Cardiac imaging procedures, 419
Cardiac motion, 506
Cardio CT image, 9, 10
Cartilage spring, 345
CASCADE. See Computer-assisted cluster

assignment decision environment
Castigliano’s theorem, 347
Cathode ray tube (CRT), 4

display systems, 4, 5
logarithmic characteristic, 5f
poor-quality image, 5f

Catmull-Rom spline, 788
Caudate nucleus, 154f
CCD (charge-coupled device) camera, 321
Cell-by-cell classification, 457

properties of nuclear features for, 457
Cell classification, 453, 461f
Cell cycle classification, 459t, 462f
Cell nuclei images, 460f
Cells and isolines visibility, 823
Central weighted median filter (CWMF), 62
Cerebral blood-flow (CBF), 629
Cerebrospinal fluid (CSF), 102, 120, 526, 300, 313

maps, 300
segmentation, 135f

Chain codes, 265
differential, 266, 267
grid for, 265f
of boundary, 266f
points and transition labels, 265f

Chamfer matching, 593
illustration of the process of, 592
medical applications, 593

electronic portal imaging, 594
image registration for treatment planning, 596

performance tests of, 599
accuracy and reproducibility, 599
reliability and capture range, 601

Channel frequency responses, 38f
Chebyshev coefficients, 212
Chebyshev polynomial basis functions, 212
Chemical shift effects, 507, 507f
Chirp-z transform (CZT), 679
CII. See Contrast improvement index
Cine-loop display, 420
Classification of breast lesions, 399

from mammograms, 399
Clipped angiogram, of retina, 150f
Clustering, 74
Cluster specializing, on voxels representing the

arterial vessel wall, 137f
Cluster validity, 96
CNR. See Contrast noise ratio
Coarse grid correction scheme, 186
Codebook vectors (CVs), 116–119, 125, 135, 136

interactive assignment of, 125
Color-coded Doppler images, 430
Combined model testing, 174f
Communication network, 863
Composite DICOM message service elements

(DIMSE-C), 864t
Compressed medical images, 917, 934, 944

average distortion and SNR, 921
determination of a gold standard, 930
diagnostic accuracy and ROC methodology, 927,

944
image compression, 918
philosophical issues, 942
quality evaluation for, 917, 934, 944
relationships between quality measures, 938
statistical issues, 934
statistical size and power, 934
subjective ratings, 924
three data sets, 919

Compression and communication, 849
fractal compression, 854
fundamentals and standards of, 849
joint photographic experts group (JPEG)

compression, 852
moving picture experts group (MPEG)

compression, 853
MPEG-2 resolutions, 854t

telecommunications, 856
network interoperability, 857

signal hierarchy and transfer rates, 856
telemedicine applications compatibility, 858

wavelet compression, 854
Computed tomography (CT), 114, 122, 148, 306,

317, 919, 944
Computer-aided detection or diagnosis (CAD), 60,

66, 367, 834, 838
lesion classification, 840
shape-based detection, 839
surface roughness analysis, 841
other lesion detection methods, 840

Computer-assisted cluster assignment decision
environment (CASCADE), 134

Computerized image analysis, 455
list of features for, 456t

Computer processing methods, 833
centerline extraction and flight path planning, 835
computer-aided detection, 838
for virtual endoscopy, 833, 834
registration, 835
stool tagging and removal in virtual colonoscopy,

838
unfolding, 834

Computing Voxel histograms, 230
Concentric shells, 245
Concentric spheres, initialization of pairs, 175f
Conjoined twins, 777

surgical separation of, 777
Connective tissue, 347
Connective tissue anisotropy, 347
Contour algorithm, 200, 267
Contrast improvement index (CII), 51

by AHE, 52t
by EDGE, 52t
by GAIN, 52t
by UNS, 52t

Contrast noise ratio (CNR), 50
Control tensor, 28, 29
Contrast ventriculograms, 426
Conventional measurement methods, 356
Conventional MRI, 507
Convolution filters, 647
Co-occurrence

histogram, 282
matrix, 270–272

Coronary artery disease (CAD), 426
Corpus callosum, 297
Correlation analysis, between size and age, 298f
Correlation mapping, 82, 83
Correspondence ratio (CR), 105
Cortex segmentation validation, 176t
Cortical

layer, 175
gray matter volume, 177
segmentation, 175, 177

validation, 176
surfaces, 175, 176f, 177
thickness, 175, 177

measurement of, 177f
Cortical parameter space, 656

maps of, 656
Cortical pattern matching, 654
Cortical surface extraction, 656
Cortical surfaces, of brain, 176f
Coupled level set

cortical segmentation, 175f
for heart segmentation, 176f

Coupled surfaces propagation, 175
Covariance matrix

error measure, 173t
final contour, 173f

Covariant formalism, 658
CR. See Correspondence ratio
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Craniofacial surgery planning, 778
Crisp classifier, 97
Crisp nearest prototype (1–np) classifier, 97
Cross-correlation, 606
Cross-validation (CV) methods, 372, 572
CRT. See Cathode ray tube
CSF. See Cerebrospinal fluid
CT colonography (CTC), 808
CT-CT registration, 596, 599f
CT-MRI registration, 597

examples of, 598f
CT. See Computed tomography
Curve registration, 582
CV. See Codebook vectors
CWMF. See Central weighted median filter
Cytometric features of fluorescently labeled nuclei,

453
analysis for classification, 460
automated cell classification, 454
classification process, 458

nonparametric decision making, 458
parametric decision making, 458
supervised learning techniques, 458

conventional features in manual evaluation by
cytologists, 454

features commonly evaluated manually for cell
diagnosis, 454t

current image analysis systems, 454
nuclear features, 455
other techniques, 459

D

3D angle measurement method, 358
data, postprocessing, and graphics, 358

3D graphics measurement tool, 359
3D visualization, 358, 359f
image data, 358
image postprocessing, 358, 359f

measurement theory, 360
clinically relevant angles, 360

3-D complementary SPAMM (CSPAMM), 446
3D DDA (Digital differential analyzer) method, 796
3D elastic mapping algorithm, 521f
3D image data set, 967
3D texture

estimation, 279
representation, 280

3-D tracking methods, 448
3D virtual colonoscopy, 807–809
3D volume transformation, 653
Dark blood sequences, 428, 428f
Database management subsystem, 863
Database selection, 367, 370

adequacy of training samples, 371
effect of case difficulty, 370
effect of validation methods, 372

Database selection and feature extraction for neural
networks, 367

artificial neural networks, 367, 368f
Bayesian belief network (BBN), 368
comparison between ANN and BBN, 370

characteristics of ANN and a BBN, 370t
schematic diagram of, 371f

feature selection, 373
direct measurement of feature characteristics,

373
genetic algorithm approach, 377
permutation and progressive roundoff

approach, 374
stepwise feature selection, 375

Data resampling techniques, 407
jackknifing, 407
leave-one-out, 407

DD interpolation. See Deslauries–Dubuc
interpolation

DDSM. See Digital database for screening
mammography

Deformable atlas technique, 155
Deformable contours. See also Deformable models

behavior of, 183
convergence of, 183f, 184f, 187f, 189f, 190f
GVF, 184, 187
result of the GVF, 188f

Deformable feature map (DM), 132, 133
algorithm, 133
multispectral magnetic resonance imaging

datasets, 133f
Deformable lateral ventricle, 154f
Deformable models, 145–160, 167–178, 181–192

accuracy and quantitative power, 159
active contour models, 146
curves, image segmentation with, 149
2D, 182
dynamic, 147
energy-minimizing, 146–147
Eulerian formulation, 159–160
external force fields, 182
gradient vector flow, 181–192
imaging (sensor) model, 148
Lagrangian formulation, 159–160
level set methods, 168
mathematical foundations of, 146
medical image analysis with, 148
methods to improve, 149
multiresolution technique, 159
probabilistic, 148
robustness, 159
role, 160
shape information in, 167–178
snakes, 146–151

application of, 149
deforming towards high gradients, 147f
flowing and branching, 150f
in EM photomicrograph, 146f
Lagrange equations of motion, 147
segmentation of a cross sectional image, 151f
topologically adaptable, 151f

snakes approach, 168
solid models, 159
statistical shape models, 168–169
surface models, 168
surfaces, volume image segmentation with, 151
traditional, 184

Deformable organisms, 153
automatic brain MR image segmentation by, 154f

Deformable surface, initial configuration, 191f
Deformable surface models, 151

3D surface model, 151
balloon model, 151, 157f

of canine heart, 152f
polygonal model, 151

Deformable templates, 152
Deformation function, 298

quantifies, 298
Degree-of-freedom methods, 630
Déjerine, 529
Delay mapping, 83. See also Correlation mapping
Denoising, 43–47

by wavelet shrinkage, 43, 44
enhancement and, 43
for the 2D case, 47, 48f
process, 46f
threshold estimation for, 44

Densitometric calculation of volumes, 421
Deslauries–Dubuc interpolation (DD), 51f, 52t, 54t

refinement relation for, 51f
DFT. See Discrete Fourier transform
Diagnostic acceptability measure (DAM), 924
Diagnostic imaging method, 317

planar X-ray films, 317
Dice coefficients, 220
DICOM. See Digital imaging and communications

in medicine
DICOM information object, 864f
Differential geometry of 3D surfaces, 578, 578f
Diffusion function, 198
Diffusive models, 306

including anisotropy, 308f
Digital audio tape (DAT), 853
Digital database for screening mammography

(DDSM), 108
Digital images, 3, 4

CRT type display systems, 4
Digital imaging and communications in medicine

(DICOM), 859, 897
Digital linear tapes (DLTs), 861
Digitally reconstructed radiograph (DRR), 594
Digital medical image libraries (DMIL), 908

distributed DMIL (DDMIL), 910
Digital signal processing (DSP), 853
Digital subtraction angiography (DSA), 421
Digital versatile discs (DVDs), 861
Dirac function, 20
Direct encoding methods, 444
Direct digital mammograms, 387
Directional wavelet transform (DWT), 65
Direct strain encoding (SENC), 449
Direct volume rendering, 789
Dirichlet apodization, 483

sinc apodization, 483f
Discrete cosine transform (DCT), 852, 918
Discrete Fourier analysis of connective tissue, 348
Discrete Fourier transform (DFT), 265, 267
Discrete materials, 228
Discrete maximum-likelihood (DML), 226
Discrete wavelet transform (DWT), 265
Displacement encoding with stimulated echoes

(DENSE), 444
Displacement maps, 652
Distance maps and centerline extraction, 836f
Distance potential forces, 184, 186
DM. See Deformable feature map
DMIL. See Digital medical image libraries
DNA fragments, 269

atomic force microscope image of, 270f
Domain-based technique, 789
Doppler principle, 429
Doppler shift, 429
Doppler ultra-sonography techniques, 428
Dots per inch (DPI), 100
DPI. See Dots per inch
Dualecho images, of brain, 81f
Dual energy X-ray absorptiometry (DEXA), 349
Dual tensor, 28
Ductal carcinoma in situ (DCIS), 409
Ductal carcinoma. See Malignant lesion
DWT. See Directional wavelet transform
Dyadic wavelet

analysis, 42f, 47, 49
two-dimensional transform, 47f

Dynamic brain atlases, 717
4D, 717

Dynamic image acquisition techniques, 419
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E

Early notification of community based epidemics
(ESSENCE) system, 898

Early ray termination, 791
Echo planar image (EPI), 503, 511

field inhomogeneity effects, 511
nyquist ghost, 511, 511f

Edge-based segmentation, 74
Eddy currents, 502
Edge detection methods, 79

Sobel operator, 79f
Edge enhancement, 10–12

horizontal edges, 11
local-area histogram equalization, 12

output image, 14f
vertical edges, 11

Edge map, 185, 187, 188f, 189f, 190f, 191
EDGE. See Multiscale edges
Edge sharpening, 35
Edge tile, 823
EFD. See Elliptic Fourier descriptors
Effects of motion, 505
Eigenvectors, 169–172
Eikonal equation, 311
Elastic

interpolation, 297
reparameterization, 296f
transformation, 297

of image, 302
Electrocardiogram, 420, 897
Electron beam CT (EBCT), 317
Electronic health record (EHR), 872

EHR projects in the United States, 872
AHLTA, 872
Bush administration’s initiatives, 872
PACS into EHR, 872

Electronic medical record (EMR), 896
Electronic portal imaging, 594

anatomy matching and clinical application, 595
field edge matching, 595

Elementary transformations, 548
Elliptic Fourier descriptors (EFDs), 61
EM approach, 212–213
Empirical demonstration, 677
End-systolic from end-diastolic counts (ED – ES),

424
Energy minimization criterion, 199
Enhanced images, visual evaluation of, 66
Enhancement factor (EF), 50
Error back-propagation, 116
Error measures

boundary, 172, 173
for heart image, 173t

Estimation of breast cancer risk, 381
Equations of motion, 344
Euclidean distance, 97
Euclidean norm, 94
Euler characteristic (EC), 663
Euler equation, 183
Euler-Lagrange equation, 147
Euler–Lagrange evolution equation, 655
Euler rotations, 343
Expectation/maximization (EM), 322

algorithm, 81, 82, 227
segmentation result, 81f
strategy, 168

Extensible markup language (XML), 871
Extensively drug resistant tuberculosis (XDR-TB),

902
External fiducial gold standards, 571

Extremal points, 579, 580f
automatic extraction of, 580
example of, 581
randomized extraction of, 581

Extremal points registration, 582
Extremum sharpening, 77

F

Face-centered Cartesian (FCC) lattices, 798
False negative (FN), 105

detections, 66
False positive (FP), 105
False positive fraction (FPF), 927
Falx cerebri, 526
Fast Fourier transform (FFT), 268, 347, 489

two-dimensional, 347
Fast isosurface extraction methods, 817

accelerated search, 818
span space, 818
kd-trees, 819
noise algorithm, 819
other span space algorithms, 821

for large image data sets, 817
real-time ray-tracing, 825

ray-isosurface intersection, 826
real-time ray-tracing results, 827

sample applications, 827
view-dependent algorithm, 821

image space culling, 822
visibility, 822
warped isosurface extraction (WISE), 823

FCC. See Face-centered Cartesian
FCM. See Fuzzy c-means model
FDs. See Fourier descriptors
Feldkamp conebeam filtered backprojection

algorithm, 327
FFD. See Free form deformations
FFT. See Fast Fourier transform
Fibroglandular tissue, 383
Fiducial registration error (FRE), 571
Field edge matching, 595
Field of view (FOV), 120
Final brain mask, 199–200
Finite element model, 448f
Finite Gaussian mixture models (FGMM), 213
Finite impulse response (FIR) filters, 37
FIR. See Finite impulse response
First order Butterworth low-pass filter, 392
Fixed filters, 28
Flow-sensitive imaging techniques, 429
Flow (vector) visualization, 739
Fluorodeoxyglucose PET (FDG-PET), 689
fMRI artifacts, 511

echo planar imaging and spiral imaging artifacts,
511

physiological noise effects, 512
FN. See False negative
Forward map and strain, 448
Four-dimensional model simulation, 342
Fourier descriptors, 60, 261, 262, 267, 268
Fourier phase analysis, 419, 425
Fourier snakes, 153
Fourier transform, 4, 15, 16, 20, 21, 24, 267

of an image, 4
of kernel and image, 15
of original CT image, 17f

FP. See False positive
Fractal analysis, 389

fractal geometry, 389
fractal objects, 389

Fractal compression, 854
Fractal dimension, 273, 274
Fraction of times peaks, histograms of, 254f
Free form deformations (FFDs), 153
Free-response receiver operating characteristic, 66,

367
Frequency domain techniques, 15
FROC. See Free-response receiver operating

characteristic
Front-to-back compositing formula, 791
Full-field digital mammograms (FFDMs), 400, 404
Full Fourier transform methods, 679
Full width at half maximum (FWHM), 330, 635
Functional activation images, 301
Functional anatomy, of the oro-pharyngeal cavity,

138f
Functional magnetic resonance imaging (fMRI), 314,

536, 677
Fuzzy

clustering, 84
image segmentation, 91–109
models, 91–109
partition, 96, 97
range, 117, 118
sets, 92f, 93
spel, 107
subsets, 92f
systems, IEEE transactions on, 93
tesselation, 117, 119, 125

Fuzzy boundary, 301
Fuzzy clustering algorithms, 210
Fuzzy clustering approach, 213–214
Fuzzy clustering interpretation, 211
Fuzzy c-means (FCM) model, 95, 96t, 102–105, 108

G

Gabor filters, 261, 274, 447
Gabor filter methods, 447
Gabor receptive field, 274
Gamma function, 147
Gaussian curve, 199
Gaussian distribution, 231
Gaussian filter, 22, 76, 77
Gaussian filtering, 229
Gaussian functions, 29, 38f, 183
Gaussian image, 280
Gaussian models, 175
Gaussian noise, 210
Gaussian smoothed image, 324
Gaussian sphere, 280
Gaussian white noise, 10, 44

noisy input signal, 45f
Gauss-Seidel method, 186
GBM. See Glioblastoma multiforme
GD. See Gradient density
GDM. See Geometric deformable models
General affine model, 561
General spatial normalization algorithm, 631
Generalized radial basis functions (GRBF), 114

classification
vector quantization, 130t

classifier, 128
statistics of the training datasets, 130t

network, 114–116, 119, 120, 125, 128, 130
application to medical image, 120
structure and function, 114–115
structure of, 115f

Genetic algorithm (GA)
evaluation, 376
initialization, 376
search, 376
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selection, 376
termination, 376

Genotype vs. phenotype, 717
Geometric deformable models (GDM), 181, 182
Geschwind’s hypothesis, 533
Gibbs phenomenon, 678
Glioblastoma multiforme (GBM), 309

tumor, 310f
Glioblastomas, 255
Global rescaling transformation, 555
Global shape model, 169
GM. See Gray matter
GM/CSF boundary. See Gray matter/cerebrospinal

fluid (GM/CSF) outer boundary
Goldner’s trichrome staining, 347
Gradient

magnitude, 79
Gradient coefficients, 43
Gradient density (GD)

measure, 280–282
method, 283, 285

Gradient-echo pulse sequence, 504
Gradient energy function, 200
Gradient filter, 38
Gradient operators, 65, 74, 79
Gradient vector, 250, 282, 288
Gradient vector flow (GVF), 181–192

application, 189, 191
convergence to boundary concavity, 186
3D GVF streamlines, 192f
deformable contours, 184, 186
deformable model, 182

3D, 188
external forces, 187f
field, 182, 184, 185, 188, 190f

comparing, 187f
data term, 185
on planes A and B, 192f
smoothing term, 185
streamline visualization, 192f

field computations, 186
GVF-I and II parameters, 187, 188f, 191
multigrid computation, 185
results on gray-level images, 187
vector fields, 191
vectors, 187f

Graph searching technique, 80
Graphical user interface (GUI), 359
Grid cell with voxel, 786
Gray level, 4, 5, 271

background, 51
CT image, 8f
foreground, 51
feature space

vector quantization, 130t
image

GVF results, 187
of U-shaped object, 189f

shift effects, 131
Gray-level co-occurrence matrix (GLCOM), 456
Gray-level representation, 126f

of T 1 weighted image, 123f
of T 2 weighted image, 123f

Gray matter/cerebrospinal fluid (GM/CSF) outer
boundary, 174, 177

Gray matter (GM), 102, 103, 256
Gray matter distribution, 301f
GRBF. See Generalized radial basis functions
Grey value, 147
Ground truth information, 100, 101
GVF. See Gradient vector flow

H

HAMMER algorithm, 312
Hanning apodization, 483
Hard clustering methods, 116
Hard c-means (HCM) model, 95, 96t
Harmonic loci, 61
HARP processing, 445f
Hausdorff dimension, 273
HCM. See Hard c-means model
Health level seven (HL7), 858, 867, 897
Heart, 158

motion, 156–158
Hebbian learning rule, 119
Heidelberg raytracing model, 802
Hidden layer neurons, 115, 116
High-definition television (HDTV), 853
Hilbert transform pairs, 26, 27f. See also Quadrature

filters
Hill climbing, 77

algorithm, 78
steps of segmentation, 78f

HIPAA compliance, 871
Histogram, 6

analysis, 388, 800
associated, 8f
cumulative, 7f, 8f
equalization, 5, 42

multiscale, 42
equalized image, 7f
enhanced image, 8f
local-area equalization, 12
maximally uniform, 7
modification techniques, 35, 882
normalized cumulative, 7
of an image, 4
of input image, 6f

Homogeneity criterion, 77
Hooke’s law, 308
Hospital integrated picture archiving and

communication system, 874, 890
Human cerebral cortex, 716f, 193f
Hurst coefficient, 274
Hybrid algorithms, 644
Hybrid filter

architecture, 60, 61f
design of, 60
enhanced images, 67f

with two-channel MMWT, 67f
with four-channel MMWT, 67f

image database, 66
Hybrid techniques, 794
Hyper-BF network, 115
Hyper Reeb graph, 801

I

IBSR datasets, 217, 220
ICP on frames, 584
Illustrative visualization, 731

first generation systems, 731
real-time patient monitoring, 731

second generation systems, 731
2D contours and deformable models, 732
contour models, 732
2D texture mapping and image

parameterization, 732
interpolation, 731

third generation systems, 732
surface visualization, 733
volume visualization, 733

Image acquisition techniques, 114
Image archive system, 863f

Image averaging, 14–15
basic assumptions, 14

Image-based computational biomechanics, 341
of musculoskeletal system, 341

Image compression system, 918, 918f
Image gradient magnitude, 198
Image-guided tools

for therapy planning, 309
Image enhancement

algorithms, 3
by adaptive histogram equalization, 52f, 53f
by adaptive gain processing, 52f, 53f
by multiscale edges, 52f, 53f
by multiscale nonlinear operators, 35–55
by traditional unsharp masking, 52f
ID contrast enhancement, 42
linear, filter selection, 40
methods of, 4, 5
nonlinear

by Beghdadi and Negrate’s algorithm, 47f
by functional mapping, 40
with adaptive wavelet shrinkage denoising, 45f,

47f, 48f, 50f
without denoising, 45f

techniques, 3, 35, 41
edge enhancement, 35
histogram modification, 35
multiscale adaptive gain, 42
multiscale histogramequalization, 42
one-dimensional discrete dyadic wavelet

transform, 36
radiology, 35

undesirable effects, 3
using Fourier descriptors and hybrid filters, 59–68
wavelet-based, 60

Image-guided surgery, 695
image-guided neurosurgery system, 696

imagery subsystem, 696
registration subsystem, 696

operating room procedure, 700
operating room results, 700
performance analysis, 700

Image interpolation and resampling, 465
approximation theory, 473

approximation kernel example, 476
regularity, 476
reproduction of the polynomials, 476
strang-fix equivalence, 475

artifacts, 469
aliasing, 470, 472f
blocking, 470, 472f
blurring, 470, 473f
resampling, 469
ringing, 470, 471f

classical interpolation, 467
interpolation constraint, 467

cost-performance analysis, 483
cost, 483
performance, 484, 484t
trade-off, 484

desirable properties, 470
partition of unity, 473
separability, 471
symmetry, 473

experiments, 485
generalized interpolation, 468

determination of the coefficients, 468
reconciliation, 468

specific examples, 477
B-splines, 478
linear, 477
nearest-neighbor, 477

terminology and other pitfalls, 469
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Imaging methods
modern tomographic, 293

Image-level intermixing, 806
Image-order techniques, 790
Image processing, 435

extraction of features, 98f
hybrid methods, 195

Image registration techniques, 120–121, 685, 707
Image registration using chamfer matching, 591

theory, 591
automatic image registration algorithms, 591,

594t
cost function and distance transform, 591
optimization of the cost function, 591
segmentation, 593

Image segmentation, 73–84, 91–109, 113–139, 195
adaptive, 81, 82

results, 81f
aim of, 127–128
analysis of phonation using MRI, 136
automatic presegmentation, 136
applications, 132

additional, 136
by GRBF classifier, 127f, 128f, 129f
by FCM, 103f
by M3, 103
by man, 114
by vector quantization, 127f, 128f, 129f
comparison of two procedures, 130t
2D, 98
3D, 106
edge-based techniques, 79–80
evaluation, 100f
functional genomics and bioinformatics, 138
fuzzy model, 91–109

quantitative basis of, 91
qualitative discussion, 102

in medical applications, 99
methods, 99

classification of, 99f
model based, 83
multispectral image synthesis, 136
problems, 169
results, 126–129

central coronal cross-section, 128f
frontal coronal cross-section, 127f
in patient with multiple sclerosis, 135f
occipital coronal cross-section, 129f

supervised, 105
surrounding tissue structures

advantages, 122
techniques, 73–82

based on integration, 81
classification, 73–74
edge-based segmentation, 74
multispectral, 81
nonfuzzy, 98
parametric analysis, 82
thresholding, 74
region segmentation, 74

three-dimensional, 83
unsolved problem, 138
unsupervised, 102, 104
using correlation mapping, 82, 83f
using multiple images, 81–83

acquired by different imaging techniques, 81
acquired over time, 82

using Sobel/watershed algorithm, 78f
validity problem, 104f
vessel, 136
watershed, 78–79

Image smoothing, 15
effects of, 17f

Image subtraction, 15
purpose, 15

Imaging and communication, 898
in medical informatics, 896
in medical and public health informatics, 895
in public health informatics, 898

current challenges in, 902
Imitative visualization, 741

fifth generation systems, 741
Indicatrix

gradient based, 282f
Inflation force, 149, 150f
Initial brain mask, 197–199, 201

automated threshold, 198–199
nonlinear anisotropic diffusion, 197–198
refinement of mask, 199

Imperfect MRI pulse sequences, 508
truncation artifacts, 508
non-steady-state effects, 508
signal aliasing, 510
unwanted NMR echoes, 510

Implicit formulations, 160
Information-theoretic approach, 6
Information theory measures, 617

joint entropy, 618
measuring information, 617
mutual information, 618
normalized mutual information, 619

Integral anisotropy measure, 283
Integrated services digital networks (ISDNs), 857
Intensity band, 5, 6f
Intensity-based cost functions, 605

across-modality registration, 613
optimization, 619

within-modality registration, 605
Intensity distortion, 503
Intensity of orientation, 348
Intensity scaling, 5

transformation, 5
Intensity variation measure (INV), 282, 284f , 285

method, 286f
Interactive analysis of mammographic density, 387f
Inter-grid transfer operators, 186
Interhemispheric connectivity, 298
Interactive matching, 123f
Interactive thresholding procedure, 386f
Internal surface of the brain, 530

calcarine sulcus, 530
callosomarginal or cingulate sulcus, 530
parieto-occipital sulcus, 530

International consultative committee for telegraph
and telephone (CCITT), 851

International standards organization (ISO), 852
Interpolation, 465

classical interpolation, 467
cubic interpolation, 486, 486f
generalized interpolation, 468
hypotheses for, 466
interpolation constraint, 467
nearest-neighbor and linear interpolation, 485,

486f
sinc-based interpolation, 486

Interpolation method, 607
Intermodality (or multimodality) registration, 689
Intersubject registration, 691
Intracranial boundary detection, 198

flow diagram, 196f

Intracranial contour, 201–202
Intramodality registration, 227, 605, 685

cost functions for intramodality registration, 605
cross-correlation, 606
least squares and scaled least squares, 606
other cost functions, 606
ratio image uniformity, 606

Interval wavelet plot, 51
Intravascular ultrasound (IVUS) methods, 321
Invariant descriptors, 263
Investigative visualization, 735

developmental visualization, 736
dynamic visualization, 736
3D volume morphing, 736
flow (vector) visualization, 739
multimodality visualization, 738
navigational visualization, 738
rapid back-projection reconstruction, 739
real-time visualization, 738
stereoscopic 3D visualization, 736

Invisible boundaries, 255
INV. See Intensity variation measure
Iterative closest-point algorithm, 351
Isosurface extraction (“marching cubes”), 733, 818
Iso-contour, 786
Iso-interval, 786
Iso-surface, 786
Isosurface of 3D object, 191f
Isotropic-nonhomogeneous diffusion, 307
Iso-value, 786
Iterative techniques, 297
IVUS. See Intravascular ultrasound

J

Jackknife technique, 955
Joint contact pressure, 345, 346f
Joint entropy, 618
Joint histograms, 615
Joint photographic experts group (JPEG)

compression, 852
JPEG standard, 852
modes in, 853

K

Kalman filtering, 153
Kalman snakes, 148
Kernels, 4, 8, 9

application of, 10f
convolution, 8
enhancement, 12f
omnidirectional, 11

Kernel footprint, 793
Kernel splatting, 793

sheet-buffered splatting, 793f
three types of splatting, 793

Keys’ function, 480, 481f
Kd-trees, 819, 819f

pointerless Kd-tree, 820
Kindlemann’s algorithm, 801
K -means algorithm, 211
K -means approach, 211–212
K -means equations, 213
K-nn rule, 97, 103
Knowledge-based (KB) system, 104
Kolmogorov-Smirnov test, 569
Kriging filter, 448
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L

Label vectors, 94
Lagrangian dynamics setting, 146
Lagrangian mechanics, 147
Lagrangian strain, 448
Landmark-based registration, 577

feature extraction: extremal points and lines, 577
definition and properties, 578

rigid registration, 581
curve registration, 582
examples of, 584
extremal points registration, 582
substructurematching with frame features, 582

robustness and uncertainty analysis, 584
Laplacian

coefficients, 43, 47
filter, 37, 40
filtering, 35
image, 80f
operator, 39, 80
of Gaussian operator, 80

image, 80f
Laplacian-of-Gaussian filter, 39
Laplacian of Gaussian operator (LoG), 324
Laplace operator, 80
Laplacian-weighted density histograms, 800
Least squares problems, 608
“Leaving-one-out” techniques, 458
Lee’s filter

on MR data through pelvis, 26f
Left anterior descending (LAD), 449
Left ventricular ejection fraction, 423
Left ventricle (LV), 149, 436

anatomy and motion, 436
boundaries, 155
intensity CT image slice of, 150f
motion of canine, 156f

tracking of, 157f
reconstruction of, 152f
snake deforming, 150f

Lesion classification, 840
Level set methods, 159, 174

incorporating generic constraints, 174
Levenberg–Marquardt algorithm, 609
Ligament tension analysis, 345
Linear edge detectors, 245
Linear discriminant analysis (LDA), 375, 406, 458
Linear filtering, 20
Linear mapping, 271, 272
Linear-quadratic model, 310
Lipschitz-continuous scalar function, 183
Lipschitz exponents, 43
Live-wire, 150
Local-area histogram equalization, 12, 14
Local mean curvature, 283
Local operators, 8
Local texture, 84
Lookup table (LUT), 882
Lossless compression techniques, 851
Lossy compression techniques, 851
Lumigraph, 799
LV. See Left ventricle

M

Macroscopic models, 305
Magnetic resonance angiography (MRA), 79, 83, 106
Magnetic resonance imaging (MRI), 114, 122, 195,

499, 605, 708
3D datasets, 126, 127

sequences, 120, 121, 131, 134
acquisition parameters, 120t
different parameters, 134
inversion-recovery (IR), 120, 121f
proton density (PD) weighted, 120, 121f
T 1 weighted, 120, 121f, 123f
T 2 weighted, 120, 121f, 123f

Magnetic resonance (MR) images, 98, 148, 173, 306
functional, 314
heart image example and prior experiment, 173f
of human heart, 190f

Magnetic resonance spectroscopy (MRS), 314, 689
Magnetic resonant diffusion tensor images

(MR-DTI), 307
Magnetization prepared rapid gradient echo

(MPRAGE), 204, 218
Magnetoencephalographic (MEG), 689
Magneto-optical disks (MODs), 861
Mahalanobis distance, 375
Malaria and lyme disease, 902
Malignant lesion

results on a dataset by histopathology, 137f
Mammogram, 51, 908

blended, 51
contrast enhancement, 53f
contrast values, 54f
mammogram study, 921, 955
observer form for, 957f, 958f
phantom features, 50f
radiologist agreement tables, 960
results and discussion, 959
statistical analysis, 956
with mathematical phantom, 55f
with phantom image, 52f

image
cancer-free, 50
original, 49f
with blended phantom features, 50f

single view, 66, 67
vs. ROI, 52t

Mammographic images
with single biopsy-proven mass, 66f
with single biopsy-proven MCC, 67f

Mammographic lesions, 135
Mammographic technique, 390
Mammography, 382

mammography experiment, 937
mammography subjective ratings, 926

Mammography analysis, 65
Manual contour, 203
Maptitude®, 901
Marching Cubes algorithm, 786
Markov model, 170
Markov random field (MRF) model, 210
Markov random field prior model, 211
Marr–Hildreth operator, 81, 324
Marschner-Lobb test function, 788
Masking

unsharp, 20–24, 35, 39, 51
filtering CT data, 24f
inclusion within rdwt framework, 39
linear enhancement, 39
multiscale, 41
visualization of filters, 23f

Masking (high-pass filtering) effect, 348
Mass detection, 67
Mathematical growth models, 305
Mathematical phantom, 52f
Matrix formulation, 543

advantages of, 544
disadvantage of, 544

Maximum intensity projection (MIP), 761, 790
of time of flight (TOF), 31f

Maxwell’s equations, 501
Maxwell term effects, 501
MCCs. See Microcalcification clusters
Mean filtering, 8–10
Mean opinion score (MOS), 924
Mean square error (MSE), 24, 631
Medial axis transform (MAT), 268

skeleton pixel, 268
Medial-lateral oblique (MLO), 391
Median filtering, 10, 76f

typical results of, 11f
Medical and public health informatics, 895

current issues and emerging trends, 895
imaging and communication in, 895

Medical image archive, retrieval, and
communication, 861

archive software components, 865
database updating, 867
image archiving, 867
image receiving, 865
image retrieving, 867
image routing, 865
image stacking, 867

DICOM image archive standard, 868
image file format, 868
q/r service class support levels, 870
query/retrieve service class operation, 868

DICOM image communication standard, 863
c-store dimse service, 865
information objects, 864
service classes, 864

electronic health record (EHR), 872
EHR projects in the united states, 872

HIPAA compliance, 871
DICOM de-identification/re-identification

mechanism, 871
protected health information (PHI), 871

HIS/RIS interfacing and image prefetching, 867
health level seven (HL7) communication

standard, 867
prefetch mechanism, 867

medical image archive system, 862
archive server, 863
communication network, 863
database management subsystem, 863
storage subsystem, 863

medical image information model, 862
PACS in telemedicine, 872
PACS research applications, 872
structured reporting, 870

SR implementation in PACS, 871
SR information objects and document series,

870
Medical image processing, analysis, and visualization

(MIPAV) software package, 214–215
graphical user interface, 215

Medical imaging
automatic algorithms, 158
deformable models, 145–160
incorporating a priori knowledge, 152–154
low-level image processing techniques, 145, 149
matching of regions, 154–155

result of, 155f
methods

quantitative biomedical imaging, 113
uses, 113

motion tracking and analysis, 155–158
role of, 145
semiautomatic methodology, 158
shape information, 167
solid models, 159
topological flexibility, 158–159

Membership functions, 214
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Meningioma
images of brain, 314

MIP. See Maximum intensity projection
Microarray gene expression profile

analysis of, 139f
Microcalcifications, 404, 405f

benign and malignant, 262f
pleomorphism,404

Microcalcification clusters (MCCs), 60, 61, 66–68
Micro-CT scanner, 326, 326f

photo of, 22
Mineralized collagen fiber (trabecular bone), 347
Mini mental state examination (MMSE), 290
Minimum error threshold, 197
Minimum intensity projection (MinIP), 761
Misclassification rate (MCR), 217
Mixel algorithm, 234
MMSE. See Mini mental state examination
MMWT. See Multiresolution/multiorientation

wavelet transform
Mobile agent technology, 908
Model-driven algorithms, 649
Model’s predictive power, 941
Montreal neurological institute (MNI), 176
Morphological differences

between men and women, 298f
Morphology

of brain structure, 294
Morphometry, 317
Motion

hierarchical model, 157
LV, 156–157
vectors, 156

MR angiogram (MRA), 769
MR-DTI. See Magnetic resonant diffusion tensor

images
MR image resampling, 675
MRI. See Magnetic resonance imaging
MR markers method, 446
MRS. See Magnetic resonance spectroscopy
MR study, 919, 949

study design and statistical analysis, 950
results using the independent gold standard,

951
results using the personal gold standard, 953

MSE. See Mean-squared error
MS. See Multiple sclerosis
Multidimensional

sinusoidal function, 20
spatial frequencies and filtering, 19

Multidimensional brain atlases, 707
coordinate systems, 709
deformable brain atlases, 712
dynamic brain atlases, 717

4D coordinate systems, 717
temporal maps of brain structure, 718

registration, 712
structure of a brain atlas, 708

brain templates, 708
types of atlases, 708

3D anatomical models, 708
MRI, 708
multimodality atlases, 708, 709f

warping, 713
disease states, 717
genotype vs. phenotype, 717
measuring structural differences, 715
model-driven registration, 713
warping the cerebral cortex, 717

Multigrid and coarse-to-fine optimization, 648
Multigrid V-cycle, 186
Multilayered perceptrons (MLPs), 650
Multimodality brain atlases, 709f

Multiparameter classification, 390
Multiple images

enhancement methods, 14
Multiple sclerosis (MS), 114, 132, 195

quantitative imaging as a biomarker in, 133
Multiplicative gain field, 210
Multiresolution methods, 182
Multiresolution/multiorientation wavelet transform

(MMWT), 60, 61f, 64
Multiscale adaptive gain processing (GAIN), 51

contrast values, 54t
CII for enhancement, 52t

Multiscale edges (EDGE), 51
contrast values, 54t
obtained from Deslauriers–Dubuc interpolation,

52t, 54t
of DD wavelet coefficients, 54f

Musculoskeletal joint systems, 341
applications, 351

bone structure and loading relationship in the
proximal tibia, 353

ligament tension and joint contact pressure in
the wrist, 352

movement rhythm of the shoulder complex,
351

osteoporotic change in trabecular pattern of
the vertebral body, 352

resultant force analysis of the shoulder, 351
bone structure and material property analysis, 347
joint contact pressure and ligament tension

analysis, 345
kinematics analysis, 343
kinetic analysis, 344
three-dimensional biomechanical models, 342

model development, 342
Multispectral images, 81
Multispectral magnetic resonance imaging datasets

of human brain, 133f
Mutual information, 613, 618

applications of, 621
criticisms of, 622
for registration involving affine transformations,

622
for 2D-3D registration, 622
for nonrigid registration, 622

N

Navier-Stokes equilibrium equations, 646
Navigational visualization, 738
Nearest integer neighbor (NINT), 967
Near optimal isosurface extraction (NOISE)

algorithm, 817
Neural network approaches, 650

network types, 650
multilayered perceptrons (MLPs), 650
radial basis function (RBF), 650

Neurosurgery, 769
Nine-parameter affine model, 558
NOISE algorithm, 787, 819
Noise robust K -means, 212
Noise suppression, 8

by image averaging, 14
by median filtering, 10
by mean filtering, 8, 10f

additive noise, 10f
Non-linear edge detectors, 250

3D, 250
Nonlinear intensity characteristics, 4

determination, 5
inverse transformation, 5f

Nonlinear spatial transformation models, 566

Non-steady-state effects, 508
Nonuniform spatial intensities, 240
Normalized descriptors, 267
Normalized distance along the centerline (NDAC)

algorithm, 837
Normalized histograms, 246f
Normalized mutual information, 619
Normal-to-normal registration, 311
Notch filter, 20
Notch filtering

of signal, 22f
Nuclear features, 455

feature selection procedure, 458
features for cell-by-cell classification, 457
features for computerized image analysis, 455
morphometric features, 455
nuclear features in fluorescence microscopy

images, 455
photometric or fluorometric features, 455
texture features, 457

Nyquist ghost, 511
Nyquist sampling theory, 511

O

Object-order techniques, 792, 793f
advantage of, 794
disadvantage of, 794

Octree method, 786
Omnidirectional tracking technique, 420
o-Moms, 479, 481f
One-dimensional (1D) signals, 19
Open database connectivity (ODBC) standard, 899
Open geospatial consortium’s (OGC) standards, 899
Optimal transformation, 295
Optimizing MR image resampling, 675

conservation of information, 676
empirical demonstration, 677
mathematical framework, 676

resampling by full Fourier transform methods,
679

chirp-z , 680
conservation of information, 682
discrete Fourier transform, 679
shearing, 680

three-dimensional resampling of slices, 683
Orientation histogram, 279–282, 288

3D, 179f
GD method, 287f, 288f, 289f
mean white matter, 291
typical grey matter, 290f

P

PACS. See Picture archiving and communication
systems

Pair-wise mixtures, 229
Papanicolaou (Pap) stain, 455
Paradox image, 424
Parameter descriptiveness, 159
Parametric deformable models (PDM), 181, 182
Parameterization, 157, 652

surface parameterization, 652
Parametric imaging, 82
PARC. See Polygon assisted ray casting
Parks model, 448f
Partial differential equation (PDE), 659
Partial volume basis functions, 231

parameters, 232–233
Partial volume Bayesian (PVB) algorithm, 234, 235
Partial-volume classification approach, 225–226
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Partial volume segmentation, 223–242
classification approach using Voxel histograms,

225–226
classification, 233–234
derivation of classification parameter estimation,

237–239
derivation of histogram basis functions, 236–237
estimating histogram basis function parameters,

232–233
histogram basis functions for pure materials and

mixtures, 230–232
normalized histograms, 229–230

computing Voxel histograms, 230
overview, 227–229

problem statement, 227–228
related work, 226–227
results, 234–236
with Voxel histograms, 223–242

Partial volume Voxel parameters, 233
Partition function, 148
Pattern recognition

label vector, 94
models type, 93
techniques, 101f

PBV. See Percentage of brain volume
PCA. See Principal components analysis
PCM. See Possibilistic c-means model
PD. See Proton density
PDM. See Parametric deformable models
Peak signal-to-noise ratio (PSNR), 922
Pearson distribution, 147, 248f, 249t
Pepper-and-salt noise, 10, 11f
Percentage of brain volume (PBV), 134
Percutaneous transluminal angioplasty (PTA), 136
Perceptron, 115
Performance of computer classification, 407

based on human perceptual features, 407
based on computer-extracted features, 408
improve mammogram interpretation, 408

Peripheral pulse gating (PPG), 420
Perspective transformations, 563, 564f
Phantoms and cadavers, 573
Phantom features, 49f

blended, 49
Phantom study, 361
Phase analysis of dynamic cine-MRI images, 427f
Phase analysis of dynamic X-ray contrast

ventriculogram, 427f
Phong exponent, 790
Photometric or fluorometric features, 457
Physical and biological bases of spatial distortions,

515
anatomical distortions, 518

different image distributions, 518
elastic deformations, 518, 519f
motion, 518
movement, 518

in positron emission tomography images, 515
methods of correction, 520

elastic mapping, 521
physical factors, 520

physical distortions of pet, 515
attenuation correction, 517
axial sampling, 517
nonuniform sampling, 515, 516f
nonuniform spatial resolution variations, 516

Physical basis of spatial distortions, 499
chemical shift effects, 507
effects of motion, 505
fmri artifacts, 511
hardware imperfections, 501

Eddy currents, 502
gradient coil linearity, 501

Maxwell term effects, 501
static field in homogeneity, 502

imperfect MRI pulse sequences, 508
in magnetic resonance images, 499
nuclear magnetic relaxation times, T 1, T 2, 500
review of image formation, 499

Picture archive and communications system (PACS),
850

image intensifier systems, 886
image orientation, 883
image standardization functions in HI-PACS, 890
image standardization in, 874
improvement of visual perception, 882

Picture element, 4, 386. See also Pixel
Picture function, 98

spectral dimension of, 98
Pixel counts

for pathological tissues, 103t
Pixels, 4

classification, 81
operations, 4
redistribution of, 7

Pixel time course (PTC), 135
Pixel vector, 98
Piecewise-polynomial synthesis functions, 481
Planar X-ray films, 317
Planimetry, 386
“pli courbe” or inferior parietal gyrus, 526
Point-based matching, 649
Point distribution model, 169
Point spread function (PSF), 330
Poisson noise, 63
Poisson process, 63
Poisson’s ratio, 345
Polygon Assisted Ray Casting (PARC), 797
Polyhedra

regular or semi-regular, 280
Polyp, 772f, 837f
Population growth terms, 306
Positive predicted value (PPV), 927
Positron emission tomography (PET), 122, 299, 314

image, 301, 515
talairach stereotaxic space, 302f

Possibilistic c-means (PCM) model, 95, 96t
Posterior probability, 238
Post-synchronization techniques, 420
Posterior commissure (PC), 630
Potential forces, 182
Powell’s direction set method, 620
Power spectrum, 23, 24
PPVC/Mixel comparison, 234–235
Pre-classified model, 791
Predictive value positive (PVP), 927
Presegmentation, 122

by masking of extracerebral structures, 124f
Principal axes

of object, 264
Principal component analysis (PCA), 153, 312, 458
Principle of orthogonality, 24
Prior probabilities, 238
Probability density function, 247, 248
Problem statement, 227
Procrustes algorithm, 571
Proliferation model, 309
Prolongation operator, 186
Prominent cortical folds, 296
Propagating hypersurface, 175
Prostate cancer, 773

radiation treatment planning, 779, 780f
Protected health information (PHI), 871

PHI attributes, 871t
Proton density (PD), 195, 196, 255
PTC. See Pixel time course

Public domain software: Epi Info™, 899
Pulsatile flow effects, 505, 505f
Pulse code modulation (PCM) techniques, 857
Putamen, 154f

Q

Q/R service class operations, 870t
key attributes, 870t

Quadrature filters, 26, 29
visualization of, 27f

Quantitative analysis of cardiac function, 419
dynamic analysis of left ventricular function, 420

densitometric calculation of volumes, 420
dynamic analysis of myocardial contraction,

427
geometric calculation of changes in cardiac

volumes, 420
quantitative evaluation of regional function,

423
temporal evaluation of ventricular wall

motion, 424
dynamic image acquisition techniques, 419
quantitative evaluation of flow motion, 428

two-dimensional color Doppler ultrasound,
428

velocity encoded cine-MRI, 428
Quantitative image analysis, 381

for estimation of breast cancer risk, 381
mammography, 382
mammographic density, 383

applications of, 395
automated analysis of, 388
methods for characterizing, 385

other imaging modalities, 395
planimetry, 386

Quantitative analysis of mammographic images, 391
Quantization, 966
Quaternions, 565

R

Radial basis function (RBF), 115, 650
Radial distance measures, 264
Radial distance metric, 262
Radiologists’ diagnostic performance, 408

computer-extracted features, 409
effect of computer classification, 408
human perceptual features, 408

Radio-frequency (RF), 195
Radio-frequency coil inhomogeneity, 504
Radionuclide blood pool images, 423
Radiotherapy equipment, 594
Random fields, 22

autocorrelation and power spectrum, 22–23
cross-correlation function, 24

Random numbers
histograms of, 249f

Random tensor field models, 662
Raster technique, 420
Rat pulmonary arterial tree, 329f
RAVENS. See Regional analysis of volumes examined

in stereotaxic space
Ray-casting geometry models, 760f
Rayleigh curve, 197
Rayleigh distribution, 44–45, 197
RBF. See Radial basis function
RBGS. See Red-black Gauss-Seidel method
RDWT. See Redundant discrete dyadic wavelet

transform
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Real-time ray-tracing, 825
Receiver operating characteristic (ROC) analysis, 66,

367, 376, 404f, 406, 407, 407f, 918
methodology, 927

Recursive filtering, 489
Red-black Gauss-Seidel method (RBGS), 186
Redundant array of inexpensive disks (RAID), 863
Redundant discrete dyadic wavelet transform

(RDWT)
1D, 36f
multichannel structure, 38f

Regional analysis of volumes examined in stereotaxic
space (RAVENS), 300

Regional ejection fraction image (REF), 424
Region growing, 74, 77
Region merging. See Region growing
Region of interest (ROI), 51, 67, 82, 83, 100, 195

enhancement
by EDGE, 55
by GAIN, 55

within a mammogram, 55f
Regions, 73
Reparameterization

elastic, 296
Rescaling, 123
Respiratory motion, 505
Restriction operator, 186
Resubstitution error rate, 97
RF. See Radio-frequency
Right coronary arterial system (RCA), 324
Rigid-body model, 542, 544f

advantages of, 544
Right pulmonary artery (RPA), 950
Rigid registration, 581

curve registration, 582
examples of, 584

CT images of the skull, 584
MR images of the head, 584

extremal points registration using alignment, 582
substructure matching with frame features, 582

clustering compatible matches and verification,
583

invariant representation: preprocessing step,
583

matching crest lines, 583
recognition step, 583

Ringing, 15
Robust EM algorithm, 213
Robust fuzzy clustering, 214
Robustness and uncertainty analysis, 584, 585

feature uncertainty, 586
transformation uncertainty, 586

Robust tissue classification algorithms, 216, 220
ROI. See Regions of interest
‘Rogues’ gallery of acquisition artifacts, 509f
Root mean square (RMS), 569
Root-mean-square error (RMSE), 968
Rule-based validation, 101
Run-length histogram, 274
Run-length statistics, 274

S

Saccharomyces cerevisiae, 139
Sagittal slice

of successive ct volumes, 156f
Same instruction multiple data, 804
Sampling theorem, 228, 242
Scale invariant quantification, 263
SC. See Supervised classification
Scanning electron microscope (SEM), 320
SCFE, 357, 357f, 360

Schaum’s functions, 480
Scheffé intervals, 942
Schizophrenic patients

detection of structural differences between the
brains of, 285

orientation histograms, 290f
Schizophrenics, 251, 252, 254, 255, 285
Schur decomposition, 552
Seeds, 322
Segmentation. See Image segmentation
Self-organizing map (SOM)

algorithm, 117
double, 138

Semiautomated feature: interactive thresholding, 386
direct digital mammograms, 387

Semi-automatic segmentation methods, 133
Semisupervised FCM (ssFCM), 105–107
Service class provider (SCP), 865
Service class user (SCU), 865
Set partitioning in hierarchical trees (SPIHT), 921
Shannon–Weiner entropy, 618
Shape constraints

combined model, 171
square and rectangle shape, 171f

independence model, 170
point distribution model, 169
smoothness model, 170–171

Shape-matching algorithms, 343
Shape parameters

effects of varying, 170f, 171f, 172f
Shape quantification, 261

compactness, 261
binary regions, 262f
distributions of normalized, 262f

spatial moments, 262
Shape transformation, 294–297

measurements based, 297
principle of computational neuroanatomy, 295f

Shear-warp algorithm, 794, 795f
Shepp–Logan filter, 327
Shepp-Logan head phantom, 509
Shell rendering technique, 735, 794
Simulated data studies, 283
SI. See Signal intensity
Signal intensity (SI), 135, 136
Signal-to-noise ratio (SNR), 43, 320, 938
Similarity mapping. See Correlation mapping
Simplest mixing technique, 806

accumulation level intermixing, 806
illumination model level intermixing, 806
image-level intermixing, 806

Simulations, 573
Simulated annealing, 116
Simulated immersion, 79
Sinc, 482

sinc apodization, 483f
sinc filters, 788

Single photon emission computed tomography
(SPECT), 122, 515–521

Sinusoidal signal
with low spatial frequency, 21f
with high spatial frequency, 21f

Six-category classification (SCC) scheme, 383f
Skewness filter

scanning rays of, 253f
Skewness-fractal classifier (S-FC), 390
Skewness gradient filter, 247

Skewness gradients, 250, 252, 254, 255
schematic representation of, 250f
statistical significance of, 255f

Slipped capital femoral epiphysis (SCFE), 355
Smoothing, 76
Smoothness covariance matrix, 170f, 171
Snakes algorithm, 199
Snake technique, 146–151
SNR. See Signal-to-noise ratio
Sobel operator, 78f, 79
Soft clustering methods, 116
Soft segmentations, 211
SOM algorithm. See Self-organizing map algorithm
SONET. See Synchronous Optical Network
SONET signal hierarchy, 857t
Space elements, 107
SPAMM. See Spatial modulation of magnetization
Span space, 818, 819f

using Kd-tree, 819
Spatial distortions, 499, 502, 515
Spatial frequency, 20
Spatial gray-level dependence histogram (SGLDH),

282
Spatial gray-level dependence (SGLD) matrices, 406
Spatial modulation of magnetization (SPAMM), 158
Spatial normalization (SN), 301f, 302, 629

accuracy of spatial normalization, 635
manual SN example, 632

steps for, 633
of image data, 299
schematic plan for, 631f

Spatial signal, 3
Spatial transformation models, 541

averaging spatial transformations, 567
constrained affine transformations, 561, 559f
general affine model, 561
global rescaling transformation, 555
homogeneous coordinates, 541
rigid-body model, 542
nine-parameter affine model, 558
nonlinear spatial transformation models, 566
perspective transformations, 563
spatial transformations using quaternions, 565

SPECT. See Single photon emission computed
tomography

Speed and accuracy trade-offs, 609
Speed term design, 175
Spiral imaging artifacts, 511
Splitting, 77
Spoiled gradient recall (SPGR) protocol, 213
Standard mammographic form or SMF, 394
Standard statistical methods, 294
Statistical parametric mapping (SPM), 691
Stepwise feature selection (SWFS), 375–376
Still picture interchange file format (SPIFF)

standard, 850
Stiffness matrix, 148
Strain encoding, 444
Strang-fix equivalence, 475
Stroke volume image (SV), 424
Sulcal and gyral anatomy, 527

callosomarginal sulcus, 528
rolandic sulcus, 527, 528f

Sulcal ribbon, 299f
Sulcal ribbon surfaces, 177

with cut-away view of brain, 178f
Sulcal surface determination, 177
SUN SPARC workstation, 200
Supervised classification (SC), 114, 126
Supervised learning

manual labeling of tissue classes, 126f
techniques, 458

Superior vena cava (SVC), 950
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Support vector machines (SVMs), 840
Surface normal overlap method, 840
Surface rendering, 193
Sylvian fissure, 526
Synaptic weights, 115
Synchronous Optical Network (SONET), 857
Synthesis functions, 478f, 484f
Synthetic shape model, 170f
Synthetic texture, 284f, 286f, 287f, 288f, 289f

T

Tag-based imaging method, 449
Talairach and Tournoux brain atlas, 290f
Talairach atlases, 632

twelve regions of, 630f
Talairach coordinate system, 531f
Talairach global SN methods, 630
Talairach space, 629

anatomical and functional variability, 638
uses in, 639

feature matching, 631
Talairach stereotactic space, 535
Task-driven volume rendering, 806
T carrier baseband system, 857t
TDT. See Tumor diffusion tensor
Techniques for classifying breast lesions, 400

based on computer-extracted features, 404
based on human perceptual features, 402
classifiers, 406

Telecommunications, 856
network interoperability, 857

signal hierarchy and transfer rates, 856
telemedicine applications compatibility, 858

Telemedicine system, 850f
Tenia libera (TL), 835
Tenia mesocolica (TM), 835
Tenia omentalis (TO), 835
Tensor mapping, 29
Texture quantification, 261, 270

co-occurrence matrix measures, 270
laws texture energy measures, 274, 275
mammogram, 273
statistical moments, 270

Texture segmentation algorithms, 245
Thin indentation, 185, 187

and broken boundary, 188f
Thinning, 268, 269

algorithms, 268
application of, 270
pixel representation, 269f

Third order gradients, 251
Three-dimensional biomechanical models, 342

conventional measurement methods, 356
3D angle measurement method, 358

data, postprocessing, and graphics, 358
planning of correctional osteotomies, 358
slipped capital femoral epiphysis (SCFE), 355

Three-dimensional bone angle quantification, 355
Three-dimensional image compression, 963, 965

block diagrams, 965
with wavelet transforms, 963, 965

Three-dimensional visualization, 755
applications, 766

virtual endoscopy, 766, 769f
in medicine and biology, 755

Three-dimensional wavelet transform, 965
three-dimensional wavelet decomposition, 965f

Thresholding, 74–77
bimodal histogram, 74f

global, 74–75
example, 75f

levels, 75
example of the sensitivity, 75f

local (adaptive), 76
determination, 76

methods, 74
techniques, 74

Tibio-fibural joint (TF), 353
Time-critical rendering, 797
Time division multiplexing (TDM) techniques, 857
Tissue

classification, 137f
technique, 227

segmentation
based on minimal free energy VQ, 137f

types, 131
Tissue-dependent effect, 210
Tissue segmentation plug-in, 215
TMZ, 310
Tomochemistry, 781
Tomographic images, 293

brain, 295
TP. See True positive
Trabecular bone, 349

anisotropy of, 352f
heterogeneous and anisotropic model, 350
homogeneous and anisotropic model, 350
homogeneous and isotropic model, 350
material properties of, 349
mechanical properties of, 349f

Track Su, 105, 108
Track USA , 100–102, 104, 107
Track USB , 100, 101, 104
Traditional pattern recognition methods, 99

supervised (Su), 99f, 100
unsupervised (US), 99f, 100

Traditional potential forces, 183f, 184
Transformation, 632

transformed image standardization, 637
Transition label definitions, 265f
Translational transformation, 547
Tree structured filter (TSF), 60
Trilinear interpolation, 734
α-Trimmed mean filters, 62
Trimmed voxel lists method, 787
True positive (TP), 105
True positive fraction (TPF), 927
Truncation artifacts, 508
TS. See Tumor size
TSF. See Tree structured filter
T-surfaces, 152
Tumor cell density, 306
Tumor delineation, 311
Tumor diffusion tensor (TDT), 307
Tumor growth modeling, 305–314

applications, 311
registration, 311
segmentation, 312

Tumor size (TS), 105
Tumor volumes, 105–107

variability, 107t
Tumour boundary detection, 251, 252f
Two-dimensional color Doppler ultrasound, 428

Doppler principle, 429
Doppler shift, 429

U

UC. See Unsupervised clustering
Ultra-fast MRI, 507

Ultrasound image sections
liver with cirrhosis, 271f
of fatty live, 271f
of normal liver, 271f

Ultrasound velocity (USV), 350
Unsharp masking (UNS), 20–24, 35, 39, 51, 53f

contrast values, 54t
Ultrasonic liver image

texture metrics, 271t
Unsupervised clustering (UC), 114, 124
Unsupervised tissue classification, 209–220

background, 209–210
EM approach, 212–213
fuzzy clustering approach, 213–214
k-means approach, 211–212
methods, 210–211
results, 214–215

brainweb dataset, 215–217
IBSR datasets, 217
sensitivity to scan protocol, 217–218

USF-KB system, 104–106
vs. manual volume estimates, 107f

V

Validation index, 587
Validation of registration accuracy, 569

cross-validation, 572
internal consistency, 573
phantoms and cadavers, 573
sensitivity to starting parameters and statistical

modeling, 572
simulations, 573
units for reporting registration errors, 569
validation of inter subject warping, 574
validation of point fiducial-based registration, 571

Validity-guided (re) clustering (VGC), 102, 107
segmentations, 102

Variation of thickness across the breast, 391
effect on density analysis, 391
thickness correction, 392

Validation with real data, 587
direct validation shows biases, 588
estimation of the biases, 588
origin of the bias, 588
real validation index with bias, 589t
validation with bias, 588

Vascular morphometry, 319
VC. See Virtual colonoscopy
Vector-based solid models, 342
Vector quantization (VQ), 116–119, 124, 132

algorithms, 116
applications, 135
as multipurpose tool for image time-series

analysis, 134
cooperativity function, 116
minimal free energy, 118f
results

for segmentation, 130t
using four clusters, 137f

segmentation results, 130t
Vector-valued data, 239–240

benefits of histograms of, 240
Veiling glare, 321
Velocity encoded cine-MRI, 429, 430f
Ventricular wall motion, 424
Vertebral contour, 265f
Very large-scale integration (VLSI), 853
Vessel wall, 136, 137f
VGC. See Validity-guided (re) clustering
Vignetting, 321
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Virtual colonoscopy (VC), 807
stool tagging and removal in, 838
supine-prone registration for, 837

Virtual endoscopy (VE), 766, 833
overview of, 833

Virtual position, 115
Virtual private network (VPN), 872
VistA, 897
Viscous fluid approaches, 647
Visibility function, 25
Visualization genotypes, 731
Visualization in medicine, 729

discussion, 746
future issues in visualization, 746
software and computing systems, 751
speed issues in visualization systems, 746

genealogy of visualization, 730
genotypes, 731
phenotypes, 730

illustrative visualization, 731
imitative visualization, 741

imitative visualization by sensory feedback, 741
modeling and simulation, 741
virtual reality, 741

investigative visualization, 735
developmental visualization and 3D volume

morphing, 736
dynamic visualization, 736
flow (vector) visualization, 739
multimodality visualization, 738
navigational visualization, 738
rapid back-projection reconstruction, 739
real-time visualization, 738
stereoscopic 3D visualization, 736

parametric visualization, 745
Visualization in biology, 743
Visualization in spatial biostatistics, 744
Visualization pathways in biomedicine, 729, 730f
Visualization phenotypes, 730

illustrative visualization, 730
investigative visualization, 730

Visualization toolkit (VTK), 358
Vocal tract

midsagittal MRI section, 138f
segmented, 138f

Volume of interest (VOI), 690
Volume modeling (surface rendering), 765
Volume ratio, 176, 177
Volume rendering and volume modeling, 766

comparison, 766, 766f
Volume rendering techniques, 758
Volumetric analysis of mammographic density, 393,

394f
Volume visualization, 785

acceleration techniques, 796
case study: 3D virtual colonoscopy, 808
classification and transfer functions, 799
direct volume rendering: prelude, 787
illustrative and task-driven volume rendering, 806
in medicine, 785
making volume rendering interactive, 802

general purpose graphics hardware, 801
specialized hardware, 801

multi-channel and multi-modal data, 806
rendering via geometric primitives, 786

volumetric data, 786
volumetric function interpolation, 787
volumetric global illumination, 801

volume rendering techniques, 789
domain volume rendering, 795
hybrid techniques, 795
image-order techniques, 790
object-order techniques, 792

Voxels, 98
Voxel-based models, 342
Voxel-based morphometry (VBM), 532
8-Voxel cell, 580
Voxel histograms, 223–242

estimating histogram basis function parameters,
232

histogram basis functions for pure materials and
mixtures, 230–232

Voxel similarity measures, 614
VQ. See Vector quantization

W

Warped isosurface extraction (WISE), 823
shear-warp factorization, 823, 824f

Warping, 713
measuring structural differences, 715
model-driven registration, 713

Warping algorithms, 645
classification, 645
for 3D nonlinear deformation of brain data, 645t

Warping strategies for intersubject registration, 643
challenges in 3D brain imaging, 643

analyzing brain data, 644
hybrid algorithms, 644
measuring anatomical differences, 644
measuring brain changes, 644
pathology detection, 644, 665f, 666f
population-based atlases, 644

classification of warping algorithms, 645
3Dvolume transformation, 653
anatomical models, 652
automated matching, 651
bayesian registration models, 648
convolution filters, 647
curve-based approaches, 650, 651f
displacement maps, 652
intensity-driven approaches, 646
model-driven algorithms, 648
model-driven and intensity-driven algorithms,

645
multigrid and coarse-to-fine optimization, 648
navier-stokes equilibrium equations, 646
neural network approaches, 650
parameterization, 652
point-based matching, 649
surface-based approaches, 651
viscous fluid approaches, 647

cortical pattern matching, 654
advantages, 659
algorithm details, 654
cortical curvature, 656
covariant formalism, 658
covariant matching of cortical surfaces, 659,

659f
overview of method, 654

maps of the cortical parameter space, 656
pathology detection, 660

abnormal asymmetry, 664
comparing registration methods, 662, 663f
disease classification and subtyping, 666
encoding brain variation, 660, 661
learning information on anatomic variability,

666
mapping cortical variability, 661
pathology detection in image databases, 666
pattern-theoretic approaches, 664
population-based brain image templates, 662
shape theory approaches, 664
variability and asymmetry, 662

Watershed algorithm, 78–79, 801
Wavelet compression, 854
Wavelet filter selection, 967

for 2d slice, 968
for a 3D image data set, 967
for the interslice direction, 969

Wavelet surfaces, 733
Wavelet theory, 36, 963

basic wavelet theory and multiresolution analysis,
963

one-, two-, and three-dimensional wavelet
transform, 964

Wavelet transform (WT), 60, 64
multiorientation, 65, 66

by adaptive directional filter bank, 65
multiresolution, 64
separable wavelets, 64

Web-based image libraries using multiagents, 908
dynamic mammogram retrieval, 908
experiments, 911
methods, 909
related works, 909
retrieval strategy, 910

Weighting functions, 185
White and gray matter

differential motility, 307f
inner cortical boundary, 174

White matter lesion (WML)
classification, 135f
segmentation, 133, 134

White matter (WM), 102, 103
White noise process, 23
Wiener filters, 19, 22, 24–26

adaptive, 25
local adaptation, 25
nonlinear extension, 25

Wiener-Khinchin theorem, 24
WML. See White matter lesion
WM. See White matter
WT. See Wavelet transform
Wolfe grades, 384
Wolff ’s hypothesis, 353

Y

Young’s modulus, 308

Z

Zhang and Suen algorithm, 269f




